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A Comparison of Tournaments and Contracts

Jerry R. Green
Harvard University

Nancy L. Stokey
Northwestern University

Tournaments, reward structures based on rank order, are com-
pared with individual contracts in a model with one risk-
neutral principal and many risk-averse agents. Each agent's output is
a stochastic function of his effort level plus an additive shock term
that is common to all the agents. The principal observes only the
output levels of the agents. It is shown that, in the absence of a
common shock, using optimal independent contracts dominates us-
ing the optimal tournament. Conversely, if the distribution of the
common shock is sufficiendy diffuse, using the optimal tournament
dominates using optimal independent contracts. Finally, it is shown
that for a sufficiently large number of agents, a principal who cannot
observe the common shock but uses the optimal tournament does as
well as one who can observe the shock and uses independent con-
tracts.

I. Introduction

At the Olympics prizes are awarded, not on the basis of absolute
performance, but on the basis of relative performance. Similarly, in
most organizations one of the most important rewards is promotion.
If the hierarchical structure of the organization is fixed, employees at
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any one echelon are competing for a fixed, smaller number of posi-
tions at the next higher echelon. The goal for these employees is not
just to do well but to do better than their peers.

The existing literature on incentives and contract design has been
concerned primarily with the case where a principal employs only one
agent and rewards him on the basis of absolute performance. Excep-
tions include several recent papers about tournaments—reward
structures based on rank order—and more general compensation
schemes for multi-agent settings.^

Most closely related to our work is the paper by Lazear and Rosen
(1981). They examine, among other questions, the problem of a risk-
neutral principal with two agents, where the output of each agent
depends stochastically on his own effort and on an additive shock that
is common to both. The agents do not know the value of the common
shock at the time they choose their effort levels; they do know its
distribution. Lazear and Rosen compare three compensation
schemes: a linear piece rate, comparison against a fixed standard, and
a tournament. In the first, each agent's compensation is a linear func-
tion of his output; in the second, each agent receives one of two fixed
payments, depending on whether his output is above or below a
specified standard; and in the third, the agents compete against each
other for two fixed prizes, allocated on the basis of the rank order of
their output levels.

Lazear and Rosen show that if the agents are risk neutral, under
any of the above schemes the moral hazard problem can be costlessly
avoided by shifting all risk onto the agents. They also show^ through a
series of examples that if the agents are risk averse, the relative rank-
ing of the three schemes depends upon the relative variances of the
common shock and the stochastic component of output attributable to
effort. If the variance of the common shock is relatively large, a tour-
nament will outperform the other two schemes; if the variance of the
(stochastic) component of output attributable to effort is relatively
large, one of the other two schemes will dominate. (Whether a piece
rate or comparison with a fixed standard is preferred depends upon
which is in some sense ''closer" to the optimal general compensation
scheme.)

' Nalebuff and Stiglitz (1981) compare tournaments and independent contracts us-
ing a somewhat different specification of the production technology. In their model the
shock is multiplicative, so that it affects the marginal product of effort, making their
results difficult to compare with ours. Holmstrom (1982) examines arbitrary relative
performance schemes for risk-averse agents. He shows, among other things, that for
either additive or multiplicative shocks, because the mean output level is a sufficient
statistic for all of the inf"ormation about the common shock, optimal contracts can be
designed in which each agent's reward depends only on his own output level and on the
mean output level. This is very close to our proposition 1.
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To see why a tournament performs well when the common shock is
important and badly when it is unimportant, note that competing in a
tournament is like being judged against a standard that is a random
variable (the opponent's output). This is useful if the random stan-
dard is highly correlated with the random component of the agent's
own output (the case when the randomness in the opponent's output
is due largely to the common shock) and detrimental otherwise, be-
cause it introduces additional "noise" into the relationship between
effort and compensation (the case when the randomness in the oppo-
nent's output is due largely to randomness in the output from effort).

Compensation schemes that base an agent's reward on the perfor-
mance of his peers as well as his own take advantage of the fact that
the vector of output levels for the whole group is a source of informa-
tion about the common shock—which by assumption the principal
cannot observe directly. How can the principal make use of this infor-
mation? Optimal compensation schemes for groups of agents can, in
general, have arbitrary and complicated functional forms depending
on assumptions about tastes, technology, and distributions for the
error terms. In practice, on the other hand, rather simple schemes are
often used. Consequently, one is led to study the properties of simple
schemes like tournaments—to understand when they perform "al-
most" as well as "optimal" multi-agent contracts. That is the viewpoint
adopted here, where we extend the Lazear-Rosen model to compare
the efficiency of tournaments and optimal independent contracts for
any number of agents.

We consider a situation in which one risk-neutral principal employs
a group of identical risk-averse agents. As in the Lazear-Rosen model,
each agent's output is assumed to depend stochastically on his own
effort and a common additive shock term. The common shock might
represent economic conditions which affect all of the agents. We allow
agents to observe private signals, correlated with this common shock,
before they choose their effort levels. The realized output of each
agent then is a stochastic function of his effort and the value of the
common shock. The principal observes only the output levels of the
agents.

We assume throughout that the principal is constrained to offer a
fixed minimum level of expected utility to each agent, so that we can
judge the relative performance of contracts and tournaments by ex-
amining the expected payoff of the principal. The principal's objec-
tive function is the sum of the outputs of all the agents minus the sum
of the rewards paid to all of them.

We show that for any finite number of agents, in the absence of a
common error term, using the optimal tournament is dominated by
using optimal independent contracts. In the absence of a common
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shock, the output levels of the rest of the group convey no informa-
tion about the effort level of an agent. Using a tournament in this case
only introduces extraneous noise into the payoff function that agent
faces. Because the agents are risk averse, this is costly for the prin-
cipal.

Conversely, given any group of at least two agents, if the distribu-
tion of the common error term is sufficiently diffuse, then the optimal
tournament dominates using optimal independent contracts. In this
case using tournaments eliminates a major source of noise while add-
ing a relatively minor one.

Finally, given any fixed distribution for the common error term, for
a sufficiently large number of agents, using the optimal tournament
dominates using optimal independent contracts. In fact, if the num-
ber of agents is sufficiently large, a principal who cannot observe the
value of the common shock and uses an optimal tournament can do as
well as a principal who can observe the value of the shock and uses
general, interdependent contracts. For a large enough group of
agents, an agent's rank order is an extremely accurate signal about his
output level net of the common additive shock.

The rest of the paper is organized as follows. In Section II tastes,
technology, distributions, and feasible sets of tournaments and con-
tracts are described; in Section III tournaments and independent
contracts are compared; and in Section IV the conclusions are
discussed.

II. The Model

We consider the problem faced by a principal w ĥo employs a fixed
group of agents, i = I, . . . , n. The agents are all identical ex ante.
The preferences of each agent i over his income, mi, and his effort, x/,
are represented by the von Neumann-Morgenstern utility function

= u{mi) - X,, m, 5= 0, x, 5= 0, / = 1, . . . , w, (1)

where u: /?+ —> [0, 5 ] is strictly increasing and strictly concave.^

^ The fact that the utility function is additively separable in income and effort (that
there are no income effects) is important. Without this assumption the analysis would
be considerably more complicated, and it is not clear in what direction the results would
change—it would almost surely depend on whether income raised or lowered the
marginal disutility of effort. However, given the additively separable form, the fact that
"effort" enters linearly into each agent's utility function involves no loss of generality.
Because effort is never aggregated across agents, units of effort are simply defined as
whatever causes units of disutility to the agent. Under this units convention F reflects
both the concavity of the agent's utility function in "hours" (or some other standard
unit of measurement), as well as the concavity of the production function in hours. If at
least one of these functions is strictly concave, then (3) holds. The agent's utility of
income is bounded to avoid problems of the type discussed by Mirrlees (1975).
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The output of agent ,̂ ji, depends stochastically on his effort level,
Xi, In particular,

>, = Z^ + T], (2)

where T] E /? is a random variable affecting all of the agents and z, is a
random variable whose distribution depends on x,. Let F{ ; x,) denote
the conditional distribution function for z, given x,; since the agents
are identical ex ante, E does not depend on i. Assume that for any
effort level x ^ 0, the distribution function for output, E{ ; x), has a
continuous density function/( ; x) which is positive everywhere and
continuously differentiable in x.

The agents observe private signals about T] before choosing their
effort levels; let a, G R denote the signal observed by agent i and let G
denote the distribution function for (T ,̂ a). Note that this formulation
includes situations where all agents observe the same signal, indepen-
dent signals, signals that reveal T] completely, and signals that are
uncorrelated with TI.

The value of ẑ  is not known to the agent until after his choice of x, is
made. We assume that z, and (T], a) are independent and that T] has
zero mean:

SMG{r\.o) = 0. (3)

(Except where otherwise indicated, integration is over the entire
range.) This specification, though quite general, contains one special
feature that is important to the subsequent development of the
model. All agents are identical, except in their information about t].
In particular, every agent, regardless of his assessment of T̂ , still be-
lieves that his output and that of every other agent have the same
mean if they take the same actions. Moreover, since the z/s are inde-
pendently and identically distributed for every common value of the
x/s, so will be the y/s.

For example, the agents might be salesmen in a certain region
whose individual territories are symmetrical and whose sales depend
partly on regional conditions {r\), unobservable to the national office.
The salesmen might all observe regional conditions perfectly (a, = T),
all z), or might observe the same imperfect signal (a, = ô  T̂  T̂ , all i,j),
or might observe different imperfect signals (a, T̂  O) # r̂ , all ?, 7).

The principal's problem is to design a reward structure for the n
agents. The principal is risk neutral and seeks to maximize the ex-
pected sum of the outputs net of total payments to the agents:

r n

(4)
• - ^ = 1 -•

By assumption the principal observes only the output levels of the
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agents, v = (vi, V2, • • • , >'rj)i he cannot directlv observe either the
agents' effort le\ els or the realization of anv random variable. L'nder
independent contracts agent Ts reward depends only on his own out-
put level, VM while under a tournament it depends onlv on the rank
order of v̂  in v-

Civen anv reward structure, the problem facing each agent is to
choose a level of effort. First consider the situation under indepen-
dent contracts. Since the agents are identical, we can consider the
problem facing a representative agent i. It is convenient to think of
the principal as constructing the reward function in terms of utility.
For anv reward function /?(v), let i'(v) be defined as its representation
in utility terms, i'(v) = u[R{y}], The cost to the principal of pro\iding
this level of utilitv is then given bv y[v{y)]y where y = u~^. Since u is
strictlv increasing and stricth concave, 7 is strictlv increasing and
strictlv convex. Agent i observes â  and then chooses the level of effon
that maximizes his expected utilitv. Because the optimal level of effon
will depend on the value of a,, the optimal decision rule for the agent
is a function X(a,).

The principal's problem is to choose (i\ X) to maximize (4) subjea
to the two constraints that A' be an optimal decision rule for the agent
given V and that the expected utilitv of the agent be at least i/''.

The decision rule of each agent depends upon the joint informa-
tion svstem of the agents as summarized in the distribution G, upon
the decision rules chosen bv all other agents, and upon the reward
function. Throughout this paper we concentrate on svmmetric
equilibria, that is. on solutions to the principal's problem in which all
agents choose the same decision rule ex ante, their beha\ior ex post
differing onlv as a result of the different signals ("news") thev receive.

Thus, given G, define S^,(G) to be the set of contracts that are
feasible for the ;th agent:

SAG) ^ {{v, X)\v: R, -^ [0, 5 ] , X: R -^ R^:
{5a)

,) E argmax / r ( \ ) / / ( \ - r\: x)dG{r]. (j-,\(T,)dy — x, V cr,

[r(v) - X(a,)]/[y - T); X{a,)]dG(r^. (T)dy ^ u% (5b)

Here. X(') is the common decision rule. Equation (5a) expresses its
optimalitv for each signal, â , the integration being taken with respea
to r\ and v, or equivalentiv T] and (z,). i = 1, . . . , « , which are random
variables at the time x, is chosen. Equation (5b) represents the con-
straint on each agent's utilitv. As we consider svmmetric equilibria
and as u^ is the same for each agent, this constraint takes the form of a
single inequality.

Define Pdiv, X, G) to be the expected payoff of the principal from
the contract (i', X):
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The feasible set is always nonempty, since it always contains the "no-
incentive" contract: (v^ = u^, X^ = 0) G 5^,(G), for all G, i. Note that the
expected payoff to the principal under this contract, call it P^, is
independent of G:

P^ = Pci{v^, X^, G) == / / [z + T| — 7(w*^)]/(z; O)dzdG{r], a)

= / zf{z; O)dz - 7(M^).

Next consider the situation under a tournament. As above, it is
convenient to express rewards in terms of utility. In an n-person
tournament with prizes (Wi, W2> • • •» M/,,), define itf = {wi, wo, - . - , Wy^)
by Wi = u{Wi), V i. (We use the numbering conventional in the study of
order statistics: "first place** is the lowest outcome and Wi is the prize
received by the agent with the lowest output, etc.) We will consider
symmetric Nash equilibria of the game in which each agent's strategy
is his effort level.^

Since each agent's output is given by yi = z, + -q, yi ^ yj O z, ^ zj.
That is, the rank order of the outputs depends only on the z/s and not
on y]. Therefore, the realization of (T|, a) does not affect the game
played by the agents and the equilibrium effort level will be indepen-
dent of a. Hence we can analyze the game in terms of just the z/s. In
an n-person tournament, agent i wins prize Wj if and only if z, is the
jth-order statistic of (zi, . . . , z^). Define

. _ i

. vUl - F(z' x)V~^

That is, (̂ ;n(z; x) is the density function for the^th-order statistic in a
sample of size n drawn from the distribution E{ ; x).

As above, the principal is constrained to offer the agents an ex-
pected utility of at least u^. We are interested only in tournaments that
have symmetric Nash equilibria. Given n and G, the set of feasible n-
person tournaments, ^^(n, G), is defined by

, G) = • {Wj x)\w G [0, By, X G R + ;

• ) ? L _

X G argmax — / i^i I r. - .
^x n fz^i ^ /(2; x)

n

^ For arbitrary prize structures, there may be no Nash equilibrium, symmetric or
otherwise. This is of no importance to us, since we are considering only tournaments
that are designed so that they do have a symmetric Nash equilibrium. The restriction to
tournaments with symmetric equilibria is purely on the grounds of tractability.
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The integrand in (6a) is the probability that the agent doing the
maximization, and choosing x while all other agents choose x, is in the
7th place at the measured output level}' = z + T). This can be seen by
direct comparison with the definition of <^j,, above. Thus, the value of
the integral is simply the probability of this agent being 7th in the
sample given the choices of x and x.

Note that 5r(n, G) is independent of G for all G satisfying (3).
Hence, for simplicity we write 5r(n, G) = Sri'^) from this point on.

Given n, G, and {w, x) E Srin), let Pri^^ <̂» ^̂  G) denote the princi-
pal's expected net payoff per agent under the tournament (u^ x):

IVPrin, w. X, G) = JJ yf(y - IQ; x)dG(y], a)dy - — 2_^ y{Wj)

= / z/(z; x)dz — —

where the second line makes use of (2) and (3). Since G does not
appear in the second line, for simplicity we write PT{^^ ^', ^, G) =
P7-(n, w, x). We summarize these results in lemma 1.

LEMMA 1: The set of feasible tournaments, the expected payoff of
the principal under any feasible tournament, and hence the optimal
tournament each depend on the number of players n and on the
distribution function E but not on the distribution function G.

Lemma 1 is interesting in its own right, for it says that tournaments
are robust against lack of information or lack of agreement about G.
It will also be useful for our later results. Note that the set of feasible
tournaments is always nonempty, since it always contains the "no-
incentive" tournament, [(w ,̂ u ,̂ . . . , w*̂ ), 0] E Sr{n), for all n. The
payoff per agent to the principal under this tournament is P^.

III. Comparison of Tournaments and Contracts

First we will show that for any number of agents n and any function/^
satisfying (2), if there is no common error term, that is, if

;^, , _ [0 forTi<0 .̂ .
^^(^^^^ = ll forTi^O, (̂ ^

then for any feasible tournament there exists a feasible contract that
dominates it."* Note that if G satisfies (7), then it also satisfies (3).

PROPOSITION 1: For any E, G satisfying (7), and n ^ 2, given {w, x)

^ This result is (almost) a special case of theorem 7 in Holmstrom (1982). (In Holm-
strom's model agents do not have any information about the common shock.) Proposi-
tion 1 is included here for the sake of completeness.
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G Srin), there exists (v, X) E 5^,(G), i = 1, . . . , ? ? , such that

Pciiv, X, G) ^ PAn, u^ x), ^ = 1, . . . , n.

The inequality is strict unless (w, x) = [(w^, w ,̂ . . . , w*̂ ), 0].
PROOF: Let E.G^n^ 2, and {w, x) E 57-(n) be given. We will show

that the contract (l^ X) defined by
n

^ x)/f{y] x), for all y\

i) = X, for all a,-,

satisfies the required conditions.
The contract above has the following interpretation. The utility

assigned to output v is the expected value of the Wj, where the proba-
bility assigned to Wj is the probability that y will be thejth-order statis-
tic, given that everyone takes the action x. It is automatically mono-
tonic in y if the Wj are increasing inj.

First we will show that the proposed contract satisfies (5a) and (5b).
Since G satisfies (7), any agent's optimal effort function under v is
given by

(j,) = argmax / v{z)f{z; x)dz — x

1 X"* <P (z' x)
= aremax / — > w, -^—^^ f{z; x)dz - x, for all a,.

X n ^ j ^ /(z; x)

Since (UJ, X) satisfies (6a), X(a,) = x and (5a) is satisfied.
Moreover, since {w, x) satisfies (6b), the expected utility of the agent

under v is given by
71

. - . , _ _ _ r 1
n fr"^ f(z, x)

Hence (5b) is also satisfied.
The expected utility of the principal is higher under (i', X) than

under (w, x), since

Av. X, G) =

= f zf{z] x)dz - / 7
-n f^, f(z;x) y

J

f{z\ x)dz

n

;, x)dz ~ —

The inequality follows from Jensen's inequality and the fact that 7 is
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Strictly convex. Ii w ¥= {w, . . . , w), the inequality is strict. If ti; = (zD,
. . . , w), then X == 0, and unless w = u^, the contract {v = u^,X = 0)
dominates {w, x). Q.E.D.

The contract t̂ (}') above assigns to each y the mean payoff that the
player with realized output y w^ould get in a tournament in which all
agents have chosen x. Clearly, the random tournament payoff is risk-
ier than the random contract payoff, as it is the latter composed with
the additional risk in rank order—risk which depends only upon
other agents' outcomes.

An obvious corollary of proposition 1 is that when there is no
common error term, the optimal contract dominates the optimal tour-
nament.

COROLLARY 1: Let E, G satisfying (7), and n ^ 2 be given. Then

max Pa{v, X, G) ^ max P
S

The inequality is strict unless (i; = u^,X = 0) maximizes the left-hand
side.

Next, we will compare independent contracts and tournaments as
the common error term becomes diffuse. We will consider sequences

=\ such that, for all A,

G/f satisfies (2);

Gk has a density function gk\ (8)

< l/k, for all T], a,, i.

The third condition in (8) says that as A ^ ^, the densities g^i become
very small, meaning that the distributions spread out very thinly.

In proposition 2 we show that for any sequence {Gk} satisfying (8),
for all k sufficiently large, the optimal contract is the "no-incentive"
contract {v = u^,X = 0). Hence the principal's expected payoff under
the optimal contract falls to P'"* along the sequence. However, as
show^n above, the optimal tournament and the principal's expected
payoff under it—w^hich is at least P^—will be unchanged along the
sequence.

PROPOSITION 2: Let E, {Gk}'k=\ satisfying (8), and n ^ 2 he given.
Assume that E:^{z', x) is a function of bounded variation in z, for all x ^
0, and that the bound, M, is uniform in x. Then there exists K such
that, for all k > K,

max Pr(u', x, n) ^ max Pa( '̂» ^^ Gk), z = 1, . . . , n. (9)
5 5G

The inequality is strict unless the left-hand side is equal to P^,
PROOF: Let {{I'tn ^ki)} be a sequence of optimal contracts for agent z.
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Note that

Xt{(rd >0±>l = J vUy) JfAy - in; xUcj^)]g,Ar]\^^)dy]dy- (10)

However, since/^ is of bounded variation, (8) implies that

lim \JfAy - y\: X;*)^,,:(7i|a,)^Ti| ̂  lim -J-

< lim IJ- = 0.

[0,5], for all}, (10) cannot hold. Hence for A sufficiently
large {vti = u^, X% = 0), and Pdvtn X%. Gk) = P^\

By lemma 1, 5^ and PT are independent of G, so that the left-hand
side of (9) is at least P^ and is constant along the sequence {Gk}. Q.F.D.

Our final result concerns the relative efficiency of tournaments and
contracts as the number of agents grows. We will consider sequences
of distributions {Gn(T|, a i , . .. , a,,)}^ = 2 such that the marginal distribu-
tion function for T] is unchanged throughout:

a) = G('n), for afl n = 2, 3, . . . . (11)

We will show that as n —> ^, not only does the optimal tournament
dominate the optimal contract, but in fact the optimal tournament
approaches the full-information solution. That is, as n -^ ^ the prin-
cipal does as well as if he could observe T] directly. There are two steps
in the proof.

In lemma 2 we show that any contract for which the payoff function
is piecewise continuous and the agent's optimal effort level is unique
can be approximated arbitrarily closely by a payoff function that is a
step function and that changes the effort level chosen by agents in a
continuous way. Thus, if there are enough steps, the payoff of the
principal is approximately unchanged. Then in lemma 3 we show that
each of these step-function contracts can be approximated arbitrarily
closely (in the sense that efforts and payoffs are close) by a tourna-
ment with a sufficiently large number of players. Hence the princi-
pal's expected payoff is, again, approximately unchanged.

Now suppose that G is given by (7) (T] = 0 with probability 1), so
that the principal knows T] ex ante, and suppose that he designs the
optimal (full-information) contract. These approximation arguments
show that a tournament can yield almost as large an expected payoff
when n is large. Moreover, the tournament's efficiency is unaffected
by changes in G (the distribution of y\ and the agent's information
about Tl), so that the same tournament's payoff remains arbitrarily



360 JOURNAL OF POLITICAL ECONOMY

close to the full-information payoff for any G. In contrast, under the
optimal contract, if the principal in fact does not observe T], his ex-
pected payoff will, in general, fall short.

Let G satisfying (7) be given. As noted above, when G satisfies (7) we
can restrict attention to contracts {v, X) for which X(a;) = X is a
constant function. For these contracts 5 ,̂ = Sc and P^ = Pc^ for all z.
First we will show that given any feasible contract (v, X) we can con-
struct a sequence of contracts {{vkj Xk)}t= \ such that v^ is a step func-
tion with k steps, Xj, is a constant function, and Vk -^ v in measure.

Let [v{y), X] G 5^(G) be given, and let Ik\, . . . , //̂ ^ be intervals
corresponding to quantiles of the distribution E{ ; X):

(12)
J 1, . . . , n, ft 1 , z., *j, . . . .

Let Vki, • ' ' , Vkk be the expected payoff of the agent under {v, X) on
each of these intervals:

t;(z)/(2; X)Jz, ; = 1, . . . , A; A = 1,2, (13)

Next, define the step function i)/;(z) by

z G If,. =^ v^(z) = Vkiy for all z, A, (14)

as shown in figure 1. Note that as A ^ ^, i\(z) —̂  v{z) in measure.
Finally, define

Xk = argmax / vi,{z)f{z\ x)dz - x, for all k\ (15)

for all k; (16)

+ Ck. for all z, k, (17)

where u is the agent's expected utility under (f, X). Note that by
construction, for G satisfying (7), {Vf,, X^) G 5^(G), for all k.

LEMMA 2: LelE, G satisfying (7), and {v,X) E S,{G) be given. If IMS

piecewise continuous and if X is the unique solution of

max / v{z)f{z\ x)dz - x, (18)

then for the sequence {(i'̂ , Xk)}'k=i defined by (12)-(17),

lim PAvk. XA, G) = PAv. X, G),
l

and for k sufficiently large, X̂^ is the unique solution of

max J / Vk{y)f{y - r\; x)dG{r])dy - x.
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2/3-

1/3

FIG. 1

PROOF: See the Appendix.
Next, we will show that for G satisfying (7), given any contract (i', X)

E 5^(G), where v is a step function and X is a constant function, we can
construct a sequence of tournaments that approximate it. Define >'„, by

; X) = i/{n + 1), as shown in figure 2, and define w^ by

(19)

Then where it exists define

X,, = a rgmax/ / ( z ; x) —
X n

and let

= U

4>m(^; Xn)

/(^; X.)
dz — X,

n

wT1JJ

i = \

(20)

(21)

(22)
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LEMMA 3: LetF, G satisfying (7), and (i', X) E S^(G) be given, w^here
t' is a step function, X is a constant function, and X is the unique
solution of (18). Let {(u',,)}^=i and {(u',̂  x^)}^=i be the sequences
defined by (19)—(22). For n sufficiently large, x̂  as defined by (20)
exists and (u',,, 3c,J G 57-(«). Moreover

lim (23)

PROOF: See the Appendix.
As a reference point, we want to define the optimal contract and

expected payoff for a principal who can observe T\. If the principal
can observe TI directly, the optimal contract (i'*, X*) is independent of
G and has the form

z'(v, Tl) = i'*(v - Tl), for all}, Ti;

X(TI) = X*, for all TI.

The principal's expected payoff in this case is given by
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Moreover, note that for any G^ satisfying (7),

'*, X*) = argmax Pdv^ X, G

PROPOSITION 3: Let F and {G,J^=2 satisfying (3) and (11) be given,
and let (f *, X*) and P* be as defined above. Then,

lim max Pr(n, w, x) = P* ^ max P,(t;, X, G). (24)
( j e i X ) ( X ) e 5 ( G )

The inequality is strict unless G defined in (11) satisfies (7) or P* = P^.
PROOF: Let {{Vk, Xk)Yk=\ be the sequence of contracts defined for

(i;*,X*)by(12)-(l7), and, foreachA = 1,2, let {(û ^ x,̂ )} be the
sequence of tournaments defined by (19)—(22). By lemma 2, for any G
satisfying (7),

, ,X,, G) = P*,
k—»=o

and by lemma 3,

lim PAwt x^n n) = P^Vky Xk. G).

Since by lemma 1 PriiOny ^ , n) is independent of G,

lim rnax Pri^U ,̂ ^̂ ) ^ lim lim P t 1

However, unless G(TI) satisfies (7) or P^ = P^, the right-hand side of
(24) is strictly less than P* (Holmstrom 1979, corollary 2). Q.E.D.

IV. Conclusions

In the model above, all agents' output levels are subject to the same
random shock. Thus, the output levels of the group provide the prin-
cipal with information about the value of the common shock and
consequently about the portion of any particular agent's output that is
attributable to effort. Relative performance schemes—of which tour-
naments are an extreme form—allow the principal to make use of this
information.

Obviously tournaments employ available information in a rather
inefficient and inflexible way. In the model above, tournaments tend
to reduce the randomness of any agent's compensation by filtering
out the common shock term. However, they also tend to increase the
randomness in any agent's compensation by making his reward de-
pend on the idiosyncratic shocks of his peers. Propositions 1 and 2
show that the relative advantage of tournaments vis-a-vis contracts
depends on which effect dominates.

Despite the fact that a tournament makes inefficient use of infor-
mation, proposition 3 shows that this entails no loss if the number of
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agents is sufficiently large. In large groups, the rank order of an
agent's observed output is a very accurate estimator of his output net
of the common shock.

Tournaments are not, in general, "optimal" contracts. Why then
are rankings so commonly used as an evaluation criterion? First, it
may be substantially easier to determine agents' rankings than to mea-
sure their output levels. In addition, as shown in lemma 1, neither the
set of feasible tournaments nor the optimal tournament depends on
the distribution function for the common shock and agents' signals.
This is an obvious advantage if that distribution is unknown or impre-
cisely known—as it would be, for example, in nonstationary environ-
ments. Because in a large group the inefficiency due to information
loss is negligible, tournaments will perform very well in such settings.

Appendix

PROOF OF LEMMA 2: Since/( ; x) is continuous inx, Vk^^ ^in measure, andX is
the unique maximizer of (18), from (15) it follows that Xk -^ X. Hence Q -^ 0
and '̂ŷ  -^ Vf,. By construction, then,

hm J 7 [Vk{z)]f{z\ X,)dz = J y[v{z)]f{z; X)dz,

so that the desired conclusion follows immediately.
PROOF OF LEMMA 3: Consider a representative player j ' in an n-person tour-

nament with prizes u'». Suppose that the n — 1 other players all adopt the
effort level X, and consider the conditional distribution of prizes for player^,
given that his observed output is yj. Unless -yy is a point of discontinuity in the
step function v, as the number of players increases, by the law of large num-
bers the conditional probability that 7 has a rank order such that his prize is
equal to v{yj) approaches one. That is,

IV" - - -
lim — 2_, '̂m4>m(̂ ; X)lf{z\ X) = v{z; X), for almost all z.

Since X is the unique solution_of (18), for n sufficientlv large, x̂  as defined by
(20) exists, and lim,,^^, x,, = X. Thus (23) follows immediately.
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