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Abstract

Objective: Anhedonia, the lack of reactivity to pleasurable stimuli, is a cardinal feature of 

depression that has received renewed interest as a potential endophenotype of this debilitating 

disease. The goal of the present study was to test the hypothesis that individuals with major 

depression are characterized by blunted reward responsiveness, particularly when anhedonic 

symptoms are prominent.

Methods: A probabilistic reward task rooted within signal-detection theory was utilized to 

objectively assess hedonic capacity in 23 unmedicated subjects meeting DSM-IV criteria for 

major depressive disorder (MDD) and 25 matched control subjects recruited from the 

community. Hedonic capacity was defined as reward responsiveness — i.e., the participants’ 

propensity to modulate behavior as a function of reward.

Results: Compared to controls, MDD subjects showed significantly reduced reward 

responsiveness. Trial-by-trial probability analyses revealed that MDD subjects, while responsive 

to delivery of single rewards, were impaired at integrating reinforcement history over time and 

expressing a response bias toward a more frequently rewarded cue in the absence of immediate 

reward. This selective impairment correlated with self-reported anhedonic symptoms, even after 

considering anxiety symptoms and general distress.

Conclusions:  These findings indicate that MDD is characterized by an impaired tendency  

to modulate behavior as a function of prior reinforcements, and provides initial clues about 

which aspects of hedonic processing might be dysfunctional in depression.
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1. Introduction

Anhedonia, the loss of pleasure or lack of reactivity to pleasurable stimuli, is one of the 

core symptoms of depression (APA, 2000), and has been considered a risk factor increasing 

vulnerability to depression (Costello, 1972; Meehl, 1975). Over the years, substantial evidence 

has accumulated suggesting that depression is associated with diminished hedonic capacity and, 

more generally, dysfunction in an approach-related system subserving positive affect and 

motivated behavior. First, studies have shown that depression is characterized by low self-

reported positive affect and reduced engagement with the environment (e.g., de Beurs et al., 

2007; Watson et al., 1995). Moreover, reduced positive affect has been concurrently and 

prospectively linked to depression in adult samples (Clark et al., 1994). In children, reduced 

positive affect at age 3 predicted depressotypic cognitive styles at age 7 (Hayden et al., 2006) 

and was associated with a maternal history of depressive disorders (Durbin et al., 2005).

Second, studies measuring resting brain electrical activity have reported that depression is 

characterized by relatively reduced activity over left prefrontal regions (e.g., Gotlib et al., 1998; 

Henriques and Davidson, 1991; Thibodeau et al., 2006) that are assumed to play an important 

role in approach-related affect (Davidson, 1998). Interestingly, resting activity within left 

prefrontal regions has been linked to individuals’ propensity to respond to reward-related cues 

(Pizzagalli et al., 2005b), providing convergent evidence that depressed subjects might display 

reduced hedonic capacity. Finally, studies employing various paradigms have shown that 

depressed subjects display a blunted emotional response to pleasant cues (e.g., Sloan et al., 2001; 

Suslow et al., 2001), decreased reward responsiveness (e.g., Henriques and Davidson, 2000), a 

lack of a positivity bias in attentional tasks (e.g., McCabe and Gotlib, 1995; Wang et al., 2006), 
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and dysfunctions within the brain reward system (e.g., Keedwell et al., 2005; Tremblay et al., 

2002).  

Although these studies converge in suggesting diminished hedonic capacity in 

depression, little is known about which aspects of hedonic processing might be dysfunctional in 

depressed subjects. Growing evidence indicates, however, that hedonic capacity might not be a 

unitary construct. For example, studies have shown that reward processing can be decomposed 

into an anticipatory and consummatory phase (“wanting” vs. “liking”; Berridge and Robinson, 

1998). Moreover, preclinical and functional neuroimaging studies indicate that different brain 

regions are implicated in distinct aspects of reward processing. The medial prefrontal cortex, for 

example, has been found to be critically involved in response to single reward deliveries (e.g., 

Dillon et al., 2008; Knutson et al., 2003), while dorsal anterior cingulate regions play an 

important role in integrating reinforcement history over time (e.g., Ernst et al., 2004; Rogers et 

al., 2004). In a notable study in non-human primates, Kennerley et al. (2006) recently showed 

that dorsal anterior cingulate lesions impaired monkeys’ ability to integrate reinforcement history  

over time, which led to an inability to learn which of two differentially rewarded responses was 

most advantageous, while sparing the animals’ ability to respond to single feedback trials. These 

findings suggest that dorsal anterior cingulate regions are critically involved in integrating 

reinforcement history necessary to guide goal-directed behavior (Rushworth et al., 2007).

This neurobiological evidence is intriguing, particularly when considering that 

dysfunctions in prefrontal and cingulate regions are amongst the most replicated findings in 

depression (Davidson et al., 2002; Mayberg, 2003). Decreased activity in dorsal anterior 

cingulate regions, in particular, has been observed under a variety of conditions, raising the 
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possibility that hedonic deficits in depression might be due to impairments in integrating 

reinforcement history over time, leading to difficulties in expressing goal-directed behavior. 

Recently, we described a probabilistic reward task based on a differential reinforcement 

schedule that allowed us to objectively assess participants’ propensity to modulate behavior as a 

function of reward (Pizzagalli et al., 2005a). In this task, participants are confronted with a 

choice between two responses that are linked to different probabilities of reward. Due to this 

probabilistic nature, participants cannot infer which stimulus is more advantageous based on the 

outcome of a single trial but need to integrate reinforcement history over time in order to 

optimize behavior (cf. Kennerley et al., 2006). In prior studies in non-clinical samples, subjects 

reporting elevated depressive symptoms showed reduced responsiveness to the more frequently 

rewarded stimulus (Pizzagalli et al., 2005a); moreover, reward responsiveness negatively 

correlated with self-reported anhedonic symptoms (Bogdan and Pizzagalli, 2006; Pizzagalli et 

al., 2005a), and predicted these symptoms one month later (Pizzagalli et al., 2005a).

Based on these findings, and in light of neurobiological evidence pointing to disruption in 

frontocingulate regions in depression, we hypothesized that major depression would be 

characterized by an impaired propensity to modulate behavior as a function of prior 

reinforcements. The first goal of the present study was to directly test this hypothesis in 

unmedicated subjects meeting DSM-IV criteria for Major Depressive Disorder (MDD). A second 

goal was to provide a more fine-grained functional analysis of impaired hedonic capacity in 

depression. To this end, we computed the probability of specific responses (e.g., selecting the 

more frequently rewarded response) as a function of the immediately preceding trial (e.g., which 

stimulus was rewarded in the preceding trial). Unlike prior studies (e.g., Henriques and 
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Davidson, 2000; Sloan et al., 2001; Suslow et al., 2001), this approach allowed us to evaluate 

whether blunted hedonic capacity in depression is due to reduced responsiveness to single 

rewards, or more generally, reduced ability to integrate reinforcement history over time. The 

third and final goal was to test the hypothesis that reduced hedonic capacity would be most 

pronounced in MDD subjects reporting elevated anhedonic symptoms in their daily life. 

2. Methods

2.1. Participants

Depressed subjects were recruited from treatment studies conducted at the Depression 

Clinical and Research Program at Massachusetts General Hospital (MGH), whereas control 

subjects were recruited from the community through advertisements and flyers. Subjects likely to 

meet study criteria based on a phone screen were invited for a diagnostic interview, which took 

place at MGH and was conducted by trained psychiatrists. Depressed outpatients were enrolled if 

the following inclusion criteria were met: (1) DSM-IV diagnosis of MDD (APA, 1994), as 

determined by the Structured Clinical Interview for DSM-IV (SCID; First et al., 2002); (2) score 

≥17 on the 21-item Hamilton Rating Scale for Depression (HRSD; Hamilton, 1960); (3) absence 

of any psychotropic medications for at least 2 weeks (6 months for dopaminergic drugs, 6 weeks 

for fluoxetine, and 4 weeks for neuroleptics and benzodiazepines); (4) no current or past history 

of MDD with psychotic features; (5) absence of any other Axis I diagnosis, with the exception of 

anxiety disorders1; and (6) absence of electroconvulsive therapy in the previous 6 months. 

Dysthymic disorder was allowed only if co-occurring with MDD. Inclusion criteria for controls 

included absence of medical or neurological illness, absence of current or past psychopathology, 
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as assessed by the SCID, Non-patient Edition, and absence of any psychotropic medications. All 

MDD subjects performed the probabilistic reward task (see below) at the SCID session and 

before starting antidepressant treatment. 

After receiving a study description, 23 MDD subjects and 25 control subjects provided 

written informed consent. Groups did not differ with respect to gender ratio, age, education, 

ethnicity, and marital status (Table 1), although MDD subjects were slightly older (p=0.08). 

Participants in the MDD sample were moderately to severely depressed, as assessed by their 17-

item HRSD2 (mean±SD: 19.40±3.30) score as well as their Beck Depression Inventory-II (BDI-

II; Beck et al., 1996) score (32.13±8.66). For control subjects, the mean BDI-II score was 3.40 

(±3.59). For the depressed sample, the mean age of MDD onset was 34.8 years (range: 13-53), 

whereas the mean length of the current MDE was 75.7 months (median: 12 months; range: 2-360 

months). The control subjects served as comparison group in a recent study investigating reward 

learning in bipolar disorder (Pizzagalli et al., in press).

The study was approved by the Committee on the Use of Human Subjects in Research at 

Harvard University and the Partners Human Research Committee. For their participation, 

subjects received $10/hour, as well as their task “earnings” (on average, $5). 

__________________________________

INSERT TABLE 1 ABOUT HERE
__________________________________

2.2. Task and Procedure

After study eligibility was established, subjects participated in a 25-min task, which was 

presented on a 17” PC monitor using E-Prime software (version 1.1; Psychology Software Tools, 

Inc, Pittsburgh, Pennsylvania). The task, which has been previously validated in three 
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independent samples (Bogdan and Pizzagalli, 2006; Pizzagalli et al., 2005a, 2008), is rooted 

within signal-detection theory and allows for the objective assessment of the subject’s propensity 

to modulate behavior as a function of prior reinforcements. Briefly, in signal-detection 

paradigms, subjects are asked to select whether stimulus A or stimulus B was presented by 

making an appropriate response A or response B (McCarthy, 1991). Performance can be 

analyzed with respect to: (1) discriminability, which indexes the participants’ ability to 

differentiate between the two stimuli; and (2) response bias, which reflects the participant’s 

propensity to select one or the other response irrespective of stimulus presentation. Importantly, a 

large body research has shown that unequal frequency of reward following correct identification 

of stimulus A and B produces a systematic preference for the response paired with the more 

frequent reward (Macmillan and Creelman, 1991; McCarthy, 1991). Accordingly, the degree of 

response bias toward the more frequently reinforced response can be used to objectively assess 

reward responsiveness. 

In the present study, the subjects’ goal was to determine, via button press, whether a short 

(11.5 mm) or a long (13 mm) mouth was presented on a previously mouthless cartoon face (Fig. 

1). The task included three blocks composed of 100 trials. Within each block an equal number of 

short and long mouths were presented for 100 ms each. Stimulus exposure (100 ms) and the 

difference between mouth sizes (11.5 vs. 13 mm) were identical to those used in prior studies 

using this paradigm (Pizzagalli et al., 2005a; Tripp and Alsop, 1999), and were selected after 

extensive pilot testing to achieve appropriate psychometric properties of the task (e.g., overall hit  

rates of approximately 75-85%). Importantly, the difference between mouth sizes as well as the 

duration of stimulus exposure was small, which provided an ideal experimental setting for 
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allowing the development of a response bias (McCarthy and Davison, 1979) without the risk of 

inducing performance at chance level.

To elicit a response bias, an asymmetric reinforcer ratio was utilized (McCarthy and 

Davison, 1979; Tripp and Alsop, 1999). Specifically, correct identification of either the short or 

long mouth was rewarded (“Correct!! You won 5 Cents”) three times more frequently (“rich 

stimulus”) than correct identification of the other mouth (“lean stimulus”). The reinforcement 

allocation and key presses were counterbalanced across subjects. In each block, only 40 correct 

trials (30 rich, 10 lean) were rewarded so that each subject was exposed to the same reward ratio. 

To achieve this goal, a controlled reinforcer procedure was implemented according to prior 

procedures (Johnstone and Alsop, 2000; McCarthy and Davison, 1979). Accordingly, if 

participants responded incorrectly on a trial that was scheduled to be rewarded based on a 

pseudorandomized reinforcement sequence, the reward feedback was delayed until the next 

correct identification of the same stimulus type. Subjects were informed at the beginning of the 

experiment that the purpose of this task was to win as much money as possible. Moreover, they 

were instructed that not all correct response would receive a reward feedback but were unaware 

that one of the stimuli would be disproportionally rewarded.

After the task, subjects completed various questionnaires, including the BDI-II (Beck et 

al., 1996) and the 62-item version of the Mood and Anxiety Symptom Questionnaire (MASQ; 

Watson et al., 1995). The BDI-II is a reliable and well-validated self-report instrument that 

assesses depressive severity (Beck et al., 1996). The MASQ is a self-report questionnaire that 

assesses anxiety-specific symptoms (Anxious Arousal, AA), depression-specific symptoms 

(Anhedonic Depression, AD), and general distress (General Distress-Anxious Symptoms, GDA; 
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General Distress-Depressive Symptoms, GDD). Prior studies have described satisfactory 

reliability and validity for the MASQ (e.g., de Beurs et al., 2007; Watson et al., 1995).
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__________________________________

INSERT FIG. 1 ABOUT HERE
__________________________________

2.3. Data Collection and Reduction

Performance was analyzed with respect to response bias, discriminability, and reaction 

time (RT), following prior procedures (McCarthy and Davison, 1979; Pizzagalli et al., 2005a; 

Tripp and Alsop, 1999). Hit rates [(number of hits)/(number of hits + number of misses)] were 

also computed, although they are imperfect measures of performance, especially in the presence 

of response biases (Macmillan and Creelman, 1991). Response bias (log b) and discriminability 

(log d) were computed as:

Response Bias:     [Equation 1]

Discriminability:     [Equation 2]

Following prior recommendations (Hautus, 1995), 0.5 was added to every cell of the 

detection matrix to allow calculations in cases that involve a zero in one cell of the formula. 

Response bias indexes the systematic preference for the response paired with the more frequent 

reward (“rich stimulus”), or the extent to which behavior is modulated by reinforcement history. 

A high response bias emerges when subjects show high rates of correct identification (hits) for 

the rich stimulus and high miss rates for the lean stimulus (i.e., the stimulus associated with less 

frequent rewards). To examine general task performance, secondary analyses considered hit rates 

scores (% correct responses), RT, and discriminability. Discriminability assesses the subjects’ 
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ability to perceptually distinguish between the two stimuli, and thus can be used as a proxy of 

task difficulty.

2.4. Statistical analyses

Chi-square tests and unpaired t-tests were run to assess whether groups differed in 

sociodemographic variables. Unpaired t-tests were run to compare BDI-II and MASQ scores 

between the groups. To test for possible group differences in the reward task, separate mixed 

ANOVAs with Group and Block (1,2,3) as factors were performed for response bias and 

discriminability. For hit rate and RT scores, Stimulus Type (Rich, Lean) was included as an 

additional factor. 

To provide a more fine-grained functional analysis of behavioral performance, we computed 

the probability of specific responses as a function of the immediately preceding trial. To this end, 

we first identified all trials in which correct identification of the rich or lean stimulus was 

rewarded. Similarly, we identified all trials in which correct identification of the rich or lean 

stimulus was not rewarded (because a reward was not scheduled). We then computed the 

probability of selecting “rich” or “lean” in the immediately following trial. Before statistical 

analyses, the probability values were arcsine-transformed. 

Across all ANOVAs, the Greenhouse-Geisser correction was used when applicable. In 

case of significant findings, post-hoc Newman-Keuls tests were performed. Pearson correlations 

and hierarchical regression analyses were computed within the MDD sample to investigate 

relations between response bias and depressive/anxiety symptoms using the four MASQ subscale 

scores. All statistical tests were two-tailed.
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3. Results

3.1. Probabilistic reward task 

Response Bias: As shown in Fig. 2A, relative to control subjects, MDD subjects showed 

significantly lower overall response bias scores3 (Group: F = 5.89, df = 1,46, p < 0.020, partial 

eta2 = 0.11).  The main effect of Block and the Group x Block interaction were not significant, 

both Fs < 0.72, df = 2,92, both ps > 0.50. The main effect of Group was confirmed also when 

entering age as a covariate4 (F = 6.43, df = 1,45, p < 0.015, partial eta2 = 0.13). 

__________________________________

INSERT FIG. 2 ABOUT HERE
__________________________________

Discriminability: No significant effects emerged, all Fs < 0.54, all ps > 0.50. Accordingly, 

controls and MDD subjects found the task equally difficult. 

Reaction Time. In line with prior findings (Pizzagalli et al., 2005a), the main effects of Block 

and Stimulus Types were significant, F = 12.26, df = 2,92, p < 0.001, partial eta2 = 0.21 and F = 

27.61, df = 1,46, p < 0.001, partial eta2 = 0.38. These effects were due to (1) significantly lower 

RT in Blocks 2 (583.97±187.68 ms) and Block 3 (577.65±183.70 ms) compared to Block 1 

(634.90±224.71 ms) (Newman-Keuls ps < 0.001); and (2) significantly lower RT to the rich than 

lean stimulus (578.89±194.28 ms vs. 618.79±194.47 ms). These findings indicate that the 

reinforcement schedule successfully produced a general preference towards the more frequently 

rewarded (rich) stimulus. The only other reliable finding was the main effect of Group, F = 7.31, 

df = 1,46, p < 0.01, partial eta2 = 0.14, due to significantly higher RT for MDD than control 

- 14 -



subjects (676.48±182.16 ms vs. 541.55±179.15 ms). Importantly, all other effects involving 

Group were not significant (all Fs < 2.09, all ps > 0.13). 5 

Hit rates: Replicating prior studies (Bogdan and Pizzagalli, 2006; Pizzagalli et al., 2005a), 

the main effect of Stimulus Type was significant, F = 42.39, df = 1,46, p < .001, partial eta2 = 

0.48, due to significantly higher hit rates for the rich stimulus (0.88±0.06) than lean stimulus 

(0.77±0.12). Mirroring the RT findings, this hit rate pattern indicates that the differential 

reinforcement schedule was effective in producing a behavioral preference towards the rich 

stimulus. Importantly, this effect was qualified by a significant Group x Stimulus Type 

interaction, F = 4.70, df = 1,46, p < 0.035, partial eta2 = 0.09. Compared to control subjects, 

MDD subjects showed higher hit rates for the lean but lower hit rates for the rich stimulus (Fig. 

2B), although only the first effect approached significance (Neuman-Keuls p = 0.059 and p > 

0.25, respectively). Stated differently, although the two groups did not differ in rich miss rates6, 

MDD subjects showed a trend for lower lean miss rates (i.e., a lower propensity to select “rich” 

when a lean stimulus was actually presented) compared to control subjects (0.20±0.14 vs. 

0.25±0.10; p = 0.059).  As a result, relative to control subjects, MDD subjects were characterized 

by a significantly smaller differentiation between the two stimuli (overall rich – overall lean hit 

rate: 0.07±0.10 vs. 0.14±0.11, t = 2.17, df = 46, p < 0.035).

Probability analyses. The analyses summarized above indicate that MDD subjects had lower 

response bias relative to control subjects. As evident from Equation 1, a low response bias 

emerges if subjects have (1) low rates of correct identification (hits) for the rich stimulus, and/or 

(2) low rates of incorrect identification (misses) for the lean stimulus. Analyses of hit rates 

clarified that the reduced response bias in MDD subjects was associated with the latter effect—
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that is, with a low propensity to incorrectly identify the lean stimulus as the rich stimulus. Based 

on these findings, further analyses focused on the probability of lean misses. Specifically, we 

calculated the probability of lean misses (i.e., the probability that subjects incorrectly selected 

“rich” when in actuality the lean stimulus was presented) as a function of whether the preceding 

correct identification of a rich trial had been rewarded or not, and entered these values into a 

Group x Preceding Trial (rich rewarded vs. rich non-rewarded) ANOVA. 

Compared to control subjects, MDD subjects had significantly lower probability of lean 

misses for trials following a non-rewarded rich stimulus (Neuwman-Keuls p < 0.011), whereas 

the two groups had virtually identical probabilities in trials immediately following a rich reward 

feedback (p > 0.98) (Fig. 3A; Group x Preceding Trial: F = 3.56, df = 1,46, p = 0.065, partial 

eta2 = 0.072). Moreover, for MDD (p < 0.002) but not control (p > 0.20) subjects, the probability 

of a lean miss was significantly lower immediately after reward omission compared to reward 

delivery to a preceding rich stimulus. The main effect of Group was not significant, F = 1.42, df 

= 1,46, p > 0.20. Accordingly, MDD subjects showed a reduced bias toward the more frequently 

rewarded stimulus (as expressed by a diminished tendency to misclassify the lean stimulus), but 

only in trials following an omission of reward for a correct identification of the rich stimulus (see 

Fig. 3).  

__________________________________

INSERT FIG. 3 ABOUT HERE
__________________________________

In an additional analysis, we evaluated the probability of rich misses as a function of which 

stimulus was rewarded in the immediately preceding trial. To this end, we calculated the 

probability that participants chose “lean” in rich trials (“rich misses”) when the trials were 
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presented immediately after the preceding rich or lean stimulus had been rewarded, and entered 

these values into a Group x Preceding Trial (rich rewarded vs. lean rewarded) ANOVA. This 

analysis allowed us to evaluate the strength of response bias as a function of which responses had 

been reinforced immediately beforehand. Compared to control subjects, MDD subjects had a 

significantly higher probability of rich misses in trials immediately following a rewarded lean 

(Newman-Keuls p < 0.006) but not a rewarded rich (p > 0.53) stimulus (Fig. 3B; Group x 

Preceding Trial interaction: F = 8.47, df = 1,46, p < 0.007, partial eta2 = 0.16). The main effects 

of Group and Preceding Trial were not significant (both Fs < 1.0, both ps > 0.30). 

3.2. Relationships with clinical symptoms 

Contrary to our hypothesis, for the MDD sample, response bias at the end of the experiment 

(Block 3) or response bias learning (Block 3 – Block 1) were not correlated with anhedonic 

symptoms, as assessed by the AD subscale of the MASQ (r = -0.31 and r = -0.05, both ps > 

0.15). AD scores were, however, positively correlated with probability of rich misses (r = 0.519, 

p = 0.011) and negatively correlated with lean miss rates (r = 0.356, p = 0.095) for trials 

following non-rewarded correct identification of rich stimuli (Fig. 4). Accordingly, the higher the 

anhedonic symptoms, the higher the numbers of misses for the more frequently rewarded 

stimulus, and the lower the numbers of misses for the lean stimulus. Of note, the correlation for 

trials following non-rewarded correct identification of rich stimuli (r = 0.519) was significantly 

higher than the one involving rewarded correct identification of rich stimuli (r = -0.110), as 

assessed by the Fisher’s z-transformation proposed by Meng et al. (1992) (t = 2.21, df = 20, p = 

0.039), and showed a trend for being higher than the correlation involving non-rewarded correct 

identification of lean stimuli (r = -0.04; t = 1.92, df = 20, p = 0.069) (Table 2).
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__________________________________________

INSERT FIG. 4 and TABLE 2 ABOUT HERE
__________________________________________

To investigate whether these correlational findings were specific to anhedonic symptoms, 

hierarchical regression analyses adjusting for anxiety symptoms and general distress were run 

within the MDD sample. GDA and AA scores were simultaneously entered in the first step, 

whereas AD scores were entered in the second step of the model, which predicted rich miss rates 

for trials following non-rewarded correct identification of rich stimuli.

Neither GDA (β = 0.20) nor AA (β = -0.21) scores were significant predictors of rich miss 

rates (both |t|s < 0.97, both ps > 0.30). AD scores, however, significantly predicted rich miss rates 

(β = 0.51, t = 2.48, p < 0.025), even after adjusting for general distress (GDA) and anxiety 

symptoms (AA), ΔR2 = 0.233, ΔF = 6.15, df = 1,19, p = 0.023. A similar pattern, albeit 

statistically less strong, emerged when an analogous hierarchical regression was run to evaluate 

whether AD scores predicted lean miss rates, ΔR2 = 0.15, ΔF = 3.64, df = 1,19, p = 0.072.

4. Discussion

Anhedonia, the loss of interest and lack of reactivity to pleasurable stimuli, has been 

considered a potential trait marker related to vulnerability to depression (Costello, 1972; Meehl, 

1975). In line with this hypothesis, studies have found that anhedonia can precede the onset of 

depression (Dryman and Eaton, 1991); shows temporal stability (Oquendo et al., 2004); predicts 

poor outcome 12 months later (Spijker et al., 2001); and is associated with dysfunctions within 

the brain reward system (Keedwell et al., 2005; Tremblay et al., 2002). Moreover, reward 

dependence, a putatively heritable trait associated with maintenance of behavior in response to 
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reward cues, shows trait-like features associated with familiality of depression (Farmer et al., 

2003). Collectively, these findings suggest that anhedonia is among the most promising 

endophenotypes of depression (Hasler et al., 2004). Still, little is know about which aspects of 

hedonic processing might be dysfunctional in depression. Using a laboratory-based measure of 

hedonic capacity, the present findings indicate that major depression is characterized by 

impairments in the ability to modulate behavior as a function of prior reinforcement history. 

Since positive reinforcers are stimuli that increase the likelihood of behavior (Rescorla and 

Wagner, 1972), blunted responsiveness to reinforcers may lead to diminished engagement in 

pleasurable activities and decreased motivational drive to pursue future rewards. These 

dysfunctions may in turn foster the generation, maintenance, and/or exacerbation of depressive 

symptoms, particularly lack of interest in the environment and loss of pleasure. Studies using 

self-report measures have indeed shown that anhedonia and blunted behavioral activation 

predicted (1) future depressive symptoms (Hundt et al., 2007; Kimbrel et al., 2007), (2) course of 

depression and time to recovery (McFarland et al., 2006), and (3) poor treatment outcome 8-12 

months later (Kasch et al., 2002; Spijker et al., 2001). Moreover, low positive affect has been 

identified as a risk factor for the development and maintenance of depressive symptoms in 

children (Hayden et al., 2006; Joiner and Lonigan, 2000; Lonigan et al., 1999). 

In the present unmedicated MDD sample, blunted response bias was mainly due to a 

reduced tendency to misclassify the lean stimulus as the more frequently rewarded (rich) 

stimulus. Notably, this dysfunction emerged only in trials following omission of reward for a 

correctly identified rich stimulus. Moreover, relative to control subjects, MDD subjects showed a 

higher likelihood of missing the more frequently rewarded stimulus (rich misses) but only in 
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trials immediately following a rewarded lean stimulus. In addition, the probability of rich misses 

correlated with anhedonic symptoms experienced by the MDD subjects during the past week. As 

above, these findings were specific to trials following non-rewarded rich stimuli. Finally, 

hierarchical regression analyses indicated that anhedonic symptoms uniquely predicted higher 

rates of rich misses even after controlling for anxiety symptoms and general distress. Taken 

together, these findings suggest that clinically depressed subjects, while responsive to single 

rewards, were impaired at integrating reinforcement history over time and expressing a response 

bias toward a more frequently rewarded cue in the absence of immediate reward. Of note, this 

blunted hedonic capacity emerged in the absence of any general impairment in task performance 

(no group differences emerged for discriminability), indicating the reduced hedonic capacity was 

not due to global cognitive impairments in the MDD sample.

The findings emerging from the present study are consistent with and extend prior reports 

in depression of reduced reactivity to pleasant cues (e.g., Sloan et al., 2001; Suslow et al., 2001), 

blunted reward responsiveness (e.g., Henriques and Davidson, 2000), and diminished attentional 

positivity bias (e.g., McCabe and Gotlib, 1995; Wang et al., 2006). Unlike prior studies, however, 

the current work provides initial evidence that clinically depressed subjects show a diminished 

propensity to modulate behavior as a function of reinforcement history, particularly in the 

absence of immediate reinforcement. Considering that many forms of behavior are acquired 

through intermittent reinforcement schedules (e.g., Hamburg, 1998), it is reasonable to assume 

that dysfunctions in integrating reinforcements over time might lead in depression to pervasive 

difficulty initiating and maintaining goal-directed behavior. This in turn might contribute to the 

diminished “intrinsic” motivation that is often seen clinically, that is, a difficulty in engaging in 
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“actions […] for their own sake that do not require external support or reinforcements to be 

initiated or sustained” (Barch, 2005, p. 877). 

The present report of reduced response bias toward the more frequently rewarded 

stimulus is intriguing given emerging neurobiological evidence that highlights potential 

dopaminergic dysfunctions in depression. Although findings derived from experimental animal 

studies and functional neuroimaging are far from being consistent, recent reviews have raised the 

possibility that depression might be characterized by decreased sensitivity of dopaminergic 

receptors and decreased dopaminergic release within ventral striatal regions know to be critically  

implicated in incentive processing (D’Aquila et al., 2000; Dunlop and Nemeroff, 2007; Gershon 

et al., 2007). Of relevance to the present findings, in a recent pharmacological challenge study 

using the same probabilistic reward task, we found that a single dose of a dopamine D2 agonist 

(pramipexole) – hypothesized to activate presynaptic dopaminergic autoreceptors and thus 

reduce phasic dopaminergic bursts (e.g., Fuller et al., 1982; Tissari et al., 1983) – impaired the 

development of response bias and reduced the differentiation between rich and lean hit rates in 

healthy subjects (Pizzagalli et al., 2008). Future neuroimaging studies in depressed samples are 

warranted to test the hypothesis that disrupted phasic dopaminergic signaling might underline 

reduced hedonic capacity in depression. 

The present study has several important limitations. First, MDD subjects were recruited 

from treatment studies conducted at a large academic hospital, and future studies should evaluate 

the generalizability of our findings. Moreover, among the MDD group, the length of the current 

depressive episode and the depression severity scores ranged broadly, indicating that this 

relatively small sample of MDD subjects was quite heterogeneous. 
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Second, the MASQ and BDI-II were used to assess anhedonic symptoms. Although these 

scales provide a reliable assessment of depression severity and contain items probing anhedonia, 

it is important to emphasize that other scales have been developed to specifically assess 

anhedonia, including the Snaith-Hamilton Pleasure Scale, the Fawcett-Clark Pleasure Capacity 

Scale, and the Revised Chapman Physical Anhedonia Scale (see Leventhal et al., 2006 for a 

recent review and psychometric comparison). Accordingly, future studies will be needed to 

evaluate whether the present findings extend to reports of anhedonic symptoms as assessed by 

these other scales. 

Third, unlike prior studies using the probabilistic reward task in student samples (e.g., 

Pizzagalli et al., 2005a), the community control subjects investigated in the present study did not 

show increases of response bias across blocks. Instead, at the end of block 1 these control 

subjects had a response bias (mean: 0.19) similar to the one achieved by low BDI-II subjects 

(mean: 0.21) in block 3 of our prior study (Pizzagalli et al., 2005a). Thus, it is possible that the 

lack of systematic response bias development in the current sample was due to ceiling effects. 

The observation that the present hit rates were somewhat higher than the ones described in 

Pizzagalli et al. (2005a) supports this speculation and suggests that the two studies, which were 

conducted in two different laboratories, were not fully psychometrically matched. These 

methodological differences might also explain the lack of correlation between response bias and 

anhedonic symptoms. Although a reliable correlation emerged when considering a secondary 

variable (probabilities of rich misses) that contributes to reduced response bias (see denominator 

in Equation 1), the lack of correlation with overall response bias represents an additional 

limitation of the present study.  
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Fourth, because only a reward manipulation was used, we cannot determine whether 

depressed subjects might show dysfunctional responsiveness to other types of feedback (e.g., 

punishments) or whether findings were due to procedural (implicit) learning deficits (e.g., 

difficulties in learning the association between a particular stimulus and increased frequency of 

reward). Moreover, it is possible that blunted response bias in MDD subjects might be partially 

explained by an impairment in learning that the lean stimulus is not associated with frequent 

reward (cf. Frank, 2005). Although future studies will be required for conclusive tests of these 

alternative interpretations, a convergence of findings points to blunted reward responsiveness in 

depression. 

First, in the present as well as two prior studies, blunted reward responsiveness 

specifically correlated with self-reported anhedonic symptoms (e.g., loss of pleasure, energy, 

interest, and libido; Bogdan and Pizzagalli, 2006; Pizzagalli et al., 2005a) and predicted 

anhedonic symptoms one month later (Pizzagalli et al., 2005a). Second, the current MDD 

subjects showed lower lean miss rates (i.e., a lower propensity to select “rich” when a lean 

stimulus was actually presented) and a smaller differentiation between the two stimuli relative to 

control subjects. When seen within the widely accepted view that positive reinforcers are stimuli 

that increase the likelihood of subsequent behavior (Rescorla and Wagner, 1972; Schultz, 2007), 

these findings suggest that task performance in MDD subjects was less influenced by the 

asymmetrical reinforcement schedule favoring the rich stimulus compared to control subjects. 

Third, procedural learning (Joel et al., 2005; Vakil et al., 2000; but see Naismith et al., 2006) and 

punishment responsiveness (Henriques and Davidson, 2000; Henriques et al., 1994) have been 

found to be unaffected in depression. Finally, and more importantly, the probability analyses 
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highlighted that MDD subjects were characterized by specific impairments in expressing 

response bias towards the more frequently rewarded stimulus in trials following omission of 

rewards, whereas they showed no dysfunctions in responses to single reward. Critically, although 

this impairment was seen on a group level, patients reporting anhedonic symptoms in the past 

week showed the lowest hedonic capacity. 

In sum, the present findings indicate that unmedicated subjects with major depression are 

characterized by an impaired tendency to modulate behavior as a function of prior 

reinforcements, particularly in the absence of immediate rewards, and thus offer initial clues 

about which aspects of hedonic processing might be dysfunctional in this debilitating disease.
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Footnotes:

1 Seven MDD subjects met DSM-IV criteria for an anxiety disorder (OCD: n = 1, PTSD: n = 2; 

GAD: n = 1; Social Anxiety Disorder and Panic Disorder: n = 1; Social Anxiety Disorder: n = 1; 

Anxiety Disorder NOS: n = 1). MDD subjects with and without anxiety comorbidity did not 

differ in their demographic variables, BDI-II, and HRSD scores (all ps > 0.17). Additional 

ANOVAs revealed no differences in any task performance variable between MDD subjects with 

vs. without anxiety comorbidity (all Fs < 1.38, all ps > 0.25).

2 The 17-item HRSD score, which is more commonly used in the literature, was derived from the 

21-item version of the scale.

3 In prior studies using the probabilistic reward task, response bias generally increased across 

blocks (Bogdan and Pizzagalli, 2006; Pizzagalli et al., 2005a). In the current study, participants 

(particularly the control subjects) displayed a robust response bias already in Block 1. To further 

investigate this finding, response bias was calculated for the first and second half of Block 1 (50 

trials each). These values were entered in a Group x Block ANOVA, where the factor Block had 

four levels (Block 1-first half, Block 1-second half, Block 2, and Block 3). All effects described 

in this report were confirmed. In particular, a main effect of Group emerged for response bias, F 

= 5.08, df = 1,46, p < 0.03, partial eta2 = 0.10. In addition, a one-way ANOVA using Block as 

repeated measure was conducted for control and MDD subjects separately. For control, but not 

MDD subjects, the main effect of Block was significant, F = 3.02, df = 3,72, p < 0.05 vs. F = 
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1.82, df = 3,66, p>0.15. Post-hoc Newman Keuls revealed that, for control subjects, response 

bias was significantly higher in the second half of Block 1 (p < 0.045), Block 2 (p < 0.050), and 

Block 3 (p < 0.035) compared to the first half of Block 1. For MDD subjects, no differences 

across blocks emerged (all ps > 0.11). In sum, control subjects quickly acquired a response bias 

toward the more frequently rewarded stimulus, whereas MDD subjects failed to show any 

modulation. 

4 Analogous ANCOVAs were run on discriminability, hit rates, and RT scores using age as a 

covariate. The findings were identical to the ones reported here.

5 In light of this overall RT group difference, a Group x Block ANCOVA was run on our main 

variable of interest, response bias, using mean RT scores (averaged across Blocks and Stimulus 

Type) as covariate. The main effect of Group remained significant, F = 4.94, df = 1,45, p < 0.03, 

partial eta2 = 0.10.

6 Rich miss rate was computed as: (1 - rich hit rate). Analogously, lean miss rate was computed 

as: (1 - lean hit rate).
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Table 1. Sociodemographic and mood data in control (n = 25) and MDD (n = 23) subjects

Control subjects 
(n = 25)

Control subjects 
(n = 25)

MDD subjects     
(n = 23)

MDD subjects     
(n = 23)

Mean SD Mean SD Statistics P value
Age 38.36 10.76 43.65 9.55 t = 1.80 .08
Gender ratio (Female/Male) 11/14 N/A 10/13 N/A χ2 = 0.001 > .50
Education (% college education) 64.0% N/A 65.2% N/A χ2 = 0.04 > .20
Ethnicity (% Caucasian) 68.0% N/A 91.3% N/A χ2 = 5.55 > .10
Marital status (% never married) 64.0% N/A 69.6% N/A χ2 = 0.31 > .50
BDI-II 3.40 3.59 32.13 8.66 t = 15.23  .0001
HRSD (17-item) N/A N/A 19.40 3.30 N/A N/A
MASQ AD 51.52 12.60 91.00 7.60 t = 13.00  .0001
MASQ GDD 15.64 5.22 40.70 10.71 t = 10.43  .0001
MASQ AA 18.76 5.19 25.30 11.32 t = 2.61 .015
MASQ GDA 14.16 4.34 23.26 8.14 t = 4.89  .0001

BDI-II: Beck Depression Inventory-II (Beck et al., 1996); HRSD: Hamilton Rating Scale for 

Depression (Hamilton, 1960); MASQ: Mood and Anxiety Symptom Questionnaire (Watson et 

al., 1995; AD: Anhedonic Depression; GDD: General Distress-Depressive Symptoms; AA: 

Anxious Arousal; GDA: General Distress-Anxious Symptoms).
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Table 2. Summary of Pearson’s correlations between MASQ Anhedonic Depression (AD) scores 

and probabilities of rich misses (i.e., selecting “lean” when a rich stimulus was actually 

presented) and lean misses (i.e., selecting “rich” when a lean stimulus was actually presented) as 

a function of the outcome in the preceding correctly executed response.

MASQ Anhedonic DepressionMASQ Anhedonic Depression

Preceding trial

Rich miss 

rate Lean miss rate

Rewarded Rich Pearson's correlation -0.110  a -0.190

p-value .617 .385

Rewarded Lean Pearson's correlation 0.005 0.290

p-value .980 .180

Non-Rewarded Rich Pearson's correlation 0.519 a,b -0.356

p-value .011 .095

Non-Rewarded Lean Pearson's correlation -0.041,b -0.267

p-value .854 .218

Rich miss rate = (1- rich hit rate), lean miss rate = (1- lean hit rate). MASQ: Mood and Anxiety 

Symptom Questionnaire (Watson et al., 1995).

a Correlations are different at p = 0.039, t(20) = 2.21.

b Correlations are different at p = 0.069, t(20) = 1.92.
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Figure legends 

Fig. 1. Schematic illustration of task design. For each trial, the subjects’ task was to decide 

whether a short (11.5 mm) or a long (13 mm) mouth was presented by pressing either the ‘z’ or 

the ‘/’ key of a PC keyboard.  The reinforcement allocation and key assignments were 

counterbalanced across subjects. 

Fig. 2. (A) Response bias, and (B) mean hit rates (averaged across the three blocks) for the more 

frequently rewarded (rich) stimulus and the lean stimulus for healthy control subjects (n = 25) 

and MDD subjects (n = 23). Error bars represent standard errors. 

Fig. 3. (A) Probability of misclassifying a lean stimulus (i.e., lean miss rate) as a function of 

whether the preceding correct identification of a rich trial had been rewarded or not. (B) 

Probability of misclassifying a rich stimulus (i.e., rich miss rate) as a function of which stimulus 

was rewarded in the immediately preceding trial. Error bars represent standard errors; arrows and 

asterisks denote significant findings in post-hoc analyses.

Fig. 4. Scatterplot and Pearson correlation between the MASQ Anhedonic Depression (AD) 

score and probability of rich misses (i.e., selecting “lean” when a rich stimulus was actually 

presented) for trials following non-rewarded correct identification of rich stimuli (r = 0.519, p = 

0.011) within the MDD subjects (n = 23). 

MASQ: Mood and Anxiety Symptom Questionnaire (Watson et al., 1995).
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