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Abstract

This paper solves numerically the intertemporal consumption and portfolio choice
problem of an infinitely-lived investor who faces a time-varying equity premium. The
solutions we obtain are very similar to the approximate analytical solutions of Camp-
bell and Viceira (1999), except at the upper extreme of the state space where both
the numerical consumption and portfolio rules flatten out. We also consider a con-
strained version of the problem in which the investor faces borrowing and short-sales
constraints. These constraints bind when the equity premium moves away from its
mean in either direction, and are particularly severe for risk-tolerant investors. The
optimal constrained portfolio rules are similar but not identical to the optimal un-
constrained rules with the constraints imposed. The portfolio constraints also affect
the optimal consumption policy.

JEL classification: G12.

Keywords: Hedging demand, intertemporal portfolio choice, mean reversion.



1 Introduction

This paper solves numerically the intertemporal consumption and portfolio choice
problem of an infinitely-lived investor who faces a time-varying equity premium.
There is now considerable evidence that the excess return on stocks over Treasury
bills is predictable (see Campbell 1987, Campbell and Shiller 1988, Fama and French
1988, 1989, Hodrick 1992, or the textbook treatment in Campbell, Lo, and MacKin-
lay 1997, Chapter 7). Merton (1969, 1971), Samuelson (1969), and Giovannini and
Weil (1989) have shown that time variation in investment opportunities affects port-
folio choice unless investors have unit relative risk aversion. But the large literature
on the equity premium puzzle finds that average excess stock returns are too high
to be consistent with a representative-investor model with unit relative risk aversion
(see Campbell 1996, Cecchetti, Lam, and Mark 1994, Cochrane and Hansen 1992,
Hansen and Jagannathan 1991, Kocherlakota 1996, Mehra and Prescott 1985, or the
textbook treatment in Campbell, Lo, and MacKinlay 1997, Chapter 8). Therefore,
it is important to analyze optimal consumption and portfolio decisions when there
is time variation in the investment opportunity set and investors have risk aversion
different from one.

The problem, however, is not trivial analytically. Nonlinearities in both the Euler
equations and the intertemporal budget constraint make it extremely hard to find
exact analytical solutions. Recently a few special cases have been solved. In a
continuous-time model with a constant riskless interest rate and a single risky as-
set whose expected return follows a mean-reverting AR(1) process, for example, the
model can be solved if long-lived investors have power utility defined over terminal
wealth (Kim and Omberg 1996), or if investors have power utility defined over con-
sumption and the innovation to the expected asset return is perfectly correlated with
the innovation to the unexpected return, making the asset market effectively complete
(Wachter 1999), or if the investor has Epstein-Zin utility with intertemporal elastic-
ity of substitution restricted to equal one (Campbell and Viceira 1999, Schroder and
Skiadas 1999).

We use a numerical solution method that allows us to consider a somewhat more
general discrete-time model than any of these special cases. We assume a constant
riskless interest rate and an AR(1) process for the risky asset return, but we do not as-
sume perfect correlation between innovations to the expected and unexpected return,
and we allow the investor to have general Epstein-Zin utility defined over consump-
tion. We begin by discretizing the state-space and approximating the distribution
for the innovations in the random variables using Gaussian quadrature. The solution
algorithm assumes a portfolio allocation rule which is a p’th order polynomial in the



state-variable and uses a variant of the Newton-Raphson algorithm to optimize over
the coefficients of this polynomial. We use the Den Haan-Marcet (DHM) statistic
(Den Haan and Marcet 1994) to choose the optimal value for p, and to evaluate the
accuracy of the numerical solution. We find that the portfolio rule is approximately
linear in the state variable while the log consumption-wealth ratio is approximately
quadratic. These approximations break-down as the state variable deviates substan-
tially from its unconditional mean.

Our use of Epstein-Zin preferences (Epstein and Zin (1989), Weil (1990)) allows us
to consider different combinations of risk aversion and the elasticity of intertemporal
substitution in consumption. We find that the importance of hedging demand for
portfolio choice depends strongly on risk aversion, but hardly at all on the elasticity
of intertemporal substitution.

We also consider a constrained version of the problem in which the investor is not
allowed to borrow at the riskless interest rate or to short-sell the risky asset. Such
constraints are realistic, and they affect the form of the solution since the investor’s
optimal plans take account of the possibility that the constraints may bind in the
future, even if they are not binding today. We find that, in the region in which they
are not binding, these constraints have a large impact on the consumption rule but
little effect on the portfolio rule.

Campbell and Viceira (1999, henceforth CV) derive an approximate analytical
solution for the unconstrained version of this problem, by log-linearizing the Eu-
ler equations and the intertemporal budget constraint. This approximate analytical
approach yields portfolio and consumption rules that are, respectively, linear and
quadratic in the single state variable of the problem. The numerical solutions we
obtain are similar to the approximate analytical solutions of CV, except at the upper
extreme of the state space where both the numerical portfolio and consumption rules
flatten out. We also use the DHM statistic to test the accuracy of the log-linear
solution in CV.

This paper extends the results in Campbell and Koo (1997, henceforth CK). CK
take the agent’s portfolio at each point in time as given and assume a time-series
process for the return on this portfolio. They solve numerically for the optimal
allocation of the investor’s wealth between consumption and savings. Here we solve
numerically for the investor’s optimal portfolio as well. This allows us to assess
the accuracy of log-linear approximations in problems involving both portfolio and
consumption choice.

A number of other recent papers have also presented numerical solutions to in-
tertemporal consumption and portfolio choice problems. Important examples in-
clude Balduzzi and Lynch (1999), Barberis (2000), Brandt (1999), Brennan, Schwartz,
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and Lagnado (1996, 1997), Cocco, Gomes, and Maenhout (1998), and Lynch (1999).
These papers concentrate on problems with a finite horizon and power utility, typ-
ically defined over wealth, whereas we consider an infinite horizon and Epstein-Zin
utility over consumption. Our paper also differs in its careful comparison of analytical
and numerical solutions, and of constrained and unconstrained solutions.

The structure of the paper is as follows. In section 2 we present the problem we
would like to solve, following CV. Section 3 describes the solution algorithm as well
as the DHM test used to evaluate its accuracy. In Section 4 we present and discuss
the numerical solutions for the unconstrained and constrained optimization problems.
Section 5 concludes.

2 The model

We consider an infinitely-lived investor with recursive preferences described by:

1—-1 _ TT% 17%
U(C,EtUpq) = {(1 —0)C, Y +6 (Et Ut1+17) i } ) (1)

where C; is the investor’s period ¢ consumption, é < 1 is the discount factor, v > 0
is the coefficient of relative risk aversion and ¢ > 0 is the elasticity of intertemporal
substitution. These preferences were proposed by Epstein and Zin (1989) and Weil
(1990) as a generalization of power utility that disentangles risk aversion from the
elasticity of intertemporal substitution. Power utility is the special case where ¢ =
1/7.

Each period the investor must decide how much to consume out of her wealth
and how to allocate the remaining wealth between two tradable assets: A risky asset
(asset 1) with one-period log return given by 7141 and a riskless asset (asset f) with
constant log return given by ry.

The model assumes that the expectation of the log excess return (71411 — 7¢) on
the risky asset is state-dependent,

Et [T1441 — Tf] = a4, (2)
where z; is the single state variable of the model that follows an AR(1) process:
Tes1 = o+ QT — p) + My (3)

The unexpected log excess return is denoted by u; ;. The random variables u;,; and
N1 are jointly normal and conditionally homoskedastic, with variances o7, and o7,
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respectively. We also allow for correlation between the unexpected log excess return
and innovations in the state variable, and denote their covariance by o,,,.

So far the setup is very similar to the one in CK. They however take the rate of
return on the portfolio as given, whereas we consider the investor’s optimal portfolio
as well and thus introduce an additional choice variable. The one-period return on
the portfolio from time ¢ to time t 4 1 is

Rp,t+1 = at(Rl,t+1 - Rf) + Rfv (4)

where Ry 1 = exp{ris1}, Ry = exp{r;} and o, is the proportion of total wealth
invested in the risky asset at time t.

We want to solve for the intertemporal consumption and portfolio policies that
maximize (1) subject to the budget constraint

Wi = Ry (W = Cy), (5)

where W, is total wealth at the beginning of time t and R, ;;; is the return on wealth
(4).

The investor’s objective function (1) has been normalized so that the value func-
tion is homogeneous of degree one. Therefore, we can solve for the optimal consumption-
wealth ratio and portfolio allocation rule when the investor has wealth equal to one.
Following CK we simplify notation by defining x = z;, y = 2441, R1 = Ri441 and
R, = R,:+1. We also denote the unit wealth indirect value function by V(z), the
consumption-wealth ratio by c(x), and the fraction of wealth invested in the risky
asset by a(x). The problem we solve is:

1—-1 11

+6(1— c(z) ¥ {E[V)' Rzl }J

<=

V(r) = max {(1 — 6)0(‘%‘)17

0<c(z)<1,a(x)

Epstein and Zin (1989) show that the Euler equations for consumption and portfolio
choice for this problem are given by

c(z) = HLC (7)
where ’ .
" (1%6) (B vy R}
B[V R, (R~ Ry)lz| =0, (8)
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and
Rp = a(:c)(Rl - Rf) + Rf. (9)

Unfortunately, it is not possible to write a(z) explicitly as a function of V(y)
and c(z). Therefore a fully numerical solution to this problem would involve solving
the non-linear equation (8) for a(x). Instead we assume that a(z) is a p’th order
polynomial in the state-variable:

a(r) = ag + a1z + agx® + ... + a,a” (10)

and optimize with respect to the coefficients of the polynomial. The approximate
analytical solution proposed by CV is a particular case of (10), with a; = 0 for j > 2.

3 Numerical solution

3.1 Parameter values

We calibrate the model using postwar US financial data at a quarterly frequency. In
the calibration exercise the risky asset is the aggregate stock market and the riskless
asset is a short-term debt instrument. The single state variable of the problem is the
log dividend-price ratio, (d; —p;). We obtain the parameters that define the stochastic
structure of the model from CV’s estimates of the following restricted VAR(1) model

Tii+1 —Tf to 01 E1,t41
(dt+1 —pt+1> B <50> " <Bl> (e =) + (52,t+1>’ )
where (£144+1,€2441) ~ N(0,€Q). CV show how to solve for the parameters of the
theoretical model given the estimated parameters of (11). Table 1 reports both sets
of parameters.

The discount factor under time-additive utility ¢ is set to 0.94 in annual terms.
We solve the model for coefficients of relative risk aversion v of 1, 2, 4, 10, and 20,
and for elasticities of intertemporal substitution v of 1, 0.5, 0.25, 0.1, and 0.05. Each
of these values is the reciprocal of one of our risk aversion values, so we consider
the power utility cases for which ¢» = 1/4. We emphasize values for ¢» < 1 since
time-series studies of representative-agent models suggest that 1 is well below one
and may be close to zero (Hall 1988, Campbell and Mankiw 1989).



3.2 Solution algorithm

We discretize the state space and approximate it with 35 equally spaced grid points,
centered at the unconditional mean of the state variable. We set the distance between
any two points to 0.25%. We approximate the distribution for the innovations to the
state variable using Gaussian quadrature methods with 9 quadrature points.

We use the Newton-Raphson algorithm to optimize over the coefficients of the
policy function for a(z), allowing for either a third or a fourth order polynomial in
the state variable. The approximate analytical solution in CV involves a portfolio
allocation rule which is linear in the state-variable. Since the log-linear solution is
likely to be close to the optimal solution we use its coefficients as our initial values,
with the coefficients in the higher order terms initialized at zero. This makes diver-
gence of our numerical algorithm less likely and reduces the time needed to obtain
convergence.

We initialize the value function by setting it equal to a constant. The results
obtained are not sensitive to the value of this constant in a wide range around the
mean value implied by the CV log-linear solution.

The solution algorithm consists of the following stages:

1. Given initial values for the coefficients of the portfolio rule (10) and for the value
function, we compute the consumption rule using equation (7).

2. We use this consumption rule to compute a new value function using equation
(6). We iterate on this functional equation until the value function converges
at each state.

3. We repeat stages 1 and 2, still fixing the portfolio rule, until convergence. This
gives us a consumption rule and value function that correspond to the param-
eters of the portfolio rule.

4. We evaluate numerically the gradient (G) of the value function at each state with
respect to the coefficients of a(z) as follows. Using stages 1-3 we compute the
consumption rule and value function corresponding to perturbed coefficients.
Given these values we compute the gradient for each state. In order to determine
the direction of steepest ascent we compute a weighted average of these gradients
using the ergodic probability distribution of the state variable.

5. To determine the optimal step size we compute the Hessian (H) of the value
function with respect to the coefficients, using the same approach as in stage 4.



To avoid divergence problems we reduce the step size, setting new coefficients
equal to
A1 = O — )\HilG,

where k refers to the iteration, and A is set initially to 2/3. Given these coeffi-
cients the new weighted average value function is compared with the previous
one and if there is no improvement A\ is reduced (multiplied by 2/3). This is
repeated until the weighted average value function increases.

6. We use the coefficients obtained in stage 5 to compute a new consumption rule
and value function as in stages 1-3. Given the new consumption rule and value
function we repeat stages 4-5. We iterate this process until the weighted average
value function converges.

For some parameter values the exact analytical solution is known for part of
the problem (Giovannini and Weil 1989). In particular, when ¢ = 1 one obtains a
myopic optimal consumption rule in which the investor consumes in each period a
fixed fraction of his wealth. On the other hand, when v = 1 one obtains the same
myopic optimal portfolio allocation rule as with log utility. For these special cases
we changed our numerical algorithm by imposing the known exact analytical solution
for the consumption and portfolio rules, respectively.

3.3 Accuracy of the solution

To test the accuracy of the numerical solution we use the Den Haan-Marcet (DHM)
statistic (Den Haan and Marcet 1994). The DHM statistic does not require knowledge
of the true solution and it can be used to select between different functional forms
for the policy functions. We based our choice between a third and a fourth order
polynomial for «(x) on the values obtained for the DHM statistics.

In order to implement this test we first simulate different time series of realizations
for the exogenous variables, v and 7. Given these realizations and the optimal numer-
ical consumption and portfolio allocation rules, we compute the expectational errors
(€¢+1) implied by the Euler equations of the model, (7) and (8). These expectational
errors should be orthogonal to the previous period’s information set:

Eletr1 ® h(z)] = 0, (12)

for any function h(.) and any variable z; belonging to the information set available
at time t. In our application we choose a vector of instruments z; = (1, z;, %), and
set h(.) equal to the identity function.



Given these instruments we can test the accuracy of our numerical solution by
computing:

_ Z?:l €141 @ h(z)
= T ,
and testing whether Br is statistically different from zero. The significance of devia-
tions from zero is evaluated by using the DHM test statistic

B, (13)

TBrAy' Br, (14)

where

_ Yilern @ h(z)]lern @ h(z)]
= T )

Under the null hypothesis that the numerical solution is correct the asymptotic
distribution (as 7' — o0) of this test statistic is a Xflm where m is the number of Euler
equations being tested (two in the general case and one in the special cases where
part of the solution is known) and ¢ is the dimension of A (three in our application
with three instruments where h is the identity function).

By comparing the result of (14) with the relevant critical values we can obtain
evidence on the validity of the numerical solution. In order to reduce (and in the limit
eliminate) the possibility of type I errors we performed a large number of simulations
and computed the percentage of test results in the upper and lower 5% critical values
of a xﬁm- In particular, we used 2000 time-series of 400 observations each, giving us
100 years of data as in CK (1997).

Ar (15)

4 Numerical results

4.1 Unconstrained problem

In this section we present our numerical results for the unconstrained problem in which
the investor can short-sell either of the assets. We report results when the portfolio
allocation rule is modelled as a third-order polynomial in the state variable. We choose
a third-order polynomial because convergence for a fourth-order polynomial is much
slower while the DHM statistics are little better than for a third-order polynomial.
Figures 1a and 2a plot the optimal portfolio rule as a function of the state variable.
For comparison purposes the log-linear (CV) solution is also included. Figure 1a plots
the portfolio allocation rules for v = 4 and 20 and ¢ = 1/.75, while Figure 2a plots
those rules for the same coefficients of relative risk aversion and ¢ = 1/4. The
solid vertical lines in the figures are drawn two standard deviations above and below
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the unconditional mean of the state variable. These figures show that the log-linear
solution and the numerical solution are very close in a large interval around the mean
of the state-space, where both rules are approximately linear with almost exactly the
same level and slope. However the numerical solution flattens out towards the upper
extreme of the state-space.

Figures 2a and 2b plot the optimal consumption-wealth ratio as a function of the
state variable, using the same preference parameters as Figures 1a and 1b. Again the
solution in CV is also reported for comparison. Instead of postulating a functional
form for the numerical optimal consumption rule, we used (7) to obtain it; thus the
only approximations involved in our solution method are the discretization of the
state-space, the 9-point Gaussian quadrature approximation of the distribution of
the random variables, and the restriction of the functional form for a(x). Again,
the optimal numerical and log-linear consumption rules are very close in most of the
state-space, except at the upper extreme, where the numerical solution flattens out.

It is interesting to note that the optimal numerical and log-linear rules tend to
be closer over a larger portion of the state space when the coefficient of relative risk
aversion is large than when it is small. One might have thought that the greater
curvature of the utility function implied by large risk aversion would negatively affect
the accuracy of the approximation; but in this model greater curvature actually helps
the approximation because it limits the extent to which the investor wants to take
advantage of the predictability in excess returns.

Table 2 presents the mean optimal numerical percentage allocation to stocks and
the optimal numerical and log-linear percentage allocation to stocks at the mean of
the state-space. The difference between these two values is the result of Jensen’s
inequality; there is no difference in the approximate solution, since it is linear in the
state variable. For v = 1 portfolio choice is myopic, and therefore the log-linear and
numerical results coincide (and do not depend on ). In general, the average optimal
allocation to stocks varies significantly with ~, but little with ¢, a pattern already
identified by CV.

We do not present results for v < 1 because in this region of the parameter space
we encounter difficult numerical convergence problems. The value function tends to
increase without limit at the extremes of the state space, because the investor’s low
risk aversion combined with a high and time-varying equity premium lead the indi-
vidual to aggressively time the stock market and achieve very high or even unbounded
utility. One way to assist convergence is to consider a lower ¢, but even with this
shift in parameters the DHM statistics indicate that the numerical solution is not
very accurate.

In Table 2 we see that the mean optimal log-linear percentage allocation to stocks

9



is slightly larger than the one obtained numerically. This is due to the fact that the
numerical optimal portfolio allocation rule flattens out towards the upper extreme
of the state-space whereas the approximate analytical rule keeps on increasing lin-
early. However, this happens mostly for values of the state-variable for which the
unconditional probability is very small, and therefore the mean optimal log-linear
and numerical allocations are very close.

Table 3 reports the standard deviations of the optimal numerical and log-linear
portfolio rules. The fact that the optimal numerical portfolio rule is approximately
linear around the unconditional mean of the state-variable but flattens out towards
the upper extreme of the state-space, whereas the log-linear portfolio rule is linear
throughout, explains why the latter has a higher standard deviation. Again, the dif-
ference between the two standard deviations is small because of the low unconditional
probability of the portion of the state space where the flattening occurs. The stan-
dard deviation of the optimal percentage allocation to stocks decreases with ~y since
risk-averse individuals are less aggressive market timers.

Tables 4 through 6 present analogous calculations for the consumption-wealth
ratio. In interpreting these tables one should remember that the optimal log-linear
consumption policy is quadratic in the state-variable. This is why the optimal log-
linear percentage consumption-wealth ratio at the mean of the state-space and the
mean optimal log-linear consumption wealth ratio do not coincide. Also, for ¢ = 1
the exact analytical consumption-wealth ratio is known and therefore the log-linear
and numerical solutions coincide (and do not depend on 7).

The sensitivity of the consumption-wealth ratio to the parameters v and 1 is sim-
ilar for the log-linear and numerical solutions. For values of ¢ < 1 (> 1) the mean
optimal percentage consumption-wealth ratio is increasing (decreasing) in 7. For low
(high) values of « the mean optimal percentage consumption-wealth ratio is increasing
(decreasing) in . The intuition is the same as in CV. Highly risk-averse investors, at
the bottom of the table, hold most of their wealth in the riskless asset and hence earn
a low return. If this return is below the rate of time preference, investors that are
unwilling to substitute consumption intertemporally (¢» < 1) choose to consume more
out of wealth than investors who are willing to substitute consumption intertempo-
rally (¢» > 1). The income effect of a negative time-preference-adjusted rate of return
on saving dominates for investors with ¢ < 1, while the substitution effect dominates
for investors with 1) > 1. This pattern reverses for risk-tolerant investors, in the
upper part of the table, because these investors hold risky portfolios whose expected
rate of return is larger than their rate of time preference.

Table 6 presents the standard deviations of the optimal log-linear and numerical
consumption-wealth ratios. In general the log-linear standard deviations are larger.
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The reason is that our numerical policy functions are approximately quadratic at
the unconditional mean of the state-space (and very similar to the log-linear policy
functions) but flatten out towards the upper extreme of the state-space as shown in
Figures 1b and 2b. This pattern is similar to the one we obtained for the portfolio
rule in Table 3.

Table 7 presents DHM tests of the accuracy of our numerical solutions. If our
solutions were exact, the DHM statistics would give us 5% of errors in both the lower
and upper critical tails. The numbers reported in Table 7 lie between 2% and 10% and
generally cluster around 5%, implying that our numerical solutions are quite accurate.
CK obtained better DHM test results, but their model has only one decision variable
and one Euler equation. We note that we also obtain DHM statistics closer to 5% in
the special cases (7 =1 or ¢ = 1) for which we have only one decision variable.

We also used DHM statistics to evaluate the accuracy of the log-linear (CV)
solution. In order to do this we calculated numerically the value function implied
by the log-linear portfolio and consumption rules, using stage 2 of our numerical
algorithm. The log-linear solution dramatically fails the DHM test, giving 0% of
errors in the lower tail and 100% of errors in the upper tail. Evidently the inaccuracy
at the upper extreme of the state space, shown in Figures 1 and 2, has a large impact
on the DHM statistics. These findings also illustrate the power of DHM statistics to
detect small deviations from the optimal solution.

Finally, we use DHM statistics to explore the importance of nonlinearities in the
portfolio rule. We compare the DHM statistics for numerical solutions based on the
third-order polynomial portfolio rule, a second-order polynomial rule, a first-order
polynomial rule, and a first-order rule restricted to have the slope implied by the log-
linear CV solution. In each case we calculate the optimal consumption rule and value
function using our standard numerical algorithm. The results are not reported in a
table, but can be summarized as follows. For low coefficients of relative risk aversion
such as v = 2, there is a modest deterioration in DHM statistics from about 7% to
about 10% as one reduces the order of the portfolio polynomial and restricts its slope
to the CV value. For high coefficients of risk aversion such as v = 10, there is again
a modest deterioration in DHM statistics to about 10% as one reduces the order of
the portfolio polynomial, but a larger deterioration when the slope is restricted to the
CV value.

4.2 Constrained problem

In this section we present numerical results for the constrained problem in which the
investor is not allowed to borrow at the riskfree rate or to short-sell the risky asset,
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so the portfolio share a(x) is constrained to lie in the unit interval. Our main focus
in this section is to compare the constrained and unconstrained numerical solutions.

Our solution algorithm for the constrained problem is a slight variation of the one
presented above for the unconstrained problem. At each iteration of the algorithm
the portfolio allocation rule is given by:

azonst(x) = MZTL[MCLZE(CLIS + a’fx + a,ng + a§x3, 0)3 1] (]-6>

where k refers to the iteration. The results for the constrained problem are presented
in Tables 8 and 9. Figures 3 and 4 plot the constrained and unconstrained optimal
portfolio and consumption rules for v = 4 and 20 and ¢ = 1/4.

The constrained portfolio rules, like the unconstrained rules, are nondecreasing
in the state variable. Thus the zero constraint binds when the state variable is low,
and the unit constraint binds when the state variable is high. This means that if
the constrained model is a reasonable approximation to reality investors should be
out of the stock market at a time when the log dividend-price ratio is low. Figure
3 illustrates that the area over which the portfolio rules are constrained decreases as
the coefficient of relative risk aversion increases. This is of course a consequence of
the fact that risk-averse investors have lower average stock allocations and are less
aggressive market timers. The figure also shows that the slope of the optimal rule in
the unconstrained region may be affected by the existence of the constrained region;
nonetheless the unconstrained solution, with the constraints imposed, appears to be
a good first approximation to the constrained solution.

The presence of binding constraints implies that the standard deviation of the
optimal constrained percentage allocation to stocks (Table 8) is smaller than the
standard deviation of the unconstrained allocation (Table 3). The constraints reduce
the average allocation to stocks for investors with low coefficients of risk aversion,
since these investors more often wish to leverage their stockholdings than to sell
stocks short; but the constraints increase the average allocation for highly risk-averse
investors, who more often wish to sell short than to leverage their stockholdings.

The portfolio constraints also affect the consumption-investment decision. For
example, when the state variable is sufficiently low the investor would like to short
the risky asset, which he is not allowed to do. Instead he holds the riskless asset, and
earns a smaller return than he would otherwise. This affects the steady-state value
of his consumption-wealth ratio. Comparing Tables 5 and 8 we see that for ¢ < 1
the mean optimal percentage consumption-wealth ratio with constrained portfolio
choice is smaller than the one with unconstrained portfolio choice. This result can be
understood by considering the income and substitution effects of portfolio constraints.
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Portfolio constraints reduce the average portfolio return, which reduces consumption
through the income effect but increases consumption through the substitution effect.
When ¢ < 1 the income effect dominates, but when ¢ > 1 the substitution effect
dominates and the portfolio constraints increase average consumption.

Comparing Tables 6 and 9 we see that portfolio constraints reduce the standard
deviation of the optimal consumption-wealth ratio. An intuitive way of understanding
this result is to note that portfolio constraints make the several states look more alike.
For example, even if the log dividend-price ratio is very high, the investor is limited
in his ability to exploit this unusual investment opportunity. This effect is stronger
for investors with low risk aversion, who are constrained over a larger region of the
state space.

5 Conclusion

This paper has analyzed the implications of stock return predictability for the portfo-
lio and consumption decisions of long-lived investors. We have studied investors who
consume out of their financial wealth and have recursive Epstein-Zin-Weil utility, a
generalization of power utility that enables us to distinguish between the coefficient
of relative risk aversion and the elasticity of intertemporal substitution. We assume
that these investors choose in discrete time between a riskless asset with a constant
return, and a risky asset with constant return variance whose expected log return
follows an AR(1) process. We have calibrated the asset return processes to fit the
behavior of postwar US stock returns, using the log dividend-price ratio as a proxy
for the expected log stock return.

We have used numerical techniques to obtain the optimal policies. We find that
the optimal portfolio rule is approximately linear and the log consumption-wealth
ratio approximately quadratic in the state variable over a wide interval around the
unconditional mean of the state variable. However, both policy functions flatten out
towards the upper extreme of the state space. The investor responds less aggressively
to movements in the log dividend-price ratio when the ratio is already extremely high.

We have also calculated the optimal policies for investors who face borrowing and
short-sales constraints. This is probably a more realistic problem for many investors.
We find that the constrained optimal portfolio rules are close to the unconstrained
optimal rules with constraints imposed, and are particularly close for investors with
high risk aversion. The presence of constraints has important effects on both the level
and variability of optimal consumption.

We have compared our numerical solution with the approximate analytical solu-
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tion proposed by Campbell and Viceira (1999), in which the portfolio rule is globally
linear and the consumption rule is globally quadratic. For the parameter values
considered here, the approximate analytical solution is very close to the numerical
solution provided that the state variable is no more than two standard deviations
above its mean. However the analytical solution cannot capture the flattening out of
the policy functions at high values of the state variable.

Den Haan-Marcet (1994) statistics are sensitive indicators of errors in candidate
solutions to dynamic optimization problems. These statistics indicate that our nu-
merical solution is quite accurate, but they are able to pick up the approximation
errors in the analytical solution at the upper end of the state space.
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TABLE 1

Estimates of the Stochastic Process
for Returns (1947.1 - 1995.4)

(A) Restricted VAR(1):

0.173 0.047
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< disr — Pt > =1 Zoaa6 | T| o957 | Pt €2.441
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(0.522E —3) (0.653E — 3)

(B) Derived Model:
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TABLE 2

Mean Optimal Numerical Percentage Allocation
to Stocks and Optimal Numerical (Log-Linear) Percentage
Allocation to Stocks at the Mean of the State-Space

R.R.A. E.LS.
1/.75 100 1/2 1/4  1/10 1/20
1.00 286.02 286.02 286.02 286.02 286.02 286.02
286.02 286.02 286.02 286.02 286.02 286.02
(286.02) (286.02) (286.02) (286.02) (286.02) (286.02)
2.00 199.81 195.84 189.58 186.89 185.27 184.80
208.49 204.04 197.15 194.15 192.54 192.03
(213.21) (208.64) (202.53) (199.78) (198.35) (197.86)
4.00 126.34 12576 124.89 12448 124.25 124.17
130.14 129.56 128.75 128.38 128.18 128.12
(133.08) (132.88) (132.58) (132.42) (132.33) (132.30)
10.0 57.38 5873  61.16 62.61  63.58 63.92
58.62  60.00 6246 63.92  64.88 65.22
(61.33) (63.11) (66.10) (67.73) (68.90) (69.27)
20.0 290.73  30.84  32.85 34.06  34.87 35.15
30.39 3149 3349  34.67 3546 35.75
(32.18) (33.61) (36.06) (37.51) (38.42) (38.74)
TABLE 3
Standard Deviation of the Optimal Numerical
(Log-Linear) Percentage Allocation to Stocks
R.R.A. E.IS.
1/75 100 1/2 1/4  1/10  1/20
1.00 241.07 241.07 241.07 241.07 241.07 241.07
(241.07) (241.07) (241.07) (241.07) (241.07) (241.07)
2.00 137.26 13559 132.05 130.55 129.49 129.24
(151.24) (150.01) (148.27) (147.45) (147.02) (146.87)
4.00 81.03 80.21 7876  78.17  T7.75  77.62
(86.93) (86.88) (86.80) (86.75) (86.73) (86.72)
10.0 35.21 3531 3555  35.73 3586  35.92
(38.21) (38.70) (39.50) (39.93) (40.22) (40.32)
20.0 17.88 18.07 18.42 18.62 18.76 18.82
(19.75) (20.15) (20.80) (21.16) (21.39) (21.47)




TABLE 4

Optimal Numerical (Log-Linear) Percentage
Consumption-Wealth Ratio at the Mean
of the State-Space

R.R.A. E.IS.

1/.75  1.00 1/2 1/4  1/10  1/20

1.00 086 153 250 292 315  3.22
(0.80)  (1.53) (2.50) (2.93) (3.19) (3.27)
2.00 127 153 1.8  1.99 205 207
(1.24)  (1.53) (1.95) (2.15) (2.26) (2.30)
4.00 157 153 146 141 138  1.37
(1.55)  (1.53) (151) (1.50) (1.49) (1.49)
10.0 182 153 110  0.89 075  0.71
(1.81)  (1.53) (1.13) (0.92) (0.80) (0.75)
20.0 1.91 153 096  0.67 049 043

(191)  (1.53) (0.97) (0.69) (0.52)  (0.46)

TABLE 5

Mean Optimal Numerical (Log-Linear)
Percentage Consumption-Wealth Ratio

R.R.A. E.IS.

1/.75 100 1/2 /4 1/10  1/20

1.00 084 153 274 334 370 382
(0.78)  (1.53)  (2.80) (3.56) (4.07)  (4.25)
2.00 124 153 198 219 231 235
(1.21)  (1.53) (2.10) (243) (2.65) (2.30)
4.00 155 153 151 150 149  1.49
(1.53)  (1.53) (L57) (1.61) (1.64) (1.65)
10.0 180 153 112 091  0.78  0.73
(1.79)  (1.53) (1.15) (0.95) (0.83)  (0.79)
20.0 1.91 153 097 068 050 044

(1.90)  (1.53) (0.98) (0.70) (0.52)  (0.47)




Standard Deviation of the Optimal Numerical

TABLE 6

(Log-Linear) Percentage Consumption-Wealth Ratio

R.R.A. E.LS.
1,75  1.00 1/2 /4 1/10  1/20
1.00 0.17 0.00 0.82 1.41 1.79 1.92
(0.17)  (0.00) (1.03) (2.08) (2.97) (3.32)
2.00 0.17 0.00 0.43 0.71 0.89 0.96
(0.18)  (0.00) (0.53) (0.97) (1.31) (1.44)
4.00 0.13 0.00 0.22 0.34 0.41 0.44
(0.14)  (0.00) (0.25) (0.41) (0.52)  (0.56)
10.0 0.07 0.00 0.08 0.10 0.11 0.11
(0.07)  (0.00) (0.09) (0.12) (0.13) (0.13)
20.0 0.04 0.00 0.04 0.04 0.04 0.04
(0.04) (0.00) (0.04) (0.04) (0.04) (0.04)
TABLE 7
Percentage of Den Haan-Marcet Statistics
in the Lower (Upper) 5% Critical Tail
R.R.A. E.LS.
1,75 1.00 1/2 /4 1/10  1/20
1.00 5.85 - 5.25 5.20 4.55 5.20
(2.95) () (5.35) (5.95) (6.25) (5.70)
2.00 5.00 4.80 3.80 5.30 4.05 4.45
(7.55)  (6.75) (7.05) (7.55) (7.65)  (6.90)
4.00 4.00 4.35 2.65 4.10 4.25 4.00
(6.90) (6.10) (8.10) (6.45) (6.30)  (8.20)
10.0 2.45 4.00 2.75 2.40 2.25 2.15
(6.40) (4.80) (7.20) (8.45) (7.80) (7.95)
20.0 2.90 5.45 2.05 2.15 2.20 2.90
(5.80)  (4.75)  (7.40) (9.30) (9.00) (7.00)




TABLE 8

Constrained Portfolio Choice:

Mean Optimal Percentage Allocation to Stocks,
Optimal Percentage Allocation to Stocks at the
Mean of the State-Space and Standard Deviation
of the Optimal Percentage Allocation to Stocks

R.R.A. E.IS.

1/.75 100 1/2 /4 1/10  1/20

1.00 84.41  84.41 8442  84.43 8443  84.43
100.00 100.00 100.00 100.00  100.00  100.00
(34.05) (34.03) (34.03) (34.03) (34.02) (34.02)

2.00 8345 8354 83.68 8372 83.80  83.82
100.00 100.00 100.00 100.00  100.00  100.00
(33.00) (32.95) (32.86) (32.86) (32.79) (32.70)

4.00 7787 7821 7876  79.38  79.45  80.06
100.00  100.00  99.86  99.27  99.47  99.36
(32.15) (31.70) (31.37) (30.76) (30.79) (29.60)

10.0 5591  56.80 57.3¢  60.08  60.17  60.44
5521  56.33  57.54  61.24  60.92  61.27
(20.83) (20.58) (30.88) (28.84) (29.52) (29.56)

20.0 3069 31.83 33.93 3517 36.04  36.34
3117 3235 3437 3555 3640  36.69
(17.28) (17.51) (17.66) (17.77) (17.88) (17.93)




TABLE 9

Constrained Portfolio Choice:

Mean Optimal Percentage Consumption-Wealth Ratio,
Optimal Percentage Consumption-Wealth Ratio at the
Mean of the State-Space and Standard Deviation
of the Optimal Percentage Consumption-Wealth Ratio

R.R.A. E.IS.

1/.75  1.00 1/2 /4 1/10  1/20

1.00 156 153 150 148 147 146
157 153 148 145 143 142
(0.09)  (0.00) (0.14) (0.21) (0.25)  (0.26)

2.00 161 153 143 137 134 133
161 153 141 134 130  1.29
(0.09)  (0.00) (0.13) (0.19) (0.23) (0.24)

4.00 167 153 132 121 115 112
168 153 130 119 111  1.09
(0.09)  (0.00) (0.12) (0.17) (0.19)  (0.20)

10.0 181 153 111 089 075  0.71
182 153 109 087 073  0.69
(0.07)  (0.00) (0.08) (0.10) (0.10)  (0.10)

20.0 191 153 096  0.67 049 043
192 153 096 066 048  0.42
(0.04)  (0.00) (0.04) (0.04) (0.04) (0.04)
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