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Theories of coalitional rationality∗

Attila Ambrus†

Abstract

This paper generalizes the concept of best response to coalitions of players
and offers epistemic definitions of coalitional rationalizability in normal form
games. The (best) response of a coalition is defined to be an operator from
sets of conjectures to sets of strategies. A strategy is epistemic coalitionally
rationalizable if it is consistent with rationality and common certainty that
every coalition is rational. A characterization of this solution set is provided
for operators satisfying four basic properties. Special attention is devoted to
an operator that leads to a solution concept that is generically equivalent to
the iteratively defined concept of coalitional rationalizability.
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1 Introduction

Since Aumann’s paper nearly fifty years ago ([3]) there have been numerous
attempts to incorporate coalitional reasoning into the theory of noncoopera-
tive games, but the issue is still unresolved. Part of the problem seems to be
that the concept of coalitional reasoning itself is not formally defined. At an
intuitive level it means that players with similar interest (a coalition) coor-
dinate their play to achieve a common gain (to increase every player’s payoff
in the coalition). This intuitive definition can be formalized in a straight-
forward way if there is a focal strategy profile that all players expect to
be played. With respect to this profile, a profitable coalitional deviation is a
joint deviation by players in a coalition that makes all of them better off, sup-
posing that all other players keep their play unchanged. This definition is a
generalization of a profitable unilateral deviation, therefore concepts that re-
quire stability with respect to coalitional deviations are refinements of Nash
equilibrium. The two best-known equilibrium concepts along this line are
strong Nash equilibrium ([3],[4]) and coalition-proof Nash equilibrium ([9]).
However, as opposed to Nash equilibrium, these solution concepts cannot
guarantee existence in a natural class of games. This casts doubt on whether
these theories give a satisfactory prediction even in games in which the given
equilibria do exist.

Outside the equilibrium framework [2] proposes the concept of coalitional
rationalizability, using an iterative procedure. The construction is similar to
the original definition of rationalizability, provided by [8] and [25]. The new
aspect is that not only never best-response strategies of individual players are
deleted by the procedure, but also strategies of groups of players simultane-
ously, if it is in their mutual interest to confine their play to the remaining set
of strategies. These are called supported restrictions by coalitions. The set
of coalitionally rationalizable strategies is the set of strategies that survive
the iterative procedure of supported restrictions. The paper also provides a
direct characterization of this set. But even this characterization (stability
with respect to supported restrictions given any superset) is not based on
primitive assumptions about players’ beliefs and behavior. Since such char-
acterizations were provided for rationalizability by [11] and Brandenburger
and [31], using the framework of interactive epistemology, the question arises
whether similar epistemic foundations can be worked out for coalitional ra-
tionalizability as well.
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This paper investigates a range of possible definitions of coalitional ra-
tionalizability in an epistemic framework. These theories differ in how the
event that a coalition is rational is defined. We only consider definitions
that are generalizations of the standard definition of individual rationality,
namely that players are subjective expected utility maximizers: every player
forms a conjecture on other players’ choices and plays a best response to
it.1 We define the response of a coalition to be an operator that allocates
a set of strategies to certain sets of conjectures. The assumption that the
operator is defined on sets of conjectures corresponds to the idea that in a
non-equilibrium framework players in a coalition might not have the same
conjecture, nevertheless it can be common certainty among them that play
is within a certain subset of the strategy space. Intuitively then the response
of the coalition to this set of conjectures is a set of strategies that players
in the coalition would agree upon confining their play to, given the above
set of possible conjectures. Since players’ interests usually do not coincide
perfectly, there are various ways to formalize this intuition. Because of this
we consider a wide range of coalitional response operators.

Each response operator can be used to obtain a definition of coalitional
rationality the following way. A coalition is rational if for every subset of
strategies for which it is common certainty among coalition members that
play is within this set, members of the coalition play within the response set
to the set of conjectures concentrated on this set of strategies. Once the event
that a coalition is rational is well-defined, the events that every coalition is
rational, that a player is certain that every coalition is rational, and that it
is common certainty among players that every coalition is rational can be
defined in the usual manner. Then a definition of coalitional rationalizability
can be provided as the set of strategies that are consistent with the assump-
tions that every player is rational and that it is common certainty that every
coalition is rational. We refer to coalitional rationalizability corresponding
to best response operator γ as coalitional γ-rationalizability.

We then investigate the class of response operators that satisfy four prop-
erties. Two of these serve the purpose of establishing consistency with in-
dividual best response correspondences. The third one imposes a form of
monotonicity on the operator, reflecting the idea that if restricting play in a

1This is the starting point for rationalizability as well, although [15] considers building
the concept on alternative definitions of rationality.
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certain way is mutually advantageous for members of a coalition for a set of
possible beliefs, then the same restriction should still be advantageous for a
smaller set of possible beliefs. Finally, the fourth property requires that the
response of a coalition retains the strategies of players in the coalition that
can be best responses to their most optimistic conjectures. This is a weak re-
quirement along the lines of Pareto optimality of the best response operator
for coalition members, but it turns out to be enough to establish our main
results. We call the above response operators sensible best responses. We
show that there is a smallest and a largest sensible best response operator.

It is shown that for every sensible best response operator γ the resulting
set of coalitionally γ-rationalizable strategies is nonempty, and it can be
characterized by an iterative procedure that is defined from the corresponding
best response operator. In generic games this procedure is fairly simple.
Starting from the set of all strategies, in each step it involves taking the
intersection of best responses of all coalitions, given the set of strategies
that survive the previous step. In a nongeneric class of games the procedure
involves checking best responses of coalitions given certain subsets (not only
the entire set) of the set of strategies reached in the previous round, and
it yields a subset of the set of strategies reached by the simpler iterative
procedure.

The best response operator that we pay special attention to uses the con-
cept of supported restriction as defined in [2]. It specifies the best response
of a coalition to the set of conjectures concentrated on some set of strate-
gies to be the smallest supported restriction by the coalition given that set.
The resulting definition of epistemic coalitional rationalizability requires that
whenever it is common certainty among members of a coalition that play is
in A, and B is a supported restriction by the coalition given A, then players
in the coalition choose strategies in B. Our results then imply that the set of
epistemic coalitionally rationalizable strategies defined this way is generically
equivalent to the iteratively defined set of coalitionally rationalizable strate-
gies of [2]. In a nongeneric class of games the former can be a strict subset
of the latter, providing a (slightly) stronger refinement of rationalizability.
Finally, we show that there exists another sensible best response operator
that leads to a set of epistemic coalitionally rationalizable strategies that is
exactly equivalent to the iteratively defined set of coalitionally rationalizable
strategies.
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The relationships between the solution concepts derived in this paper and
standard noncooperative solution concepts, including strong Nash equilib-
rium and coalition-proof Nash equilibrium, are analogous to the relationship
between the set of coalitionally rationalizable strategies in [2] and the same
noncooperative solution concepts, therefore we do not discuss the issue here.
We refer the interested reader to the same paper for an extended discussion of
how our approach is related to other approaches of incorporating coalitional
reasoning into noncooperative game theory. Here we only provide a brief
summary of the related literature. One set of papers assumes an explicit and
public negotiation procedure among players ([13],[18],[21],[32]). Another line
of literature investigates games in which players can sign binding agreements
with each other (see for example [12],[26],[29],[30]). All the above papers
assume that secret negotiations among subgroups of players are not possible.

2 The model

2.1 Basic notation.

Let G = (I, S, u) be a normal form game, where I is a finite set of players,
S = ×

i∈I
Si, is the set of strategies, and u = (ui)i∈I , and ui : S → R, for every

i ∈ I, are the payoff functions. We assume that Si is finite for every i ∈ I. Let
S−i = ×

j∈I\{i}
Sj, ∀ i ∈ I and let S−J = ×

j∈I\J
Sj, ∀ J ⊂ I. Let C = {J | J ⊂ I,

J 6= ∅}. We will refer to elements of C as coalitions.

Let X denote the collection of product subsets of the strategy space:
X = {A = ×

i∈I
Ai | ∀ i ∈ I, Ai ⊂ Si}.

Let ∆−i be the set of probability distributions over S−i, representing the
set of conjectures (including correlated ones) player i can have concerning
other players’ moves. Let f−J−i be the marginal distribution of f−i over S−J ,
for every J ∈ C, i ∈ J and f−i ∈ ∆−i. Let ui(si, f−i) =

P
t−i∈S−i ui(si, t−i) ·

f−i(t−i) denote the expected payoff of player i if he has conjecture f−i and
plays pure strategy si, for every f−i ∈ ∆−i and si ∈ Si. Let BRi(f−i) = {si ∈
Si | ∀ti ∈ Si, ui(si, f−i) ≥ ui(ti, f−i)}, the set of pure strategy best responses
of player i to conjecture f−i, for every f−i ∈ ∆−i.
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2.2 Type spaces

A type space T forG is a tuple T = (I, (Ti,Φi, gi)i∈I) where Ti is a measurable
space, Φi is a subset of Si×Ti such that projSiΦi = Si, and gi : Ti →4(Φ−i)
(where 4(Φ−i) is the set of probability measures on Φ−i) is a measurable
function with respect to the σ-algebra generated by

{{μ | μ(A) ≥ p} | p ∈ [0, 1] and A ⊂ Φi measurable}
on 4(Φ−i).2

Ti represents the set of epistemic types of player i. Φ is the set of states
of the world. Every state of the world consists of a strategy profile (the
external state) and a profile of epistemic types. A player’s epistemic type
determines her probabilistic belief (conjecture) about other players’ strategies
and epistemic types. Player i’s belief as a function of her type is denoted by
gi.3

Let φi = (si(φi), ti(φi)), for every i ∈ I and φi ∈ Φi.

We say that i is certain of Ψ−i ⊂ Φ−i at φ ∈ Φ if gi(ti(φi))(Ψ−i) = 1.
4

In the formulation we use, a player does not have beliefs concerning her
own strategy. Nevertheless, for the construction below it is convenient to
extend the definition of certainty to particular events of the entire state
space.

We say that i is certain of Ψ = Ψi × Ψ−i ⊂ Φ at φ ∈ Φ if i is certain of
Ψ−i at φ.

Let Ci(Ψ) ≡ {φ ∈ Φ : gi(ti(φi))(Ψ−i) = 1}, for any Ψ = Ψi ×Ψ−i. Ci(Ψ)
is the event in the state space that i is certain of Ψ.

2All finite sets are endowed with the obvious sigma algebra, and all product spaces
are endowed with the product sigma algebra. Each subset X of a measurable space Y
is endowed with the sigma algebra induced by the inclusion map from X to Y . The
construction is the same as in [20], in particular we assume the same sigma algebra on
4(Φ−i).

3For more on type spaces see for example [6] and [14].
4The terminology “i believes Ψ−i” is also common in the literature.
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Let Ψ = ×
i∈I

Ψi where Ψi ⊂ Φi (a product event). Mutual certainty of Ψ

holds at φ ∈ Φ if φ ∈ ∩
i∈I

Ci(Ψ). Mutual certainty of Ψ ⊂ Φ among J holds

at φ ∈ Φ if φ ∈ ∩
i∈J

Ci(Ψ).

Let MCJ(Ψ) denote mutual certainty of Ψ among J .

Let MC1
J(Ψ) ≡ MCJ(Ψ). Let MCk

J(Ψ) = MCJ(MCk−1
J (Ψ)) for k ≥ 2.

Common certainty of Ψ among J holds at φ ∈ Φ if φ ∈ ∩
k=1,2,...

MCk
J(Ψ).

Let CCJ(Ψ) denote common certainty of Ψ among J .

3 Response operators for coalitions and def-
initions of coalitional rationalizability

In this section we define the event that a coalition is rational. We start out
by generalizing the concept of best response for coalitions.

The set of best responses of player i to a conjecture f−i ∈ ∆−i consists
of the strategies of i that maximize her expected payoff given f−i. When
trying to extend this definition to coalitions of multiple players, two concep-
tual difficulties arise. One is that in a nonequilibrium framework different
players in the coalition might have different conjectures on other players’
strategy choices. Second, even if they share the same conjecture, typically
players’ interests do not align perfectly - different strategy profiles maximize
the payoffs of different coalition members to the conjecture. However, these
inconsistencies can be resolved if the best response operator is defined such
that it allocates a set of strategies to a set of conjectures.

In particular, consider the case that it is common certainty among play-
ers in a coalition that the conjecture of each of them is concentrated on a
product subset of strategies A ⊂ S.5 Then even if they are uncertain exactly
what conjectures others in the coalition have from the above set of possi-
ble conjectures, they might all implicitly agree to confine their play to a set
B ⊂ A. Therefore any theory that specifies what set of strategies a coalition

5For a discussion on why we only consider product sets see Section 7.
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would implicitly agree upon confining its play to, given a set of conjectures,
can be interpreted as a best response operator. The problem is that there is
no single obvious definition of a restriction being in the mutual interest of a
coalition, since evaluating a restriction involves a comparison of two sets of
expected payoffs (expected payoffs in case the restriction is made and in case
the restriction is not made) for every player. For this reason, we proceed
by considering a wide range of possible coalitional response operators, which
lead to different definitions of coalitional rationalizability.

Definition 1: γ : X × C → X is a coalitional response operator if
(i) γ(A, J) ⊂ A
(ii) γ(A, J) 6= ∅ implies (γ(A, J))−J = A−J .

In words, coalitional response operators are restrictions on the set of
strategies such that only strategies of players in the corresponding coalitions
are restricted. Let Γ be the set of response operators.6 Although coalitional
response operators are defined as operators from sets of strategies (like op-
erators in [23]), one should interpret them as operators from sets of belief
profiles. In particular, the interpretation of γ(A, J) for some A ∈ X and
J ∈ C is that it is the set of strategies that players in J want to restrict play
to if it is common certainty among J that play is inside A. Therefore, set
of strategies A in the above definition should be thought of as a shortcut for
the set of belief profiles for which all players in J think that it is common
certainty among J that play is in A.

One example of a coalitional response operator, which formalizes the idea
that restricting play within the response set of the coalition should be strictly
in the interest of coalition members, can be obtained from the concept of
supported restriction of [2].

Let ∆−i(A) = {f−i |suppf−i ⊂ A−i}, for any A ∈ X . We will refer to
∆−i(A) as the set of conjectures concentrated on A.

Let ∆∗−i(Bi) = {f−i | f−i ∈ ∆−i, ∃ bi ∈ Bi such that bi ∈ BRi(f−i)}, for
any Bi ⊂ Si. In words, ∆∗−i(Bi) is the set of conjectures to which player i
has a best response strategy in Bi.

6Note that the definition of a coalitional response operator does not impose any re-
striction along the lines of optimality for coalition members. This is why we do not call
all operators in Γ coalitional best response operators.
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Let bui(f−i) = ui(bi, f−i), for any bi ∈ BRi(f−i). Then bui(f−i) is the
expected payoff of a player if he has conjecture f−i and plays a best response
to his conjecture.

Let A,B ∈ X and ∅ 6= B ⊂ A.

Definition 2: B is a supported restriction by J given A if
1) Bi = Ai, ∀ i /∈ J, and
2) buj(f−j) < buj(g−j) for every j ∈ J, f−j ∈ ∆∗−j(Aj \ Bj) ∩∆−j(A),

and g−j ∈ ∆−j(B) such that g−J−j = f−J−j .

Restricting play to B given that conjectures are concentrated on A is
supported by J if for any fixed conjecture concerning players outside the
coalition, every player in the coalition expects a strictly higher expected
payoff in case her conjecture is concentrated on B than if her conjecture is
such that she has a best response strategy to it which is outside B. In short,
for every fixed conjecture concerning outsiders, every coalition member is
always strictly better off if the restriction is made than if the restriction is
not made and she wants to play a strategy outside the restriction.

Let FJ(A) be the set of supported restrictions by J given A. It can
be established (see [2]) that ∩

B∈FJ (A)
B is either empty or itself a member of

FJ(A). This motivates a response operator that specifies ∩
B∈FJ (A)

B to be

the response of J to the set of conjectures concentrated on A. Note that
FJ(A) ⊂ A since B ⊂ A for every A ∈ X and J ∈ C.

Definition 3: Let γ∗ : X×C → X be the operator defined by γ∗(∅, J) = ∅
and γ∗(A, J) = ∩

B∈FJ (A)
B for every A ∈ X \ {∅}, for all J ∈ C.

Operator γ∗ will be our leading example throughout the paper. However,
the above is just one reasonable way of formalizing the idea that a restriction
is unambiguously in the interest of every player in the coalition. There are
other intuitively appealing definitions. A stronger requirement (leading to
larger best response sets) is that restriction B is supported by J given A
iff s ∈ B, t ∈ A \ B and s−J = t−J imply that uj(s) > uj(t) for every
j ∈ J (fixing the strategies of players outside the coalition, the restriction
payoff-dominates all other outcomes). A weaker requirement (leading to
smaller best response sets) can be obtained from the following modification
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of supported restrictions. Note that if B ⊂ A then every f−i ∈ ∆−i(A) can
be decomposed as a convex combination of a conjecture in ∆−i(B) and a
conjecture in ∆−i(A \ B): f−i = αf−ifB−i + (1 − αf−i)f

A/B
−i , where αf−i is

uniquely determined. Then buj(f−j) < buj(g−j) in the definition of supported
restriction above can be required to hold only if g−j = αf−ifB−i+(1−αf−i)g0−j
for some g0−j ∈ ∆−j(B). Intuitively, this corresponds to assuming that when
players compare expected payoffs between the case the restriction is made
and the case that it is not made, they leave the part of the conjecture that
is consistent with the restriction unchanged. The next section will analyze
a class of response operators that satisfy certain intuitive properties. This
class contains some of the examples given above, including γ∗.

Next we define the concept of rationality of a coalition, given some γ ∈ Γ.
The definition refers to subsets of the strategy space that are called closed
under rational behavior.7 Recall that a set A ∈ X \ {∅} is closed under
rational behavior if BRi(f−i) ⊂ Ai, for every i ∈ I and f−i ∈ ∆−i(A).

LetM denote the collection of sets closed under rational behavior.

For any γ ∈ Γ we define a coalition to be γ-rational at some state of
the world if the strategy profile that is played at that state is within the
γ-response of the coalition to any closed under rational behavior set which
satisfies that it is common certainty among the coalition members that play
is within this set. We only make this restriction with respect to closed under
rational behavior sets because our intention is building a coalitional ratio-
nality concept that is consistent with individual rationality and the above
sets are exactly the ones that are compatible with individual rationality of
coalition members and the assumption that it is common certainty among
them that play is within the set.

Let ΨA = {φ ∈ Φ | s(φ) ∈ A} for every ∅ 6= A ⊂ S. Then CCJ(Ψ
A) is

the event that there is common certainty among J that play is in A.

Definition 4: coalition J is γ-rational at φ ∈ Φ if φ ∈ CCJ(Ψ
A) implies

si(φi) ∈ Ψ
γ(A,J)
i for every i ∈ J and A ∈M.

In particular coalition J is γ∗-rational at φ ∈ Φ if φ ∈ CCJ(Ψ
A) and

B ∈ FJ(A) together imply that si(φi) ∈ Bi for every i ∈ J and A ∈M.

7[5] introduced the terminology and analyzed the properties of these sets.
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Let Rγ
J denote the event that coalition J is γ-rational. Furthermore, let

CRγ = ∩
J∈C,J 6=∅

Rγ
J , the event that every coalition is γ-rational.

Let g−i(φi) denote the marginal distribution of gi(ti(φi)) over S−i. This
is the conjecture of type φi of player i regarding what strategies other players
play. Following standard terminology, we call player i individually rational
at φ if si(φi) ∈ BRi(g−i(φi)). Let Ri denote the event that player i is rational
and let R = ∩

i∈N
Ri (the event that every player is rational).

A strategy profile is coalitionally γ-rationalizable if there exists a type
space and a state in which the above strategy profile is played and both
rationality and common certainty of coalitional γ-rationality hold.8

Definition 5: s ∈ S is coalitionally γ-rationalizable if ∃ type space T
and φ ∈ Φ such that φ ∈ R ∩ CCI(CR

γ) and s(φ) = s.

In particular coalitional γ∗-rationalizability implies common certainty of
the event that whenever it is common certainty among players in a coalition
that play is in A ∈M and B is a supported restriction given A, then players
in this coalition play strategies in B.

4 Sensible best response operators

This section focuses on coalitional response operators that satisfy four ba-
sic requirements, and investigates the resulting coalitional rationalizability
concepts.

Definition 6: γ ∈ Γ is a sensible coalitional best response operator if it
satisfies the following properties:
(i) if A ∈M then γ(A, J) ∈M, for every J ∈ C
8Since [11[ and [22] establish the existence of a universal type space that contains every

possible type, an alternative definition for a strategy profile to be epistemic coalitionally
rationalizable is that there is a state of the world in the universal type space in which
rationality and common certainty of coalitional rationality hold and in which the given
strategy profile is played.
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(ii) if @ f−i ∈ ∆−i(A) such that ai ∈ BRi(f−i) then ai /∈ (γ(A, J))i, for
every A ∈M, i ∈ N , ai ∈ Ai and J 3 i
(iii) if B ⊂ A and γ(A, J) ∩ B 6= ∅ then γ(B, J) ⊂ γ(A, J), for every

A,B ∈M
(iv) if a ∈ argmax

s∈A
uj(s) then aj ∈ (γ(A, J))j, for every J ∈ C, j ∈ J , and

A ∈M.

Properties (i) and (ii) impose consistency of the coalitional response op-
erator with individual best response operator. Property (i) requires that the
response of any coalition to a set that is closed under rational behavior is
closed under rational behavior. This corresponds to the requirement that
a coalition member’s individual best response strategies to any conjecture
that is consistent with the coalition’s best response should be included in the
coalition’s best response. Property (ii) requires that strategies that are never
individual best responses for a player cannot be part of responses of coali-
tions containing the player. Note that (i) and (ii) imply that the response of
a single-player coalition to a set A ∈M is exactly the set of strategies that
can be best responses to a conjecture in ∆−i(A): (i) implies that all these
strategies have to be included in the response, and (ii) implies that all other
strategies are excluded from the response.

Property (iii) is a monotonicity condition. It corresponds to the idea
that if outcomes in γ(A, J) in some sense (the exact meaning depends on γ)
are preferred to outcomes in A \ γ(A, J) by players in J , then outcomes in
B ∩ γ(A, J) are preferred to outcomes in B ∩ (A \ γ(A, J)). Equivalently,
if coalition J ’s response involves not playing strategies in A \ γ(A, J) for a
set of contingencies (namely when play is concentrated on A), then their
response should also involve not playing the above strategies for a smaller
set of contingencies (when play is concentrated on B ⊂ A).

Property (iv) is a weak requirement along the lines of Pareto optimality
for coalition members. It requires that for any coalition member the response
of a coalition to set A should include the strategies that are (individual) best
responses to her most optimistic conjecture on A. Otherwise the response
of a coalition would not include strategies that could yield the highest pay-
off that the corresponding player could hope for, given that conjectures are
concentrated on A. We consider this property a minimal requirement for
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coalitional rationality. The reason that we do not impose a stronger require-
ment is primarily that even this weak requirement is enough to establish the
main results of the section.

Let Γ∗ denote the set of sensible coalitional best response operators. One
example of a operator in Γ∗ is the operator obtained from supported restric-
tions in the previous section. This will be used in the next section, where
we compare the epistemically defined concept of γ∗-rationalizability to the
iteratively defined concept of coalitional rationalizability from [2].

The proofs of all propositions are in the Appendix.

Proposition 1: γ∗ is a sensible best response operator.

We note that there are various ways of changing the definition of the
supported restriction that lead to coalitional best response operators different
from γ∗, but also sensible. One is when conjectures concerning players outside
the coalition are not required to be fixed in expected payoff comparisons
between conjectures consistent with a restriction and conjectures to which
there is a best response outside the restriction (when g−J−j = f−J−j is no longer
required in requirement (2) of the definition of supported restriction).

It is straightforward to establish that there exists a smallest and a largest
element of Γ∗. The largest is the one that only excludes (individual) never
best-response strategies for coalition members.9 The smallest one can be
defined in an iterative manner. It involves starting out from the operator
that for every A ∈ M allocates the smallest set in M that is consistent
with property (iv) of a sensible best response operator and then iteratively
enlarging the values of the operator until it satisfies property (iii).10

Proposition 2: There exist γM ∈ Γ∗ and γm ∈ Γ∗ such that γM(A, J) ⊃
γ(A, J) ⊃ γm(A, J), for every γ ∈ Γ∗ and A ∈ X .

9For sets in M. For other sets it is equal to the identity operator. The definition of
sensibleness does not restrict.the operator in any way for the latter sets.
10Formally, let γ0 denote the the operator that for every A ∈M allocates the smallest

set inM that is consistent with property (iv) of a sensible best response. For k ≥ 1, define
γk iteratively such that γk(A,J) is the smallest set in M containing γk−1(B, J) for all
B ∈M such that γ(A, J) ∩B 6= ∅, for every A ∈M and J ∈ C.
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In the remainder of this section we derive a result which characterizes the
set of coalitionally γ-rationalizable strategies for any sensible coalitional best
response operator γ.

In the construction that we provide below, particular sets of strategies,
which we call self-supporting for some coalition, play a highlighted role.
These are sets with the property that for any member j of J choosing a
strategy from the set can only be a best response if j thinks that it is com-
mon certainty among J that play is in the set. To put it simply, play can
only be inside these sets if the latter is common certainty. The central role
of these sets in coalitional γ-rationalizability is due to the fact that the def-
inition of coalition J being γ-rational requires that players in J play inside
γ(A, J) for every A ∈ M for which it is common certainty among J that
play is in A.

Definition 7: Let A ∈M. A subset B ∈ X of A is self-supporting for
J with respect to A if BR−1j (bj) ∩ ∆−j(A) ⊂ ∆−j(B) for every j ∈ J and
bj ∈ Bj.

B1 B2 B3

A1
A2
A3

1,1 -1,1 -1,-1
1,-1 2,2 0,0
-1,-1 0,0 4,1

Figure 1

For an example of a self-supporting set, consider the game of Figure 1.
Here the singleton set {A1} × {B1} is self-supporting for the coalition of
the two players for S, since A1 can only be a best response for player 1 if
she believes that player 2 chooses B1 with probability 1, and B1 can only
be a best response for player 2 if he believes that player 1 chooses A1 with
probability 1. Therefore rational players can only play A1 and B1 if it is
common certainty among them that play is in C, for any C ∈ M which
satisfies that {A1} × {B1} ⊂ C.

Let NJ(A) denote the collection of self-supporting sets for J with respect
to A. Note that A ∈ NJ(A), for every A ∈M and J ⊂ I. LetMA

(B) =
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{C ∈M | B ⊂ C ⊂ A}, for every B ⊂ A. In words, members ofMA
(B) are

sets in A that are closed under rational behavior and contain B.

Below we will show that γ-rationalizable strategies for any γ ∈ Γ∗ can
be obtained by an iterative procedure that is associated with a decreasing
sequence of sets E0, E1, E2, ... The procedure starts from the set of all strate-
gies (E0 = S) and at step k it eliminates any strategy ai of any i ∈ I for
which the following holds: there exists J 3 i and a set B self-supporting

for J with respect to Ek−1 such that for some C ∈MEk−1
(B) it holds that

ai /∈ (γ(C, J))i. In particular, since A ∈ NJ(A) for every A ∈ M, at each
step k the procedure eliminates all strategies that are not in the γ-response of
Ek−1 for some coalition. However, if NJ(E

k−1) contains some proper subsets
of Ek−1, then further strategies can be eliminated in this step.

Formally, consider the following procedure. Let E0(γ) = S. For every
k ≥ 1, let Ek(γ) = ×

i∈I
Ek
i (γ), where Ek

i (γ) ≡ {si ∈ Ek−1
i (γ) | ∀ J ∈ C,

B ∈ NJ(E
k−1) and C ∈MEk−1

(B) s.t. si ∈ Ci it holds that si ∈ (γ(C, J))i}.

Definition 8: Let E∗(γ) = ∩
k=0,1,2,...

Ek(γ).

In order to prove our main theorem, it is useful to establish some basic
properties of E∗(γ) for sensible coalitional best response operators.

Proposition 3: For every γ ∈ Γ∗, the following hold:
(i) E∗(γ) is nonempty
(ii) ∃ K <∞ such that Ek(γ) = E∗(γ) for every k ≥ K
(iii) E∗(γ) ∈M
(iv) E∗i (γ) ≡ {si ∈ E∗i (γ) | si ∈ (γ(C, J))j for every B ∈ NJ(E

∗) s.t.

sj ∈ Bj, and C ∈ME∗
(B)}.

The outline of the proof is the following. Condition (iii) in the definition of
a sensible best response operator implies that Ek(γ) is nonempty for every k,
and condition (i) in the definition implies that Ek(γ) is closed under rational
behavior for every k. By constructionEk(γ) is decreasing in k, which together
with the finiteness of S implies that Ek(γ) = E∗(γ) for large enough k. The
rest of the claim follows straightforwardly from these results.
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Note that result (iv) in Proposition 3 implies γ(E∗(γ), J) = E∗(γ) for
every J ∈ C and γ ∈ Γ∗. Hence, there exists f−i ∈ ∆−i(E

∗(γ)) such that
si ∈ BRi(f−i), for every i ∈ I and si ∈ E∗i (γ). We refer to sets that are closed
under rational behavior and satisfy the above property as coherent.

We are ready to establish our main result, the equivalence of E∗(γ) and
the set of coalitionally γ-rationalizable strategies.

Proposition 4: If φ ∈ R ∩ CCI(CR
γ) then s(φ) ∈ E∗(γ), for every

γ ∈ Γ∗, type space T and state φ ∈ Φ.
Conversely, there exists type space T and φ ∈ Φ such that s(φ) = s and

φ ∈ R ∩ CCI(CR
γ), for every s ∈ E∗(γ).

The first part of the proposition can be established the following way. It is
common certainty among players of any coalition that play is in S. Therefore
the assumption that every coalition is γ-rational implies that players of any
coalition play inside the γ-response of the coalition to S. Moreover, if a
strategy of a player is included in a self-supporting set (implying that the
given strategy can only be played if it is common certainty that play is in
this set), and the γ-response of some coalition does not include this strategy,
then γ-rationality of this coalition implies that the above strategy cannot
be played. To summarize, γ-rationality of all coalitions implies that play is
inside E1(γ). Common certainty of coalitional γ-rationality then implies that
it is common certainty that play is in E1(γ). Applying the same arguments
iteratively yields that common certainty of coalitional γ-rationality implies
common certainty that play is in E∗(γ). Then rationality of players, together
with the result that E∗(γ) is closed under rational behavior implies that play
is included in E∗(γ). The other part of the statement can be shown by
creating a particular type space. In this type space every player has a type
belonging to every coalitionally γ-rationalizable strategy in the sense that he
plays the given strategy and has a conjecture to which this strategy is a best
response and which conjecture is concentrated on E∗(γ). Such a conjecture
exists because E∗(γ) is coherent. Furthermore, there exists a conjecture
like that with a maximal support. Then property (ii) of a sensible best
response operator can be used to show that both rationality of every player
and common certainty of every coalition being rational are satisfied in every
state of the world of this model. Since by construction every coalitionally
γ-rationalizable strategy is played in some state of the world, this establishes
the claim.
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Combining Propositions 3 and 4 establishes that the set of coalitionally
γ-rationalizable strategies is a nonempty and coherent set for every sensible
coalitional best response operator γ.

The iterative procedure introduced above is quite complicated, because in
each step it refers to the γ-response of various subsets of the set of strategies
reached in the previous step. We conclude this section by showing that in a
generic class of games the procedure is equivalent to a simple and intuitive
procedure.

Let ∆o
−i(A) = {f−i ∈ ∆−i(A) | ∀a−i ∈ A−i, f−i(a−i) > 0} for every

A ∈M. Let Go denote the class of games for which {ai ∈ Ai | ∃ f−i ∈ ∆−i(A)
s.t. ai ∈ BRi(f−i)} = {ai ∈ Ai | ∃ f−i ∈ ∆o

−i(A) s.t. ai ∈ BRi(f−i)}. In
words, G0 is the set of games in which no set that is closed under rational
behavior has a strategy that is weakly but not strictly dominated within that
set. It is straightforward to show that the latter property is generic.11 In
these games the only self-supporting set for J with respect to A is A itself, for
any A ∈M and J ∈ C. This considerably simplifies the iterative procedure
defining E∗.

Proposition 5: In any game in Go it holds thatEk(γ) = ∩
J∈C

γ(Ek−1(γ), J)

for every γ ∈ Γ∗ and k ≥ 1.

By propositions 4 and 5, in a generic class of games the set of γ-rationalizable
strategies can be obtained simply by taking the intersection of γ-responses
of all possible coalitions in an iterative manner, starting from the set of all
strategies. Furthermore, it is straightforward to show that this simple it-
erative procedure leads to a set which contains the set of γ-rationalizable
strategies in every finite game, for all γ ∈ Γ∗.

11Formally, the following statement is true: fix any finite game form (i.e. games with
a given number of players and strategies) and associate the set of games with points of
R|I|×|S1|×...×|SI | according to the payoffs they allocate for different strategy profiles; then
the set of points in R|I|×|S1|×...×|SI | that are associated with games in which the stated
property does not hold is negligible (it is measure zero according to the Lebesgue measure).
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5 Coalitional rationalizability and epistemic
coalitional rationalizability

The concept of coalitionally rationalizable strategies is introduced in [2] as
follows. Let A0 = S and define Ak for k ≥ 1 iteratively such that Ak = ∩

J∈C
∩

B∈FJ (Ak−1)
B. The set of coalitionally rationalizable strategies, A∗, is defined

to be ∩
k≥0

Ak (equivalently, the limit of Ak as k → 0). The propositions in the

previous section imply that the set of coalitionally γ∗-rationalizable strategies
is a subset of A∗ and in a generic class of games the two solution concepts
are equivalent.

Furthermore, in every game both solution concepts yield a nonempty, co-
herent set of strategies. This also implies that there is always at least one
Nash equilibrium of every finite game that is fully contained in the set of coali-
tionally γ∗-rationalizable strategies. There are two further results on the set
of coalitionally rationalizable strategies that can be extended to the epistemic
solution concept. The first is that it is possible to provide a direct character-
ization of the solution set. The second is that every strong Nash equilibrium
(see [3]) is fully included in the set of coalitionally γ∗-rationalizable strate-
gies. The proofs of these claims are similar to the corresponding claims in
[2] and therefore omitted.12

The game of Figure 1 in the previous section provides an example that the
set of coalitionally γ∗- rationalizable strategies can be a strict subset of the set
of coalitionally rationalizable strategies. In this game there is no nontrivial
supported restriction given S. In particular A1 and B1 are coalitionally
rationalizable strategies. However, note that P1 only playsA1 if she is certain
that P2 plays B1. Similarly P2 only plays B1 if she is certain that P1 plays
A1. This implies that A1 or B1 are only played if P1 or P2 is certain
that the other player is certain that it is common certainty that (A1, B1) is
played. But then P1 and P2 are also certain that it is common certainty that
play is inside {A1, A2} × {B1, B2} ∈ M. Furthermore, note that {A2} ×
{B2} is a supported restriction by {P1,P2} given {A1, A2}×{B1, B2}. This
implies that A1 and B1 are not coalitionally γ∗-rationalizable. The set of
coalitionally γ∗-rationalizable strategies is {A2, A3} × {B2, B3}.
12See Propositions 6 and 7 in the cited paper.
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The key feature of the above example is that although there is no nontriv-
ial supported restriction given S, there is a set closed under rational behavior
({A1, A2}×{B1, B2}), which contains a set self-supporting with respect to S
({A1}×{B1}), and which is such that there is a supported restriction given
this set for the coalition of both players that does not contain strategies from
the self-supporting set. Note that the game in Figure 1 is not in Go, since it
has a self-supporting set with respect to S which is a strict subset of S.

We conclude this section by showing that there exists a sensible best re-
sponse operator γ0 such that the resulting set of coalitionally γ0-rationalizable
strategies is exactly equivalent to the set of coalitionally rationalizable strate-
gies defined in [2]. Denote the latter set of strategies by A∗.

For any J ∈ C and A ∈ X , let B be a conservative supported restriction
by J given A if it is a supported restriction by J given A and satisfies the
following requirement: if ai ∈ Ai ∩ A∗i is such that ∃ f−i ∈ ∆−i(A) for
which ai ∈ BRi(f−i) then ai ∈ Bi. Let F 0J(A) denote the set of conservative
supported restrictions by J given A. Define γ0 such that γ0(A, J) = ∩

B∈F 0J (A)
B.

Intuitively, the definition of γ0 requires that coalitions only look for sup-
ported restrictions outside A∗, but not within. The definition of γ0 is less
appealing than that of γ∗, since it directly refers to the set A∗.13 Neverthe-
less, as the next proposition states, γ0 is a sensible best response operator
and the set of coalitionally rationalizable strategies resulting from it is exactly
equivalent to A∗.

Proposition 6: γ0 ∈ Γ∗ and the set of γ0-rationalizable strategies is A∗.

Since the underlying best response operator can be defined in a more
natural way, the set of γ∗-rationalizable strategies as a solution concept is
built on more solid foundations than A∗. On the other hand, A∗ can be
defined by a simple iterative procedure and hence is easier to use in applica-
tions. Furthermore, in all games it contains all γ∗-rationalizable strategies,
therefore any statement that holds in a game (or in any class of games) for
every strategy in A∗ also holds for every γ∗-rationalizable strategy. Finally,
as shown above, the two concepts are generically equivalent.

13Note that the set A∗ is defined independently of the epistemic part, by the iterative
definition, therefore the definition of γ0 is not self-referential.
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6 Cautious coalitional rationalizability con-
cepts

Coalitional γ∗-rationalizability requires that players are confident that their
co-players understand the implicit agreements implied by supported restric-
tions and comply with it. As the game of Figure 2 illustrates, this might
involve taking a lot of risk.

B1 B2

A1
A2

99,99 99,0
0,99 100,100

Figure 2

In this game {A2} × {B2} is a supported restriction by the coalition of
both players, since it yields a payoff of 100, while strategies A1 and B1 can
yield at most 99 for players 1 and 2. On the other hand, strategies A1 and B1
yield a payoff of 99 for sure, which implies that player 1’s conjecture should
allocate at least 0.99 probability to player 2 playing B2 for A2 to be a best
response to the conjecture. Similarly, player 2’s conjecture should allocate
at least 0.99 probability to player 1 playing A2 for B2 to be a best response
to the conjecture.

In many contexts this amount of confidence in other players comply-
ing to supported restrictions is not realistic, implying that coalitional γ∗-
rationalizability is not the appropriate solution concept to apply. However,
the consideration that players should be cautious in complying to implicit
coalitional agreements is compatible with many other coalitional γ-responses.

Consider the following modification of supported restrictions:14

Let ∆ε
−i(A) = {f−i ∈ ∆−i | f−i(A−i) ≥ 1 − ε} for every i ∈ I, A ∈ X ,

and ε > 0.
14The idea in this construction is similar to the one behind cautious rationalizability

([25]).
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Definition 9: B ⊂ A is an ε-cautious supported restriction by J ∈ C
given A ∈ X if
1) Bi = Ai for every i /∈ J, and
2) buj(f−j) < buj(g−j) for every j ∈ J , f−j ∈ ∆∗−j(Aj \ Bj) ∩∆ε

−j(A),

and g−j ∈ ∆ε
−j(B) such that g

−J
−j = f−J−j .

Intuitively, a supported restriction is an ε-cautious supported restriction
if it remains supported even if any player can think that with at most prob-
ability ε others in the coalition play outside the restriction. Using ε-cautious
supported restrictions, we define coalitional response operator γε the same
way that γ∗ is defined based on supported restrictions. Let Fε

J(A) be the set
of ε-cautious supported restrictions by J given A. Let γε : X × C → X be
such that γε(∅, J) = ∅ and γε(A, J) = ∩

B∈Fε
J (A)

B for every A ∈ X /{∅), for
every J ∈ C.

It is possible to show that γε is a sensible coalitional best response op-
erator, for every ε > 0.15 Moreover, the resulting set of coalitionally γε-
rationalizable strategies conforms with the idea that players should be cau-
tious when complying to supported restrictions. In particular, in the game
of Figure 2 all strategies are coalitionally γε-rationalizable for ε > 0.01.

7 A remark on the product structure of re-
strictions

The construction only considers restrictions that are product subsets of the
strategy space. This has a natural interpretation if players’ conjectures are
required to be independent. If correlated conjectures are allowed then fo-
cusing on product subsets might seem to result in loss of generality. This
is not the case, though: one can extend the domain of coalitional response
operators to non-product sets (the set of conjectures concentrated on a non-
product set ∆−i(A) is well-defined) without changing the range of resulting
coalitional rationalizability concepts. The key point is that if players cannot
actually correlate their play, then since in a non-equilibrium framework differ-
ent players can have completely different conjectures (even if the latter allow
for correlation), the strategies actually played do not need to be connected

15The proof is analogous to the proof of Proposition 1, therefore omitted.
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in any way through beliefs. Therefore if the response of J to A includes both
a ∈ A and a0 ∈ A then it should also include a1, ..., ai−1, a0i, ai+1, ..., aI for
every i ∈ I. Hence the extended response operators should be mappings to
X , just like the ones defined in Section 3. The above implies that the coali-
tional rationalizability concepts that can be defined based on these extended
response operators lead to solution sets that have the product structure. This
is analogous to why the set of correlated rationalizable profiles is a product
set for every game.

8 Conclusion

There is a wide variety of solution concepts in noncooperative game theory
that make an implicit assumption that groups of players can coordinate their
play if it is in their common interest. Strong Nash equilibrium and coalition-
proof Nash equilibrium - both of which are defined in static and as well as
in certain dynamic games - are examples of concepts that allow this type
of coordination for subgroups of players. Different versions of renegotiation-
proof Nash equilibrium are concepts which assume that only the coalition of
all players can coordinate their play at different stages of a dynamic game.16

A common feature of these concepts is that assumptions concerning when
coordination is feasible or credible are made either on intuitive grounds or
referring to an unmodeled negotiation procedure. There is also a line of
literature that explicitly models (pre-play or during the game) negotiations
among players.17 These models often impose assumptions that ensure that
players can send meaningful and credible messages to each other. These as-
sumptions are once again made on intuitive grounds, referring to unmodeled
features of the interaction, which brings up concerns similar to those arising
when negotiations are not explicitly modeled.

This paper is the first attempt to impose assumptions on players’ beliefs in
an epistemic context to obtain formal foundations for assuming that players
with similar interest recognize their common interest and play in a way that
is mutually advantageous for them. It is far from clear how to formalize

16See for example [1],[7],[10] and [17].
17Without completeness some papers along this line are: [16],[24],[27] and [28].
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the latter intuitive assumption in noncooperative games, which lead to the
emergence of competing solution concepts (for example renegotiation-proof
Nash equilibrium has various definitions in the context of infinitely repeated
games). For this reason, continuing this line of work and making explicit the
underlying assumptions that these concepts impose on the knowledge, beliefs
and behavior of players seems to be of highlighted importance.

9 Appendix

Lemma 1: If A ∈M and B ∈ FJ(A) for some J ∈ C then B ∈M.
Proof of Lemma 1: Suppose B /∈M. Then ∃ j, aj and f−j such that

j ∈ J , aj ∈ Aj\Bj, f−j ∈ ∆−j(B) and aj ∈ BRj(f−j), which contradicts
B ∈ FJ(A). QED

Lemma 2: If A,B ∈M and A ∩B 6= ∅ then A ∩B ∈M.
Proof of Lemma 2: First note that A,B ∈ X and A ∩ B 6= ∅ imply

that A ∩ B ∈ X . Let i ∈ I and f−i ∈ ∆−i(A ∩ B). From f−i ∈ ∆−i(A) and
A ∈M it follows that BRi(f−i) ⊂ Ai. From f−i ∈ ∆−i(B) and B ∈M it
follows that BRi(f−i) ⊂ Bi. Hence BRi(f−i) ⊂ (A ∩B)i. The fact that this
holds for every i ∈ I implies the claim. QED

Proof of Proposition 1: By construction γ∗ ∈ Γ.
A ∈M implies that if a ∈ argmax

s∈A
uj(s) then uj(a) = max

f−j∈∆−j(A)
buj(f−j)

and aj is a best response strategy to the conjecture that puts probability 1
on other players playing a−j. Denote the latter expectation by bf−j. Thenbuj( bf−j) ≥ buj(f−j) for every f−j ∈ ∆−j(B) such that B ∈ M and B ⊂ A.
Then the definition of supported restriction implies that aj ∈ Bj for every
B ∈ FJ(A), J ∈ C and j ∈ J . From this it follows that aj ∈ ( ∩

B∈FJ (A)
B)j =

(γ∗(A, J))j , which establishes that γ∗ satisfies property (iv) in the definition
of a sensible supported restriction.
Note that for any A ∈ M and J ∈ C it holds that A ∈ FJ(A), since

∆∗−j(Aj \Bj) ∩∆−j(A) = ∅ implies that requirement (2) in the definition of
a supported restriction trivially holds, and requirement (1) trivially holds,
too. Suppose now that B,B0 ∈ FJ(A) for some A ∈ M and J ∈ C. This
means that buj(f−j) < buj(g−j) for every j ∈ J, f−j ∈ ∆∗−j(Aj \Bj) ∩∆−j(A)
and g−j ∈ ∆−j(B) such that g−J−j = f−J−j , and that buj(f−j) < buj(g−j) for
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every j ∈ J, f−j ∈ ∆∗−j(Aj \ B0
j) ∩ ∆−j(A) and g−j ∈ ∆−j(B

0) such that
g−J−j = f−J−j . These imply that buj(f−j) < buj(g−j) for every j ∈ J, f−j ∈
∆∗−j(Aj \ (Bj ∪ B0

j) ∩∆−j(A) and g−j ∈ ∆−j(B
0 ∩ B) such that g−J−j = f−J−j .

Furthermore, as shown above, B∩B0 is nonempty. By construction it is also a
product set which satisfies that (B∩B0)−J ⊂ A−J . ThereforeB∩B0 ∈ FJ(A).
Lemma 1 implies B,B0 ∈M, and then Lemma 2 implies B∩B0 ∈M. Then
from the finiteness of A it follows that γ∗(A, J) ∈ FJ(A) and γ∗(A, J) ∈M.
The latter establishes that γ∗ satisfies property (i) in the definition of a
sensible supported restriction.
Let ai ∈ Ai be such that there is no f−i ∈ ∆−i(A) such that ai ∈ BRi(f−i).

Note that the latter can be rewritten as ∆∗−j(Aj \ Bj) ∩∆−j(A) = ∅. Fur-
thermore, note that A ∈ M implies that Ai \ {ai} 6= ∅ and therefore
(Ai \ {ai}) × A−i ∈ X . Then from ∆∗−j(Aj \ Bj) ∩ ∆−j(A) = ∅ it fol-
lows that (Ai \ {ai}) × A−i trivially satisfies both requirements in the defi-
nition of supported restriction, hence (Ai \ {ai})× A−i ∈ FJ(A). Therefore
γ∗(A, J) ⊂ (Ai \ {ai}) × A−i ∀ J 3 i. This establishes that γ∗ satisfies
property (ii) in the definition of a sensible supported restriction.
Assume again that A ∈ M and let J ∈ C. Consider B ⊂ A such that

γ∗(A, J) ∩B 6= ∅ and B ∈M. Let C ∈ FJ(A). Note that γ∗(A, J) ∩ C 6= ∅
implies B ∩ C 6= ∅. Furthermore, C ∈ FJ(A) implies that buj(f−j) < buj(g−j)
for every j ∈ J, f−j ∈ ∆∗−j(Aj \ Cj) ∩∆−j(A), and g−j ∈ ∆−j(C) such that
g−J−j = f−J−j , establishing that B∩C ∈ FJ(B). This implies buj(f−j) < buj(g−j)
for every j ∈ J, f−j ∈ ∆∗−j(Aj \ Cj) ∩∆−j(A), and g−j ∈ ∆−j(B ∩ C) such
that g−J−j = f−J−j , establishing that B ∩ C ∈ FJ(B). Since this holds for
every C ∈ FJ(A), we have ∩

D∈FJ (B)
D ≡ γ∗(B, J) ⊂ γ∗(A, J) ≡ ∩

D∈FJ (A)
D.

This establishes that γ∗ satisfies property (iii) in the definition of a sensible
supported restriction. QED

Proof of Proposition 2: Define γM ∈ Γ such that γM(A, J) = ×
j∈J
{ai ∈

Ai | ∃ f−i ∈ ∆−i(A) s.t. ai ∈ BRi(f−i)} if A ∈ M and γM(A, J) = A if
A ∈ X \M, for every J ∈ C. There cannot be a larger valued coalitional
best response operator satisfying (ii), and it trivially satisfies all the other
properties in the definition of sensibility.
Operator γm can be constructed iteratively as follows:
For any A ∈ M and J ∈ C, let T J,0(A) denote the smallest set in M

for which (T J,0(A))−J = A−J and which contains {a ∈ A | ∃ j ∈ J s.t.
uj(a) ≥ uj(s) ∀ s ∈ A}. There exists such a set since if A,A0 ∈ M and
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both A and A0 contain {a ∈ A | ∃ j ∈ J s.t. ∀ s ∈ A, uj(a) ≥ uj(s)},
then A ∩ A0 also contains {a ∈ A | ∃ j ∈ J s.t. ∀ s ∈ A, uj(a) ≥ uj(s)}
and by Lemma 2 A ∩ A0 ∈ M. Moreover, T J,0(A) ⊂ A since A ∈ M
and {a ∈ A | ∃ j ∈ J s.t. ∀ s ∈ A, uj(a) ≥ uj(s)} ⊂ A. Note that
if ai is such that there is no f−i ∈ ∆−i(A) for which ai ∈ BRi(f−i), then
by construction ai /∈ T J,0(A) (otherwise T J,0(A) was not the smallest set
satisfying the above conditions). Properties (i) and (iv) of a sensible best
response operator imply that T J,0(A) ⊂ γ(A, J) for every γ ∈ Γ∗. Suppose
now that for some k ≥ 0 we defined T J,k(A) for every A ∈M and J ∈ C.
Assume that T J,k(A) ∈ M and that T J,k(A) is such that if for ai ∈ Ai,
there is no f−i ∈ ∆−i(A) such that ai ∈ BRi(f−i) then by construction
ai /∈ T J,k(A). Suppose now that we established that T J,k(A) ⊂ γ(A, J) for
every γ ∈ Γ∗. Define bT J,k(A) = ∪

B∈M: TJ,k(A)∩B 6=∅,B⊂A
γ(B, J). Note that

T J,k(A) ⊂ bT J,k(A) since T J,k(A) ∈ M and T J,k(A) ∩ T J,k(A) 6= ∅. Let
T J,k+1(A) be the smallest set inM for which (T J,0(A))−J = A−J and which
contains bT J,k(A). Then the starting assumption that T J,k(A) ⊂ γ(A, J)
for every γ ∈ Γ∗, and properties (i) and (iii) of a sensible best response
operator imply that T J,k+1(A) ⊂ γ(A, J) for every γ ∈ Γ∗. Also note that by
construction, if for ai ∈ Ai there is no f−i ∈ ∆−i(A) such that ai ∈ BRi(f−i)
then ai /∈ T J,k+1(A). This establishes that T J,0(A), T J,1(A), ... is an increasing
sequence of sets such that T J,k(A) ∈ M and T J,k(A) ⊂ A for k = 1, 2, ...
Since S is finite, there has to be K ≥ 0 such that T J,k(A) = T J,K(A) for
every k ≥ K. Let γm(A, J) = T J,K(A) for every A ∈ M and J ∈ C.
The above arguments imply that γm(A, J) ⊂ γ(A, J) for every γ ∈ Γ∗,
and that properties (i) and (ii) of a sensible best response operator hold for
γm. Furthermore, T J,0(A) ⊂ γm(A, J) implies that γm satisfies property (i),
and T J,K+1(A) = T J,K+1(A) implies that γm satisfies property (iv). This
establishes that γm is the smallest sensible best response operator. QED

Let ηγ(A, J) = ×
i∈J
(Ai \ ∪

B∈MA
(C) : C∈NJ (A)

[Bi \ (γ(A, J))i]) × A−J . Note

that Ek(γ) = ∩
J∈C

Ek(γ) for every k ≥ 1.

Lemma 3: Let A ∈M and γ ∈ Γ∗. Then ∩
J∈C

ηγ(A, J) 6= ∅.
Proof: Let a be such that uj(a) = max

s∈A
uj(s). Let A0 ∈ N (A) be such

that aj ∈ A0j and let A
00 ∈ M such that A0 ⊂ A00 ⊂ A. The assumptions

uj(a) = max
s∈A

uj(s) and A0 ∈ N (A) together imply that a ∈ A0. Then uj(a) =
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max
s∈A00

uj(s). But then property (iii) of a sensible best response implies that

aj ∈ (γ(A00, J))j for every J ∈ C. Therefore aj ∈ ηγj (A, J) for every J ∈ C.
This establishes the claim since j was arbitrary and ∩

J∈C
ηγ(A, J) is a product

set. QED

Lemma 4: Let A ∈M and γ ∈ Γ∗. Then ηγ(A, J) ∈M.
Proof: Suppose not. Then:
(*) ∃ i ∈ I, f−i ∈ ∆−i(η

γ(A, J)) such that ai ∈ BRi(f−i), and
(**) ∃ J ∈ C, B ∈ N (A) and C ∈M such that B ⊂ C ⊂ A, ai ∈ Bi and

ai /∈ (γ(C, J))i.
From (*) and the assumptions that B ∈ N (A) and ai ∈ Bi it follows

that suppf−i ⊂ B−i and therefore suppf−i ⊂ C−i. Then f−i ∈ ∆−i(η
γ(A, J))

implies suppf−i ⊂ (γ(C, J))−i. But then γ(C, J) ∈M (which follows from
γ ∈ Γ∗) implies that ai ∈ (γ(C, J))i, contradicting (**). QED

Proof of Proposition 3: Since S is finite and Ek−1(γ) ⊃ Ek(γ) for
every k ≥ 1, the existence of K ≥ 0 in the claim is immediate.
Next, note that E0(γ) = S ∈M. Assume Ek(γ) ∈M for some k ≥ 0.

By Lemma 3, Ek+1(γ) 6= ∅. By Lemma 4 ηγ(Ek(γ), J) ∈M for every J ∈ C,
which implies Ek+1(γ) ∈ M since the intersection of sets that are closed
under rational behavior is also closed under rational behavior. By induction
Ek(γ) ∈M and Ek(γ) 6= ∅ for every k ≥ 0. Since E∗(γ) = Ek(γ) whenever
k ≥ K, this implies E∗(γ) 6= ∅ and E∗(γ) ∈M.
Now suppose ηγ(E∗(γ), J) 6= E∗(γ). Since E∗(γ) = EK(γ), this implies

that EK+1(γ) 6= EK(γ), contradicting that E∗(γ) = Ek(γ) for every k ≥ K.
QED

Lemma 5: Let γ ∈ Γ∗. Let C ∈M, J ∈ C and B ∈ NJ(E
∗) such that

B ⊂ A. Then γ(C, J) ⊃ B.
Proof: Suppose not.
Consider first γ(C, J) ∩ E∗ 6= ∅. Note that E∗ ∩ C ∈ M since both

E∗ ∈ M and C ∈ M. Therefore property (iii) of a sensible best response
operator implies that γ(E∗∩C, J) ⊂ γ(C, J). But note that B ∈ NJ(E

∗) and
γ(C, J) + B, and therefore γ(E∗ ∩ C, J) + B. This implies ηγ(E∗, J) + E∗,
contradicting Proposition 3.
Consider next γ(C, J) ∩ E∗ = ∅. Let k be such that Ek ∩ γ(C, J) 6= ∅

but Ek+1 ∩ γ(C, J) = ∅. Note that Ek ∩ C 6= ∅. Furthermore, C ∈M and
Ek ∈M imply Ek ∩ C ∈M. Property (iii) of the best response operator,
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together with the assumption that E∗ ∩ C 6= ∅ and hence Ek+1 ∩ C 6= ∅,
implies that γ(Ek∩C, J 0) ⊂ γ(Ek, J 0) for every J 0 ∈ C. This establishes that
∩

J 0∈C
γ(Ek∩C, J 0) ⊂ Ek+1. But note that (Ek∩C)∩γ(C, J) = Ek∩γ(C, J) 6= ∅,

therefore property (iii) of the best response operator implies γ(Ek ∩C, J) ⊂
γ(C, J). Combining the above yields ∩

J 0∈C
γ(Ek∩C, J 0) ⊂ Ek+1∩γ(C, J). But

this contradicts Lemma 3 since Ek+1 ∩ C 6= ∅. QED

Proof of Proposition 4: Suppose first that φ ∈ R ∩ CCI(CR
γ). Note

that E0(γ) = S implies φ ∈ CCI(Ψ
E0(γ)). Assume now that for some k ≥ 0

it holds that φ ∈ CCI(Ψ
Ek(γ)). Let J ∈ C and let B ∈ NJ(E

k(γ)) be such
that s(φ) ∈ B. Then φ ∈ CCI(Ψ

Ek(γ)) and φ ∈ R together imply that
φ ∈ CCJ(Ψ

B). Therefore φ ∈ CCI(CR
γ) implies φ ∈ CCI({s(φ) ∈ B →

s(φ) ∈ B∩γ(C, J)}). This in turn implies φ ∈ CCI(Ψ
γ(Ek(γ),J)). Since J ∈ C

was arbitrary, this in turn implies φ ∈ CCI(Ψ
Ek+1(γ)). By induction then

φ ∈ CCI(Ψ
E∗(γ)). Then E∗(γ) ∈M and φ ∈ R imply that s(φ) ∈ E∗(γ).

Let now s∗ ∈ E∗(γ). Construct the following type space. For every i ∈ N,
let Φi be such that for every si ∈ Si, there exists exactly one φi ∈ Φi such that
si(φi) = si. Denote it by φ

si
i . For every si ∈ E∗i (γ), let f

si
−i ∈ ∆−i(E

∗(γ)) be
such that si ∈ BRi(f

si
−i) and suppf

si
−i ⊃suppf−i ∀ f−i ∈ ∆−i(E

∗(γ)) such that
si ∈ BRi(f−i). There exists such f si−i since E

∗(γ) is coherent and because
f−i, f

0
−i ∈ ∆∗−i({si}) implies αf−i + (1 − α)f 0−i ∈ ∆∗−i({si}) for every α ∈

(0, 1), further implying that there exists an element of∆−i(E∗(γ))∩∆∗−i({si})
with maximal support. Now let ti(φ

si
i ) be such that ti(φ

si
i )([φ

sj
j ]j∈N/i) =

f si−i(s−i) for every s−i ∈ S−i. Consider φ
∗ ∈ Φ such that φ∗i = φ

s∗i
i . Then by

construction s(φ∗) = s∗ and φ∗ ∈ R. Also by construction φ∗ ∈ CCI(Ψ
E∗(γ)).

Consider now any φ ∈ Φ and any J ∈ C and A ∈M such that φ ∈ CCJ(Ψ
A).

By the construction of Φ there is B ∈ NJ(E
∗(γ)) such that B ⊂ A and

s(φ) ∈ B. By Lemma 5 then γ(A, J) ⊃ B and therefore sj(φ) ∈ (γ(A, J))j
for every j ∈ J . This implies that φ ∈ Rγ

J for every φ ∈ Φ and J ∈ C.
Therefore φ ∈ CCI(CR

γ) for every φ ∈ Φ. In particular φ∗ ∈ CCI(CR
γ).

QED

Proof of Proposition 5: Suppose A ∈ M. Let A0 ∈ X be such that
A0i = {si ∈ Ai | ∃ f−i ∈ ∆−i(A) s.t. si ∈ BRi(f−i)}. A ∈M implies A0 6= ∅.
The starting assumption implies that if B ∈ NJ(A) for some J ∈ C then
either B = A or Bj ∩ A0j = ∅ for every j ∈ J . By property (ii) of a sensible
best response operator sj ∈ Aj \ A0j for j ∈ J implies that sj /∈ γ(A, J).
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Therefore A−j (J) = Aj \ (γ(A, J))j for every j ∈ J , which implies that
ηγ(A, J) = γ(A, J). QED

Proof of Proposition 6: By construction γ0 ∈ Γ. Also by construction
γ0(A, J) ⊃ γ∗(A, J). Since by Proposition 1 γ∗ satisfies (iv) in the definition
of a sensible best response operator, the previous relationship implies that γ0

satisfies property (iv), too.
Since F 0J(A) ⊂ FJ(A), γ0(A) is defined as an intersection of supported

restrictions given A. By Lemma 1, B ∈ M for every B ∈ F 0J(A). Then
Lemma 2 implies that γ0 satisfies (i) in the definition of a sensible best re-
sponse operator.
Let A ∈M, i ∈ I and ai ∈ Ai is such that there is no f−i ∈ ∆−i(A) for

which ai ∈ BRi(f−i). Note that A ∈M implies that (Ai \ {ai})× A−i 6= ∅.
Therefore ai /∈ BRi(f−i) for every f−i ∈ ∆−i(A) implies that (Ai \ {ai}) ×
A−i 6= ∅ is a supported restriction by any J 3 i given A. Moreover, by
definition it is a conservative supported restriction. Therefore ai /∈ (γ0(A, J)i
for every J 3 i, which implies that γ0 satisfies (ii) in the definition of a
sensible best response operator.
Suppose now that B ∈ F 0J(A) for some A ∈ M. Let A0 ∈ M be such

that A0 ⊂ A and B ∩A0 6= ∅. Then the definition of a supported restriction
implies thatB∩A0 is a supported restriction by J givenA0 (note that∆−j(B∩
A0) ⊂ ∆−j(B ∩A), and ∆∗−j(A

0
j \Bj) ∩∆−j(A0) ⊂ ∆∗−j(Aj \Bj) ∩∆−j(A)).

Furthermore, by construction (B ∩ A0)i ∩ A∗i = A0i ∩ A∗i for every i ∈ I, so
B∩A0 ∈ F 0J(A0). Since B was an arbitrary conservative supported restriction
by J given A, this implies γ0(A, J) ⊃ γ0(A0, J) for every A,A0 ∈M such that
A ⊃ A0 and γ0(A, J) ∩ A0 6= ∅. Therefore γ0 satisfies (iii) in the definition of
a sensible best response operator, which concludes that γ0 ∈ Γ∗.
Then by Proposition 4 the set of γ0-rationalizable strategies is E∗(γ0).

By construction Ek(γ0) ⊃ A∗ for every k ≥ 0, therefore E∗(γ0) ⊃ A∗. Next
notice that A∗ ⊂ A1 implies that FJ(S) = F 0J(S) for every J ∈ C, therefore
E1(γ0) ⊂ A1. SinceM is closed with respect to taking intersections, E1(γ0) ∈
M.
Suppose now that Ek(γ0) ⊂ Ak and Ek(γ0) ∈ M for some k ≥ 0. As

established above, γ0 ∈ Γ∗. Also note that Ek(γ0) ∩ Ak+1 ⊃ Ek(γ0) ∩ A∗ 6=
∅. Then by property (iii) of a sensible best response operator, Ek+1(γ0) =
γ0(Ek(γ0)) ⊂ γ0(Ak) and by property (i) γ0(Ek(γ0)) ∈M. Also since Ak+1 ⊃
A∗, B ∈ FJ(A

k) implies B ∈ F 0J(Ak), therefore γ0(Ak) ⊂ Ak+1. Combining
the previous findings establishes Ek+1(γ0) ⊂ Ak+1. An iterative argument
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then establishes E∗(γ0) ⊂ A∗. Thus E∗(γ0) = A∗, which in turn establishes
the claim. QED
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