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THE HAUSDORFF DIMENSION OF GENERAL

SIERPINSKI CARPETS

CURT McMULLEN

§ l Introduction

In this note we determine the Hausdorίf dimension of a family of
planar sets which are generalizations of the classical Cantor set. Given
n> m and a set Jϊ consisting of pairs of integers (ί, j) with 0 < i < n
and 0 < j < m, define the set R by

R = {(έπ

We refer to R as a general Sierpίήski carpet, after Mandelbrot [4], since
Sierpiήski's universal curve is a special case of this construction [6].

It is clear that R = {J[fi(R)9 where r = \R\ and the ft are affine maps
contracting R by a factor of n horizontally and m vertically. When
n = m these maps are actually similarity transformations, and a well-
known argument shows the dimension of R is log r/log n (following e.g.
Beardon [1]). If n > m, however, a different approach is required, essen-
tially because squares are stretched into narrow rectangles under itera-
tion of the maps /*.

Our method relies on elementary probability theory to address the
general case, and we obtain the following result.

THEOREM. The Hausdorff dimension of R is given by

where t3 is the number of i such that (ί,j)eR.

This settles a question of Hironaka's [2] concerning the dimension
of a certain continuous plane curve whose self-similarities entail the
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2 CURT MCMULLEN

stretching described above. By the theorem, the dimension of Hironaka's
curve is Iog2(l + 2(log32)); his example is essentially the same as the
Sierpiήski carpet R for m = 2, n = 3 and R = {(0, 0), (1,1), (2, 0)}. (See
Fig. 1.)

The theorem is proved in Section 2. In Section 3 we recall the
notion of metric dimension and discuss the following result.

PROPOSITION. The metric dimension of R is given by

m.dim(R) = logm s + logn (r/s)

where s is the number of j such that (i,j)eR for some i, and r = \R\.

The equality of the metric and Hausdorίf dimensions of R when
n = m sheds some light on the distinguished character of that case.

Fig. 1 (Hironaka's Curve)
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§ 2. The Hausdorff dimension of R

Let X be a metric space. A collection of sets (Xt) is an ε-cover of

X if X = UΓ Xt and diam (X*) < ε for all i. The δ-dίmensional Hausdorff

measure of X is given by

μδ(X) — supinf {2]diam(Xi)δ: {Xt) is an ε-cover of
ε>0

We define the Hausdorff dimension of X by

= sup {δ: μδ(X) = 00} .

The determination of the Hausdorff dimension of R is organized into the

following steps.

1. We reformulate the dimension of R in terms of coverings by a

selected class of rectangles.

2. The covering problem is lifted to a sequence space through a

map ψ: Sr -» R.

3. A probability measure is introduced on Sr, and we define a

sequence of functions fk which measure the difference between

this measure and the ^-dimensional Hausdorff measure on R.

Here δ is the value of dim R claimed in the theorem.

4. We prove a) Πϊn fk ;> 1 on all of Sr and

b) lim fk = 1 almost everywhere.

5. We use (a) to show dim R < δ.

6. We use (b) to show dim R > δ.

Each step corresponds to a lemma below.

First, consider coverings of R by rectangles of the form

ri

where I = [k logn m] is the integer such that n > mkjnι > 1. (In the sequel

I will always be related to k in this way.) These rectangles are of course

tailored to the structure of -R. To a covering C = {Rk(p, q)} we associate

the integers Nk = the number of Rk{p, q)e C with V = k.

LEMMA 1. The Hausdorff measure μδ(R) = 0 iff for any ε > 0 there

exists a covering C of R with J ] Nkm~δ1i < ε.
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The proof is straightforward upon observing that (a) any bounded

set can be covered by N rectangles Rk(p, q) of smaller diameter, where N

is a fixed constant; and (b) m~k ~ diam Rk(p, q).

Now let (xu y 1)1=0 enumerate the elements of R> and let Sr =

ΠΓ {0,1, 2, , r — 1}. Then the map ψ: Sr -> R given by

is a surjection. (It fails to be injective because some coordinates have

more than one "decimal" representation.) We will construct sets Ak(p, q)

X Bk in Sr which correspond roughly to the sets Rk(p, q) in R under the

map ψ. Writing

P = Σ ί Xjnι-J 0 < Xj < n, I = [k logn m]

and

j 0<yj<m

we define

Ak(p, q) = {(h, k, - ,ίk): Xtj = Xj f o r j = 1, . " ' . . , /,

and yiό = ys for j = 1,

and

To a covering C = {Afc(p, q) X jBfc} we also associate the integers Nk = the

number of Ak(p, q) X Bk, e C with h! — k.

LEMMA 2. The Hausdorff measure μδ(R) = 0 iff for any ε > 0, ίΛere

exists a covering C of Sr with Σ Nkm~δlc < ε.

Proo/. Note that

Afc(p, q)xBka Ψ~\Rk{p, q)) C U Ak(p + ί, q + j) X Bk
i=-l,0,l
y = -1,0,1

so we can pass back and forth between covers of R and covers of Sr.

Furthermore we need only change Nk by a bounded factor in doing so.

The result then follows from Lemma 1.

The point of lifting the problem to Sr is that coverings of a product

space by cylindrical sets are more easily analyzed than coverings of R

by rectangles.
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We now study the size of the cylinders Ak(p,q) X Bk. For i —
0,1, , r — 1, let at = the number of j such that yt = ŷ , where (xi9 ydlzl
enumerates R as before. Then the cardinality of Ak(p, q) is given by the
p r o d u c t au+1aiι+2 aik, f o r a n y (il9 i2, - ,ik)e Ak(p, q).

The constants at will be used to define a probability measure μ on
Sr. First, let δ be the value of dimi? claimed in the statement of the
theorem. Note that

Letting bt = a^^^jm8, we have Σ &< = 1. We take μ to be the unique
probability measure on the Borel subsets of Sr (in the product topology)
which satisfies, for any (iu i2, , ίk),

μ((i» h, ' -', h) X Bk) = δ^δ^&i, bik .

The existence of such a measure is a special case of the Kolmogorov
consistency theorem (see [5]).

Define the functions fk on Sr by

[ (n n . . . n V°%n, m "1 l

(a i ta i2 au) J

where / = [k logn m] as usual.

LEMMA 3. If ze Ak(p, q) X Bk, then

μ(Ak(p, q) X Bk) =

Proof. Pick (ιΊ, i2, , ίfc) e Ak(p, q) and define the sequence

(sh s29 - , sk) = (α ί l? σίa, , αi4) .

Note that this sequence is independent of the choice of (iu i2, ,ι fc). In

particular,

to e c ^logΛ w

((iu h, , i fc) X B f c ) = ^ f 2 ' g f c ) g f c

jS2 Sk)

for each (il9 i2, , jfc) e Afc(p, g). But the cardinality of Afc(p, q) is

Sk) SO

X Bk) = ig
((SiS2 S z)

as claimed.
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It remains only to show that the functions fk -> 1 in a suitable sense,
so that for a covering C of Sr we have

and we can apply Lemma 2.

LEMMA 4. a) lim fk(z) > 1 for all z e Sr.

b) fk -> 1 almost everywhere (μ).

Proof. Define gk9hk on Sr by

σ ( i j . . Λ ( f h & * ^

(atιau ait)
1/ι

h (j 7* . . A — \n a a l(VO(iogn m-ι/k)

Then fk(z) = hk(z)'gk(z)loSnm. We claim hk(z)-+l for all z. Indeed, 1 <

at < n for all i, so

and

lognm - 1 = logwm - J ^ M ^ I —>0 as k—> oo .

Therefore it suffices to show a) lim gfc(2) > 1 for all ze Sr and b) gk(z) —• 1

a.e.

(a) Fix 2τ = (ij, ί2, •) and let ^ = (αiχαia α<y)
1/J. Then 1 < ŝ , so

it is clear that

since this holds for any positive sequence Sj bounded away from zero.

(b) From the definition of μ it is almost tautological to assert that

the functions

(ii,i» •••) >bik β = 1,2,3, . . .

are independent, identically distributed random variables with respect to

μ. Hence the sequence

(bhbh . bίky<k k = 1, 2, 3,

converges for almost every (iu i2, ) e Sr9 by Kolmogorov's strong law

of large numbers [3]. Recalling the definition of bt we have
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and hence gk->l almost everywhere. (In case n = m we have I = k so

gk is identically 1).

LEMMA 5. dim R < δ.

Proof. We will construct an efficient cover for Sr.

Fix ε > 0.

Let Ck consist of those nonempty sets Ak(p, q) x Bk for which fk(z)

> m~ε for ze Ak(p, q) X Bk. These sets are disjoint and satisfy

by Lemma 3. Hence Mk = cardinality of Ck < m(δ+ε)k as the measure of

Sr is one.

Note that any ze Sr is covered by Ck for infinitely many k, since

Πrn/fcOa:) > 1 > m~\ Hence C ={Jk>κCk is a covering of Sr for any

choice of K. Choose K large enough that Σ*>κm~'k < ε> ^i1 6 1 1 ^ e ^

associated to C satisfy

-v+2εϊk = 2] Mfcm-(δ+2ε) < 2 m"εfc < ε .

Using Lemma 2 it then follows easily that dim R < δ.

LEMMA 6. dim R > δ.

Proof. Fix β < δ. We will show there exists an ε > 0 such that

J^Nkm~βk > ε for any covering C of Sr; the dimension estimate is then

immediate from Lemma 2.

Let Eκ = { 2 e S r : / ^ ) < mδ~β for all fc > K). We know /& tends to

1 almost everywhere, and mδ~β > 1, so we can pick K such that μEκ > 0.

Set ε = minίμίJ^, m~βK}.

Now let C be any covering of S>. Ίί Nk Φ 0 for some k < K, then

ΣNyϊn'** > ™>~βκ > e. So assume that iVfc = 0 for β < iί.

Then for the elements of C such that Ak(p, q) X Bk f] Eπ Φ φ, we

have

μ(Ak(p, q) X Bk) = [fk(z)m-ψ < [mf'^m-γ = w^*

where we have chosen z lying the intersection of the two sets, and used

the assumption that k>K. Since C covers Eκ, we have J]Nkm~β1c >
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μEκ > ε. By Lemma 2, μβ(R) φ 0; since β < δ was arbitrary, it follows
that άim(R)>δ.

The preceding two lemmas complete the proof of the theorem.

§ 3. The metric dimension of R

Let X be a bounded finite dimensional metric space, and let N(ε)
denote the number of elements in a minimal covering of X by ε-balls.
The metric dimension of X is given by

log 1/ε

The metric dimension can be thought of as the value obtained for the
Hausdorff dimension if we restrict ourselves to coverings all of whose
elements have the same size. Consequently the inequality m.dim (X) >
dim(X) always holds.

Now let Nk denote the number of (p9 q) such that Rk(p, q) Γϊ R Φ φ.
It is easy to see there exist Cu C2 > 0 such that CίNk > N(m~k) > C2Nk,
and therefore m.dim (R) = ϊίΐn log Nklllog mk. But Nk is precisely the
number of ways to choose (x^Li &n(l 00*=i such that

a) (xi9 yd e R for ί = 1, 2, , Z, and
b) (xt> yt) e R for i = Z + 1, Z + 2, , A and some choice of xt.

Hence Nk = rιsk~ι = (rls)ιsk where r is the cardinality of R and 8 is the
number of y such that (x,y)eR for some x; and the metric dimension
of i? is given by

m.dim (R) = US M ( ? M ? 1 = l 0 g m s + logm (Jl) Πm ( 1 )
ft l o g m f c \s / \k/

= logm s + logm ί — j logw m = logm s + logn ί — j

as stated in the introduction.
There are two conditions under which the Hausdorff and metric

dimensions of R agree. The first is when n = m: in this case the set
R is geometrically self-similar and both dimensions are given by logn r
as noted in the introduction. The second condition occurs when the
constants tό take on only one value other than zero. (Recall t5 is the
number of i such that {i, j) e R).

As an example of the latter case, suppose R = T X U. Then
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dim (R) = logm (ufilo*nm)) = logm u + log. t = m.dim (5)

where u = |C7| and t = \T\. Indeed, J R = T χ ϊ 7 where T and Π are
general Cantor sets in R, and we are just asserting that

dim(S) = m.dim (J?) = dim(f) + dim(C7) .

This also follows from a general theorem due to Wegmann [7] which
states that dim {Ex X E2) = dim (EΊ) + dim (E2) whenever m.dim (Et) =
dimCE*) for i = 1,2.

We remark that the functions fk introduced in the preceding section
are identically equal to one if the Hausdorff and metric dimensions of R
agree, and the proof can be simplified in this case. Furthermore one
easily obtains the stronger statement that the Hausdorff measure of R
satisfies 0 < μδR < oo. It would be interesting to know if this last as-
sertion holds in general.
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