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Uniqueness and Homogeneity of 
Ordered Relational Structures 

R. DUNCAN LUCE 

Harvard University 

There are four major results in the paper. (1) In a general ordered relational structure that 
is order dense, Dedekind complete, and whose dilations (automorphisms with fixed points) 
are Archimedean, various consequences of linite uniqueness are developed (Theorem 2.6). (2) 
Replacing the Archimedean assumption by the assumption that there is a homogeneous sub- 
group of automorphisms that is Archimedean ordered is sufficient to show that the structure 
can be represented numerically as a generalized unit structure in the sense that the defining 
real relations satisfy the usual numerical property of homogeneity (Theorem 3.4). The last two 
results pertain just to idempotent concatenation structures. (3) In a closed, idempotent, 
solvable, and Dedekind complete concatenation structure, homogeneity is equivalent to the 
structure satisfying an inductive property analogous to the condition for homogeneity in a 
positive concatenation structure (Theorem 4.3). Finally, (4) an axiomatization is given for an 
idempoten! structure to be of scale type (2,2), which has previously been shown to be 
equivalent to a dual bilinear representation. Basically two operations are defined in terms of 
the given one, and the conditions are that each must be right autodistributive and together 
they satisfy a generalized bisymmetry property. The paper ends listing several unsolved 
problems. (t? 1986 Academic Press. Inc. 

1. INTRODUCTION 

This paper explores results on uniqueness and homogeneity of real relational 
structures (Alper, 1984, 1985; Narens, 1981a, 1981b), and it fills in some gaps in the 
research reported by Lute and Narens (1985) on homogeneous, idempotent, con- 
catenation structures. I shall assume the reader is familiar with these papers except 
for the unpublished one of Alper (1984). The basic definitions, which may be found 
in Lute and Narens - in particular, ordered, relational structure, homomorphism, 
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and automorphism (Definition 1.1); M-point homogeneity, N-point uniqueness, 
and scale type (M, N) (Definition 1.2); and concatenation structure together with 
various of its properties (Definition 2.1) - will be used here without restatement. 

The key result in the sequence of papers by Narens and Alper is this: If an 
ordered relational structure defined on the real numbers is homogeneous and of 
finite uniqueness, then it is 2-point unique, the translations (i.e., automorphisms 
with no fixed point together with the identity) form a group that is of scale type 
(1, l), and the structure is isomorphic to one for which the automorphisms are a 
subgroup of the afhne group and under that isomorphism the translations map 
onto the group of all real translations, x -+ x + s where s E Re. The last assertion is 
sumarized by saying the automorphism group is “conjugate” to a subgroup of the 
affine group that includes all (real) translations. Part of this development is closely 
related to Levine (1972), who presented a necessary and sufficient condition for a 
group of homeomorphisms (strictly increasing transformations from the reals onto 
the reals) to be transformable into a subset of the affine group, and so to be 2-point 
unique. 

These ideas and results are also closely related to two parts of the mathematical 
literature. One has to do with general linear orderings, and some of those references 
were cited in Lute and Narens (1985). The other, which was pointed out to me by a 
referee, is work on characterizing subgroups of the general affine group (x + ax + h, 
a # 0) which is of concern in geometry. This work focuses on the property of M- 
transitivity, which is like M-point homogeneity, but without reference to order. 
Three relevant papers are Tits (1952(a), 1952(b)) and Burkenhout and Hubaut 
(1966). 

Here I first explore some aspects of the Alper-Narens result from a slightly dif- 
ferent perspective with, I believe, some additional insights into the nature of these 
results. The first major theorem, 2.6, assumes finite uniqueness, order density, and 
Dedekind completeness, but rather than homogeneity I assume an apparently 
weaker Archimedean property. Among the things shown is that the commutator 
subgroup lies within the set of translations and so is l-point unique. 

A sufficient condition for homogeneity is developed (Theorem 3.1) which is 
applied in Section 4 to idempotent concatenation structures. From Lute and 
Narens (1985) we know that homogeneous concatenation structures are all closed, 
and they partition into those that are positive, negative, and idempotent. If the 
structure is N-point unique for some finite N, the first two are of scale type (1, 1) 
and the idempotent ones may be any of the possible types, ( 1, 1 ), ( 1,2), or (2,2). 
(Note that, unlike the results of the preceding sections, these do not depend upon 
Dedekind completeness.) The positive (1, 1) structures are homogeneous PCSs, 
which are well understood. Narens and Lute ( 1976, Theorem 2.1) showed that any 
PCS (X, 2, 0), homogeneous or not, is isomorphic to a numerical PCS and 
(under a restriction which has since been removed) is l-point unique. Cohen and 
Narens (1979) studied the class of homogeneous, Dedekind complete PCSs, show- 
ing that each is isomorphic to a unit structure, i.e., a numerical structure 
(Ref , 2, *, f’), where * is a binary operation on Re + and f is a function from 
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Re+ such that f is strictly increasing, f/r, where I is the identity map, is strictly 
decreasing, and for all r, s E Re +, 

r * s = sf(r/s). 

In the positive case, f( 1) > 1. Moreover, they showed that in the Dedekind com- 
plete case homogeneity is equivalent to the property: each n-copy operator is an 
automorphism, where it will be recalled the n-copy operator is defined inductively 
by ns = (n + 1) x0x, lx = x. The key aspect of this condition is that the n-copy 
operator preserves the operation 0. For example, the 2-copy operator condition 
asserts that for each x, y E X, 

which is a universal statement that is a special case of bisymmetry. So the property 
of homogeneity for PCSs amounts to a countable set of universal statements in the 
primitives of the system. 

Our understanding of the idempotent cases is far less complete. Lute and Narens 
(1985, Theorem 5.1) showed that a concatenation structure that is closed, idem- 
potent, solvable, and Dedekind complete has a numerical representation and that 
the structure is 2-point unique. For homogeneous cases, unit representations, now 
with f( 1) = 1, can again be shown to exist. The three possible scale types were 
characterized in terms of simple restrictions on the functionf. 

Two results about idempotent structures are missing: first, a criterion for 
homogeneity in terms of the primitives and, second, an axiomatization for each of 
the three scale types. Sections 4 and 5 advance our knowledge about the answers to 
these two questions. Specifically, a criterion is presented for homogeneity 
(Theorem 4.3) which is similar to, but not quite as satisfactory as, the one for PCSs 
and, second, an axiomatization is given for the (2, 2) case (Theorem 5.1). I do not 
yet have axiomatizations for the idempotent (1, 1) and ( 1, 2) cases. 

2. UNIQUENESS IN ORDERED RELATIONAL STRUCTURES 

2.1. Uniqueness in General Structures 

Throughout the paper, 3 = (X, 2, S,),,, denotes a totally ordered relational 
structure and & its group of automorphisms. Any further restrictions will be 
explicitly noted in the definitions and theorems. We begin with several defined con- 
cepts having to do with general relational structures and the subclass of 
automorphisms that are analogous to real translations. 

DEFINITION 2.1. (i) An automorphism a is said to be a dilation at a iff a E X and 
a is a fixed point of 01, X, i.e., a(a) = a. The subset of all dilations is denoted by 9. 
The subset of all dilations at a, which is easily seen to be a group, is denoted go. 



394 R.DUNCANLUCE 

(ii) An automorphism is said to be a translation iff either it has no fixed 
point or it is the identity, z; the subset (in general, not a group) of all translations is 
denoted by Y. Note that gnY={z) and QuU=d. 

(iii) If two relational structures are isomorphic, their automorphism groups 
are said to be conjugate. 

(iv) For a, /I E &, apa- ‘BP ’ is said to be the commutator of c1 and B. The 
subgroup % formed by composing finite sequences of commutators is called the 
commutator (sub)group (Levine, 1972, called it the “derived group”). 

(iv) The relation 2’ is defined on .d as follows: for a, /I E J&‘, c1 2’ /3 iff for 
some nonmaximal x E X and all y > x, a(y) 2 /I(y). [It is easy to verify that 2’ is 
transitive since 2 is, and that 2’ is connected and so a total order if the structure 
is N-point unique (see Corollary 2 of Theorem 2.4).] 

(vi) Suppose /I E d and /I >’ 1. Then p is said to be Archimedean in d iff for 
each a E&’ there is some integer n such that /I” >’ u. 

(vii) a, /?E & are said to be uncrossed iff either a(x)>/3(x) for all XE X or 
a(x) = /3(x) for all x E X or a(x) > B(x) for all x E X; otherwise they are said to be 
crossed. When a and r are (un)crossed, a is called (un)crossed. In the uncrossed 
case, tl >’ /I iff for all x E X, a(x) > B(x). A set of automorphisms is called uncrossed 
iff each pair of distinct elements from the set is uncrossed. Thus, an uncrossed set of 
automorphisms is necessarily l-point unique and so, on that set, 2’ forms a total 
order. 

(viii) A subset X of d is said to be conrex iff for a E .X and fi E d if a 2’ p 
and a 2’ BP’, then j? E 3. 

(ix) A subset Y? of d is said to be dense in X iff for each x, y E X with x > y, 
there exist a, fl E &? such that 

THEOREM 2.1. Suppose L!K is a totally ordered relational structure. Then 

(i) The following are equivalent: 

(a) F is a group under function composition; 

(b) F is l-point unique; 
(c) each dilation, except for the identity, and each translation agree at a 

point. 

(ii) Zf .F is nontrivial, then for each z E F, T >’ 1, the set 

C?Ir = {a: ae& andfor some integer n, a, a-’ <’ t”f 

is a nontrivial, convex subgroup. 
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Proof (i)(a) implies (b). Suppose for some XEX and ~1, /?E Y, CL(X) = p(x). 
Thus, x = K’/?(X) which, since CI - ‘/I E Y-, is possible only if c1 -‘/I = I, proving Y is 
l-point unique. 

(b) implies (c). Suppose CI is a dilation at x, CI # z, T E 9. If they do not intersect, 
then z-lo: E 9. However, z-‘a(x) = z-‘(x), and so by the l-point uniqueness of Y, 
t-l a=7-l, whence a = I, contrary to choice. 

(c) implies (a). Suppose F is not a group, which is possible under function com- 
position only if it is not closed. Thus, there exists some LX, /I E 5 such that LX/I E 9. 
By hypothesis (c), there is some x E X such that c@(x) = E(X), whence /3(x) = x, con- 
tradicting the assumption that /I E Y-. 

(ii) Observe that since 7-I < ’ z <’ 2, 7 E 9&;, so %T is nontrivial. It is easy to 
verify that it is convex. We show it is a group. Since 1 and inverses are in g7;, it is 
sufficient to show it is closed. Suppose a, p E $;, so for some m and n, LX, CC’ <’ z”’ 
and B, b-’ <’ 7”. If U-K’ 1, then c$ <’ z/3= /I <’ 7”. If /I <’ I, then c$ <’ CU= 
CI <’ P. If IX, /3 2’ 1, then for some a, b E X, for .X > a, U(X) < T*(X) and for .Y > b, 
B(x) < V(x). Thus, for x > max(a, b), CC/~(X) < CC?(~) < YY(x) = TV+", so 
a/3 <’ Tm+n. A similar proof holds for (cr/?)‘=p-‘a-‘, so a/?~$. 1 

COROLLARY. If X is a totally ordered relational structure and Y c 9 is a group, 
then 3 is l-point unique. 

Proof Follow that of part (i)(a) implies (b). 1 

From here on, 5 will denote a totally ordered relational structure. In each 
theorem. it is subjected to additional conditions, which are explicitly stated. 
Whenever d is assumed to be N-point unique, it is implicit that N is finite. 

The next two results both show consequences of assuming certain Archimedean 
properties of the automorphisms. The first involves the assumption of an 
Archimedean ordered subgroup, and the second, that of each positive dilation being 
Archimedean. 

THEOREM 2.2. Suppose ?Z” is such that d is N-point unique and ‘?? is a subset of d 
such that (3, 2’) is an Archimedean ordered group. 

(i) Then either %sg or g&Y. 

For y E Y, define 

# = {a: CI E LZ? and for a positive integer n, y” > ’ a, CI ~ ’ }. 

Then 

(ii) Z is independent of the choice of y and it is a convex group. 

(iii) ?3GYP. 

(iv) Y is convex iff 2 = 9. 
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Proof (i) Suppose otherwise and that t~9nY and CXE~~ 9, 7, c( #L Let a 
denote a fixed point of LX and, with no loss of generality, assume z(a) > a. Since Y is 
Archimedean ordered, c( and 7 commute and so az(a) = za(a) = z(a). Thus, z(a) is 
another fixed point of a. By induction, so are z”(a), whence by N-point uniqueness, 
7 E z, contrary to assumption. So one of the two intersections must be {z}. 

(ii) Suppose y, ‘1 E Y, y, q >’ z, and that for some positive integer n, y” >’ a, 
a ~ ‘. Since 3 is Archimedean ordered, for some m, I]~ > ’ y” > ’ LX, a ~ ‘, and so 2 is 
independent of the choice of y. If a E J? and /I E d and o! > ’ fl, /3 - ‘, then by 
definition for some n, y” >’ c1 >’ p, /I -I, proving that /I E 2. Thus, X is convex. It 
is easily seen to be a group under function composition since inverses are included 
by definition and closure is trivial to show. 

(iii) Suppose a E 9, then since 3 is Archimedean, for some n, y” >’ ~1, a I, 
proving CI E X. 

(iv) If $9 = Z’, then Y is convex because 2 is. Conversely, suppose 3 is con- 
vex and ME&?. Since y” >‘a, cl-’ and y” E 9, by the convexity of 9, M ~9. So 
X G 3, and by part (iii) we conclude X = 9. 1 

THEOREM 2.3. Suppose ZY is such that each positive dilation is Archimedean. Then 
the following are true: 

(i) For each a E X, ( c@~, 2 ’ ) is an Archimedean ordered group under function 
composition. 

(ii) If 9 is a nontrivial, convex subgroup of d, then either 9 = d or 9 CL 9-. 

(iii) If, in addition, d is N-point unique, then the following statements are 
equivalent: 

(a) d has the property that for each a, b E X with a # b and 9, nontrivial, 
there is BE gU such that /I(b) > b, 

(b) d is 2-point unique. 

Proof (i) To show that 9a is a group under function composition, it suffices to 
note that it is closed: for if a, /IE~~, then afi(a) = a(a) = a, and so a/?~ ga. It is 
Archimedean since, by hypothesis, each dilation is Archimedean. 

(ii) Suppose Y-Y # 0, and let 6 E 9 - 5, 6 >’ 1. Since 6 is a dilation, the 
Archimedean hypothesis implies that, for each a E d, there exists an integer n such 
that 6” > ’ a, u - ‘. Since Y is a group and convex, it follows c( E 9. So Y = d. 
Otherwise, 9 G Y. 

(iii) Suppose 9, is nontrivial. For a, b E X with b > a and a E go, suppose b is 
also a fixed point of ~1. If c1 is nontrivial, then by hypothesis there exists fi E g0 such 
that p(b) > 6. By part (i) and the fact that an Archimedean ordered group is com- 
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mutative, c@(b) = /3a(b) = j?(b), showing that b(b) (>b) is also a fixed point of a. 
Since p is an automorphism, p’(b) > P(b), and a/12(b) = pa/?(b) = p2(b), so p2(b) 
also is a fixed point of a. By induction, a has N distinct fixed points, and so it is in 
fact trivial, proving that X is 2-point unique. 

The converse is trivial since if a E ~3~ and a(b) = 6, b # a, then by 2-point uni- 
queness, a = t. 1 

2.2. Uniqueness in Order Dense, Dedekind Complete Structures 

THEOREM 2.4. Suppose X is order dense and Dedekind complete. Zf a EG? is 
crossed, then a is a dilation. In particular, for x, y E X, with x < y, tf either a(x) > x 
and a(y) < y or a(x) < x and a(y) > y, then there exists z E X, x < z < y, such that 
a(z) = z. 

Proof Suppose a(x) > x and a(y) < y. Since (z: a(z) > z & z < y } is nonempty 
and is bounded by y, the hypothesis that X is Dedekind complete implies that 1.4 = 
1.u.b. {z:a(z)>z&z< y) exists. Suppose a(u) > U, then u< y since a(y) < y. By 
order density, there exists v such that u< u<min[ y, a(u)]. By definition of 1.u.b. 
a(v) < v. But since CI is order preserving, a(u) > a(u) > v, which is a contradictior. 
Next suppose a(u) < U. Since u is a 1.u.b. we know there exists w  with a(w) > w  and 
a(u) < w  < U. Thus a(w) > a(u) and so w  > U, which is contradiction. So u is a fixed 
point of a. The other case is similar. 1 

COROLLARY 1. Suppose X is order dense and Dedekind complete, Y is a subgroup 
of &‘, and 3 E 5. Zf a, p E F, then a and /? are uncrossed and ?I is l-point unique. 

Proof. Suppose a, p E 93 are such that a(x) > /3(x) and a(y)</?(y). So x> 
cc-‘/?(x) and y<a-’ /I(y). By the Theorem aa’fl h as a fixed point which, since a -‘fi 
is not the identity, is imposible because 93 c F. Thus, a and j are uncrossed. By the 
Corollary to Theorem 2.1, $9 is l-point unique. 1 

COROLLARY 2. Suppose X is order dense, Dedekind complete, and N-point uni- 
que. Zf a E 9, then for some a E X, a E gU, and either a(x) >x for all x>a or 
a(x) < x for all x > a. 

Proof: Since X is N-point unique, any a # I has at most N - 1 fixed points, so 
there is a largest, a, in which case a E gU. Suppose, for some x, y >a we have 
a(x) > x and a(y) < y. By the proof of the theorem there is a fixed point between x 
and y, which contradicts that a is the largest fixed point. 1 

THEOREM 2.5. Suppose X is order dense, Dedekind complete, and N-point unique. 
Then each dilation is Archimedean in d iff for each a E -01, a > ’ I, and fl E 9, fi > ’ I, 
the set of fixed points of {/3”aa’: n an integer} is bounded from above. 

Proof: Suppose /3 E 9, B >’ 1, is Archimedean. So for CI E ~4, there is some 
integer n such that /?” > ’ a, i.e., fi”a -’ >’ z. Since X is N-point unique, /Ina- ’ has 
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either no fixed point or a maximal one. Let a denote the maximum of the fixed 
points of /I and /3”a-l, then for x> a, p”cr-‘(x) > x. Thus, for any m > n, 

P”a -l(x) = /?“-“/?“a-‘(x) > b”-“(x) > x, 

and so all have their maximum fixed point 5~. Since there are only n - 1 other 
fi’a-‘, i= l,..., n - 1, each having a maximal fixed point or none, the set of all 
maximal fixed points is bounded from above. 

Conversely, suppose the set of fixed points is bounded from above and that B is 
not Archimedean. This means that for some aEd, a 2’ /?” holds for all n, so 
i 2’ pna-‘. Select b to be upper bound on the fixed points of { b”a- ’ }. Thus, for all 
n and all y> 6, fina-’ 5 y, and so for all x>a = a-‘(b), /l”(x) 5 a(x), i.e., a(x) 
bounds {b”(x): n an integer}. By Dedekind completeness, for each x > a there is a 
1.u.b u(x). Since /I >’ 1, flu(x) 2 U(X) for all x>a. Suppose fiu(x) >u(x), then for 
each n we have j?u(x)>u(x) k /I”(x), and so taking /F’, u(x)>B-‘U(X) 2 
b”-‘(x), showing that PM’U(X) is a smaller bound than u(x), contrary to choice. 
Thus, U(X) is a fixed point of /I, and so by N-point uniqueness /I = 1, contrary to 
choice. 1 

Part (ii) of the following result is due to Alper (1984); otherwise it appears to be 
new although closely related to the previous work. 

THEOREM 2.6. Suppose 3 is order dense and Dedekind complete structure, J$ is 
N-point unique, and each dilution is Archimedean. Then the following are true: 

(i) Either (&, 2’) is an Archimedean ordered group under function com- 
position or there exists a unique, nontrivial, convex group 93 such that Y c F and 
(9, 2’ ) is Archimedeun ordered. 

(ii) Zf the group Y of part (i) exists, then the commutator group %’ c Y. 

(iii) If& is 2-point unique and F is a group, then F is convex. 

Proof. (i) Suppose Y and 2 are nontrivial, convex, proper subgroups of J$ 
with Y # 2, then with no loss of generality there exists aE% - 9 with a >’ E. 
Since Y is nontrivial, select j? E 9 with /I >’ 1. Observe that for every integer n, 
a >’ /I” since otherwise 

/?,>‘a >‘i >‘a-l, 

and by the convexity of B, ac9 contrary to choice. By Theorem 2.3(ii), X E 9, 
and so by Corollary 1 to Theorem 2.4, a and /I” are uncrossed. Thus, for each x E X, 
a(x) > B”(x). So u(x) = l.u.b.{/Y( x : n an integer} exists. Suppose /Iu(x) > u(x), then ) 
since U(X) 2 j?“(x) we see by taking D-r that u(x) > /Flu(x) 2 p”-‘(x). Thus, fl- ‘U 
is a smaller bound than u, contrary to choice. So U(X) is a fixed point of p, which by 
N-point uniqueness means /? = I, contrary to choice. So 2 E 9. Similarly, Y c YF, 
whence 9 = X. 

If & = 9, then by hypothesis it is Archimedean ordered. So, suppose 9 is non- 
trivial and r E F-, r > ’ z. Let 4 be the group defined in Theorem 2.1. By 



ORDERED RELATIONAL STRUCTURES 399 

Theorems 2.l(ii) and 2.3(ii), CC?= is nontrivial and convex and either %* = d or 
%* E Y. Suppose, first, that for all z E Y-, r >’ z, 4 = d. Then by the definition of 
these groups and by the hypothesis that dilations are Archimedean, (&, 2’) is 
Archimedean ordered. So assume at least one, call it Y, is a subgroup of Y. It is, as 
we have shown, unique. Using the same 1.u.b. argument as above, we see (9, 2’) 
is Archimedean ordered. 

(ii) Suppose a, /I E &. If Y = &‘, the result is trivial. Suppose otherwise, then 
by what we have shown in part (i), we know c?? is convex and by its uniqueness, just 
shown, no other convex group lies properly between Y and &. Thus, according to 
Fuchs (1966, p. 50) z&‘/g = (c&R 01 E LZ?} with the group operation defined by 
(c@)(lJg) = clpY is isomorphic to a subgroup of the additive real numbers. Thus it 
is commutative and so a~$!? = /I&J. Therefore, 

= (a-‘p-‘ab) Y. 

and so ap’D-‘a/?E%, whence %:E%. 
(iii) Assume TEY, r >’ I, 5 is a group, and aE93, a >’ 1. We show that 

a >’ t, which proves F is convex. Suppose, on the contrary, r 2’ a. By 
Theorem 2.1(i), a and r agree at some point a and, by 2-point uniqueness, only at a. 
Thus, from Theorem 2.4 and the definition of k’, we see that for x > a, a(x) < z(x), 
and for x < a, a(x) > T(X) > x, for otherwise there would be a fixed point different 
from a. Since a and r ~ ’ intersect at some point b and t - ‘(x) < x for all x, it follows 
that b > a. Thus by Theorem 2.4, for some c, a < c < 6, a(c) = c. Since a >’ 1, for 
some d> b and all x> d, a(x)>x. Thus, by Theorem 2.4, there is some e with 
b < e < d such that a(e) = e. By 2-point uniqueness, a = 1, contrary to assumption. 
So F is convex. 1 

Theorem 2.6 is useful only to the extent that one can understand structurally 
when the dilations are all Archimedean. As we have seen in Theorem 2.5, this is 
equivalent to an upper bound on the fixed points of {/?“a- ’ }, but I have been 
unable to find structural conditions that insure this property. Once that is 
understood, it will become reasonably clear when finite uniqueness really means 
Nd 2. As Alper (1984) has shown, a sufficient condition is homogeneity. I do not 
know of a weaker condition, but almost certainly some exist. 

In the language introduced by Narens (1981b), the facts that 3~ Y and Y is 
convex (part (i)) mean that the elements of B are infinitesimal relative to each 
dilation, i.e., if a E 9, a > ’ I, and T E 9, z > ’ z, then for each integer n, a > ’ T”. For, 
if not, then ae9 and so is a translation, contrary to choice. 
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3. HOMOGENEITY IN ORDER DENSE, DEDEKIND COMPLETE STRUCTURES 

3.1. Homogeneity in General Structures 

The next result describes a sufficient condition for homogeneity in order dense, 
Dedekind complete structures. We will use this result later in studying idempotent, 
concatenation structures. 

THEOREM 3.1. Suppose !Z is order dense and Dedekind complete, and suppose Y is 
a subgroup of d for which $9 E 9. If (9, 2’) is Dedekind complete and 9 is dense 
in %, then LE is homogeneous. 

Proof Since by Corollary 1 to Theorem 2.4, 9I is uncrossed, 2’ is a total order 
on 3. Suppose x, y E X. Define 

a= {r:rE9?andr(x)kIJ} 

$3’ = {T: z E $9 and r(x) < y}. 

If x < y, then by the density of Y in X, there exists z’ E 3 such that .X < T’(X) < y. 
So z <’ r’. For some integer n, y < r’“(x), for otherwise by Dedekind completeness 
t’ has a fixed point, contrary to the assumption that 3 G 5. So L%? and 93’ are both 
nonempty. The argument is similar for x> y. Since (3, 2’) is Dedekind complete, 
there is a cut element 6. Suppose 6(x) > y, then by the density of Y in d, there is 
c( E Y such that G(x)>cr[G(x)] > y. Since 2’ is a total order, 6 >’ ~6, which 
together with a6 ~9 contradicts the choice of 6 as the cut element. A similar 
argument shows 6(x)< y is impossible. So 6(.x) = v, proving that 3 is 
homogeneous. 1 

3.2. Homogeneity in N-point Unique Structures 

We now turn to results that depend upon N-point uniqueness as well as 
homogeneity. 

THEOREM 3.2. Suppose X is such that & is N-point unique and ‘9 is an 
Archimedean ordered subgroup of automorphisms that is homogeneous. Then, 

(i) 9 G F and so ‘9 is l-point unique. 

(ii) With 2 defined as in Theorem 2.2, the following are equivalent: 

(a) Z=%, 
(b) %‘E$, 
(c) J? is l-point unique. 

Proof (i) By Theorem 2.2(i) we know that either $9 G 9 or 9 c Y. Suppose the 
former, and let a be a fixed point of some a E 3. Consider any /I E 9 and suppose b 
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is one of its fixed points. By the homogeneity of 3, there exists ye% such that 
y(a) = 6. Since 3 is commutative, 

~$(a) = Ma) = P(b) = b = r(a), 

so by applying y - ’ we see a is a fixed point of /I, which means that $9 cannot be 
homogeneous, contrary to assumption. So 9 E Y. By the Corollary to Theorem 2.1, 
Y is l-point unique. 

(ii)(a) implies (b) by part (i). 
(ii)(b) implies (c) by the corollary to Theorem 2.1. 

(ii)(c) implies (a). Suppose c1 E Z and x E X. By the homogeneity of 3, there is 
/I E 9 such that p(x) = a(x). Since by Theorem 2.2(iii), ‘3 c %, and Z is l-point 
unique, we can conclude a =/I, and so a E 3. So 2 = 9. 1 

For the following result, recall 9 is the set of dilations and V is the commutator 
group. 

THEOREM 3.3. Suppose 3 is order dense and Dedekind complete and JTZ is 
homogeneous and N-point unique. If 9 is nontrivial, then 

(i ) 9 is homogeneous, and 

(ii) % is homogeneous and noncyclic. 

Proof (i ) Let x, y E A’. The proof is given for x > y; a similar one follows for 
x < y. First, we show that there is a dilation a at x such that for all u > x, a(u) # u. 
Let 6 be a nontrivial dilation with a maximal fixed point at, say, z. Such exists 
because, by hypothesis, there is a nontrivial dilation, and if it had no maximal fixed 
point, then by N-point uniqueness it would in fact be the identity. By homogeneity, 
there is /I E & such that /I(z) = x. Let a = /IS/V’. Then 

a(x) = gsp-‘(x) =/M(z) = B(z) =x, 

and for u>x, a(u)#u since, otherwise, SgP’(u)=p-‘(u) and pP’(u)>~-‘(x)=z, 
which violates the choice of z as the maximal fixed point of 6. 

Next, for any w>x, we show there is a dilation j3 at x with /3(y)> w. We know 
there exists a dilation a at x such that for all u > x, a(u) # U. By Theorem 2.4 and 
using either a or a- I, there is no loss of generality in assuming a(u) > u. So we 
know, u < a(u) < a2(u) < . . . If this sequence were bounded, then by the fact the 
structure is Dedekind complete, there will be a fixed point of a greater than x, con- 
trary to choice. Thus, for some n, p = a” has the asserted property. 

Now we show there is a E 9 such that a(x) = y. By l-point homogeneity, there 
exists BE& such that /I(x)= y. If /I is a dilation, we are done. Otherwise, BET, 
and since y > x, it follows from Theorem 2.4 that B(U) > u for all U. Select z > j( y) 
and let y be a dilation at x with y(y) > -?. So y-‘(z) < y. Consider a = By -I. 
Observe that a(x) = /?y-‘(x) = b(x) = y. To show that a is a dilation, observe that 

4130’30/4-5 
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o~(z)=/?y~‘(z)</I(y)<z and a(x)=y>x, so by Theorem2.4, it must be a 
dilation. 

(ii) By part (i), since 9 is nontrivial, it is homogeneous. So for x, y E X, there 
exists /I E 58 such that /I(x) = y. Let z be a fixed point of /I, then there exists 01 E d 
such that OI( y) = z. Thus 

a-‘flp’a/?(x) = a-‘fi- ‘a(y)=a-lfi-l(z)=a~‘(z)=y, 

which establishes that 55’ is homogeneous. 
If % were cyclic, then each of its elements would be of the form rn for some fixed 

r E$?. But since an order dense, Dedekind complete structure has uncountably 
many elements and {V(x)} is countable, G$ cannot be homogeneous, contrary to 
what has just be shown. So % is not cyclic. [ 

COROLLARY. Suppose !I is order dense and Dedekind complete, d is 
homogeneous and N-point unique, and 9 is nontrivial and each of its members is 
Archimedean. Then V is the unique, proper, convex, Archimedean ordered subgroup of 
d. 

Proof By Theorem 2.6(i) and (ii) and Theorem 3.2 there exists a unique, 
proper, convex, Archimedean ordered subgroup Y such that %?z9 SF-. Suppose 
y E 9 -% and XE X. By the present theorem, %’ is homogeneous, so there exists 
r E ‘%? such that z(x) = y(x). By Corollary 1 to Theorem 2.4, r = y, contradicting the 
choice of y. So G?? = 9. 1 

3.3. Generalized Unit Structures 

The following theorem, which was suggested to me by Louis Narens, generalizes 
the result that homogeneous positive concatenation structures have representations 
as unit structures (Cohen & Narens, 1979, Theorem 3.3). A unit structure, it will be 
recalled, is simply a positive concatenation structure defined on Re+ for which the 
operation 0 is homogeneous in the usual sense of functions, i.e., for all r, s, t E Re +, 
rso rt = r(so t). We may generalize this concept as follows: Let R E Re+ be closed 
under multiplication. A relation Ri of order n on R is said to be homogeneous iff for 
every ri, s E R, i= l,..., n, 

(r I,-., r,,) E Rj iff (srl ,..., sr,) E Rj. 

THEOREM 3.4. Suppose X is such that d includes a homogeneous subgroup oj 
translations that is Archimedean ordered under 2’. Then there exists a homogeneous 
relational structure in Re+, B, such that 3 is isomorphic to $2. 

Proof Let 3’ = (9, k’, *), where * denotes function composition, be the 
Archimedean ordered, homogeneous subgroup of Y. We first imbed 5?” 
isomorphically in (9, 2’). Let n(j) = order(Si). For aiE9, i= l,..., n(j), and for a 
fixed x E X, define S; on Y by 

(a , ,..., a,(j)) E si3 iff (al(x),..., a,(jj(X))E Sj. 
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Note that the definition of Sj is independent of the choice of x. For suppose we had 
chosen YE X, then by the fact that ‘3 is homogeneous we know there exists PE 22 
such that y=/?(x). Using this, the fact that fi is an automorphism and so is 
invariant under the defining relations S,, and the fact that by Holder’s theorem 
elements of 9 commute we have 

(a*(x)9.*.~ an(j)(x)) E sj iff (B~I(X)Y...T Ban(j)(x)) E sj 

iff (al B(X),..., an(j)B(x)) E sj 

iff (al(Yk~~9 an(j)(Y))E sj. 

For fixed x, define the function F from 9 into X by: for each c( E Y, 

F(a) = a(x). 

It is onto X because Y is homogeneous, and it is 1 : 1 because B is l-point unique. 
We show that the elements of B are uncrossed. For suppose otherwise and there 
exist y E 9 and x, y E X such that y(x) > x and y(y) < y. By the homogeneity of 9, 
there exists c E Y such that a(x) = y. Since $9 is Archimedean ordered, its elements 
commute and so, 

which is impossible. Thus, 

a2’P iff a(x) 2 p(x) iff F(a) 2 F(B). 

Finally, 

(a 1 ,..., a,(,,) E sj iff (a,(x),..., a,,,,(x)) E sj 

iff (I;(al h..., F(a,(i,)) E sj. 

Thus, F is the isomorphism asserted. 
Let cp denote the isomorphism between 9’ and (R, 2, ), R c Re+ (Holder’s 

theorem). Define the relation Rj of order n(j) on R by: for rie R, i= l,..., n(j), 

(r, ,...> rn(,J E Ri iff (v’tr,),..., v’(r,,,,))~S/). 

It is easy to verify that (9, k’, Sj )i, J and (R, 2, Riji, J are isomorphic. We show 
that R, is homogeneous by using the fact that cp maps function composition onto 
multiplication and the fact that automorphisms are invariant under S;, 

(r J 3-9 m(j)) E Rj iff (cp-‘(rl),..., q-l(r,(j)))ESi 

iff (Wl(S) * VW-,),..., V’(s) * cP-‘(r,(,j))ESj, 

iff (cp-‘(sr,),..., qV’(srncj,)) E Sj 

iff (sr, ,..., sr,cjJ E Rj. 1 
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4. HOMOGENEITY OF CLOSED, IDEMPOTENT, SOLVABLE, 
DEDEKIND COMPLETE CONCATENATION STRUCTURES 

4.1. Preliminary Results 

DEFINITION 4.1. Suppose X is a concatenation structure. The operation is said 
to be lower (upper) semicontinuous iff for each x, y, z E X for which x o y is defined 
and z < x 0 y (z > x 0 y) there exists x’, y’ E X such that x’ < x, y’ < y, and z < x’ 0 y’ 
(x’>x, y'> y, z>x’o y’). 

The first result, which was pointed out to me by Michael A. Cohen, establishes a 
useful sufficient condition for semicontinuity. 

LEMMA 4.1. Suppose 3 is a concatenation structure that is closed, solvable, order 
dense, and Dedekind complete. Then upper and lower semicontinuity hold. 

Proof. As the two halves are similar, we show only lower semicontinuity. Sup- 
pose z < x 0 y. By order density, there exists u such that z < u < x o y. By order den- 
sity and Dedekind completeness, we can find an increasing sequence {xi> such that 
for every i, xi< x and 1.u.b. {xi) = x. For each i, let y, solve u = x, 0 yj and let y* 
solve u = x 0 y*. Since u < x 0 y, y* < y. Observe that { yi} is necessarily a decreas- 
ing sequence with g.1.b y*. So, for sufficiently large i, y* < y,< y. And so x, 0 yi 
fulfills the condition since by construction and choice, xi< x, y,< y, and 
z<u=xio Yj<XO y. 1 

THEOREM 4.1. Suppose S is a concatenation structure that is closed, idempotent, 
solvable, and Dedekind complete, and Y is a maximal group included in F. Then 
(9, 2’) is Dedekind complete. 

ProoJ: Let r be a bounded subset of $9. Since by Corollary 1 to Theorem 2.4, 
2 is a total ordering, the bound of f yields a bound of {a(x): GI E r} for each 
XE X. So, p(x) = l.u.b.{a(x) c1 E r} is defined. We show that ~1 is in Y. 

(1) ~(x 0 y) = p(x) 0 p(y). Suppose not. If ~(x 0 y) > p(x) 0 p(y), then since p is 
a l.u.b., there exists a E r such that 

which is impossible. Suppose the other inequality. By the fact that idempotence 
implies order density, Lemma 4.1 shows that lower semicontinuity holds. So there 
exist x’, y’ E A such that x’ < p(x), y’ < p(y), and ~(x 0 y) < x’ 0 y’. Thus, there exist 
a, j? E r with x’ < a(x) 5 a(x) 5 p(x) and y’ < j?(y) 5 p(y). But by Corollary 1 to 
Theorem 2.4, 59 is ordered, so select the larger of a and fl, say a, then we have 

which is impossible since ~(xo y) 2 a(xo y). 
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(2) p is order preserving. Suppose, on the contrary x > y and p(x) = ,u( y). By 
solvability, there exists a nontrivial standard difference sequence {zi} such that 
zi o y = zi+ , OX. By part 1 and monotonicity, p(zi) = p(zi+ 1). Let u denote this com- 
mon value. By the choice of r there exists some r E c?? such that T 2’ a for all CY E r, 
i.e, r(x) 2 U(X) is true independent of X. Thus, ~(2~) k ~(2~) = U. But since F is 
Archimedean (Lute & Narens, 1985, Theorem 2.1) and r is an automorphism, it 
follows that r(x) 2 u for all x E X. Because ?Z” is solvable, there is no minimal 
element, which means t is not onto, contradicting the assumption it is in Y. So p 
must be order preserving. 

(3) p is onto X. Suppose y E X and LX E r. Because a is onto, there exists x, E X 
such that c((x,) = y. Since f z F, the elements of f are ordered and, moreover, 
they are uncrossed. Thus, if a >’ /?, then since /I(xg) = y = c((x,) > B(x,) we see by 
the fact /? is order preserving, xB > x,. Since f is bounded, let y be an upper bound, 
and so {x, : c1 E r} is bounded from below by x;.. Let .Y be the g.1.b. Since x, 2 x, we 
see that y = CL(X,) 2 U(X). Thus, y is an upper bound of (U(X): GLE r), and so 
y 2 p(x). Suppose y>p(x). By idempotence and monotonicity, the structure is 
intern and so y Ok > p(x). By lower semicontinuity (Lemma 4.1 and the fact a 
closed intern structure is order dense), there exist U, u E X such that u < y, u < p(x) 
and u 0 u > p(x). So we may select tl E f such that u < U(X) < y and vi a(x) < p(x), 
whence 

a(x) = a(x) 0 a(x) > 24 0 u > p(x), 

which is a contradiction. So p(x) = y, proving p is onto. 
Thus, p is an automorphism. We next show that it is in 5. Suppose for some 

x E X, ,u(x) = x. If p # I, then for some y # x, p(y) # y. Suppose p(y) > y, then for 
some c( E IY a(y) > y. By the fact that F? is uncrossed, M(X) > X, and so p(x) 2 
LX(X) > x, contrary to assumption. So p( ~1) < y. Since IJt̂  is solvable, there exists ; E X 
such that x = yc z and p(z) 5 z. So, by the fact p is an automorphism and using 
monotonicity, 

which is a contradiction, So ,u E 5. 
Suppose p, p’ are, respectively, completions of r, r c 9. We show ,up’ is a com- 

pletion. Observe, 

Suppose the inequality holds, then for some /I E r and 8’ E r’, 

which is a contradiction. Thus, & is the 1.u.b. of TX f’, and so it is in 3’. 
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Next we show that if p is the completion of a bounded subset r of 9, then there 
is a bounded subset r’ of 3 such that p -’ is the completion of r. Let 

Since r has an upper bound y, then y -’ E r’. Moreover, r’ is bounded by construc- 
tion. Let p’ be the completion of r’. Suppose p - ’ > ’ p’, then for each a E r, 
a - ’ > ’ p’-’ > ’ $, and so p - ’ E r, which contradicts that $ is its 1.u.b. Suppose 
P -’ <‘p’, then p >‘p’-‘, and so there exists aEI’such that p >‘a >‘p’-‘. Thus, 
jd >’ a-‘, contrary to choice. 

So we have shown that the set of all completions forms a group lying between 4e 
and Y. Since Y is a maximal group included in Y’, it follows that (9, 2’) is 
Dedekind complete. 1 

Combining Theorems 3.1 and 4.1, we see that a sufficient condition for 
homogeneity in the closed, idempotent, solvable, Dedekind complete concatenation 
structure is the existence of a maximal subgroup of 5 that is dense in d. This fact 
is used in the proof of Theorem 4.3. 

4.2. Criteria for Homogeneity 

The first criterion for homogeneity is quite indirect. The second is more direct. 

THEOREM 4.2. Suppose X is a concatenation structure that is closed, idempotent, 
solvable relative to some x E X, Dedekind complete, and N-point unique for some 
integer N. Then X is homogeneous and solvable relative to each x E X iff all of the 
induced total concatenation structures (see Theorem 5.2 of Lute 8~ Narens, 1985) are 
isomorphic. 

Proof. Suppose, first, that X is solvable relative to x and is homogeneous, and 
let y E X. By homogeneity there is an automorphism a such that a(x) = y. For any 
-E X, let w  solve w  0 x = a-‘(z), then i 

z=aa-‘(z)=a(wox)=a(w)oa(x)=a(w)oy, 

showing that a(w) is the solution relative to y. By Alper’s (1984) theorem, the trans- 
lations of X form a homogeneous subgroup. Thus, by Theorem 5.2 of Lute and 
Narens (1985) all of the induced total concatenation structures are isomorphic. The 
converse is immediate from the same theorem. [ 

DEFINITION 4.2. Suppose X is a closed concatenation structure. For x, y E X 
and n an integer, define 

0(x, y,n)= 
1 
x”y 

if n=l 

w, Y, n- 1)o.Y if n>l. 
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THEOREM 4.3. Suppose 5? is a concatenation structure that is closed, idempotent, 
solvable, and Dedekind complete. Then LX? is homogeneous iff 5 is a group and there 
exists some z E F, z # z, such that for each integer n, e(z, I, n), tI(z -I, I, n) E Y. 

Proof: Necessity. By Theorems 2.1 and 5.1 of Lute and Narens (1985), !Z is 
isomorphic to a real representation and is 2-point unique, and by unboundedness 
(due to solvability) and Dedekind completeness of !E the representation may be 
chosen to be onto Re+. By Alper’s theorem, F is a group. 

Since X is homogeneous, then Theorems 3.9, 3.12, and 3.13 of Lute and Narens 
(1985) show it has a unit representation B = (Ret, 2, 0, f). With no loss of 
generality, we assume S = 9. Choose any z E F with z > 1; hence for some c > 1, 
z(x) = cx. Let z’ = t 0 I, and observe that 

T’(X) = T(X) ox = Xf[T(X)/X] = xf(cx/x) = xf(c) = c’x, 

and so z’ is also a similarity (translation) with c’ =f(c) >f( 1) = 1. By induction, 
e(z, z, n) E F. The other case is similar. 

Sufficiency. We establish this by first establishing two lemmas. 

LEMMA 4.2. Suppose X is a concatenation structure that is closed, idempotent, 
Dedekind complete, and upper (lower) semicontinuous. Then for each x, y, z E X with 
x> z > y, there exists an integer n [m] such that e(x, y, n) < z [Qy, x, m) > z]. 

Proof: Observe that (0(x, y, n): n an integer} is bounded from below by y and 
so, by Dedekind completeness, there is a g.1.b. w. If w  = y we are done, so suppose 
MI > y. Since X is intern, w  > w  0 y > y. By upper semicontinuity, there exists w’ > w  
such that w  > MJ’O y. By the choice of w, there exists an n such that 0(x, y, n) < w’, 
in which case 

e(.x, .v, n + 1) = e(x, y, n) 0 y < W’ 0 y < w, 

which is contrary to the choice of w. So w  = y. The other case is similar. 1 

COROLLARY. Under the conditions of the theorem, the assertion of the lemma 
holds. 

Proof: Lemmas 4.1 and 4.2. 1 

LEMMA 4.3. Under the conditions of the Theorem, if for some 7 E F-, z # 1, and 
each integer n, e(T, z, n), e(r ~ ‘, 1, n) E Y-, then F is dense in X. 

Proof: Suppose x > y. If x > t(y) > y, we are done, so suppose z(y) 2 x > y. 
By the Corollary to Lemma 4.2, there exists an n such that x > e[z( y), y, n] > v, 
which yields half of F being dense in %. The other half, which uses e[r -l(x), x, n], 
is similar. 1 

Continuing the proof of sufficiency, since F is a group by Theorem 4.1, 
(F, 2’) is Dedekind complete and, by Lemma 4.2, F is dense in .F. Thus, by 
Theorem 3.1, &’ is homogeneous. 1 
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To use this result, one must first find a nontrivial translation r of 3, and then 
verify, for each integer n, that e(z, 1, n) and 8(r-‘, I, n) are in ~7. It is easy to see, 
using the unit representation, that if this is true for some z of F-, then it is true for 
every r in 5. So it does not matter which member of 5 one begins with. Note that 
property (ii) of the theorem is a countable set of conditions that closely resembles 
the property of each n-copy operator of a PCS being an automorphism (= tran- 
slation). In fact, the PCS result could be stated as: zo z E F = d and, for each 
positive integer n, 19(r 0 1, 1, n) E F. The major difference in the two results is that in 
the idempotent case we do not have a specified automorphism with which to begin 
the induction. 

The property of Theorem 4.3 is guaranteed when !E is bisymmetric provided that 
ro r is an onto map. This follows since ro I clearly preserves 2 and it is easy to 
show that it preserves 0, 

(T~z)(x~y)=T(x~y)~(x~y) 

= C~(X)~~(Y)lCX~.Y) (t E F) 

= ce)oxl o C$Y)O Yl (bisymmetry) 

=(T~l)(x)~(T~z)(y). 

Thus, z 0 1 is an automorphism. In fact, it is a translation since were it not, then for 
some x, (~0 i)(x) =r(x)~x=x=x~x, so by monotonicity, t(x)=x, contrary to 
choice. 

The major improvement to be desired in Theorem 4.3 is to present explicitly one 
nontrivial translation or to prove that such an explicit formulation is impossible. 
The following argument suggests that a structural characterization of a single trans- 
lation is not possible. As Narens (1981a) has discussed, it can be argued that any 
concept that can be defined in terms of the primitives of a structure must be 
invariant under transformations by the automorphisms of that structure. As he 
pointed out in part 5 of Theorem 3.3 of that paper, a necessary and sufficient con- 
dition for an automorphism to be invariant is that it commute with every 
automorphism. That obtains in the ratio scale case, but not in any others. So it 
seems doubtful if an explicit member of F can be described in general, although, of 
course, it may be easy to do so for particular structures. 

5. EXISTENCE OF DUAL BILINEAR REPRESENTATIONS 

5.1. Background 

Pfanzagl (1959(a), 1959(b)) established the existence of weighted average 
representations for idempotent, bisymmetric concatenation structures % = 
(X, 2, 0 ). Specifically, he proved the existence of a mapping cp from X into the real 
numbers, Re, and a constant c, 0 < c < 1, such that cp is order preserving and 

cp(x0.Y) = v(x) + (1 -cl V(Y). (1) 
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This is an interval or (2,2) scale type. A derivation of the result, which depends 
upon additive conjoint measurement, can be found in Section 6.9 of Krantz et al. 
(1971). 

The interest in such structures stems from the existence of empirical averaging 
operations. Perhaps the one best known in the social sciences is subjective expected 
utility theory, where 0 represents the mixing of two gambles by some chance event, 
and so c can be thought of as a weight (possibly a probability) associated with the 
event. 

Lute and Narens (1983, 1985) have pointed out that this representation is a 
special case of a more general interval scale representation, namely that there exist 
two constants c and d, both in (0, l), such that 

i ccp(x) + (1 - c) V(Y) if x>y, 

cp(xoY)= 1 v(x) if x = y, (2) 

f 4(x) + (1 - 4 V(Y) if x < y. 

They have referred to this as the dual bilinear representation. Note that it too is 
invariant under any affine transformation and so is of scale type (2,2). Moreover, 
as they show, it is the most general representation of a concatenation structure of 
that type onto the real numbers. Also, Lute and Narens (1985) develop from it a 
generalization of subjective expected utility which is not inconsistent with some of 
the empirical phenomena that have been found to be.inconsistent with the classical 
theory. Basically, the underlying qualitative theory invokes only a very limited form 
of rationality; once rationality is extended to more complex gambles, the classical 
theory results. 

A natural question to raise is: under what qualitative conditions does the 
representation of Eq. (2) exist, i.e., what is the generalization of Pfanzagl’s represen- 
tation by Eq. (1). An answer is provided. It may not be regarded as fully satisfac- 
tory because it is formulated in terms of delined operations. In principle, the axioms 
may be translated back into the primitives, but to do so results in a rather messy 
system that would be difficult to understand. The two defined operations are the 
qualitative analogues of the two operations obtained from Eq. (2) by assuming the 
constant c works throughout, as in Eq. (1) and by assuming the constant d works 
throughout. So the one operation, denoted *, coincides with 0 for x 2 y, and 
extends it throughout the domain, and the other, denoted *‘, coincides with 0 for 
x 5 y, and extends that part throughout the domain. As we shall see, these defined 
operations are not as objectionable as they might be since they do not rest on 
entities that are particularly difficult to find. 

5.2. Formulation of the Result 

The basic observation that we use is that the equation 

(UOX)~(uOy)=(t4OU)Ow 
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is independent of ZJ and u in a bisymmetric structure since by bisymmetry and 
monotonicity, 

w=xo y. 

In a dual bisymmetric structure, the same independence follows so long as 
inequalities are maintained to keep everything on one side of the bilinear structure. 
For example, suppose u > x, u > y, u o v > v o y, u > U, and u o u > W, then by Eq. (2), 
we see 

Thus, by canceling the u and u term, we have 

Of course, this is nothing new when x > y, but when x< y it suggests a way to 
extend the operation 0 from x > y to X-C y so that bisymmetry holds for the new 
operation. 

To do so, we must first establish that a suitable w  always exists and then impose 
a condition corresponding to its invariance under the choice of U’S and u’s satisfying 
the necessary inequalities. 

LEMMA 5.1. Suppose 9” is a concatenation structure that is idempotent and 
solvable. For each x, y E X, 

(i) ifx< y, then there exist u, u, w E X such that 

u 2 4 u 2 Y, u 0 x 2 u 0 y, u 0 u 2 U’, (3) 

and 

(U~x)~(U~y)=(U~u)~w; (4) 

(ii) if x > y, then there exist p, q, z E X such that 

P 5 -T 4 5 Y, P”X5cl~Y, P”45Z, (5) 

and 

(P”x)“(qoY)=(Poq)oz. (6) 

Proof: Since the two proofs are similar, only (i) is presented. By the non- 
trivialness of the structure and solvability, select u and u so that u 2 x, u 2 y, and 
u 0 x 2 u 0 y. Define w  as the solution to Eq. (4). It is now sufficient to show the last 
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inequality of Eq. (3). Suppose, on the contrary, u 0 v< w, then using the idem- 
potency and monotonicity of 0, 

u~v=(U~v)~(U~v)~(U~X)~(v~y)=(U~v)~w~(u~V)~(u~v)=u~V, 

a contradiction. 1 

COROLLARY. If Eq. (3) holds, then u 2 v. 

Proof: Since y>x and uox 2 DO y, monotonicity yields u0.x 2 VOX, and so 
u~v. 1 

Thus, we may define * and *’ that partially coincide with 0 as follows: for each x, 
YEX 

XOY if x> y, 

x*y= x 

1 

if x= y, (7) 

W if x < y, where w  is the element of Lemma 5.1, 

1 

z if x > y, where z is the element of Lemma 5.1. 

x*‘y= x if x=y, (8) 

XOY if x< y. 

In order that * and *’ be well-defined operations, it is essential that Eq. (4) 
(Eq. (6)) not depend on the choice of u and v (p and q) so long as Eq. (3) (Eq. (5)) 
is satisfied. This and the needed interness of these operations is captured in the next 
definition. 

DEFINITION 5.1. Suppose 3 is a concatenation structure. Then is said to be 
rejlectable iff for each x, y, w, z E X, 

(i) if x < y and Eqs. (3) and (4) hold for some U, v E X, then Eq. (4) holds for 
all U, v, w  satisfying Eq. (3) and x < w  < y; 

(ii) if x > y and Eqs. (5) and (6) hold for some p, q E X, then Eq. (6) holds for 
all p, q, z satisfying Eq. (5) and x > z > y. 

LEMMA 5.2. Suppose X is a concatenation structure that is idempotent, solvable, 
and reflectable. Then * and *’ defined by Eqs. 7 and 8 are well-defined operations that 
are idempotent, intern, monotonic, and solvable. 

Proof As the two cases are symmetric, it suffices to prove the result for *. By 
reflectableness, * is a well-defined operation that is intern, and by construction it is 
idempotent. 

Next we show that * is monotonic. 
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(i) If x, y 2 z, then x * z = x 0 z and y * z = y 0 z, and the monotonicity of * 
follows from that of 0. 

(ii) If x>z>y, then from the fact that * is intern x*z=x~z>z>y*z. 
The case x < z < y is similar. 

(iii) If z 5 x, y, then select v E X such that v > z, and let u, u’ E X solve u 0 x = 
v 0 z = u’ 0 y. Since z 5 x, y, it follows by monotonicity of 0 that u, u’ < z 5 x, y, and 
by interness of *, u 0 v < x * z and u’ 0 v 4 y * z. Thus, by reflectability, 

(u~x)~(v~z)=(u~v)~(x*z) and (U’ny)O(VOZ)=(z4’Ov)O(y*z). 

Since u 0 x = u’ 0 y, monotonicity yields 

Using the monotonicity of 0 and this relation, we see 

.x 2 y iff U~U’ iff u viu 

0 ‘0 

isinceuox=u’oy) 

iff x * z 2 J’ * 2. 

The other side is similar. 
Finally, we show that * is solvable. Suppose x and z are given, and we search for 

y such that z = x * y. (The existence of the solution y to z = y * x is shown 
similarly.) If x 2 z, then let y solve z = x0 y. Since by monotonicity, x 2 y, we see 
xo y = x * y. So, suppose x < z. Select u to be any element for which u > x and 
UOX>Z. Selectp so that uox>p>z. Let w  solve (u~x)~p=w~z, v solve U~V=MJ, 
and y solve v 0 y = p. Observe, by monotonicity and transitivity 

(UOX)~(v~y)=(u~x)~p=W~z=(U~V)~z, 

and so by reflectability, z = x * y provided the requisite inequalities hold. We have 
u>x and u~v>p=v~y by choice. Since ~‘~,-=(u~.x)~p>z~z=z, we see uov= 
w > z. Finally, we show v 2 y. From v 0 y = p, v 2 y iff v 2 p. Suppose v 4 p, then 

w=uov<uop<(uox)op=woz, 

whence w<z, contrary to what was shown above. 1 

An operation is said to be right autodistributive iff for all x, y, z E X, 

(x~y)~z=(x~z)~(yoz). (9) 

Two operations * and *’ on X are said to satisfy generalized bisymmetry iff for all 
4 v, 4 YEX, 

(u * 0) *’ (x * y) = (24 *’ x) * (v *’ y). (10) 
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THEOREM 5.1. Suppose ?Z” is a (totally ordered) concatenation structure that is 
idempotent, solvable, and Dedekind complete. Then % has a dual bilinear represen- 
tation (Eq. (2)).tff X is reflectable (Definition 5.1), * and *’ defined by Eqs. (7) and 
(8) are each right autodistributive (Eq. (9)), and they satisfy generalized bisymmetry 

t-3. (lo)). 

The rest of the paper is devoted to the proof, one part of which is a result about 
functional equations, to which we turn first. 

5.3. Proof of a Lemma about Functional Equations 

LEMMA 5.3. Suppose that F and G are functions from Re x Re onto Re satisfying 
the following properties: for some strictly increasing function g from Re onto Re with 
g(0) = 0 and g( 1) = 1 and constants c, d E (0, 1 ), and for all u, v, x, y E Re, 

F(x, y)=cx+(l -c) y, (11) 

G(x,y)=g--‘Cdg(x)+(l-d)g(y)l, (12) 

F[G(u, VI, W, .v)l = G[F(u, x1, F(v, y)], (13) 
then g is the identity. 

Proof According to Acztl (1966, p. 317), the general solution to Eq. (13) is of 
the form 

F(x, y) = k-‘[Ah(x) + Bh( y) + C], (14) 

W, Y) = mCAk(x) + My) + Cl, (15) 

where h, k, and m are strictly increasing functions. Since by Eqs. (11) and (12) 
F(x, x)=x= G(x, x), it follows from Eqs. (14) and (15) that 

k(x) = (A + B) h(x) + C, 

m~‘(x)=(A+B)k(x)+C. 

From Eqs. (ll), (14) and (16) 

Ah(x)+Bh(y)+C=kF(x,y) 

=k[cx+(l -c) y] 

(16) 

(17) 

=(A+B)h[cx+(l-c)y]+C. (18) 

By Acztl (1966, p. 67) Eq. (18) implies that h is linear, and by Eqs. (16) and (17), 
so are k and m. From this and Eqs. (12) and (15), 

cdx) + (1 -c) g(y) = gCG(x, Y)I 

= g{mCMx) + WY) + Cl 1, 

from which it follows that g is linear. Since g(0) = 0 and g( 1) = 1, it follows that g is 
the identity. 1 
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5.4. Proof of Theorem 5.1 

By Theorems 2.1 and 5.1 of Lute and Narens (1985), Z has a real representation 
which, because ?Z is unbounded, is onto Re. So, with no loss of generality, we may 
suppose that 0, * and *’ are all real operations. First, suppose 0 has a dual bilinear 
form (see Eq. (2)). Let n be the operation defined by: for all x, y E X, x m y = 
cx + (1 -c) y. We show that * = n . If x > y, they agree by definition. For x < y, 
select u, uinXso that u>x, u>y, and uox>uoy, and so 

(u~x)~(u~y)=(u~u)~(x* y). 

By the dual bilinear form of 0 and keeping the inequalities in mind, we have 

[cu+(l -c)x] c+ [cu+(l -c) y](l -c) 

= [cu+(l -c)u] c+(x* y)(l-c). 

Solving, 

x* y=cx+(l-cc) y=xm y. 

In like manner, 

xM’y=dx+(l-d)y=x*‘y. 

It is trivial to verify that n and n ‘, and hence * and *‘, are bisymmetric and satisfy 
generalized bisymmetry. Right autodistributivity is a special case of bisymmetry. 

Conversely, by Theorem 6.4 of Lute and Narens (1985), under these conditions 
the right autodistributivity of * and *’ imply that they are bisymmetric. So there is 
no loss of generality in assuming * has the representation 

x* y=cx+(l-c) y. (19) 

Since *’ also has a bisymmetric representation, there is a strictly increasing function 
g such that 

x*‘y=g-’ C&(x) + (1 - cl g(Y)19 (20) 

and we may select g(0) = 0 and g( 1) = 1. If we set F(x, y) = x * y and G(x, y) = 
x *’ y and note that the dual bisymmetry of * and *’ is equivalent to Eq. (13) of 
Lemma 5.3 and Eqs. (19) and (20) are equivalent to Eqs. (11) and (12), we con- 
clude that g is the identity. This yields the dual bisymmetric representation because 
of the relation between 0 and *‘. # 

6. CONCLUDING REMARKS 

The following problems need to be solved. First, provide examples to show that 
the hypotheses are really needed for the theorems. Second, characterize the trans- 
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formation groups of automorphisms for general non-homogeneous, but finitely uni- 
que structures. This may only be interesting when some structure is imposed on the 
automorphism group. Third, try to show directly under the assumptions of 
Theorem 3.3, that the dilations are Archimedean and so, by Theorem 2.6, members 
of the commutator subgroup are translations. Fourth, formulate, or prove 
impossible, an explicit definition of a maximal subgroup of translations of an idem- 
potent structure in terms of the primitives. And fifth, formulate representation 
theorems, analogous to those for homogeneous PCS and the (2,2) case, for the 
idempotent (1, 1) and (1,2) cases. 

REFERENCES 

ACZ~L, J. (1966). Lectures on functional equations and their applications. New York: Academic Press. 
ALPER, T. M. (1984). Groups of homeomorphisms of the real line. B.S. Thesis, Cambridge, MA: Harvard 

University. 
ALPER, T. M. (1985). A note on real measurement structure of scale type (m, m + 1). Journal of 

Mathematical Psychology, 29, 73-81. 
BURKENHOUT, F., & HUBAUT, X. (1966). Groupes aflins et projectifs. Bulletin de I’AcadPmie Royale de 

Belgique, Classe des Sciences, 52, 368-38 1. 
COHEN, M. & NARENS, L. (1979). Fundamental unit structures: A theory of ratio scalability. Journal qf 

Mathematical Psychology, 20, 193-232. 
FUCHS, L. (1963). Partially ordered algebraic systems. Reading, MA: Addison-Wesley. 
KRANTZ, D. H., LUCE, R. D., SUPPES, P., & TVERSKY, A. (1971). Foundations of measurement (Vol. 1). 

New York: Academic Press. 
LEVINE, M. V. (1970). Transformations that render curves parallel. Journal of Mathematical Psychology, 

I, 41@443. 
LEVINE, M. V. (1972). Transforming curves into curves with the same shape. Journal of Mathematical 

Psychoiogy, 9 l-16. 
LUCE. R. D. & NARENS, L. (1983). Symmetry, scale types, and generalizations of classical physical 

measurement. Journal of Mathematical Psychology, 21, 44-85. 
LUCE, R. D. & NARENS, L. (1985). Classilication of concatenation measurement structures according to 

scale type. Journal of Mathematical Psychology, 29 l-72. 
NARENS, L. (1981(a)). A general theory of ratio scalability with remarks about the measurement- 

theoretic concept of meaningfulness. Theory and Decision, 13, l-70. 
NARENS, L. (1981(b)). On the scales of measurement. Journal of Mathematical Psychology, 24, 247-275. 
NARENS, L. & LUCE, R. D. (1976). The algebra of measurement. Jounal of Pure and Applied Algebra, 8, 

197-233. 
PFANZAGL, J. (1959(a)). Die axiomatischen Grundlagen einer allgemeinen Theorie des Messens. Schrift. 

Stat. Inst. Univ. Wien, Neue Folge, Nr. 1. Wurzburg: Physica-Verlag. 
PFANZAGL, J. (1959(b)). A general theory of measurement-Applications to utility. Naval Research 

Logistics Quarterly, 6, 283-294. 
TITS, J. (1952(a)). G&&alisations des groupes projecrifs bakes sur leurs proprit+s de transitivitt!. 

Mirmoires de I’Acadtmie Royale de Belgique, Classe des Sciences, Tome XXVII, Fascicule 2. 
TITS, J. (1952(b)). Sur les groupes doublement transitifs continus. Commentarii Mathematicia Helveticic, 

26, 203-224. 

RECEIVED: August 5, 1985 


