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ABSTRACT

We examine the implications of arbitrage in a market with many assets.

The absence of arbitrage opportunities implies that the linear functionals

that give the mean and cost of a portfolio are continuous; hence there exist

unique portfolios that represent these functionals. These portfolios span the

mean—variance efficient set. We resolve the question of when a market with

many assets permits so much diversification that risk—free investment

opportunities are available.

Ross [12, 14] showed that if there is a factor structure, then the mean

returns are approximately linear functions of factor loadings. We define an

approximate factor structure and show that this weaker restriction is

sufficient for Ross' result. If the covariance matrix of the asset returns

has only K unbounded eigenvalues, then there is an approximate factor struc-

ture and it is unique. The corresponding K eigenvectors converge and play

the role of factor loadings. Hence only a principal component analysis is

needed in empirical work.
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1. INTRODUCTION

Two of the most significant developments in finance have been the

formulation of the capital asset pricing model (CAPM) and the working out

of the implications of arbitrage beginning with the Modigliani—Miller

Theorem and culminating in the theory of option pricing. While the principle

that competitive markets do not permit profitable arbitrage opportunities

to remain unexploited seems unexceptionable, the same cannot be said for

the crucial assumptions of the CAPM. Few believe that asset returns are

well described by their first two moments or that some well—defined set of

marketable assets contains most of the investment opportunities available

to individual investors. Casual observation is sufficient to refute one of

the main implications of the CAPM —— that everyone holds the market

portfolio. Nonetheless, the CAPM seems to do a good job of explaining

relationships among asset prices. Ross [12,14] has argued that the apparent

empirical success of the CAPM is due to three assumptions which are more

plausible than the assumptions needed to derive the CAPM. These assumptions

are first, that there are many assets; second, that the market permits no

arbitrage opportunities; and third, that asset returns have a factor struc-

ture with a small number of factors.2 Ross presents a heuristic argument

which suggests that on a market with an infinite number of assets, there

are sufficiently many riskiess portfolios that prices of assets are deter-

mined by an arbitrage requirement —— riskless portfolios which require no

net investment should not have a positive return. Asset prices are linear
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functions of factor loadings. Although Ross' heuristics cannot be made

rigorous, he does prove that lack of arbitrage implies that asset prices

are approximately linear functions of factor loadings, and Chamberlain [3]

and Connor [4] have given conditions under which the conclusions of Ross'

heuristic argument are precisely true.3 Nonetheless, all of Ross' investi-

gations of the implications of the absence of arbitrage opportunities take

place in the context of a factor structure. Furthermore, Ross' definition

of a factor structure Is sufficiently stringent that it is unlikely that any

large asset market has, by his definition, a usefully small number of factors.

This paper has two purposes: The first is to examine the implications

of the absence of arbitrage opportunities on a market with many assets

which does not necessarily have a factor structure. We show in Sections 2

and 3 that an asset market with countably many assets has a natural Hubert

space structure which makes it easy to examine the implications of the no

arbitrage condition. Our second goal is to define an proximate factor

structure —— a concept which is weaker than the standard strict factor

structure which Ross uses. We show in Sections 4 and 5 that this is an

appropriate concept for investigating the relationship between factor loadings

and asset prices.

In Section 2 we introduce our model of the asset market. We consider a

market on which a countable number of assets are traded. As is customary in

investigations of this sort, we take a given price system and ask if it could

possibly be an equilibrium price system. Since prices are fixed we normalize

by assuming each asset costs one dollar. For a dollar an investor may pur-

chase a random return with a specified distribution.
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The assets on the market may be arranged in a sequence. The first

two moments of the joint distribution of returns of the first N assets are

a mean vector and a covariance matrix In the paper we often look at

what happens to various objects (such as the mean—variance efficiency frontier

or the eigenvalues of 1N as N increases to infinity. Such limits have

meaning, in part, because our model of the asset market may be embedded in

a Hubert space. In Section 2 we list some of the basic facts about Hilbert

space which we use.

Section 3 defines the absence of arbitrage opportunities and explores

the implications of the definition. Our definition, essentially the same

as Ross', is that it should not be possible to form a portfolio which is

riskiess, costless, and earns a pOsitive return. If prevailing prices permit

such a portfolio to be formed, investors, at least those whose preferences

satisfy some weak conditions, will want to buy arbitrarily large anounts of

that portfolio; consequently the prevailing prices cannot be equilibrium

rri -

There is a close link between the absence of arbitrage opportunities and

mean—variance analysis. If the asset market permits arbitrage opportunities

then investors do not have to choose between mean and variance. They can

for a given price acquire portfolios which have arbitrarily high expected

returns and arbitrarily low variances. If market prices do not permit

arbitrage, investors must choose between mean and variance. An object of

considerable interest on an asset market without arbitrage opportunities is

the mean—variance efficient set. This is the set of all portfolios for which
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variance is at a minimum subject to constraints on cost and expected return.

One of the reasons the mean—variance efficient set is of such interest is

that Roll [10] and Ross [13] have shown that the CAPM is equivalent to the

statement that the market portfolio is mean—variance efficient. We show

that on a market with an infinite number of assets the mean—variance efficient

set is the same kind of object as on a market with a finite number of assets.

In each case the mean—variance efficient set is contained in a particular

two—dimensional subspace.4

For portfolios of a given cost which are efficient, there is a linear

tradeoff between mean and standard deviation. We call the slope of this

tradeoff 6. The constant 6 will play an important role in our analysis of

factor structure; 6 is also the distance, in a certain norm, between the

vector of mean returns from each asset and a vector of ones.

Our model of the asset market assumes that all of the assets on the

market are risky. We investigate the question of whether investors, by

allocating their purchases among many assets, can create a portfolio that

is riskiess, costs a dollar, and has a positive return. If the answer to this

question is yes, then we say there is a riskless asset. it is commonly

believed that if all assets are affected by the same random event, the

market will not allow investors to diversify risks so effectively that they

can create a riskless portfolio with a positive return. Our necessary and

sufficient condition for the existence of a riskless asset sharpens this

intution. A riskless asset will exist unless the sequence of covariance

matrices has the same structure as it would have if there were a random

event which affected the returns of all assets in precisely the same way.
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If there is a riskless asset, then the mean—variance efficiency frontier

must be a straight line in mean—standard deviation space -— not the curve

that is usually drawn.

Sections 4 and 5 explore the relationship between factor structure

and asset pricing. We say the asset market has a strict K—factor structure

if the return on the i- asset is generated by

(1.1) x. = p. + .1f1 + ... + 1KK +

where p. is the mean return on asset i and the factors k are uncorrelated

with the idiosyncratic disturbances which are in turn uncorrelated with

each other. An implication of (1.1) is that the covariance matrix may be

decomposed into a matrix of rank K and a diagonal matrix. That is, for any

N,

'1 2' Z — B B' + D\•1 NNN N'

where is the N X K matrix of factor loadings and is a diagonal matrix.

Ross proved that if (1.1) holds, then asset means are approximately linear

functions of factor loadings. If there is one factor (K = 1) and a riskless

asset with a return of p, then Ross's conclusion may be stated as

which is almost indistinguishable from the CAPM pricing equation.5 In Section

4 we extend this result by showing that the same conclusion holds if there

is a sequence il' •• iK such that for any N,
i=l
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(1.3)

where the 1, j element of the N X K matrix N is and {R.} is a sequence

of matrices with uniformly bounded eigenvalues.

If condition (1.3) is satisfied, then we say that the market has an

approximate K-factor structure. In Section 5 we characterize approximate

factor structures. The idea which decompositions like (1.1) and (1.2) are

meant to convey is that for all practical purposes the stochastic structure

of asset returns is determined by a small number (in this case K) of things;

everything else is inessential and may be ignored. Our characterization

captures this notion. Since the rank of BNB in (1.3) is no more than K,

the K+lSt elgenvalue N is smaller than the largest eigenvalue Of RN

and is thus bounded. An asset market has an approximate K—factor structure

if and only if exactly K of the eigenvalues of the covariance matrices EN

increase without bound and all other eigenvalues are bounded.6

The concept of approximate factor structure is useful for exploring the

theoretical relationship between asset prices and factor loadings. It

should also prove to be a useful tool for examining this relationship

empirically. If there is an approximate factor structure, then mean returns

are approximately linear functions of the s's. The approximation error

(that is, the sum of squared deviations) is bounded by the product of the

constant and the K+lSt largest eigenvalue of The eigenvectors corres-

ponding to the exploding eigenvalues converge to factor loadings (in the

sense that one can use the elgenvectors to approximate the matrix BNB of

(1.3) arbitrarily well). Furthermore, the approximate factor structure is
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unique in the following sense: Suppose that there is a nested sequence of

N X K matrices {GN} such that7

= NN +

and the elgenvalues of WN are uniformly bounded. Then GNG = NN and

=

These results suggest that extracting the elgenvectors of is as

good a way as any of finding approximate factor structures. Thus, principal

component analysis, which is computationally and conceptually simpler than

factor analysis, is an appropriate technique for finding an approximate

factor structure.8 A common objection to principal component analysis is

that it is arbitrary to examine the eigenvectors of EN relative to an

identity matrix rather than relative to some other positive—definite

matrix —— one which is in some sense more natural for the problem at hand.

We show that for the problem of investigating the approximate factor

structure of an asset market this objection is groundless. Since the

approximate factor structure is unique, all positive—definite matrices

lead to the same approximate factor structure.
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2. THE HILBERT SPACE SETTING

We examine a market in which there are an infinite number of assets.

One dollar invested in the i- asset gives a random return of x1. A portfolio

formed by investing c in the i-- asset has a random return of Ejl a1x1;

the portfolio is represented by the vector ' Short sales are

allowed, so cv., may be negative.

There is an underlying probability space, and L2(P) denotes the collection

of all random variables with finite variances defined on that space. The x.1

are assumed to have finite variances, so that the sequence {x.., 11,2, . . .}

is in L2(P). The means, variances, and covariances of the x1 are denoted by

=
E(x1), .. = V(x1), 0.. = Cov(x., x.).

We let FN = [x1, ..., xN] denote the span of x1, ..., i.e., the linear

subspace consisting of all linear combinations of x1, ..., X. Let F =

U F, so that pF is the random return on a portfolio formed from some

finite subset of the assets.

It is well—known that L2(P) is a Hubert space under the mean—square

inner product:

(p,q) = E(pq) = Cov(p,q) + E(p)E(q),

with the associated norm:

I II I = (E(p2))2 = (V(p) +
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for p, qEL2(P). Since F is a linear subspace of L2(P), its closure, F,

is also a Hubert space. If pCF, then there is a sequence in F

with E((pNp)2) -- 0 as N - . So there are finite portfolios whose random

returns are arbitrarily good approximations to p.

Let x = (x1, ..., x) and let N be the covariance matrix of
xN.

We shall assume that EN is nonsingular for all N. Hence the return on

the finite portfolio ..., has zero variance only if the . are

all zero. The cost of the portfolio (G, ..., ct) Is C. If

= N a0x. and q = E.N1 x., then "p = q" refers to equality in L2(P);

i.e., E((p—q)2) = 0. If p = q, V(p-q) = 0, so that . = .. Hence the

cost of p,

N
C(p) =

1=1 1

is well—defined for pEF, We shall often identify pCF with its (unique)

associated portfolio.

ir- -hi1- C( 4c 1ii,r fil rirni1 rn F In Spt-t-icrn h11
I —- - —-—

extend the definition of C( ) to F, and we shall relate the linear

functionals E( ) and C( ) to the mean—variance frontier. This will require

the following two basic properties of a Hubert space:9

PROJECTION ThEOR: If C is a closed linecw subspace of a Hubert space

H, then every pEH has a unique decomposition as p = p1 + p2, where p1O

and p2EG(i.e., (p2,q) = 0 for every qCG).
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RIESZ REPRESENTATION THEOREM: If L is a continuou8 linear functional on

a Hubert apace H, then there i8 a unique qCH auch that L(p) = (q,p) for

every pCI1.

The projection theorem is often used together with the fact that every

finite dimensional subspace is closed. We shall also use the following

two elementary properties of linear functionals:

If G is a linear subspace of a Hilbert space 1-1, then

a linear functional L is continuous on G if and only

if L(pN) - 0 for every sequence in G that converges

to zero;

if G is a linear subspace of a Hubert space 1-1 and if

the linear functiowzl L is continuous on G, then there

is a unique continuous linear functional on the closure

of G that coincides with L on G.

3. ARBITRAGE OPPORTUNITIES AND MEAN-VARIANCE EFFICIENCY

3. 1 Lack of Arbitrage Opportunities

We now consider what it means for there to be no arbitrage opportun-

ities on the asset market. By defining x1 as the return available for

one dollar, we have assumed prices are determined. These prices can be

equilibrium prices if no trader would want to make an infinitely large

trade. We define the absence of arbitrage opportunities in terms of

conditions which, if they failed, would make some risk—averse traders

want to take infinitely large positions.

Let be a sequence of finite portfolios (pCF). Then we shall

say that the market permits no arbitrage opportunities if the following
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two conditions hold:

Condition (A.i): If V(pN) + 0 and C(pN) - 0,

then E(pN) - 0.

(A.ii): If V(pN) + 0, C(p) 1, and

E(PN)
- a, then a > 0.

Condition (A.i) simply states that it is not possible to make an invest-

ment that is costless, riskiess, and yields a positive return. Ross [12]

has shown that if (A.i) fails, many (but not all) risk—averse traders will

ant to take infinitely large positions. A similar argument justifies

(A.ii). Suppose that (A.ii) does not hold; that is, suppose that the

market allows investors to trade aportfolio that, approximately, costs

a dollar and has a riskiess, nonpositive return. Then investors face no

budget constraints; by selling this portfolio short they can generate

arbitrarily large amounts of cash which can be used to purchase investments

or, in a complete model, for current consumption, while incurring no future

obligations. In fact, if a < 0, then investors could consume infinite

amounts both now and in the future without risk.

2 Mean- Variance Efficiency

Roll [10) and Ross [13] have shown that the empirical content of the

capital asset pricing model is contained in the observation that the market

portfolio is on the mean—variance efficiency frontier. If arbitrage

opportunities exist on an infinite market, then there is no tradeoff

between mean and variance; there exist costless finite portfolios with
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arbitrarily large means and arbitrarily small variances. If (A) does hold,

there is a well—defined tradeoff between mean and variance. The mean—

variance efficient set has the same structure in our infinite market as on

any finite market. In each case it lies in the subspace generated by the

(limit) portfolios that represent the linear functionals E( ) and C( ).

To prove this, we must show first that E( ) and C( ) are continuous.

2 2
Clearly E( ) is continuous since J p I

= V(p) + (E(p)) . Thus if

IIPNII - 0, then E(PN) + 0. The continuity of C( ) follows from (A.ii).1°

Suppose INI - 0 but C(pN) does not converge to zero. Then there is an

C > 0 and a subsequence {p} with IC(p)I > C. Let = p/C(p). Then

along the subsequence we have C() 1 and

IIH = IpHflC(p)j IIPII/C 0.

Thus E() converges to zero, which contradicts (A.ii). This contradiction

proves

PROPOSITION 1: condition (A.ii) irplies that C( ) is continuous.

Hence we can extend C( ) to a continuous linear functional on F.

Since the cost of p is now well—defined when pCF, we shall refer to

these random returns as limit portfolios. It follows from Riesz' theorem

that there exist limit portfolios m and c in F that represent E( ) and

C( ) in the sense that

E(p) = (m,p), C(p) = (c,p)
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for all pCF. The following theorem shows that the mean—variance effi-

cient set is generated by in and c.

THEOREM 1: Suppose that (A.ii) holds. Given any qCF, let p° = am + c
be the orthogonal projection of q onto the span of in, c. Then p° solves

the following problem: mm V(p) subject to pEF, E(p) = E(q), C(p.) = C(q).

PROOF: Since q = p° + e, where eE[m, c]1, we have E(q) = E(p°) and C(q) =

C(p°). Let p be any limit portfolio satisfying E(p) = E(q) and C(p) =

C(q). Then since (p-p°) j p°, Jp 12 = Iip°i 12 +
I Jp—p°I 12 Thus,

E(p) = E(p°) implies that

V(p) - V(p°)
2 -

I p°J 2 = Ip-p°I 12 >

Q.E.D.

COROLLARY 1: Suppose that (A) holds and define

= sup E(p)J/V(p)

subject to pcF, C(p) = 0, pO. Define

(m,c)/(c,c), h = m — IPc

If h 0, then c(h) = 0, V(h) > 0, and

(3.1) 6 = JE(h)l/V(h);

if h = 0, then 6 = 0.
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PROOF: If h = 0, then E(p) = 0 whenever C(p) = 0, and so 6 = 0. Suppose

that h # 0. In that case, E(h) # 0, for otherwise (in, h) = 0, (c, h) = 0,

and hC[m, ci imply that h = 0. By (A.i), if E(p) 0 and C(p) = 0, then

V(p) > 0. If C(p) = 0, p # 0, and

IE(p) /v½(p) > E(h) /v(h),

then p = (E(h)/E(p))p has E(p*) = E(h), C(p*) = C(h) = 0, and V(p*) <

V(h). This contradicts Theorem 1 and completes our proof.

Q.E.D.

The parameter 6 gives the slope of the tradeoff between mean and risk

(measured by standard deviation) along the efficient frontier; [hi is the

linear subspace of costless portfolios which are efficient. An investor

can increase risk in an efficient manner by adding a hedge portfolio from

[h] to his holdings. Another way of making this point is to observe that

if p, q[m, c] with C(p) = C(q) = 1, then p — qC[h] and so (3.1) implies

(3.2) E(p) - E(q) = 6V(p-q).

We shall see that 6 plays an important role in our treatment of factor

models.

3.3 Riskiess Asset

In this section we shall examine the implications of the existence of

a riskless limit portfolio.

DEFINITION 1: There is a riskiess limit portfolio if there is a p*CF

with V(p*) = 0 and E(p*) 0.

If (A.ii) holds, then C(p*) is well—defined and C(p*) = 0 violates (A.i).
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Hence we can set a p*/C(p*). We shall refer to a as a riskiess asset.

If there is an s'CF with C(s') = 1 and V(s') = 0, then C(s-s') = 0,

V(s—s') 0, and (A.i) implies that E(s—s') 0. So $ = a' and the riskiess

asset is unique. Let P = E(s) be the return on the riskless asset; (A.ii)

implies that P > 0.

Note that (sIP, p) = E(p) for all pCF; hence m = s/P. If p[m, c]

and C(p) = 1, then setting q = s in (3.2) gives the following tradeoff

between mean and risk along the efficient frontier:

(3.3) JE(p) — p1 = cSV¾(p).

Thus, if there is a riskiess asset, the frontier of the efficient set (in

(i,o) space) is a straight line rather than a curve as it is usually drawn.

We now develop a necessary and sufficient condition for the existence

of a riskiess asset. We also show that if there is no riskiess limit

portfolio, then the covariance is a natural inner product for the space

F. We use this construction in Section 5. Suppose that there is no

riskiess limit portfolio. Then E(m) 1; for otherwise

E(m) (m, in) = V(m) ÷ (E(m))2

implies that V(m) = 0, a contradiction. If E(m) # 1, then
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E(p) (m, p) = Cov(m, p) + E(m) E(p)

implies that

E(p) = Cov(m, p)/(l — E(tn)) Cov(m*, p),

where m* = m!(l — E(m)). So we can generate the mean functional from the

covariance with m. If (A) holds, we can also use covariance to generate

the cost functional:

C(p) = (c, p) Cov(c, p) + E(c) E(p)

= Cov(c, p) + E(c)Cov(m*, p) = Cov(c*, p),

where

c' = c + E(c)m*.

Now we have

Hp112 = V(p) + (Cov(m*, p))2 < (1 + V(m*))V(p) (peF),

so that V(p) = 0 implies p = 0. Hence Cov( , ) is an inner product and

) is a norm. Furthermore, if e F and V(pN—pN) ÷ 0 as N, M +

then NN1 4- 0 and, since F is complete under the mean—square norm,

there is a psF with 'N' 4- 0. Hence V(pN-p) ÷ 0 so that F is complete

under the variance norm, and F together with the covariance inner product

forms a Hubert space. Condition (A) is not needed for this result.
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Note that the span of m*, c is identical to the span of in, c. Let

= Cov(jn*, c*)/V(c*) and h* = — 4*c*. Then h*E4h] since h*C[m, c]

and C(i*) = 0. If h 0 then h* # 0 and

(3.4) = IE(h*)/V(h*) = V½(h*).

We can use the covariance inner product to characterize the existence

of a riskiess asset. If (A) holds and there is no riskless asset, then

we can form the (covariance) orthogonal projection of x. onto c*:

x1 = T c* + w. (i=1,2, ...),

where T = Cov(x., c*)/V(c*) = l/V(c*) and

C(w.) = Cov(c*, w.) = 0. Let be an NX1 vector of ones an( let

=
(w1, ..., wN). Then

N £ + v(wN) (N=1,2,

so that has an equicorrelated component. We show now that (3.5) is

also a sufficient condition for there to be no riskless asset.

PROPOSITION 2: Suppose that (A) holds. Then there is no riskiess asset

if and only if there is a > 0 such that

- N N

is positive semi—definite for N=l,2,
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PROOF: We have already seen that this condition is necessary. Suppose

that the condition holds and that there is a riskiess asset s. Then there

is a sequence = x with V(pN) = + 0 and C(PN) = + •
But

NNN - (a) >

implies that - 0. This contradiction completes the proof.

Q. E. D.

The equicorrelated component condition is quite stringent; it is not

enough for the assets {x1, x2, .. .} all to be positively correlated with

the same factor. Suppose, for example, that

x. = a + f + v, (1 odd)
1 1

f + v. (i even),

where a > 0, 0 < < 1, and all of the v. are zero—mean, uncorrelated

random variables with uniformly bounded variances. If we invest 1/N in

the first N odd assets and —s/N in the first N even assets, then net

investment is l— and the random return is

N
a + N1 (v211 — v2.)

1=1

which converges in mean—square to . Thus, there is a riskiess asset.
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3.4 A Construction of 6

We give a construction of 6 that will be used in our treatment of

factor models. First we need to develop some concepts and results from

least squares theory which we will use again. Define

(3.6) IIHQ (e )½, -
[A]IQ

= inf -

where is a <l vector, Q is a NXN positive semi—definite matrix, and A is

a NXJ matrix. Let x (x1, ..., x) and ' '
LEMMA 1: There is a T* that achieves the infinum in (3.6). If A has full

colwnn rank and Q is positive definite, then 1* = (A'Q A)1A'Q y avid

Il — [&II = (y — A I*)'Q (v - A T*)

= y' (Q - Q A (A'Q A)1A'Q) y.

PROOF: There is an N matrix C such that Q = C C'. Let z = C'y and

C = C'A, so that

H- II= il- H.

If we use a'b as the inner product of a and b, then the projection theorem

asserts that there is a vector = C 1* such that G'(z—.) = 0. Hence

— II = — II + — II
-
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In the full rank case, we have

1* = (G'G)G'z ('Q A)1A'Q y.

Q.E.D.

PROPOSITION 3: Suppose that (A) holds and define

= sup E(p)11V½(p)

subject to PEFN, C(p) = 0, p 0. Then

- N1

and is a nondec eosin sequence which converqe.s to S as N + CO. f
there is a riskiess asset with a ret-urn of p, then

N 1H1}

is cl no2de -ssi s eizc whic7: also conerqes to as N -÷

PROOF: Choose a nonsingular matrix C such that C'C = Let T =

If p = O'XN
and C(p) = 0, then 0. = 0 and

(3.7) jE(p) = -' = 1N
3-

- 'N —

NE_l V2(p)

by Lemma 1 and the Cauchy—Schwarz inequality; equality holds in (3.7) if



—1= — T
N XN. Hence

= N -
I

decreasing since C FN+l. The limit of as N -

subject to pCF, C(p) = 0, p 0; this is the definition

If there is a riskiess asset s, define z. = x. — s
1 1

E(z.) = p.. — P. C(z.) = 0. Let be the span of {z1,

G=U1GN. Then

21

is non—

is sup E(p)I/V(p)

of ó.

and note that

...,zN} and

-1— — 2 = supjE(p)
J1V2(p)

subject to PEGN, o• is nondecreasing since C GN+l. The limit

of as N -* is supE(p)/V½(p) subject to peG, p 0. Since pCG

implies that pF and C(p) = 0, we have y = urn < . Since
N' we have < y. Hence y =

.2.E.D.
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4. FACTOR STRUCTURE AND ROSS' THEOREM

4.1 Strict Factor Structure

The phenomenon that a factor structure trys to capture is that the

covariance matrix EN can be approximated by a simpler, lower dimensional

structure. We shall say that there is a strict K—factor structure if the

return on the asset is generated by

(4.1) x. = p. + f1 + + iK K +

where the factors are uncorrelated with the idiosyncratic disturbances

v., which in turn are uncorrelated with each other. We assume that
1

V(v.) < for all i. Let be the NXK matrix whose i,j element is

Onl' the column space of B is well—defined, since we can form new
1j

factors by taking linear combinations of the k A convenient normalization

specifies that the factors are uncorrelated with each other, with zero mean

and unit variance. Then E. may be decomposed as follows:

(4.2) N N N + N (N=l,2, ...),

where is a diagonal matrix whose elements are uniformly bounded by

for all N. Of course rank (RN B') < K.

11
The following theorem is due to Ross [12].
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THEOREM 2: Suppose that (A) holds and that there is a strict factor struc-

ture as in (4.2). Then there exist numbers t0
T1, ..., Y such that

'o - - ... - tKK)<Y <

If there is a riskiess asset with a return of p, then we may set 10 =

Theorem 2 is a special case of Theorem 3, whose proof is given below. The

theorem states that if there is a strict factor structure, then the absence

of arbitrage opportunities implies that the vector of mean returns is

approximately a linear function of the factor loadings. Suppose that there

is a riskiess asset. Since 1.11 is the mean return available for one dollar,

we can interpret (ti.i + ... + as the risk premium on asset i.

Thus if there is a strict factor structure, Ross' theorem implies that an

asset's risk premium is determined by its factor loadings in a particularly

simple way. If there is but a single factor, then

P + I

which is almost the capital asset pricing formula, with factor loadings

playing the role of beta.

The assumption that a strict factor structure holds with a small

number of factors seems overly strong. Suppose, for example, that

x. = + .f + w, Cov(f, w.) 0, where the w. are "almost" uncorrelated:

Cov(w1, w.) = 0 if i—jl > 1. Then we must let the number of factors grow
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without limit in order to maintain a strict factor structure as N -.
We shall present a weaker condition that is still sufficient for Ross'

theorem to hold.

4. 2 Approximate Factor Structure

The eigenvalues of the diagonal matrix in (4.2) are simply the

diagonal elements. Since V(v1) < , the eigenvalues of DN are uniformly

bounded as N - . We shall use this condition to define an approximate

K—factor structure. Given a symmetric matrix C, let g(C) denote its

.thj— largest eigenvalue.

DEFINITION 2: The sequence has an approximate K-factor structure

if there exists a sequence such that
i=l

(4.3) N = N B + (N=l,2, ...),

where the 1, j element of the N<Kmatrix BN is .. and {R,) is a

sequence of positive semi—definite matrices with

2. Sup g1(R) < .
N

In the example given above, suppose that x = P. + f + w1, where

V(w.) = , Cov(w1, w) = 2 if i—j = 1, and Cov(w, w.) = 0 if

li-il > 1. Then the covariance matrix of (w1, ..., wN) has uniformly

bounded eigenvalues as N -- ([1, theorem 6.5.3]), and so has an

approximate 1—factor structure.
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The following theorem shows that an approximate factor structure is

sufficient for Ross' result.

ThEOREM 3: Suppose that (A) holds and that has an approximate K-factor

structure, as in (4.3). Then there exist numbers T, T, such that

(4.4)
1=1

- 'o i n - - TK )2 <

If there is a riskiess asset with a return of p, then we can set =

PROOF: We shall say A < B if B — A is a positive semi—definite matrix.

Let I be an identity matrix.

= N N + A (cc' + I),

where C = B. We can assume without loss of generality that RN has

full column rank for N sufficiently large; otherwise we can throw away some

columns.

_1( c' +

= A '( -' +l
A (I - C(C'1C') A -
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By Proposition 2,

(4.5) ''EN —
[N1H2_1

> A1 mm -
aON)

- -B (B'B—
a0

__l I

2
a £ -B a= A mm mm 'N - 0 N Na a I

0 -

ta i a—i solve(by Lemma 1). Le =
ON' -.

this minimization problem. Let be the matrix N' and let be

the row vector (TON, T). We can assume without loss of generality that

has full column rank for some J; for N is in the column space of BN

for all N, then we can drop N' setting TON = 0. For N > J we have

1
—G H >AII'N

JN' - HJH1

> I iv ii I—' '-NI — 'ZJI

where is the smallest elgenvalue of > 0 since GGJ is positive—

definite. Hence is a uniformly bounded sequence and has a convergent

subsequence: 1N(•) - I as j -3- °. For any k < N(j) we have

kkN(j)'1I a2

and taking the limit as j - gives
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k

Since this holds for all k, (4.4) follows with to t') =

If there is a riskiess asset, then we can use Proposition 2 to replace

(4.5) by

2 2

N -
I_i

then essentially the same argument gives (4.4) with T0 =

Q.E.D.

5. A CHARACTERIZATION OF APPROXIMATE

FACTOR STRUCTURES

We would like to have a simple condition on the {EN} sequence that

implies an approximate K—factor structure, and we would like to know how

to construct the factor loadings (risk premia) from If an approximate

factor structure does exist, we would like to know whether the decomposition

of into {BNB} and {RN} is unique. We shall show that the relevant

condition is that only K of the eigenvalues of are unbounded as N - .
Furthermore, there is a unique sequence {BNB} that gives the approximate

factor structure, and it can be obtained from the eigenvectors of {EN}

corresponding to the K largest eigenvalues.

We show first that if there is an approximate K—factor structure, then

only K of the eigenvalues can be unbounded.
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PROPOSITION 4. Suppose that has an approx-inrzte K-factor structure as

in (4.3). Define

(5.1) K+1 K+1

Then is finite.

PROOF: It follows from [ 8
, exercise l.f.l.9] and rank (BNB) < K that

- ¼+i +

=
gl(RN);

so AK+l X < .

.E.D.

Now suppose that AK÷l < . Let the spectral decomposition of N be

.

where the eigenvectors t.N satisfy =
jNLkN

= 0 (j,k=1, ..., N;

th
jk). Let tjjN be the i— element of Order the eigenvalues so that

A2N > ... > A. Then we can decompose

= NN +

where the column of the N><K matrix B* is X t. and
jN -.jN

=

j=K+1 jNjNjN
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This decomposition cannot correspond to our definition of an approximate

K—factor structure since {B) is not a nested sequence —— instead of simply

adding rows as N increases, the entire matrix changes, so that the i,j

element of B depends upon N. But we do have the following version of

Theorem 3.

ThEOREM 3': Suppose that (A) holds and that ° Let ijN =

AiNtiiN. Then there exists a sequence uI0N,lN, * s7: that

N
2 2(5.2) E —

'ON 'lN1 — — 'KNiKN 6
1=1

for N=l,2 If there is a riskiess asset with a return of P, then we

can . T0= p

The proof follows that of Theorem 3 to show N — N'
the nesting property of {BN} is not used in that argument. In the riskless

asset case, the nesting property is not used in showing that

- [N1iIK+l2
A weakness in (5.2) is that we do not know whether the column space

of the .. converges as N -* hence the risk premium that we assign to
ijN

asset i may keep changing as we include more assets in N Theorem 4 will

establish that in fact we do have convergence.

ThEOREM 4: Suppose that 8UPNA
= ' < W2 E

1nfNXNN
> 0.

Define B to e the NXK matrix whose coiwnn contains the first N

elements of t. (N > N). ThenjMM —
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has an approximate K-factor structure; i.e., there exists

a sequence i' such that

(N=1,2, ...),

where the i, j element of the NXK matrix is .. and {R} is a sequence

of positive semi-definite matrices whose eigenvalues are uniformly bounded

by AK+l for all N.

(ii) For any N,

NM1N
=

(iii) The approximate K-factor structure is unique; i.e., suppose that

there is a seence {y.1, ..., •K1 such that

= NN + (N=1,2, ...),

where the i, j element of the N<K matrix
CN

is Y, and is a sequence

of positive semi-definite matrices whose eigenvalues are uniformly bounded

for all N; then

NNNN' NN
COROLLARY 2: Suppose that (A) holds together with the assunrptions of Theorem

4. Then there exist numbers T0 T] ..., such that

i1 '• - — Tlil — — iK - AK+1•

If there is a riskiess asset with a return of P, then we can set =
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The Corollary is an immediate implication of Theorems 3 and 4. The

proof of the Theorem requires a covariance inner product. We have seen

(in Section 3.3) that is a Hubert space under the covariance inner product

when there is no riskless limit portfolio. If there is a riskless limit

portfolio p*, then V½( ) is not a valid norm on F since V(p*) 0. So we

let z. x. — .(p*/E(p*)) and define to be the span of {1, ..., Z}.1 1 1

00P is defined as the mean—square closure in F of UN1 N Then P is a Hubert

space under the mean—square inner product, which is actually a covariance

inner product on P since E(z.) = 0. If there is no riskless limit portfolio,

we simply set z. x., so that P = F. P is still a Hubert space under the1 1

covariance inner product. All references to orthogonality, norms, and

convergence in P will be with respect to the covariance inner product and

the variance norm.

Before proving the Theorem, we shall need some definitions and a lemma.

Let =
(z1, ..., z ) and set r.N = jN N)/XjN so that V(rN) =

N j

Cov(r.N, rkN) = 0 (j, k=l, ..., K; j k). Then the orthogonal projection

of pP onto the subspace spanned by IrlN, ..., r} is given by

K

(5.3) =
Cov(p, rkN)r

k= 1

The following result is proved in [3, leimnas 1, 4, and 51.

A <00 andA EinfLEMMA 2: Suppose that
suPNA}(

=
K+l 00 NA

> 0. Then
NN

the following results hold:

(1) There is a nonnegative, real-valued function (H 112) defined on

P with the following properties: for cXCR and p,qP,
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llPII2 = IHIPI!2; IIP+Il lPIl2 HqH;

Nf E1=1 + p as N + , then
N

urn ( E iN 2 = Ipi 12
N°' 1=1

(ii) P1 {pC: I p 12 = O} is a K—dimensional linear subspace of P.

(iii) If p1P1w2d pEP, then I IP3PI 2
= 1' 12

(iv) If pcPd Cov(p,q) = 0 for all q6P1, then V(p) < XK+lI I! I

(v) Let Qp be the orthogonal projection of pEP onto then

urn =

N N 2½
Note that a special case of (i) is . c.z.II = (E. ci.) . The setninorm

i=lii 2 i=li

I 2
is a measure of diversification, and P1 can be interpreted as the space

of well—diversified portfolios. This is developed in [31.

PROOF OF ThEOR4 4: Let f1, ..., be an orthonormal basis for P1 and set

= Cov(z., f.). Then
1J 1- J

(5.4) z. = + + KK + e. (i1,2, ...)

gives the orthogonal projection of z. onto P1; Cov(f., e1)
= 0 (j1, ..., K).

(i) Let the i,j element of be .. and let thei,j element of RN

be Cov(e.., e.). Since Cov(z1, z.) = 0.., (5.4) implies that

= NN + R.N (N=l, 2, ...).
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Let =
(e1, ..., es). Since e1CP , Lemma 2 Implies that

cRNc = +1! I'I I = AK+lI 1N' 2

Hence the eigenvalues of are uniformly bounded by AK+l.

(ii) Cov(z, QMZJ) = k=1
C:v(z, r) Cov(z., r) =

k=1 AtMtj
Cov(z., Qz.) = Cov( E + e., E kk =1 k=l 1 1 k=l k=1

1 3

Lemma 2 asserts that QMz. + Qz. as M -3- . Hence

k=l
i1ijI =

k=l ikjk'

where = ANt is the i,k element of B (1, j=l, ..., N; k1, ..., K).

(iii) Let SM be the MXK matrix whose column is (M1,2, ...).

Let be the KXK diagonal matrix with diagonal elements AiM, ..' A. Let

A be a uniform upper bound on the eigenvalues of for all M. Recall that

A < B if B — A is a positive semi—definite matrix.

1MM — A

and

MMMM < = 2 D' 9

as N -s- , so that SWMSM+O and SWMWMSM -3- 0, in the sense that each element

of these matrices converges to zero. Let be the KXK matrix GSM and let

be the KXK identity matrix. Then
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= MMM =
MMM + MMM

implies that CCM ÷ 'K as N -* . Hence the elements of CM are uniformly

bounded for all M, and {CM} has a convergent subsequence: M(j) - as

K implies that C' C1 and so =

Recall that is the NXK matrix whose column contains the first

N elements of ) t. (M > N). ThenjMjM —

MM
= MN +

= MN +

implies that

NN NN +

where H is the NXK matrix that contains the first N rows of WNSM.

ThfNN — M1MM

implies that 0 as N c and so HH 0. Since {CM} is uniformly

bounded, GNCMH - 0 as M - . Hence part (ii) of the Theorem gives

NNNN

= =

It follows that

Q.E.L.
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We would Like to relate our results to conventional factor analysis.

Recall that a strict one—factor model specifies

(55) =
bNb + (N=l,2, ...),

where b (, ••• ) and is a diagonal matrix with V(v) as the

•thi— diagonal element; V(v) < < for all i. Given some weak restric-

tions on {bN} and {DN}, we shall show that {EN} satisfies the assumptions

of Theorem 4. Proposition 4 implies that supNX2N < co• If P inf1V(v1) > 0,

then > p cX'3 implies that infNA > 0. Since bENbN we

Co 2
have Co f = °. So given these restrictions, Theorem 4 implies

that there is an approximate one—factor structure; since it is unique, it

must coincide with the strict factor structure in (5.5). If 0, the

convergence part of Theorem 4 gives

urn tilM/tllN = iIl (11,2, ...),

where
tiM

= (tl1M ..., tflJ4) is the elgenvector of EM corresponding to the

largest elgenvalue.

Hence we can obtain the factor loadings of the strict factor structure

from the first eigenvector of In conventional factor analysis, the

factor loadings are obtained from a different eigenvalue problem. It

follows from (5.5) that

=
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where s =
DN1bN

and = 1 + So s is an eigenvector of EN

relative to (or an ordinary elgenvector of DN'EN). In empirical

factor analysis, there is a sample counterpart to this population result.

Given a sample covariance matrix N from a strict K—factor structure, the

maximum likelihood estimator of (under normality assumptions) can be

obtained from the first K eigenvectors of EN relative to where is

the maximum likelihood estimator of DN [7, p. 27]. Much of the work in

maximum likelihood factor analysis is in the computation of DN. Our

results provide a rigorous justification for principal component analysis

which is computationally simpler than factor analysis since is set

equal to an identity matrix. Furthermore, the arbitrage pricing inter-

pretation of the principal components holds under much weaker assumptions

than a strict factor structure.

A common objection to principal component analysis is that it is

arbitrary to take the eigenvectors of relative to an identity matrix,

instead of using some other positive—definite matrix N• In the case of

a strict factor model, for example, it seems more natural to set N =

which gives conventional factor analysis. We have just argued, however,

that factor analysis and principal component analysis are asymptotically

equivalent, if there is a strict factor structure. We shall show in

Corollary 3 that there is a much stronger result, which only requires an

approximate factor structure. Under weak restrictions on {}, taking the

eigenvectors of relative to 2N} gives the same asymptotic factor

loadings as principal component analysis.
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Let be a nested sequence of positive—definite matrices, with

eigenvalues uniformly bounded away from 0 and : infg() > 0,

pl suP1(c) < the i, j element of ft is L) There exists a
ij•

nonsingular matrix such that

NNN =
9N' NNN

1 elements U > > S . Letwhere 0N is a diagonal matrix with diagona iN — —

th
s be the j— column of Then
-jN

NS = = s
-N N -N N-NN

so that is an eigenvector of relative to

We can use these eigenvectors to obtain an alternative arbitrage

pricing formula. Since

=
-'N NNNIN

we have

N
th

where is the NXK matrix whose j— column is t = ONSiN and
-j N

N

j=K+l
0jNNjNjNN

toAssume that AK+l < we shall see below tha
K+l,N _? XK+l• Hence
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X1E jNjNN

—1 —l= A1c2 AK+lPl

Then, just as with Theorem 3', we can follow the proof of Theorem 3 to

obtain

(5.6) (Pi_TON_TlNlN
— }AKN AK+ll

for N=l,2, .... where jN is the i,j element of B.

The objection that principal component analysis is arbitrary is

relevant in our context only if the column space of still depends

upon {2N) in the limit as N - The following result shows that it

does not.

COROLLARY 3: Suppose that satisfies the assumptions of Theorem 4 and

that E suPg1(Q) < , infg() > 0. Let {BNBI} be defined as

in Theorem 4 and define B to be the NXK matrix whose j--- column contains

the first N elements of (N > N). Then

urn BB = BNB (N1,2, ...),

which does not depend upon

PROOF. Recall that a sequence of matrices {A} is nested if the i,j element

of AN does not depend upon N. We can recursively form a nested sequence
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of upper—triangular, nonsingular matrices such that Cf2NCN N for all

N; the i,j element of is with = 0 for I > i. Let N = NNN
and = NN Then = N!N' so that is an eigenvalue of ZN, with

= NjN as the corresponding eigenvector. Note that NjN =

jNkN
= 0 (j,k = 1, ..., N; jk). We need to show that {EN} satisfies the

assumptions of Theorem 4. is a sequence of positive—definite, nested

matrices since the CN are nonsingular, upper—triangular, and form a nested

sequence. Let C be a NX(k—l) matrix and let be a NX1 vector; it follows

from [8 , lf.2.iii] that

a' a

kN = inf sup
G G'CO

The substitution H = C1G,
= C gives

___
OkN

=

I(\

Since

inf sup
H H'=O

and < < we have

l'kN 0kN cxkN (k=l, ..., N).

Hence supNO} = SUPNOK+1N
< and infNO >

So we can apply Theorem 4 to conclude that {EN} has an approximate

K—factor structure:
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NN + (N=l, 2, ...),

and

where B is the NXK matrix whose j-- column contains the first N elements

of
°MEjM

(N N). Hence

(5.7) = +

Note that {Cl1BN is a sequence of nested matrices, since is nested

and {c1} is nested and lower—triangular.

Since

the uniform upper bound on g1() implies that the eigenvalues of C'RNC

are uniformly bounded for all N, which implies that (5.7) gives an approximate

K—factor structure for Then the uniqueness result in Theorem 4 shows

that

= NN

Since is lower—triangular and C11B = , we have = C1BW.

Hence

= i1(j )C =
Q. E. D.
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FOOTNOTES

'We are indebted to Bob Anderson, Steve Ross, Jose Scheinkman, and

particularly to Jim Mirrlees for helpful suggestions, and to the National

Science Foundation and the University of Wisconsin Graduate School for

research support. Chamberlain held an Alfred P. Sloan Research Fellowship

and Rothschild held the Oskar Morgenstern Distinguished Fellowship at

Mathematica while some of the work on this paper was done. The research

reported here is part of the NBER's program in Financial Markets and

Monetary Economics. Any opinions expressed are those of the authors and

not those of the National Bureau of Economic Research.

2That is, the covariance matrix of asset returns may be written as the

sum of a diagonal matrix and a matrix of short rank as in equation (1.2)

below.

3Chamberlain requires that there be a mean—variance efficient portfolio

which is so well—diversified that it contains only factor variance and no

idiosyncratic variance. Connor requires that the supply of the assets be

well—diversified.

4See [2] and [10] for the case with a finite number of assets.

5Since all assets cost a dollar, a formula which explains the mean

return of the i' asset is an asset pricing formula; it determines the

mean return per dollar spent on asset 1. If there is a riskiess asset with

rate of return P, then 1J — P is the risk premium which investors get if

they buy asset i.
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6We assume also that the smallest eigenvalue of ZN is uniformly

bounded away from zero for all N.

7Let {GN} be a sequence of matrices where has rN rows and

columns. Then {GN} is a nested sequence if the rN by CN upper left—hand

submatrix of N+l is G. Clearly {BN} and {EN} (of both (1.2) and (1.3))

are nested.

and Ross [11] have used factor analysis in their empirical work

on arbitrage pricing.

9
See, for example, [9, Chapters I and II].

10The relationship between arbitrage and the continuity of price

functionals is examined in a more general setting by Kreps [6].

See Huberman 15] for an alternative proof.
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