
 

A Family of Calabi-Yau Varieties and Potential Automorphy

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Harris, Michael, Nick Shepherd-Barron, and Richard Taylor.
Forthcoming. A family of Calabi-Yau varieties and potential
automorphy. Annals of Mathematics.

Published Version http://pjm.math.berkeley.edu/scripts/coming.php?jpath=annals

Accessed February 18, 2015 3:18:31 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3415495

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Open Access Policy Articles, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#OAP

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/3415495&title=A+Family+of+Calabi-Yau+Varieties+and+Potential+Automorphy
http://pjm.math.berkeley.edu/scripts/coming.php?jpath=annals
http://nrs.harvard.edu/urn-3:HUL.InstRepos:3415495
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#OAP


A family of Calabi-Yau varieties and potential
automorphy

Michael Harris 1

Department of Mathematics,
University of Paris 7,

Paris,
France.

Nick Shepherd-Barron
DPMMS,

Cambridge University,
Cambridge,
CB3 0WB,
England.

Richard Taylor 2

Department of Mathematics,
Harvard University,

Cambridge,
MA 02138,

U.S.A.

January 21, 2009
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Introduction

In this paper we generalise the methods of [T1] and [T2] to symplectic Galois
representations of dimension greater than 2. Recall that these papers showed
that some quite general two dimensional Galois representations of Gal (Q/Q)
became modular after restriction to some Galois totally real field. This has
proved a surprisingly powerful result.

An example of the sort of theorem we prove in this paper is the following
(see theorem 3.2 below).

Theorem A Suppose that n is an even integer and that q is a prime. Suppose
that l 6= q is a prime sufficiently large compared to n, and that

r : Gal (Q/Q) −→ GL2(Zl)

is a continuous representation which is unramified almost everywhere and
which has odd determinant (i.e. det r(c) = −1). Suppose that r also enjoys
the following properties.

1. r is surjective.

2. r is crystalline at l with Hodge-Tate numbers 0 and 1.

3. r|ss
Gal (Qq/Qq)

is unramified and the ratio of the eigenvalues of Frobenius is
q.

Then there is a Galois totally real number field over which Symm n−1r becomes
automorphic.

The key points are that no assumption is made on whether Symm n−1r mod l
is automorphic, but we can only conclude automorphy over some number field,
not necessarily over Q.

The papers [T1] and [T2] relied on the study of certain moduli spaces of
Hilbert-Blumenthal abelian varieties. The main innovation in this paper is to
replace these modular families by the family

Yt : Xn+1
0 +Xn+1

1 + ...+Xn+1
n = (n+ 1)tX0X1...Xn

of projective hypersurfaces over the affine line. More precisely

H ′ = ker(µn+1
n+1

Q
−→ µn+1)

acts on this family (by multiplication of the coordinates) and we will consider
the H ′-invariants in the cohomology in degree n− 1 of a fibre in this family.
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Note that in the case n = 2 this is just a family of elliptic curves, so our theory
is in a sense a natural generalisation of the n = 2 case.

The proof of theorem A is then intertwined with the proof of the following
theorem (see theorem 3.3 below).

Theorem B Suppose that n is an even integer and that q 6 |n + 1 is a prime.
Suppose that l is a prime sufficiently large compared to n, and that

r : Gal (Q/Q) −→ GSpn(Zl)

is a continuous representation which is unramified almost everywhere and has
odd multiplier character. Suppose that r also enjoys the following properties.

1. r is surjective.

2. r is crystalline at l with Hodge-Tate numbers 0, 1, ..., n − 1. Moreover
there is an element t of the maximal unramified extension of Ql with
tn+1 − 1 a unit at l, such that

r ∼= Hn−1(Yt ⊗Ql,Fl)H
′

as symplectic representations of the inertia group at l.

3. r|ss
Gal (Qq/Qq)

is unramified and r|ss
Gal (Qq/Qq)

(Frobq) has eigenvalues of the

form α, αq, ..., αqn−1.

Then there is a Galois totally real number field over which r becomes automor-
phic.

As in the n = 2 case we expect these results to have important applications.
For instance we prove the following theorems.

Theorem C Let E/Q be an elliptic curve with multiplicative reduction at a
prime q.

1. For any odd integer m there is a finite Galois totally real field F/Q such
that SymmmH1(E) becomes automorphic over F . (One can choose an F
that will work simultaneously for any finite set of odd positive integers.)

2. For any positive integer m the L-function L(SymmmH1(E)/Q, s) has
meromorphic continuation to the whole complex plane and satisfies the
expected functional equation. It does not vanish in Re s ≥ 1 +m/2.
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3. The numbers
(1 + p−#E(Fp))/2

√
p

are equidistributed in [−1, 1] with respect to the measure (2/π)
√

1− t2 dt.

(See theorems 4.1, 4.2 and 4.3 below.)

Theorem D Suppose that n is an even, positive integer, and that t ∈ Q −
Z[1/(n+ 1)]. Then the L-function L(Vt, s) of

Hn−1(Yt ×Q,Ql)
H′

is independent of l, has meromorphic continuation to the whole complex plane
and satisfies the expected functional equaltion

L(Vt, s) = ε(Vt, s)L(Vt, n− s).

(See theorem 4.4 for details.)
Other applications are surely possible. For instance in the setting of theo-

rem B one can conclude that r is part of a compatible system of l′-adic Galois
representations.

The surjectivity assumptions in theorems A and B can be relaxed, but we
have not been able to formulate cleanly the generality in which our method
works. It derives from similar assumptions in [CHT] and [T3]. The assump-
tion that r is crystalline with distinct Hodge-Tate numbers also derives from
[CHT] and [T3]. The assumptions that the Hodge-Tate numbers are exactly
0, 1, ..., n−1 and that the restriction of r mod l to inertia at l comes from some
Yt both derive from the particular family Yt we work with. The second of these
assumptions might be relaxed either by using different families or if one had
improvements to the lifting theorems in [CHT] and [T3]. Griffiths transver-
sality seems to provide an obstruction to finding suitable families with other
Hodge-Tate weights, but this assumption might be relaxed if one had results
about the possible weights of automorphic mod l representations on unitary
groups (‘the weight in Serre’s conjecture’). The assumptions at q derive from
limits to our current knowledge about automorphic forms on unitary groups.
One could expect to remove them as the trace formula technology improves.

To generalise the results of [T1] and [T2] to higher dimensional representa-
tions two things were needed: generalisations of the ‘modularity of lifts’ theo-
rems of Wiles [W] and Taylor-Wiles [TW] from GL2 to GSpn (or some similar
group); and families of ‘motives’ with large monodromy but with hi,j ≤ 1 for
all i, j.
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The first of these problems is overcome in [CHT] and [T3]. When this pa-
per was submitted only [CHT] was available. In that paper we had succeeded
in generalising the arguments of [TW] to prove modularity of ‘minimal’ lifts
but had only been able to generalise the results [W] conditionally under the
assumption of a generalisation of Ihara’s lemma (lemma 3.2 of [I], see conjec-
ture A in the introduction of [CHT] for our conjectured generalisation). Thus
at that time the main results of this paper were all conditional on conjecture
A of the introduction of [CHT]. However, while this paper was being refereed,
one of us (R.T.) found a way to apply generalisations of the arguments of [TW]
directly in the non-minimal case thus avoiding the level raising arguments of
[W] and the appeal to conjecture A of [CHT]. This means that the results
of this paper also became unconditional. (We remark that modularity lifting
theorems in the minimal case do not suffice for our arguments because along
the way we need to apply these theorems to the l-adic cohomology of motives
constructed using a theorem of Moret-Bailly. This theorem only allows us
to control the ramification of this l-adic representation at a finite number of
places. In particular we can not ensure that it is a minimal lift of its mod l
reduction.)

The second of the above problems is treated in this paper. We learnt of
the family Yt from the physics literature, but have since been told that it had
been extensively studied earlier by Dwork (unpublished).

In the first section of this paper we study the family Yt. Most of the
results we state seem to be well known, but, when we can’t find an easily
accessible reference, we give the proof. In the second section we recall some
simple algebraic number theory results that we will need. The main substance
of the paper is contained in section three where we prove various potential
modularity theorems. In the final section we give some example applications,
including theorems C and D.

The authors wish to thank the following institutions for their hospital-
ity, which have made this collaboration possible: the Centre Emile Borel,
for organizing the special semester on automorphic forms (R.T.); Cambridge
University, and especially John Coates, for a visit in July 2003 (M.H. and
R.T.); and Harvard University, for an extended visit during the spring of 2004
(M.H.). We also thank Michael Larsen for help with the proof of theorem
4.4; and Ahmed Abbes, Christophe Breuil, Johan de Jong and Takeshi Saito
for helping us prove proposition 1.15, as well as for helping us try to prove
stronger related results which at one stage we thought would be necessary. We
thank the referees for useful stylistic suggestions. Finally we thank Nick Katz
for telling us, at an early stage of our work, that corollary 1.10 was true (an
important realisation for us) and providing a reference.
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Notation

We will write µm for the group scheme of mth roots of 1. We will use ζm to
denote a primitive mth root of 1. We will also denote by εl the l-adic cyclotomic
character.

c will denote complex conjugation.
If T is a variety and t a point of T we will write OT,t for the local ring

of T at t. We will use k(t) to denote its residue field and O∧T,t to denote its
completion.

If r is a representation we will write rss for its semisimplification.
Let K be a p-adic field and v : K× →→ Z its valuation. We will write OK

for its ring of integers and k(K) or k(v) for its residue field. We will denote
by | |K the absolute value on K defined by |a|K = (#k(K))−v(a). We will also
denote by WK the Weil group of K and by IK the inertia subgroup of WK .
We will write FrobK or Frobv for the geometric Frobenius element in WK/IK .
We will write ArtK for the Artin isomorphism ArtK : K×

∼→ W ab
K normalised

to send uniformisers to lifts of FrobK . If p 6 |n then we will write ωK,n = ωn for
the character

IK −→ k(K)×

σ 7−→ (σ pn−1
√
$K)/ pn−1

√
$K ,

where $K is a uniformiser for K. (The definition is independent of the choice

of this uniformiser. Note that εp = ω
[IQp :IK ]

K,1 .) If l 6= p, we will let tK,l de-

note a surjective homomorphism tK,l : IK →→ Zl (which is unique up to Z×l -
multiples). By a Weil-Deligne represenation of WK we mean a pair (r,N)
where r : WK → GL(V ) is a homomorphism with open kernel and where
N ∈ End (V ) satisfies r(σ)Nr(σ)−1 = |Art −1

K σ|KN . We will write (r,N)F-ss

for the Frobenius semisimplification (rss, N) of (r,N). We will denote by
rec the local Langlands bijection from irreducible smooth representations of
GLn(K) to n-dimensional Frobenius semi-simple Weil-Deligne representations
of WK (see [HT]). If l 6= p and W is a continuous finite dimensional l-adic
representation of Gal (F/F ) then we write WD(W ) for the associated Weil-
Deligne representation of WK (see for instance [TY]). We will write Sp n(1)
for the Steinberg representation of GLn(K).

If K is a number field (i.e. a finite extension of Q) we will write AK for its
ring of adeles.
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1 A family of hypersurfaces.

Let n be an even positive integer. Consider the scheme

Y ⊂ Pn × P1

over Z[ 1
n+1

] defined by

s(Xn+1
0 +Xn+1

1 + · · ·+Xn+1
n ) = (n+ 1)tX0 ·X1 · · · · ·Xn.

We will consider Y as a family of schemes over P1 by projection π to the
second factor. We will label points of P1 with reference to the affine piece
s = 1. If t is a point of P1 we shall write Yt for the fibre of Y above t. Let
T0 = P1−({∞}∪µn+1)/Z[1/(n+1)]. The mapping Y |T0 → T0 is smooth. The
total space Y −Y∞ is regular. If ζn+1 = 1 then Yζ has only isolated singularities
at points where all the Xi’s are (n+1)th roots of unity with product ζ−1. These
singularities are ordinary quadratic singularities.

If ζ is a primitive (n + 1)th root of unity then over Z[1/(n + 1), ζ] the
scheme Y gets a natural action of the group H = µn+1

n+1/µn+1 with the sub-
µn+1 embedded diagonally:

(ζ0, ..., ζn)(X0 : ... : Xn) = (ζ0X0 : ... : ζnXn).

We will let H0 denote the subgroup of elements (ζi) ∈ H with ζ0ζ1...ζn = 1.
Then H0 acts on every fibre Yt. If tn+1 = 1 then H0 permutes transitively the
singularities of Yt. The whole group H acts on Y0.

For N coprime to n+ 1 set

Vn[N ] = V [N ] = (Rn−1π∗Z/NZ)H0 ,

a lisse sheaf on T0 × Spec Z[1/N(n + 1)]. (Although the action of H0 is
only defined over a cyclotomic extension, the H0 invariants make sense over
Z[1/N(n+ 1)].) If l 6 |n+ 1 is prime set

Vn,l = Vl = (lim
←m

V [lm])⊗Zl Ql.

Similarly define
V = (Rn−1π∗Z)H0

a locally constant sheaf on T0(C) and

VDR = Hn−1
DR (Y/(P1 − ({∞} ∪ µn+1)))H0
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a locally free coherent sheaf with a decreasing filtration F iVDR (and a con-
nection) over T0. The locally constant sheaf on T0(C) corresponding to Vl is
V ⊗Ql. Note that there are natural perfect alternating pairings:

V [N ]× V [N ] −→ (Z/NZ)(1− n)

and
Vl × Vl −→ Ql(1− n)

and
V × V −→ Z

coming from Poincare duality.
The following facts seem to be well known (see for example [K2], [LSW]).

Nick Katz has told us that many of them were known to Dwork in 1960’s, but
he only wrote up the case n = 3.

Lemma 1.1 V [N ], Vl and V ⊗Q are all locally free of rank n.

Proof: We need only check the fibre at 0. In the case V ⊗C this is shown to
be locally free of rank n in proposition I.7.4 of [DMOS]. The same argument
works in the other cases. 2

Corollary 1.2 If (N, n + 1) = 1 then V/NV is the locally constant sheaf on
T0(C) corresponding to V [N ].

Lemma 1.3 Under the action of H/H0
∼= µn+1 the fibres (V ⊗ C)0 and

(Vl⊗Ql Ql)0 split up as n one dimensional eigenspaces, one for each non-trivial
character of µn+1.

Proof: This is just proposition I.7.4 of [DMOS]. 2

Lemma 1.4 The monodromy of V ⊗ Q around a point in ζ ∈ µn+1 has 1-
eigenspace of dimension at least n− 1.

Proof: Let t ∈ T0(C). Picard-Lefschetz theory (see [SGA7]) gives an H0-
orbit ∆ of elements of Hn−1(Yt(C),Z) and an exact sequence

(0) −→ Hn−1(Yζ(C),Z) −→ Hn−1(Yt(C),Z) −→ Z∆.

If x ∈ Hn−1(Yt(C),Z) maps to (xδ) ∈ Z∆ then the monodromy operator sends
x to x±

∑
δ∈∆ xδδ. Taking H0 invariants we get an exact sequence

(0) −→ Hn−1(Yζ(C),Z)H0 −→ Ṽζ
d−→ Z
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and the monodromy operator sends x ∈ Vζ to x± d(x)
∑

δ∈∆ δ. 2

We remark that this argument works equally well for Vl or V [l] over T0 ×
Z[1/l(n+ 1)].

We also want to analyse the monodromy at infinity. For simplicity we will
argue analytically as in [M] and [LSW], which in turn is based on Griffith’s
method [G] for calculating the cohomology of a hypersurface. (Indeed the
argument below is sketched in [LSW].) One of us (N.I.S-B.) has found an
H0-equivariant blow up of Y which is semistable at ∞, and it seems possible
that combining this with the Rapoport-Zink spectral sequence would give an
algebraic argument, which might give more precise information.

Write
Qt = (Xn+1

0 + ...+Xn+1
n )/(n+ 1)− tX0X1...Xn,

and

Ω =
n∑
i=0

(−1)iXidX0 ∧ ... ∧ dXi−1 ∧ dXi+1 ∧ ... ∧ dXn.

Then for i = 1, ..., n+ 1

ω′i = (i− 1)!(X0X1...Xn)i−1Ω/Qi
t

is a meromorphic differential on Pn(C) with a pole of order i along Yt. Moreover
dω′i/dt = ω′i+1. Also set ωi = tiω′i so that ωi is H-invariant and

tdωi/dt = iωi + ωi+1.

Suppose that t 6∈ {∞} ∪ µn+1(C). We claim that for i = 1, ..., n we have

ω′i ∈ Hi(Yt)−Hi−1(Yt)

in the notation of section 5 of [G]. If this were not the case then proposition
4.6 of [G] would tell us that (X0X1...Xn)i−1 lies in the ideal generated by
the Xn

j − tX0...Xj−1Xj+1...Xn. Hence (X0X1...Xn)i would lie in the ideal

generated by the Xn+1
j − tX0X1...Xn. Symmetrising under the action of H0

and using the fact that C[X0, ..., Xn]H0 = C[Z, Y0, ..., Yn]/(Zn+1−Y0...Yn) (with
Yj = Xn+1

j and Z = X0...Xn), we would have that Zi lies in the ideal generated
by the Yj − tZ and Zn+1 − Y0...Yn in C[Z, Y0, ..., Yn]. Taking the degree i
homogeneous part and using the fact that i < n + 1 we would have that Zi

lies in the ideal generated by the Yj− tZ in C[Z, Y0, ..., Yn]. Setting Z = 1 and
Y0 = Y1 = ... = Yn = t would then give a contradiction, proving the claim.

Integration against ω′i gives a linear form Hn(Pn(C) − Yt(C),Z) → C.
Composing this with the map Hn−1(Yt(C),Z)→ Hn(Pn(C)− Yt(C),Z) shows
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that ω′i gives a class R(ω′i) in Hn−1(Yt(C),C)H0 . According to theorem 8.3 of
[G]

R(ω′i) ∈ (F n−iVDR)t ⊗ C− (F n+1−iVDR)t ⊗ C.

Thus the R(ω′i) for i = 1, ..., n are a basis of Hn−1(Yt(C),C)H0 . Moreover we
deduce the following lemma (due to Deligne, see proposition I.7.6 of [DMOS]).

Lemma 1.5 For j = 0, ..., n− 1 we have

dimF jVDR/F
j+1VDR = 1.

Moreover if ζ is a primitive (n+ 1)th root of unity then H acts on

F jVDR,0/F
j+1VDR,0 ⊗ Z[1/(n+ 1), ζ]

by
(ζ0, ..., ζn) 7−→ (ζ0...ζn)n−j.

Now assume in addition that t 6= 0. Then the class [ωn+1] is in the span
of the classes [ω1], ..., [ωn]. In section 4 (particularly equation (4.5)) of [G] a
method is described for calculating its coefficients. To carry it out we will need
certain integers Ai,j defined recursively for j > i ≥ 0 by

• A0,j = 1 for all j > 0 and

• Ai+1,j = Ai,i+1 + 2Ai,i+2 + ...+ (j − i− 1)Ai,j−1.

Note that these also satisfy Ai,i+1 = 1 for all i and

Ai,j = Ai,j−1 + (j − i)Ai−1,j−1

for j − 1 > i > 0. We claim that for all non-negative integers i and n we have

(i+ 1)n =

min(n,i)∑
j=0

An−j,n+1 i!/(i− j)!.

This can be proved by induction on n. The case n = 0 is clear. For general i
we see that∑min(n,i)

j=0 An−j,n+1i!/(i− j)!
=

∑min(n,i)
j=1 An−j,ni!/(i− j)! +

∑min(n−1,i)
j=0 (j + 1)An−j−1,ni!/(i− j)!

=
∑min(n−1,i−1)

j=0 An−j−1,ni!(i− j + j + 1)/(i− j)! + An−i−1,n(i+ 1)i!

= (i+ 1)
∑min(i,n−1)

j=0 An−1−j,ni!/(i− j)!
= (i+ 1)n,
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where we set An−i−1,n = 0 if i ≥ n. Thus we see that, as polynomials in T

T n =
n∑
j=0

Aj,n+1(T − 1)(T − 2)...(T + j − n).

Write

A(z) =



1 0 0 . . . 0 0 An,n+1

z−1

1 2 0 . . . 0 0 An−1,n+1

z−1

0 1 3 . . . 0 0 An−2,n+1

z−1
. . .

n− 2 0 A3,n+1

z−1

1 n− 1 A2,n+1

z−1

0 1 n+ A1,n+1

z−1


.

Then expanding along the last column we see that A(0) has characteristic
polynomial

n+1∑
j=0

Aj,n+1(T − 1)(T − 2)...(T + j − n) = T n.

It also has rank n − 1 and so has minimal polynomial T n. Consider the
differential equation

zdv(z)/dz = −A(z)v(z)/(n+ 1).

In a neighbourhood of zero its solutions are of the form

S(z) exp(−A(0) log(z)/(n+ 1))v0

where S(z) is a single matrix valued function in a neighbourhood of 0 and v0

is a constant vector. (See section 1 of [M].)
We will prove by induction on i that

(1− tn+1)[ωn+1]− tn+1(A1,n+1[ωn] + A2,n+1[ωn−1] + ...+ Ai,n+1[ωn+1−i]) =
(n− 1− i)!tn+1[(∑n

j=i+1 t
j−i(j − i)Ai,j(X0...Xj)

j−i−1(Xj+1...Xn)n+j−i
)

Ω/Qn−i
t

]
.

To prove the case i = 0 combine formula (4.5) of [G] with the formula

(1− tn+1)(X0...Xn)n =∑n
j=0(Xn

j −X0...Xj−1Xj+1...Xn)(X0...Xj−1)j−1Xj
j (Xj+1...Xn)n+j.

10



To prove the case i > 0 combine the case i − 1 and formula (4.5) of [G] with
the formula∑n

j=i t
j+1−i(j + 1− i)Ai−1,j(X0...Xj)

j−i(Xj+1...Xn)n+1+j−i

−Ai,n+1t
n+1−i(X0...Xn)n−i =∑n

k=i+1(Xk −X0...Xk−1Xk+1...Xn)tk−iAi,k
(X0...Xk−1)k−i−1Xk−i

k (Xk+1...Xn)n+k−i.

The special case i = n then tells us that

[ωn+1] =
1

t−(n+1) − 1
(A1,n+1[ωn] + ...+ An,n+1[ω1]).

Suppose that γt ∈ Hn−1(Yt(C),Z)H0 maps to Γt ∈ Hn(Pn(C) − Yt(C),Z).
Then the coefficients of γt with respect to the basis of Hn−1(Yt(C),C)H0 dual
to [ω1], ..., [ωn] is given by

v(γt) =


∫

Γt
ω1

...∫
Γt
ωn

 .

As explained in [M] if γt is a locally constant section of the local system of the
Hn−1(Yt(C),Z)H0 then the Γt can be taken locally constant and so

tdv(γt)/dt = A(t−(n+1))v(γt).

Let z0 be close to zero in P1 and let P be a loop in a small neighbourhood of 0
based at z0 and going m times around 0. Let P̃ be a lifting of this path under
the map P1 → P1 under which t 7→ t−(n+1) starting at t0 and ending at ht0 for
some h ∈ H. Let γ ∈ Hn−1(Yt0(C),Z)H0 . If we carry γ along P̃ in a locally

constant fashion we end up with an element P̃ γ ∈ Hn−1(Yht0(C),Z)H0 where

v(P̃ γ) = S(t
−(n+1)
0 ) exp(±2πimA(0)/(n+ 1))S(t

−(n+1)
0 )−1v(γ),

and so

h−1v(P̃ γ) = S(t
−(n+1)
0 ) exp(±2πimA(0)/(n+ 1))S(t

−(n+1)
0 )−1v(γ).

In particular we see that the monodromy around infinity on Hn−1(Yt0(C),Z)H0

is generated by exp(2πiA(0)) with respect to a suitable basis. This matrix is
unipotent with minimal polynomial (T − 1)n.
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Let ζ denote a primitive (n + 1)th root of 1. The map t 7→ tn+1 gives a
finite Galois etale cover

(P1 − {0,∞})× Spec C −→ (P1 − {0,∞})× Spec C

with Galois group H/H0. Thus the sheaf V descends to a locally constant

sheaf Ṽ on P1(C)−{0, 1,∞}. Note that there is a natural perfect alternating
pairing:

Ṽ × Ṽ −→ Z.

(A referee suggests we remark that there is a family Ỹ over the target P1 −
{0,∞}given by

sXn+1
0 + t(Xn+1

1 + ...+Xn+1
n ) = (n+ 1)tX0X1...Xn,

which pulls back to our family Y . The sheaf Ṽ is the corresponding part of
the cohomology of Ỹ .)

Lemma 1.6 The monodromy of Ṽ around ∞ unipotent with minimal poly-
nomial (T − 1)n. The monodromy around 1 is unipotent and the 1 eigenspace
has dimension exactly n− 1. The mondromy around 0 has eigenvalues the set
of nontrivial (n+ 1)th roots of 1 (each with multiplicity one).

Proof: By the calculation of the last but one paragraph the monodromy of
V ⊗C around ∞ can be respresented by exp(±2πiA(0)/(n+ 1)) with respect
to some basis. The action of the monodromy at 0 follows from lemma 1.3.
Because P1 → P1 over Z[1/(n+1)] given by t 7→ tn+1 is etale above 1 it follows
from lemma 1.4 that the monodromy at 1 has 1 eigenspace of dimension at
least n − 1. Because it preserves a perfect alternating pairing we see that
it must have determinant 1. Thus 1 is its only eigenvalue. Finally it can
not be the identity as else the monodromy at ∞ would be conjugate to the
monodromy at 0 or its inverse. 2

Corollary 1.7 The monodromy of V around ∞ is unipotent with minimal
polynomial (T−1)n. The monodromy around any element of µn+1(C) is unipo-
tent with 1 eigenspace of dimension exactly n− 1.

Corollary 1.8 Identify C((1/T )) = O∧P1×C,∞[T ]. Also identify

π1(Spec C((1/T ))) ∼= lim
←N

Gal (C((1/T 1/N))/C((1/T ))) ∼=
∏
p

Zp.
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Then the action of π1(Spec C((1/T ))) on Vl|Spec C((1/T )) (resp. V [l]|Spec C((1/T )))
is via x 7→ ux for a unipotent matrix u. In the case of Vl then u has minimal
polynomial (X − 1)n. There exists a constant D(n) depending only on n such
that for l > D(n), this is also true in the case of V [l].

Proof: A unipotent matix u ∈ GLn(Z) with minimal polynomial (X − 1)n

reduces modulo l for all but finitely many primes l to an unipotent matrix in
GLn(Fl) with minimal polynomial (X − 1)n. (If not for some 0 < i < n we
would have (u− 1)i ≡ 0 mod l for infinitely many l.) 2

The last sentence of the corollary will not be needed in the sequel, however
it was needed in an earlier version of this paper and seems to have a little
independent interest, so we have decided to leave it in. It seems likely that
N.I.S.-B.’s resolution of Y would allow one to make explicit the finite set of l
for which this last assertion fails.

We would like to thank Nick Katz for telling us that the following lemma is
true and providing a reference to [K2]. Because of the difficulty of comparing
the notation of [K2] with ours we have chosen to give a direct proof. If z ∈
P1(C)− {0, 1,∞} then let Sp(Ṽz ⊗ C) denote the group of automorphisms of

Ṽz ⊗ C which preserve the alternating form.

Lemma 1.9 If z ∈ P1(C)−{0, 1,∞} then the image of π1(P1(C)−{0, 1,∞}, z)
in Sp(Ṽz ⊗ C) is Zariski dense.

Proof: This follows from the previous lemma and the results of [BH]. More

precisely let H denote the image of π1(P1(C) − {0, 1,∞}, z) in Sp(Ṽz ⊗ C)
and let Hr denote the normal subgroup generated by monodromy at 1. It
follows from proposition 3.3 of [BH] that H is irreducible and from theorem
5.8 of [BH] that H is also primitive. Theorem 5.3 of [BH] tells us that Hr is
irreducible and then theorem 5.14 of [BH] tells us that Hr is primitive. (In
the case n = 2 use the fact that Hr is irreducible and contains a non-trivial
unipotent element.) Hr is infinite. Then it follows from propositions 6.3 and

6.4 of [BH] that Hr is Zariski dense in Sp(Ṽz ⊗ C). 2

If t ∈ T0(C) let Sp(Vt ⊗ C) (resp. Sp(V [N ]t), resp. Sp(Vt)) denote the
group of automorphisms of Vt ⊗ C (resp. V [N ]t, resp. Vt) which preserve the
alternating form.

Corollary 1.10 If t ∈ T0(C) then the image of π1(T0(C), t) in Sp(Vt ⊗ C) is
Zariski dense.

13



Lemma 1.11 There is a constant C(n) such that if N is an integer divisible
only by primes p > C(n) and if t ∈ T0(C) then the map

π1(T0(C), t) −→ Sp(V [N ]t)

is surjective.

Proof: This follows on combining the previous corollary with theorem 7.5
and lemma 8.4 of [MVW] or with theorem 5.1 of [N]. We remark that theorem
7.5 of [MVW] relies on the classification of finite simple groups and that [N]
does not pretend to give a complete proof of its theorem 5.1. For this reason
we sketch an alternative argument which was shown to us by Nick Katz.

Let sp(Vt) ⊂ End (Vt) denote the Lie algebra of Sp(Vt). Let W ⊂ sp(Vt)⊗
Z[1/(n−1)!] denote the Z[1/(n−1)!]-module generated by the log γ as γ ranges
over unipotent elements of the image of π1(T0(C), t) → Sp(Vt). By corollary
1.7 we see that W 6= (0). Because sp(Vt)⊗ C is a simple Sp(Vt ⊗ C)-module,
we conclude from corollary 1.10 that it is also a simple π1(T0(C), t)-module.
Thus W ⊗ C = sp(Vt)⊗ C, and we can find a positive integer C1(n) divisible
by (n− 1)! such that W ⊗ Z[1/C1(n)] = sp(Vt)⊗ Z[1/C1(n)]. It follows from
theorem 12.4.1 of [K1] that there is a positive integer C(n) divisible by 6C1(n)
such that, if p > C(n) is a prime and if r ∈ Z>0 then

π1(T0(C), t)→→ Sp(V [pr]t).

We will prove by induction on N that if N is only divisible by primes
greater than C(n) then

π1(T0(C), t)→→ Sp(V [N ]t).

Suppose that N = prM with p 6 |M a prime and r ∈ Z>0. Then we know that

π1(T0(C), t)→→ Sp(V [pr]t),

but by inductive hypothesis

π1(T0(C), t)→→ Sp(V [M ]t).

Each composition factor of Sp(V [pr]t) is one of Z/pZ, Z/2Z and PSpn(Z/pZ)
(which is simple as p > 3). Moreover as p > 3 the group Spn(Z/pZ) is perfect
and so does not admit Z/2Z as a quotient. In fact Sp(V [pr]t) does not admit
Z/2Z as a quotient (because ker(Sp(V [pr]t)→→ Sp(V [p]t)) is a p-group and so
would map trivially to any such quotient). Similarly each composition factor
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of Sp(V [M ]t) is one of Z/2Z, Z/qZ or PSpn(Z/qZ) for some prime q|M .
Thus any common quotient Sp(V [pr]t) and Sp(V [M ]t) can have only Z/2Z
as a composition factor. As Sp(V [pr]t) does not admit Z/2Z as a quotient
we conclude that Sp(V [pr]t) and Sp(V [M ]t) have no non-trivial quotient in
common. It follows from Goursat’s lemma that

π1(T0(C), t)→→ Sp(V [N ]t),

as desired. 2

Let F be a number field and let W be a free Z/NZ-module of rank n with
a continuous action of Gal (F/F ) and a perfect alternating pairing

〈 , 〉W : W ×W −→ (Z/NZ)(1− n).

We may think of W as a lisse etale sheaf over SpecF . Consider the functor
from T0 × SpecF -schemes to sets which sends X to the set of isomorphisms
between the pull back of W and the pull back of V [N ] which sends 〈 , 〉W to
the pairing we have defined on V [N ]. This functor is represented by a finite
etale cover TW/T0 × SpecF . The previous corollary implies the next one.

Corollary 1.12 If N is an integer divisible only by primes p > C(n) and if
W, 〈 , 〉W is as above, then TW (C) is connected for any embedding F ↪→ C,
i.e. TW is geometrically connected.

Lemma 1.13 Suppose that K/Ql is a finite extension and that t ∈ T0(K).
Then Vl,t is a de Rham representation of Gal (K/K) with Hodge-Tate numbers
{0, 1, ..., n− 1}. If t ∈ OK and 1/(tn+1 − 1) ∈ OK then Vl,t is crystalline.

Proof: Vl,t = Hn−1(Yt × SpecK,Ql)
H0 . The first assertion follows from

the comparison theorem and the fact that Hn−1
DR (Yt/K)H0 has one dimensional

graded pieces in each of the degrees 0, 1, ..., n−1. The second assertion follows
as Yt/OK is smooth and projective. 2

Lemma 1.14 Suppose that l ≡ 1 mod n+ 1. Then

V [l]0 ∼= 1⊕ ε−1
l ⊕ ...⊕ ε

1−n
l

as a module for IQl.
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Proof: It suffices to prove that

Vl,0 ∼= 1⊕ εl ⊕ ...⊕ ε1−nl .

(As l > n the characters ε0, ..., ε1−n all have distinct reductions modulo l).
However because l splits in the extension of Q obtained by adjoining a primitive
(n+1)th root of 1, lemma 1.3 tells us that Vl,0 is the direct sum of n characters
as a Gal (Ql/Ql)-module. These characters are crystalline and the Hodge-Tate
numbers are 0, 1, ..., n− 1. The results follows. 2

Lemma 1.15 Suppose q 6= l are primes not dividing n + 1, and suppose that
K/Qq is a finite extension. Normalise the valuation vK on K to have image
Z. Suppose that a ∈ K has vK(a) < 0.

1. The semisimplification of Vl,a and V [l]a are unramified and FrobK has
eigenvalues of the form α, α#k(K), ..., α(#k(K))n−1 for some α ∈ {±1},
where k(K) denotes the residue field of K.

2. The inertia group acts on Vl,a as exp(NtK), where N is a nilpotent en-
domorphism of Vl,a with minimal polynomial Xn.

3. The inertia group acts on V [l]a as exp(vK(a)NtK), where N is a nilpotent
endomorphism of V [l]a, and if l > D(n) then N has minimal polynomial
T n.

Proof: First we prove the second and third parts. Let W denote the Witt
vectors of Fq and let F denote its field of fractions. We have a commutative
diagram:

π1(SpecF ((1/T )))
∼−→

∏
p Zp

↓ ↓
π1(SpecW ((1/T )))

∼−→
∏

p 6=q Zp

↑ ↑ vK(a)
π1(SpecFK) →→

∏
p6=q Zp.

Here the left hand up arrow is induced by T 7→ a. The right hand down arrow is
the natural projection and the right hand up arrow is multiplication by vK(a).
The isomorphisms π1(SpecF ((1/T )))

∼→
∏

p Zp and π1(SpecW ((1/T )))
∼→∏

p 6=q Zp result from corollary XIII.5.3 of [SGA1]. More precisely

π1(SpecF ((1/T ))) = lim
←N

Gal (F ((1/T 1/N))/F ((1/T )))
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and
π1(SpecW ((1/T ))) = lim

←(N,q)=1
Gal (W ((1/T 1/N))/W ((1/T ))).

(Note that, as the fraction field of W [[1/T ]]/(1/T ) has characteristic zero,
the tame assumption in corollary XIII.5.3 is vacuous.) The final surjection
π1(SpecFK)→→

∏
p6=q Zp comes from

π1(SpecFK)→→ lim
←(N,q)=1

Gal (FK($
1/N
K )/FK),

where $K is a uniformiser in K.
Considering

W ((1/T )) = O∧P1,∞[T ],

the sheaves Vl|SpecW ((1/T )) and V [l]|SpecW ((1/T )) correspond to representations
of π1(SpecW ((1/T ))). (Here we are using the fact that q 6 |n+1, as Vl and V [l]
are only defined and lisse over T0/Z[1/(n+ 1)].) Corollary 1.8 tells us that the
pull back of these representations to π1(SpecF ((1/T ))) ∼=

∏
p Zp sends 1 to a

unipotent matrix. Moreover in the case Vl or in the case V [l] with l > D(n),
we know that this unipotent matrix has minimal polynomial (X − 1)n. The
lemma follows.

Now we prove the first part. It is enough to consider Vl,t. From the second
part we see that FrobK has eigenvalues α, α#k(K), ..., α(#k(K))n−1 for some
α ∈ Q×l . The alternating pairing shows that

{α, α#k(K), ..., α(#k(K))n−1} = {α−1, α−1#k(K), ..., α−1(#k(K))n−1}.

Thus α = ±1. 2

Again, the last half of part 3 will not be needed in the sequel, however
it was needed in an earlier version of this paper and seems to have a little
independent interest, so we have decided to leave it in.

2 Some algebraic number theory

We briefly recall a theorem of Moret-Bailly [MB] (see also [GPR]). (Luis
Dieulefait tells us that he has also explained this slight strengthening of the
result of [MB] in a conference in Strasbourg in July 2005.)

Proposition 2.1 Let F be a number field and let S = S1

∐
S2

∐
S3 be a finite

set of places of F such that S2 contains no infinite place. Suppose that T/F
is a smooth, geometrically connected variety. Suppose also that for v ∈ S1,
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Ωv ⊂ T (Fv) is a non-empty open (for the v-topology) subset; that for v ∈ S2,
Ωv ⊂ T (F nr

v ) is a non-empty open Gal (F nr
v /Fv)-invariant subset; and that

for v ∈ S3, Ωv ⊂ T (F v) is a non-empty open Gal (F v/Fv)-invariant subset .
Suppose finally that L/F is a finite extension.

Then there is a finite Galois extension F ′/F and a point P ∈ T (F ′) such
that

• F ′/F is linearly disjoint from L/F ;

• every place v of S1 splits completely in F ′ and if w is a prime of F ′ above
v then P ∈ Ωv ⊂ T (F ′w);

• every place v of S2 is unramified in F ′ and if w is a prime of F ′ above
v then P ∈ Ωv ∩ T (F ′w);

• and if w is a prime of F ′ above v ∈ S3 then P ∈ Ωv ∩ T (F ′w).

Proof: We may suppose that L/F is Galois. Let L1, ..., Lr denote the in-
termediate fields L ⊃ Li ⊃ F with Li/F Galois with simple Galois group.
Combining Hensel’s lemma with the Weil bounds we see that T has an Fv
rational point for all but finitely many primes v of F . Thus enlarging S1 to
include one sufficiently large prime that is not split in each field Li (the prime
may depend on i), we may suppress the first condition on F ′.

Replacing F by a finite Galois extension in which all the places of S1 split
completely, in which the primes of S2 are unramified with sufficiently large
inertial degree and in which all the primes in S3 give rise to sufficiently large
completions, we may suppose that S2 ∪ S3 = ∅. (We may have to replace the
field F ′ we obtain with its normal closure over the original field F .)

Now the theorem follows from theorem 1.3 of [MB]. 2

Lemma 2.2 Let M be an imaginary CM field with maximal totally real sub-
field M+, S a finite set of finite places of M and T ⊃ S an infinite set of finite
places of M with cT = T . Suppose that there are continuous characters:

• χS : O×M,S → Q×,

• χ+ : (A∞M+)× → Q×,

• ψ0 : M× → Q×,

such that

• if χ+ is ramified at v then T contains some place of M above v,

18



• ψ0|(M+)× = χ+|(M+)×, and

• χS|(AM+ )∞)×∩O×M,S
= χ+|(AM+ )∞)×∩O×M,S

.

Then there is a continuous character

ψ : (A∞M)× −→ Q×

such that

• ψ is unramified outside T ,

• ψ|M× = ψ0,

• ψ|O×M,S = χS,

• and ψ|(A∞
M+ )× = χ+.

Proof: Choose U0 =
∏

v 6∈S U0,v ⊂
∏

v 6∈S O
×
M,v be an open subgroup such

that U0 ∩ (A∞M+)× ⊂ kerχ+ and U0,v = O×M,v for v 6∈ T . Let V =
∏

v 6∈S Vv ⊂∏
v 6∈S O

×
M,v be an open compact subgroup such that V ∩ µ∞(M) = {1} and

Vv = O×M,v for v 6∈ T . Let U denote the subset of U0 consisting of elements u

with c(u)/u ∈ V . Then U =
∏

v 6∈S Uv with Uv = O×M,v for v 6∈ T . Moreover

M× ∩ O×M,SU(A∞M+)× = (M+)×. (For if a lies in the intersection then

c(a)/a ∈ ker(NM/M+ : O×M −→ O
×
M+) ∩ O×M,SV = µ∞(M) ∩ O×M,SV = {1},

so that a ∈ (M+)×.)
Define a continuous character

ψ : O×M,SU(A∞M+)× −→ Q×

to be χS on O×M,S, to be 1 on U and to be χ+ on (A∞M+)×. This is easily seen

to be well defined. Extend ψ to M×O×M,SU(A∞M+)× by setting it equal to ψ0

on M×. This is well defined because M× ∩ O×M,SU(A∞M+)× = (M+)×. Now

extend ψ to (A∞M)× in any way. (This is possible as M×O×M,SU(A∞M+)× has
finite index in (A∞M)×.) This ψ satisfies the requirements of the theorem. 2
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3 Potential modularity

In this section we will use the notations T0, Vn,l, Vn[N ], TW and C(n) from
section 1 without comment. (See the first and third paragraphs of section 1,
lemma 1.11, the paragraph proceeding this corollary and lemma 1.15.)

Let F denote a totally real field and n a positive integer. Let l be a rational
prime and let ı : Ql

∼→ C. Let S be a non-empty finite set of finite places of
F and for v ∈ S the ρv be an irreducible square-integrable representation of
GLn(Fv). Recall (see section 4.3 of [CHT]) that by an RAESDC representation
π of GLn(AF ) of weight 0 and type {ρv}v∈S we mean a cuspidal automorphic
representation π of GLn(AF ) such that

• π∨ ∼= χπ for some character χ : F×\A×F → C× with χv(−1) independent
of v|∞;

• π∞ has the same infinitessimal character as the trivial representation of
GLn(F∞);

• and for v ∈ S the representation πv is an unramified twist of ρv.

We say that π has level prime to l if for all places w|l the representation πw is
unramified.

Recall (see [TY] and section 4.3 of [CHT]) that if π is an RAESDC repre-
sentation of GLn(AF ) of weight 0 and type {ρv}v∈S (with S 6= ∅), then there
is a continuous irreducible representation

rl,ı(π) : Gal (F/F ) −→ GLn(Ql)

with the following properties.

1. For every prime v 6 |l of F we have

WD(rl,ı(π)|Gal (F v/Fv))
F-ss = ı−1(rec(πv)⊗ |Art −1

K |
(1−n)/2
K ).

2. rl,ı(π)∨ = rl,ı(π)εn−1rl,ı(χ). (For the notation rl,ı(χ) see [HT] or [TY].)

3. If v|l is a prime of F then rl,ı(π)|Gal (F v/Fv) is potentially semistable, and
if πv is unramified then it is crystalline.

4. If v|l is a prime of F and if τ : F ↪→ Ql lies above v then

dimQl gr i(rl,ı(π)⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i ∈ {0, 1, ..., n− 1} in which case

dimQl gr i(rl,ı(π)⊗τ,Fv BDR)Gal (F v/Fv) = 1.

20



The representation rl,ı(π) is conjugate to one into GLn(OQl). Reducing this
modulo the maximal ideal and taking the semisimplification gives a semisimple
continuous representation

rl,ı(π) : Gal (F/F ) −→ GLn(Fl)

which is independent of the choice of conjugate.
We will call a representation

r : Gal (F/F ) −→ GLn(Ql)

(resp.
r : Gal (F/F ) −→ GLn(Fl))

which arises in this way for some π (resp. some π of level prime to l) and ı
automorphic of weight 0 and type {ρv}v∈S. In the case of r, if π has level prime
to l then we will say that r is automorphic of level prime to l.

We will call a subgroup ∆ ⊂ GL(V/Fl) big if the following hold.

• ∆ has no l-power order quotient.

• H i(∆, ad 0V ) = (0) for i = 0 and 1.

• For all irreducible Fl[∆]-submodules W of adV we can find h ∈ ∆ and
α ∈ Fl with the following properties. The α generalised eigenspace Vh,α of
h on V is one dimensional. Let πh,α : V → Vh,α (resp. ih,α : Vh,α ↪→ V )
denote the h-equivariant projection of V to Vh,α (resp. h-equivariant
injection of Vh,α into V ). (So that πh,α ◦ ih,α = 1.) Then πh,α ◦W ◦ ih,α 6=
(0).

Note that this only depends on the image of ∆ in PGL(V/Fl).
Some examples of big subgroups are discussed in section 2.5 of [CHT].

Further examples are explored in [SW].
We will now prove our first potential modularity theorem. It is somewhat

technical and will be essentially subsumed in later theorems, but it is needed
in the proofs of these theorems. For other applications the conditions at l
and q make this theorem too weak to be very useful. The reader may like to
first think about the special case F = F0, t = 1, L = ∅, which will convey
the essential points of both the theorem and its proof. Following the proof
the reader can find some brief comments which may help in navigating the
technical complexities of the argument.
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Theorem 3.1 Suppose that F/F0 is a Galois extension of totally real fields
and that n1, ..., nt are even positive integers. Suppose that l > max{C(ni), ni}
is a prime which is unramified in F and satisfies l ≡ 1 mod ni + 1 for i =
1, ..., t. Let vq be a prime of F above a rational prime q 6= l such that q 6 |(ni+1)
for i = 1, ..., t. Let L be a finite, Gal (F/F0)-invariant set of primes of F not
containing primes above lq.

Suppose also that for i = 1, ..., t

ri : Gal (F/F ) −→ GSpni(Zl)

is a continuous representation which is unramified at all but finitely many
primes and enjoys the following properties.

1. ri has multiplier ε1−nil .

2. Let ri denote the semisimplification of the reduction of ri. Then the

image riGal (F/F (ζl)) is big (in GLn(Fl)), and F
ker ad ri

does not contain
F (ζl).

3. ri is unramified at all primes in L.

4. If w|l is a prime of F then ri|Gal (Fw/Fw) is crystalline and for τ : Fw ↪→ Ql

we have
dimQl gr j(ri ⊗τ,Fw BDR) = 1

for j = 0, ..., ni − 1 and = 0 otherwise. Moreover

ri|IFw ∼= 1⊕ ε−1
l ⊕ ...⊕ ε

1−ni
l .

5. ri|ssGal (F vq/Fvq )
is unramified and ri|ssGal (F vq/Fvq )

(Frobvq) has eigenvalues of

the form α, α(#k(vq)), ..., α(#k(vq))
ni−1.

Then there is a totally real field F ′/F which is Galois over F0 and linearly

independent from the compositum of the F
ker ri

over F . Moreover all primes
of L and all primes of F above l are unramified in F ′. Finally there is a prime
wq of F ′ over vq such that each ri|Gal (F/F ′) is automorphic of weight 0 and type
{Sp n(1)}{wq}.

Proof: Let E/Q be an imaginary quadratic field. For i = 1, ...., t let Mi/Q
be a cyclic Galois imaginary CM field of degree ni over Q such that

• l and the primes below L are unramified in Mi;

22



• and the compositum of E and the normal closure of F/Q is linearly
disjoint from the compositum of the Mj’s.

Choose a generator τi of Gal (Mi/Q). Choose a prime pi which is inert but
unramified in Mi and split completely in EF0.

For i = 1, ..., t choose a continuous homomorphism

ψi : (A∞Mi
)× −→M

×
i

with the following properties.

• ψi|M×i (a) =
∏ni/2−1

j=0 τ ji (aj)τ
j+ni/2
i (ani−1−j).

• ψi|(A∞
M+
i

)× =
∏

v | |1−niv .

• ψi is unramified at l and the primes below L.

• ψi|O×Mi,pi 6= ψ
τ ji
i |O×Mi,pi for j = 1, ..., n− 1.

• ψi only ramifies above rational primes which split in E.

The existence of such a character ψi follows easily from lemma 2.2. Let M̃i

denote a finite extension of Mi which is Galois over Q and contains the image
of ψi.

Choose a prime l′ which splits in EFM̃1...M̃r(ζn1(n1+1), ..., ζnr(nr+1)) such
that

• l′ > 8((ni + 2)/4)ni/2+1 for all i;

• l′ > C(ni) for all i;

• l′ does not divide the class number of E;

• each ri is unramified above l′;

• each ψi is unramified above l′;

• l′ 6 |pnii − 1 for all i;

• l′ 6 |qj − 1 for j = 1, ...,max{ni} − 1;

• l′ 6= l, l′ 6= q and l′ does not lie below L.
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Let w̃l′,i denote a prime of M̃i above l′ and let wl′,i = w̃l′,i|Mi
.

Define a continuous character

ψi,l′ : M×
i \(A∞Mi

)× −→ M̃×
i, ewl′,i

by

ψi,l′(a) = ψi(a)

ni/2−1∏
j=0

a−j
τ−ji wl′,i

aj+1−ni
τ
−j+ni/2
i wl′,i

.

Composing this with the Artin reciprocity map and reducing modulo w̃l′,i we
obtain a character

θi : Gal (Mi/Q) −→ F×l′
with the following properties.

• θiθ
c

i = ε1−nil′ .

• θi|IM
i,τ
j
i
wl′,i

= ε−jl′ for j = 0, ..., n/2− 1.

• θi is unramified above l and the primes below L.

• θi|IMi,pi 6= θ
τ ji |IMi,pi for j = 1, ..., n− 1.

• θi only ramifies above primes above rational primes which split in E.

Define an alternating pairing on Ind
Gal (M i/Q)

Gal (M i/Mi)
θi by

〈ϕ, ϕ′〉 =
∑

σ∈Gal (M i/Mi)\Gal (M i/Q)

ε(σ)ni−1ϕ(σ)ϕ′(cσ)

where c is any complex conjugation. (It is alternating because ni is even.)
This gives rise to a homomorphism

I(θi) : Gal (Q/Q) −→ GSpni(Fl′).

Let K denote the compositum of the fixed fields of the ker ri and the
ker I(θi). Let Wi be the free Z/ll′Z-module of rank ni corresponding to ri ×
I(θi). The module Wi comes with a perfect alternating pairing

Wi ×Wi −→ (Z/ll′Z)(1− ni).

The scheme TWi
/F is geometrically connected. Let S1 denote the infinite

primes of F , let S2 equal L union the set of primes of F above ll′, and let
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S3 = {vq}. If w is an infinite place of F let Ωi,w = TWi
(Fw). This is non-empty

as all elements of GSpni(Z/ll′Z) of order two and multiplier −1 are conjugate.
If w ∈ S2 let Ωi,w denote the set of elements of TWi

(F nr
w ) above {t ∈ T0(F nr

w ) :
w(1− tni+1) = 0}. Then Ωi,w is open, Gal (F nr

w /Fw)-invariant and non-empty
(as it contains a point above 0 ∈ T0(F nr

w )). Let Ωi,vqdenote the preimage

in TWi
(F vq) of {t ∈ T0(Fvq) : vq(t) < 0}. This set is open, Gal (F vq/Fvq)-

invariant and non-empty. By proposition 2.1 we can find recursively totally
real fields F ′i/F and point t̃i ∈ TWi

(Fi) such that

• Fi/F is Galois,

• Fi/F is unramified above L and above ll′,

• Fi is linearly disjoint from KF1...Fi−1 over F ,

• and t̃i lies in Ωi,w for all w ∈ S1 ∪ S2 ∪ S3.

Let F̃ = F1...Fr, a Galois extension of F which is totally real, in which all
primes of S1 split completely and in which all primes of S2 are unramified.
Then F̃ is linearly disjoint from K over F . Let ti ∈ T0(F̃ ) denote the image of
t̃i. Then Vni [l]ti

∼= ri|Gal (F/ eF ′) and Vni [l
′]ti
∼= I(θi)|Gal (F/ eF ′). Moreover Yni,ti has

good reduction above ll′ so that Vni,l,ti is crystalline above l and unramified
above l′, while Vni,l′,ti is unramified above l and crystalline above l′. If w

is a prime of F̃ above vq then the semisimplification of Vni,l′,ti |Gal ( eFw/ eFw)
is

unramified and Frobw has eigenvalues β, β(#k(w)), ..., β(#k(w))ni−1 for some
β ∈ {±1}, which may depend on w.

Let F ′ denote the normal closure of F̃ over F0. It is linearly disjoint from

the compositum of the F
ker ri

over F . By theorem 5.6 of [T3] we see that each
Vni,l′,ti is automorphic over F ′ of weight 0 and type {Sp ni

(1)}{w|vq} and level
prime to l′. It also has level prime to l, so that Vni [l]ti

∼= ri|Gal (F
′
/F ′) is also

automorphic over F ′ of weight 0 and type {Sp ni
(1)}{w|vq}. By theorem 5.4 of

[T3] we see that ri is automorphic over F ′ of weight 0 and type {Sp ni
(1)}{w|vq}

and level prime to l. 2

We hope that the following informal remarks may help guide the reader
through the apparent complexity of the proof of theorems 3.1. The modularity
theorems proved in [CHT] and [T3] only apply to l-adic representations which,
at some finite place v, correspond under the local Langlands correspondence
to discrete series representations. It is possible that further developments of
the stable trace formula will make this hypothesis unnecessary. On the other
hand, our knowledge of the bad reduction of the hypersurfaces Yt considered
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in section 1 is only sufficient to provide inertial representations of Steinberg
type (with maximally unipotent mondromy), as in lemma 1.15; this explains
our local hypotheses at the primes denoted q. However, the monomial repre-
sentations I(θi) considered in the proof of theorem 3.1 can never be locally of
Steinberg type, but they can be locally of supercuspidal type, and are chosen
to be so at the primes denoted pi. The local hypothesis at pi is used in the
proof of theorem 5.6 of [T3].

In a special case we now improve upon theorem 3.1, by weakening the
conditions at l and q. This theorem suffices for the applications to the Sato-
Tate conjecture in the next section. Its proof depends in an essential way on
theorem 3.1. The reader might like to think first about the special case t = 1
and det r = ε−1

l , which will convey the main points of both the statement and
proof of this theorem.

Theorem 3.2 Suppose that F is a totally real field and that n1, ..., nt are even
positive integers. Suppose also that l > max{C(ni), 2ni + 1} is a prime which
is unramified in F and that vq is a prime of F above a rational prime q 6= l.

Suppose also that

r : Gal (F/F ) −→ GL2(Zl)

is a continuous representation which is unramified at all but finitely many
primes and totally odd (in the sense that det r(c) = −1 for every complex con-
jugation c ∈ Gal (F/F )). Suppose that r also enjoys the following properties.

1. r is surjective.

2. If w|l is a prime of F then r|Gal (Fw/Fw) is crystalline and for τ : Fw ↪→ Ql

we have
dimQl gr j(r ⊗τ,Fw BDR) = 1

for j = 0, 1 and = 0 otherwise.

3. There is a prime vq of F split above q for which r|ss
Gal (F vq/Fvq )

is unram-

ified and r|ss
Gal (F vq/Fvq )

(Frobvq) has eigenvalues of the form α, α#k(vq).

Then there is a Galois totally real extension F ′′/F in which l is unram-
ified, and a prime wq of F ′′ over vq such that each of the representations
Symm ni−1r|Gal (F/F ′′) is automorphic of weight 0 and type {Sp n(1)}{wq}.

Proof: Let r denote the reduction r mod l.
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The character εl det r is totally even and unramified at l. Thus εl det r has

finite order. Set F1 = F
ker εl det r

. Then F1 is totally real and l is unramified in
F1.

Choose a rational prime q′ and a prime vq′ of F above q′ such that

• r is unramified above q′,

• r(Frobvq′ ) has eigenvalues 1,#k(vq),

• q′ 6 |(ni + 1) for i = 1, ..., t,

• q′ 6= q and q′ 6= l.

Also choose a prime l′ which splits in Q(ζn1+1, ..., ζnt+1) and such that

• l′ ≡ 1 mod ni + 1 for i = 1, ..., t,

• l′ 6= l, q, or q′,

• l′ > max(C(ni), ni),

• l′ is unramified in F1,

• and r is unramified at l′.

Choose an elliptic curve E1/F such that

• E1 has good reduction above l;

• E1 has potentially multiplicative reduction at vq and vq′ ;

• E1 has good ordinary reduction above l′, but H1(E1×F ,Z/l′Z) is tamely
ramified at l′;

• Gal (F/F )→→ Aut (H1(E1 × F ,Z/l′Z)).

The existence of such an E1 results from the form of Hilbert irreducibility with
weak approximation (see [E]). (The existence of such an E1 over Fvq (resp.
Fvq′ ) results from taking a j-invariant with val q(j) < 0 (resp. val q′(j) < 0).
The existence of such an E1 over Ql′ results from taking the canonical lift of
an ordinary elliptic curve over Fl′ .)

Let W denote the free rank two Z/ll′Z module with Gal (F/F1)-action
corresponding to r ×H1(E1 × F ,Z/l′Z) and let

〈 , 〉 : W ×W −→ (Z/ll′Z)(−1)
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be a perfect alternating pairing. Thus W gives a lisse etale sheaf over SpecF1.
Let XW/SpecF1 denote the moduli space for the functor which takes a locally
noetherian F1-scheme S to the set of isomorphism classes of pairs (E, i), where
π : E → S is an elliptic curve and where

i : W
∼−→ R1π∗(Z/ll′Z)

takes 〈 , 〉 to the duality coming from the cup product. Then XW is a fine
moduli space (as ll′ > 2). It is a smooth, geometrically connected, affine curve.

Let S1 denote the set of places of F1 above∞; let S2 denote the set of palces
of F1 above ll′; and let S3 denote the set of primes of F1 above vq and vq′ . If v
is an infinite place of F1 take Ωv = XW (F1,v). It is non-empty as GL2(Z/ll′Z)
has a unique conjugacy class of elements of order 2 and determinant −1. If v
is a place of F1 above l′ let Ωv ⊂ XW (F nr

1,v) consist of pairs (E, i) such that E
has good reduction. This set is open and Gal (F nr

1,v/F1,v)-invariant. It is also
non-empty: for instance take E = E1. If v is a place of F1 above vq or vq′ , let
Ωv denote the open subset of XW (F 1,v) corresponding to elliptic curves with
multiplicative reduction. It is a non-empty, Gal (F 1,v/F1,v)-invariant, open set.

If v is a place of F1 above l let Ωv ⊂ XW (F nr
1,v) consist of pairs (E, i) such

that E has good reduction. This set is open and Gal (F nr
1,v/F1,v)-invariant. It

is also non-empty: From the theory of Fontaine-Lafaille we see that either
W [l]|IF1,v

∼= ω−1
2 ⊕ ω−l2 or there is an exact sequence

(0) −→ Z/lZ −→ W [l] −→ (Z/lZ)(−1) −→ (0)

over IF1,v . In the first case any lift to the ring of integers of a finite extension

of F1,v of a supersingular elliptic curve over k(v) will give a point of Ωv. So
consider the second case. Let k/k(v) be a finite extension and E/k an or-
dinary elliptic curve such that Frobk acts trivially on E[l](k). Let K denote
the unramified extension of F1,v with residue field k. Enlarging k if neces-
sary we can assume that FrobK also acts trivially on W IF1,v . Let χ give the
action of Gal (k/k) on E[l∞](k). By Serre-Tate theory, liftings of E to OK
are parametrised by extensions of (Ql/Zl)(χ) by µl∞(χ−1) over OK . If the
l-torsion in such an extension is isomorphic (over K) to W∨, the correspond-
ing lifting E will satisfy H1(E ×K,Z/lZ) ∼= W . Extensions of (Ql/Zl)(χ) by
µl∞(χ−1) over OK are parametrised by H1(Gal (K/K),Zl(εlχ

−2)) (as χ2 6= 1).
The representation W∨ corresponds to a class in H1(Gal (K/K), (Z/lZ)(εl))
which is ‘peu-ramifié’. We must show that this class is in the image of

H1(Gal (K/K),Zl(εlχ
−2)) −→ H1(Gal (K/K), (Z/lZ)(εl))
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coming from the fact that χ2 ≡ 1 mod l. By local duality, this image is the
annihilator of the image of the map

H0(Gal (K/K), (Ql/Zl)(χ
2)) −→ H1(Gal (K/K),Z/lZ)

coming from the exact sequence

(0) −→ Z/lZ −→ (Ql/Zl)(χ
2)

l−→ (Ql/Zl)(χ
2) −→ (0).

Because χ2 is unramified, this image consists of unramified homomorphisms,
which annihilate any ‘peu-ramifié’ class.

By proposition 2.1 we can find a finite Galois extension F ′/F containing
F1 and an elliptic curve E/F ′ with the following properties.

• F ′ is linearly disjoint from F
ker(Gal (F/F )→Aut (W ))

over F1.

• F ′ is totally real.

• All primes above ll′ are unramified in F ′.

• E has good reduction at all places above l.

• E has good reduction at all places above l′.

• E has split multiplicative reduction above vq and vq′ .

• H1(E × F ,Z/lZ) ∼= r|Gal (F/F ′).

• H1(E × F ,Z/l′Z) is tamely ramified above l′.

By theorem 3.1 we see that there is a totally real field F ′′/F ′ and a prime
wq′ of F ′′ above vq′ such that:

• F ′′/F is Galois.

• l and l′ are unramified in F ′′.

• F ′′ is linearly disjoint over F ′ from F ′F
ker(Gal (F/F )→Aut (W ))

(and hence

F ′′ is linearly disjoint over F1 from F
ker r

).

• Each Symm ni−1H1(E×F ,Zl′) is automorphic over F ′′ of weight 0, type
{Sp ni

(1)}{wq′} and level prime to l′.
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(To check the second condition of theorem 3.1 apply corollary 2.5.4 of [CHT]
and the fact that PSL2(Fl) is simple for l > 3.) Let wq be a prime of F ′′ above
vq. Each Symm ni−1H1(E × F ,Zl′) is also automorphic over F ′′ of weight
0, type {Sp ni

(1)}{wq} and level prime to l. Thus each Symm ni−1H1(E ×
F ,Z/lZ) ∼= Symm ni−1r|Gal (F/F ′′′) is automorphic over F ′′ of weight 0 and

type {Sp ni
(1)}{wq}. By theorem 5.4 of [T3] we see that each Symm ni−1r

is automorphic over F ′′ of weight 0 and type {Sp ni
(1)}{wq}. (Again we use

corollary 2.5.4 of [CHT] and the simplicity of PSL2(Fl) for l > 3.) 2

We remark that the auxilliary prime q′ is needed because we have not
assumed that q 6 |ni + 1 for i = 1, ..., t.

Finally in this section we go back and prove the following improvement
on theorem 3.1. (The key point is the weakening of the conditions at l and
q.) Again the reader might like to consider first the case that r has multiplier
ε1−nl , which will convey the main points of both the statement and proof of
this theorem.

Theorem 3.3 Suppose that F is a totally real field and that n is an even
positive integer. Suppose that l > max{C(n), n, 3} is a rational prime which
is unramified in F . Let vq be a prime of F above a rational prime q 6 |(n+ 1)l.

Suppose also that

r : Gal (F/F ) −→ GSpn(Zl)

is a continuous representation which is unramified at all but finitely many
primes and which is totally odd (in the sense that r(c) has multiplier −1 for all
complex conjugations c). Suppose moreover it enjoys the following properties.

1. Letting r denote the semisimplification of the reduction of r, the image

rGal (F/F (ζl)) is big (in GLn(Fl)) and F
ker ad r

does not contain F (ζl).
This will be satisfied if r is surjective.

2. If w|l is a prime of F then r|Gal (Fw/Fw) is crystalline and for τ : Fw ↪→ Ql

we have
dimQl gr j(r ⊗τ,Fw BDR) = 1

for j = 0, ..., n−1 and = 0 otherwise. Moreover there is a point tw ∈ OFnr
w

with w(tn+1
w − 1) = 0 such that

r|IFw ∼= Vn[l]tw .

3. r|ss
Gal (F vq/Fvq )

is unramified and r|ss
Gal (F vq/Fvq )

(Frobvq) has eigenvalues of

the form α, α(#k(vq)), ..., α(#k(vq))
n−1.
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Then there is a totally real extension F ′′/F and a place wq of F ′′ above vq
such that r|Gal (F/F ′′) is automorphic of weight 0 and type {Sp n(1)}{wq}.

Proof: Let ν denote the multiplier character of r. Then νεn−1 is trivial on
all complex conjugations and unramified above l. Thus νεn−1 has finite order.

Set F1 = F
ker νεn−1

l . Then F1 is totally real and l is unramified in F1.
Choose a rational prime l′ > max{n,C(n)} which is unramified in F1,

which splits in Q(ζn+1), and such that r is unramified above l′. Choose t1 ∈ F
with the following properties.

• If w|ll′ then w(tn+1
1 − 1) = 0.

• If w|l′ then Vn[l′]t1|IFw ∼= 1⊕ ε−1
l′ ⊕ ...⊕ ε

1−n
l′ .

• Gal (F/F )→ GSp(Vn[l′]t1) is surjective.

The existence of such an t1 results from the form of Hilbert irreducibility with
weak approximation (see [E]). (One may achieve the second condition by
taking t1 to be l′-adically close to zero.)

Let W be the free rank two Z/ll′Z-module with Gal (F/F1)-action corre-
sponding to r × Vn[l′]t1 . It comes with a perfect alternating pairing

〈 , 〉 : W ×W −→ (Z/ll′Z)(1− n).

The scheme TW is geometrically connected. Let S1 denote the places of F1

above ∞; let S2 denote the set of places of F1 above ll′; and let S3 denote
the set of places of F1 above vq. For w an infinite place of F1 let Ωw =
TW (Fw) which is non-empty as all elements of order two in GSpn(Z/ll′Z) with
multiplier −1 are conjugate. If w|ll′ let Ωw ⊂ TW (F nr

1,w) denote the preimage
of {t ∈ T0(F nr

1,w) : w(tn+1 − 1) = 0}. It is open, Gal (F nr
1,w/F1,w)-invariant and

non-empty. If w is a place of F1 above vq, let Ωw ⊂ TW (F 1,w) denote the
open subset of points lying above {t ∈ T0(F1,w) : w(t) < 0}. It is non-empty,
Gal (F 1,w/F1,w)-invariant and open.

Thus we may find a finite Galois totally real extension F ′/F containing F1

and a point t ∈ T0(F ′) with the following properties.

• l and l′ are unramified in F ′.

• F ′ is linearly disjoint from F
ker(Gal (F/F )→Aut (W ))

over F1.

• Vn[l]t ∼= r|Gal (F/F ′).

• Vn,l′,t is unramified above l and crystalline above l′.
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• If w is a place of F ′ above l′ then Vn[l′]t|IF ′w
∼= 1⊕ ε−1

l′ ⊕ ...⊕ ε
1−n
l′ .

• If w is a place of F ′ above vq then Vn,l′,t|ssGal (F
′
w/F

′
w)

is unramified and

Frobw has eigenvalues of the form α, α#k(vq), ..., α(#k(vq))
n−1 for some

α.

According to theorem 3.1 we can find a totally real extension F ′′/F ′ and
a place wq|vq of F ′′ with the following properties.

• F ′′/F is Galois.

• l and l′ are unramified in F ′′.

• Vn,l′,t is automorphic over F ′′ of weight 0, type {Sp n(1)}{wq} and level
prime to ll′.

(To check the second assumption of theorem 3.1 use lemma 2.5.5 of [CHT]
and the simplicity of PSpn(Fl) for l > 3.) Hence Vn[l]t and r are automorphic
over F ′′ of weight 0 and type {Sp n(1)}{wq}. Finally theorem 5.4 of [T3] tells
us that r is automorphic over F ′′ of weight 0 and type {Sp n(1)}{wq}. 2

4 Applications

Suppose that F and L ⊂ R are totally real fields and that A/F is an abelian
scheme equipped with an embedding i : L ↪→ End 0(A/F ). Recall (e.g from
proposition 1.10, proposition 1.4 and the discussion just before proposition
1.4 of [R]) that A admits a polarisation over F whose Rosati involution acts
trivially on iL. Thus if λ is a prime of L above a rational prime l then

detH1(A× F ,Ql)⊗Ll Lλ = Lλ(ε
−1
l ).

Suppose also that m is a positive integer. For each finite place v of F there
is a two dimensional Weil-Deligne representation WDv(A, i) over L such that
for each prime λ of L with residue characteristic l different from the residue
characteristic of v we have

WD(H1(A× F ,Ql)|Gal (F v/Fv) ⊗Ll Lλ) ∼= WDv(A, i).

We define an L-series

L(Symmm(A, i)/F, s) =
∏
v 6 |∞

L(SymmmWDv(A, i), s).
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It converges absolutely, uniformly on compact sets, to a non-zero holomorphic
function in Re s > 1 +m/2. We say that Symmm(A, i) is automorphic of type
{ρv}v∈S, if there is an RAESDC representation of GLm+1(AF ) of weight 0 and
type {ρv}v∈S such that

rec(πv)|Art −1
K |
−m/2
K = SymmmWDv(A, i)

for all finite places v of F .
Note that the following are equivalent.

1. Symmm(A, i) is automorphic over F of type {ρv}v∈S.

2. For all finite places λ of L, if l is the residue characteristic of λ, then
Symmm(H1(A × F ,Ql) ⊗Ll Lλ) is automorphic over F of weight 0 and
type {ρv}v∈S.

3. For some rational prime l and some place λ|l of L the representation
Symmm(H1(A × F ,Ql) ⊗Ll Lλ) is automorphic over F of weight 0 and
type {ρv}v∈S.

(The first statement implies the third. The second statement implies the
first (by the strong multiplicity one theorem). We will check that the third
implies the second. Suppose that Symmm(H1(A× F ,Ql)⊗Ll Lλ) arises from
an RAESDC representation π and an isomorphism ı : Lλ

∼→ C. Let l′ be
a rational prime and let ı′ : Ql′

∼→ C. Let λ′ be the prime of L above l′

corresponding to (ı′)−1 ◦ ı|L. Then from the Cebotarev density theorem we see
that

rl′,ı′(π) ∼= Symmm(H1(A× F ,Ql′)⊗Ll′ Lλ′).

Thus Symmm(H1(A × F ,Ql′) ⊗Ll′ Lλ′) is also automorphic over F of weight
0 and type {ρv}v∈S.)

Theorem 4.1 Let F and L be totally real fields. Let A/F be an abelian variety
of dimension [L : Q] and suppose that i : L ↪→ End 0(A/F ). Let N be a finite
set of even positive integers. Fix an embedding L ↪→ R. Suppose that A has
multiplicative reduction at some prime vq of F .

There is a Galois totally real field F ′/F such that for any n ∈ N and any
intermediate field F ′ ⊃ F ′′ ⊃ F with F ′/F ′′ soluble, Symm n−1A is automor-
phic over F ′′.

Proof: Twisting by a quadratic character if necessary we may assume that A
has split multiplicative reduction at vq i.e. Frobvq has eigenvalues 1 and #k(vq)
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on H1(A× F ,Ql)|ssGal (F vq/Fvq )
for all l different from the residue characteristic

of vq.
Choose l sufficiently large that

• l is unramified in F ,

• l > max{n,C(n)}n∈N ,

• A has good reduction at all primes above l,

• Gal (F/F )→→ Aut (H1(A× F ,Z/lZ)/OL/lOL),

• and l splits completely in L.

(If this were not possible then for all but finitely many primes l which split
completely in L there would be a prime λ|l of L such that Gal (F/F ) →
Aut (H1(A×F ,Z/lZ)⊗OLOL/λOL) is not surjective. Note that for almost all
such l the determinant of the image is (Z/lZ)× (look at inertia at l) and the
image contains a non-trivial unipotent element (look at inertia at vq). Thus for
all but finitely many primes l which split completely in L there is a prime λ|l
of L such that the image of Gal (F/F )→ Aut (H1(A×F ,Z/lZ)⊗OLOL/λOL)
is contained in a Borel subgroup of GL2(Z/lZ) and its semisimplification has
abelian image. It follows from theorem 1 of section 3.6 of [Se2] that the image
of Gal (F/F ) → Aut (H1(A × F ,Ql) ⊗L Lλ) is abelian for all l and λ. This
contradicts the multiplicative reduction at vq.) Choose a prime λ|l of L.

Theorem 3.2 tells us that there is a Galois totally real field F ′/F in which
l is unramified and a prime wq of F ′ above vq such that for any n ∈ N ,
Symm n−1(H1(A × F ,Ql) ⊗Ll Lλ) is automorphic over F ′ of weight 0, type
{Sp n(1)}{wq} and level prime to l. By lemma 4.3.2 of [CHT] we see that

Symm n−1(H1(A × F ,Ql) ⊗Ll Lλ) is also automorphic over any F ′′ as in the
theorem of weight 0, type {Sp n(1)}{wq} and level prime to l. Hence Symm n−1A
is automorphic over F ′′. 2

Theorem 4.2 Let F and L be totally real fields. Let A/F be an abelian variety
of dimension [L : Q] and suppose that i : L ↪→ End 0(A/F ). Fix an embedding
L ↪→ R. Suppose that A has multiplicative reduction at some prime vq of F .

Then for all m ∈ Z≥1 the function L(Symmm(A, i), s) has meromorphic
continuation to the whole complex plane, satisfies the expected functional equa-
tion and is holomorphic and non-zero in Re s ≥ 1 +m/2.
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Proof: We argue by induction on m. The assertion is vacuous if m < 1.
Suppose that m ∈ Z≥1 is odd and that the theorem is proved for 1 ≤ m′ < m.
We will prove the theorem for m and m + 1. Apply theorem 4.1 with N =
{2,m+ 1}. Let F ′/F be as in the conclusion of that theorem. Write

1 =
∑
j

ajInd
Gal (F ′/F )
Gal (F ′/Fj)

χj

where aj ∈ Z, F ′ ⊃ Fj ⊃ F with F ′/Fj soluble, and χj is a homomorphism
Gal (F ′/Fj)→ C×. Then (A, i)×F j is automorphic arising from an RAESDC
representation σj of GL2(AFj), and Symmm(A, i)×F j is automorphic arising
from an RAESDC representation πj of GLm+1(AFj). Then we see that

L(Symmm(A, i), s) =
∏
j

L(πj ⊗ (χj ◦ Art Fj), s−m/2)aj

and
L(Symmm+1(A, i), s)L(Symmm−1(A, i), s− 1) =∏

j L((πj ⊗ (χj ◦ Art Fj))× σj, s− (m+ 1)/2)aj

and

L(Symm 2(A, i), s) =
∏
j

L((Symm 2σj)⊗ (χj ◦ Art Fj), s− 1)aj

(See [T2] for similar calculations.) Our theorem for m and m+ 1 follows (for
instance) from [CP] and theorem 5.1 of [Sh] (and in the case m + 1 = 2 also
from [GJ]). 2

Theorem 4.3 Let F be a totally real field. Let E/F be an elliptic curve with
multiplicative reduction at some prime vq of F . The numbers

(1 + Nv −#E(k(v)))/2
√

Nv

as v ranged over the primes of F are equidistributed in [−1, 1] with respect to
the measure (2/π)

√
1− t2 dt.

Proof: This follows from theorem 4.2 and the corollary to theorem 2 of
[Se1], as explained on page I-26 of [Se1]. 2

Now fix an even positive integer n. Finally let us consider the L-functions
of the motives Vt for t ∈ Q. More precisely for each pair of rational primes
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l and p there is a Weil-Deligne representation WD(Vl,t|Gal (Qp/Qp)) of WQp as-

sociated to the Gal (Qp/Qp)-module Vl,t (see for instance [TY]). Moreover
for all but finitely many p there is a Weil-Deligne representation WDp(Vt) of
WQp over Q such that for each prime l 6= p and each embedding Q ↪→ Ql

the Weil-Deligne representation WDp(Vt) is equivalent to the Frobenius semi-
simplification WD(Vl,t|Gal (Qp/Qp))

F-ss. Let S(Vt) denote the finite set of primes p

for which no such representation WDp(Vt) exists. It is expected that S(Vt) = ∅.
If indeed S(Vt) = ∅, then we set L(Vt, s) equal to

2n/2(2π)n(n−2)/8(2π)−ns/2Γ(s)Γ(s− 1)...Γ(s+ 1− n/2)
∏
p

L(WDp(Vt), s)

and
ε(Vt, s) = i−n/2

∏
p

ε(WDp(Vt), ψp, µp, s),

where µp is the additive Haar measure on Qp defined by µp(Zp) = 1, and
ψp : Qp → C is the continuous homomorphism defined by

ψp(x+ y) = e−2πix

for x ∈ Z[1/p] and y ∈ Zp. The function ε(Vt, s) is entire. The product defining
L(Vt, s) converges absolutely uniformly in compact subsets of Re s > 1 +m/2
and hence gives a holomorphic function in Re s > 1 +m/2.

Theorem 4.4 Suppose that t ∈ Q − Z[1/(n + 1)]. Then S(Vt) = ∅ and the
function L(Vt, s) has meromorphic continuation to the whole complex plane
and satisfies the functional equation

L(V, s) = ε(V, s)L(V, n− s).

Proof: Choose a prime q dividing the denominator of t. By lemma 1.15 and,
for instance, proposition 3 of [Sc] (see also [TY]), we see that Gal (Q/Q) acts
irreducibly on Vl,t. Let Gl denote the Zariski closure of the image of Gal (Q/Q)
in GSp(Vl,t) and let G0

l denote the connected component of the identity in Gl.
Then G0

l is reductive and (by lemma 1.15) contains a unipotent element with
minimal polynomial (T −1)n. Moreover as the action of Gal (Q/Q) on Vl,t has
multiplier ε1−n, we see that the multiplier map from G0

l to Gm is dominating.
By theorem 9.10 of [K1] (see also [Sc] for a more conceptual argument due
to Grojnowski) we see that G0

l is either GSpn or (Gm × GL2)/Gm embedded
via (x, y) 7→ xSymm n−1y. (Here Gm ↪→ Gm × GL2 via z 7→ (z1−n, z).) In
either case we also see that Gl = G0

l . (In the second case use the fact that
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any automorphism of SL2 is inner.) Let Γl denote the image of Gal (Q/Q)
in PGSp(V [l]t). The main theorem of [L] tells us there is a set S of rational
primes of Dirichlet density zero, such that if l 6∈ S then either

PSp(V [l]t) ⊂ Γl ⊂ PGSp(V [l]t)

or
Symm n−1PSL2(Fl) ⊂ Γl ⊂ Symm n−1PGL2(Fl).

Choose a prime l 6∈ S such that val l(t
n+1 − 1) = 0, l > 2n + 1 and

l 6= q. Combining the above discussion with corollary 2.5.4 and lemma 2.5.5
of [CHT], we see that the image of Gal (Q/Q(ζl)) in GSp(V [l]t) is big. Using

the simplicity of PSL2(Fl) and PSpn(Fl) we also see that ζl 6∈ QkerV [l]t
. Thus

theorem 3.3 tells us that we can find a Galois totally real field F/Q such that
Vl,t|Gal (F/F ) is automorphic of weight 0 and type {Sp n(1)}{v|q}.

If F ′ is any subfield of F with Gal (F/F ′) soluble, we see that there is an
RAESDC representation πF ′ of GLn(AF ′) of weight 0 and type {Sp n(1)}{v|q}
such that for any rational prime l and any isomorphism ı : Ql

∼→ C we have

rl,ı(πF ′) ∼= Vl,t|Gal (F
′
/F ′).

As a virtual representation of Gal (F/Q) write

1 =
∑
j

ajInd
Gal (F/Q)
Gal (F/Fj)

χj,

where aj ∈ Z, where F ⊃ Fj with Gal (F/Fj) soluble, and where χj :
Gal (F/Fj)→ C× is a homomorphism. Then, for all rational primes l and for
all isomorphisms ı : Ql

∼→ C, we have (as virtual representations of Gal (Q/Q))

Vl,t =
∑
j

ajInd
Gal (F/Q)
Gal (F/Fj)

rl,ı(πFj ⊗ (χj ◦ Art Fj)).

We deduce that, in the notation of [TY], WD(Vl,t|Gal (Qp/Qp))
ss is independent

of l 6= p. Moreover by theorem 3.2 (and lemma 1.3(2)) of [TY], we see that
WD(Vl,t|Gal (Qp/Qp))

F-ss is pure. Hence by lemma 1.3(4) of [TY] we deduce that

WD(Vl,t|Gal (Qp/Qp))
F-ss is independent of l 6= p, i.e. S(Vt) = ∅. Moreover

L(Vt, s) =
∏
j

L(πFj ⊗ (χj ◦ Art Fj), s+ (1− n)/2)aj ,

from which the rest of the theorem follows. 2
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[G] P. A. Griffiths, On the periods of certain rational integrals I, Ann. of
Math. 90, (1969) 460–495.

[GJ] S. Gelbart and H. Jacquet, A relation between automorphic represen-
tations of GL(2) and GL(3), Ann. Sci. Ecole Norm. Sup. 11 (1978),
471–542.

[GPR] B. Green, F. Pop, and P. Roquette, On Rumely’s local-global princi-
ple, Jahresber. Deutsch. Math.-Verein. 97 (1995), 43–74.

[HT] M. Harris and R. Taylor, The geometry and cohomology of some
simple Shimura varieties, Annals of Math. Studies 151. PUP 2001.

[I] Y.Ihara, On modular curves over finite fields, in “Discrete subgroups
of Lie groups and applications to moduli” OUP, Bombay, 1975.

[K1] N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups,
Annals of Math. Studies 116, PUP 1988.

38



[K2] N. M. Katz, Exponential Sums and Differential Equations, Annals of
Math. Studies 124, PUP 1990.

[L] M. Larsen, Maximality of Galois actions for compatible systems,
Duke Math. J. 80 (1995), 601-630.

[LSW] W. Lerche, D-J. Smit, and N. P. Warner, Differential equations for
periods and flat coordinates in two-dimensional topological matter
theories, Nuclear Phys. B 372 (1992), 87–112.

[M] D. R. Morrison, Picard-Fuchs equations and mirror maps for hyper-
surfaces, in “Essays on mirror manifold” International Press 1992.

[MB] L. Moret-Bailly, Groupes de Picard et problèmes de Skolem II, Ann.
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