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CONSUMPTION AND PORTFOLIO DECISIONS WHEN
EXPECTED RETURNS ARE TIME VARYING*

JOHN Y. CAMPBELL AND LUIS M. VICEIRA

This paper presents an approximate analytical solution to the optimal
consumption and portfolio cboice problem of an infinitely lived investor witb
Epstein-Zin-Weil utility wbo faces a constant risklesa interest rate and a time-
varying equity premium. When the model is calibrated to U. S. stock market data,
it implies that intertemporal hedging motives greatly increase, and may even
double, the average demand for stocks by investors whose risk-aversion coeffi-
cients exceed one. The optimal portfolio policy also involves timing the stock
market. Failure to time or to hedge can cause large welfare losses relative to the
optimal policy. I

I. INTRODUCTION

The choice of an optimal portfolio of assets is a classic problem
in financial economics. In a single-period setting the problem is
well understood, and analytical solutions for optimal portfolio
weights are available in important special cases. When mean-
variance analysis is appropriate, for example, optimal portfolio
weights are known functions of the first and second moments of
asset returns.

In a multiperiod setting the problem is far less tractable.
Explicit solutions for portfolio weights are available in the special
cases where investment opportunities are constant or the investor
has log utility and hence acts myopically; but these cases are
tractable precisely because they reduce to the familiar single-
period problem. Merton [1969, 19711 and Samuelson [1969],
followed more recently by Cox and Huang [1989], have shown that
in general shifting investment opportunities can have important
effects on optimal portfolios for investors with long horizons.
These papers characterize some properties of optimal portfolios,
but do not deliver analytical solutions for portfolio weights as
functions of state variables.

Interest in long-horizon portfolio choice has recently been
stimulated by empirical evidence that the conditions under which
the multiperiod problem reduces to the single-period problem do
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not hold. Expected asset returns seem to vary through time so
that investment opportunities are not constant; the evidence for
predictable variation in the equity premium, the excess return on
stock over Treasury bills, is particularly strong {see Campbell
[19871; Campbell and Shiller [1988a, 1988b]; Fama and French
[1988,1989]; Hodrick [1992]; or the textbook treatment in Camp-
bell, Lo, and MacKinlay [1997, Chapter 7]). Economists research-
ing the equity premium puzzle find that average excess stock
returns are too high to be consistent witb a representative-
investor model in wbich the investor has log utility (see Campbell
[1996]; Ceccbetti, Lam, and Mark [1994]; Cochrane and Hansen
[1992]; Hansen and Jagannathan [1991]; Kocherlakota [1996];
Mehra and Prescott [1985]; or the textbook treatment in Camp-
bell, Lo, and ]VIacKinlay [Chapter 8]).

In response to these empirical findings, several recent papers
have used numerical methods to solve for optimal portfolios in
models with realistic predictability of returns. Investors are
generally assumed to have power utility defined over wealth at a
single terminal date. Different papers choose different investment
horizons and make different assumptions about investors' ability
to rebalance their portfolios. Kandel and Stambaugh [1996]
consider the effects of predictability on the optimal portfolio of a
single-period Bayesian investor who takes account of parameter
uncertainty, while Barberis [1999] extends this work to study the
optimal portfolio of a long-horizon Bayesian investor who rebal-
ances annually or not at all. Brennan, Schwartz, and Lagnado
[1997] consider a long-horizon investor who rebalances fre-
quently, while Balduzzi and Lynch [1997a, 1997b] consider a
long-horizon investor who faces fixed and proportional transac-
tions costs which reduce the frequency of optimal rebalancing.'
The results in these papers, though dependent on the particular
parameter values they assume, illuminate the effects of predictabil-
ity on portfolio choice. Kim and Omberg [1996] work with a
similar framework but, by assuming continuous time and zero
transactions costs, are able to solve the portfolio choice problem
analytically.^

A limitation of these models is that they abstract from the

1. Most of these papers, like o\ir paper, work with a single state variable
driving the equity premium. Only Brennan, Schwartz, and Lagnado [1997]
consider multiple state variables.

2. Kim and Omherg study the choice between a Hskless asset with a constant
return and a risky asset whose expected return follows a continuous-time AH(1)
(Omstein-Uhlenheck) process. They assume that the investor is finitely bved and
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choice of consumption over time. Since the investor is assumed to
value only wealth at a single terminal date, no consumption takes
place before the terminal date, and all portfolio returns are
reinvested until that date. This simplifies the analysis but makes
it hard to apply the results to the realistic problem facing an
investor saving for retirement. In addition, these models cannot
easily be related to the macroeconomic asset pricing literature in
which consumption is used as an indicator of marginal utility.

This paper extends the previous literature in three major
respects. First and most important, we consider a model in which
a long-lived investor chooses consumption as well as an optimal
portfolio, to maximize a utility function defined over consumption
rather than wealth.'̂  Second, we assume that the investor has
Epstein-Zin-Weil preferences [Epstein and Zin 1989; Weil 1989].
This allows us to distinguish the coefficient of relative risk
aversion from the elasticity of intertemporal substitution in
consumption; power utility restricts risk aversion to be the
reciprocal of the elasticity of intertemporal substitution, but in
fact these parameters have very different effects on optimal
consumption and portfolio choice. Third, like Kim and Omberg
[1996] but unlike other previous research, we solve the problem
analytically. This provides economic insights that are hard to get
from numerical solutions, and it enables us to distinguish general
properties of the solution from results that depend on particular
parameter values.

In order to keep our problem analytically tractable, we make
several simplifying assumptions. We assume that there are two
assets: a riskless asset with a constant return, and a risky asset
whose expected return, the single state variable for the problem,
follows a mean-reverting AR(1) process. The assumption that the
riskless return is constant simplifies our analysis and enables us
to isolate the effects of time variation in the equity premium.

We work in discrete time, and assume tbat the investor is able
to rebalance the portfolio every period. Our approximate solution
method becomes more accurate as the period length shrinks; thus.

has HARA utility defined over terminal wealth. They find that the optimal
portfolio weight is linear and the value function is quadratic in the state variable.

3. Since the first version of this paper was circulated, some numerical results
have been obtained for the long-horizon portfolio choice problem with utility
defined over consumption. Balduzzi and Lynch 11997a, 1997bl consider some cases
with endogenous consumption, and Brandt 119991 uses the Generalized Method of
Moments to estimate consuniption and portfolio rules that best satisfy the
intertemporal Euler equation given the stocnastic properties of historical data.
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our model applies to an investor who is able to rebalance
frequently. We also abstract from transactions costs and restric-
tions on borrowing or short sales. We make these assumptions not
only for tractability, but also because we want to focus on the pure
intertemporal effects of return predictability on optimal consump-
tion and portfolio choice for long-horizon investors. Transactions
costs and portfolio restrictions, while interesting in their own
right, may obscure tbese effects.

Finally, we assume that the investor is infinitely lived. In a
model with endogenous consumption every period, Fischer [1983]
notes that "the notion of the horizon loses its crispness. Date T is
still the horizon in the sense that the individual looks no further
ahead than T. But now events that occur at ^ < T matter not only
because they affect the situation at T but also because consump-
tion at t and later depends on the state of the world at time t''
[p. 155]. An infinite horizon is particularly convenient analytically
because the problem becomes one of finding a fixed point rather
than solving backward from a distant terminal date. It may be an
appropriate assumption for investors with bequest motives, as
discussed in the macroeconomic literature on Ricardian equiva-
lence, and it approximates well the situation of investors with
finite but long horizons."*̂

The endogeneity of consumption in our model makes it
impossible for us to follow Kim and Omberg [1996] and derive an
analytical solution that is exact for all parameter values.•'' Instead,
we find an approximation to the portfolio choice problem that can
be solved using the method of undetermined coefficients. We
approximate the Euler equations of the problem using second-
order Taylor expansions, and we replace the investor's intertempo-
ral budget constraint with an approximate constraint that is
linear in log consumption and quadratic in the portfolio weight on
the risky asset. This enables us to find approximate analytical
solutions for consumption and the portfolio weight. Like Kim and

4. Brandt [ 1998] compares his finite-horizon results to ours. For the parame-
ter values he uses, the finite-borizon solution converges quickly to the infinite-
horizon solution and is very similar by the time the finite horizon reaches twenty
years.

5. The lack of an exact analytical solution is not due to the fact that we work
in discrete time. Schroder and Skiadas [1998] use stochastic differential utility, a
continuous-time version of Epstein-Zin-Weil preferences due to DufEe and Epstein
[19921, and show that it is possihle to characterize the solution in terms of
quasi-linear paraholic partial differential equations—which are relatively easy to
solve numerically —but an exact closed-form solution exists only in the same
special cases as in discrete time. i -
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Omberg [19961 we find that the optimal portfolio weight is linear
in the state variable, while the log consumption-wealth ratio and
the log value function are quadratic in the state variahle.

The approximate solution holds exactly in some special, hut
important, cases noted hy Giovannini and Weil [1989J. In all other
cases its accuracy is an empirical issue. Camphell, Cocco, Gomes,
Maenhout, and Viceira 119981 compare the approximate analytical
solution to a discrete-state numerical solution, and find that the
two are very similar except at the upper extreme of the state
space. We briefly summarize these findings in suhsection IV.6 of
this paper.

Our solution method uses the intertemporal Euler equation
as its starting point. In this sense, it belongs to the class of
stochastic dynamic programming methods. Cox and Huang [19891
have proposed an alternative solution method which transforms
an intertemporal optimization prohlem with complete markets
into an equivalent static optimization prohlem that can he solved
using standard Lagrangian theory. He and Pearson [19911 have
extended the Cox-Huang approach to settings with incomplete
markets. In a related paper [Camphell and Viceira 1998] we
formulate a problem of optimal consumption and portfolio choice
with time-varying interest rates, constant risk premiums, and
complete markets, and we explore the relation between the
log-linear approximate solution method and the Cox-Huang
approach.

Our paper builds on the work of Campbell [19931. Campbell
considers the simpler prohlem where only one asset is availahle
for investment and so the agent need only choose consumption. He
shows that this problem hecomes tractable if one replaces the
intertemporal hudget constraint hy a log-linear approximate
constraint. He uses the solution in a representative-agent model
to characterize the equilihrium prices of other assets that are in
zero net supply, in the spirit of Merton's [1973] intertemporal
CAPM. Campbell [19961 estimates the parameters ofthe model
from U. S. asset market data, while Camphell and Koo [1997]
evaluate the accuracy of the approximate analytical solution hy
comparing it with a discrete-state numerical solution.

The organization of the paper is as follows. Section II states
the prohlem we would like to solve, while Section III explains our
approximate solution method. Section IV calihrates the model to
postwar quarterly U. S. stock market data and briefly discusses
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the accuracy ofthe approximate solution. Section V calculates the
utihty cost of suboptimal portfolio choice, and Section VI concludes.

II. THE INTERTEMPORAL CONSUMPTION AND
PORTFOLIO CHOICE PROBLEM

n.l. Assumptions
We consider a partial-equilibrium prohlem in which:
(Al). Wealth consists of two tradahle assets. Asset 1 is risky,

with one-period log (continuously compounded) return
given by r i , . i; asset f is riskless, with constant log
return given hy rf. Therefore, the one-period return on
wealth from time t to time t + Us

(1) Rp^i^i = a,{R,,^i - Rf) + Rf,

where 7?i.,+] = exp |ri,(+.il, Rf = exp \rf\, and the portfolio
weight a, is the proportion of total wealth invested in
the risky asset at time t.

(A2). The expected excess log return on the risky asset is
state-dependent. There is one state variahle Xt, such
that

(2)

The state variahle follows an AR(1):

(3) Xt+i = fi + i\>ixt - /i) + Ti(+i,

where Tn,+i is a conditionally homoskedastic, normally
distributed white noise error; that is, y]t,.i ~N(O,a-^).

(A3). The unexpected log return on the risky asset, denoted
hy W( + ], is also conditionally homoskedastic and nor-
mally distrihuted. It is correlated with innovations in
the state variahle,

(4) ^

(5) , ^

(A4). The investor's preferences are descrihed hy the recur-
sive utility proposed hy Epstein and Zin [1989] and
Weil[19891:

(6) U{CtMtUt,x) = 1(1 -

where 8 < 1 is the discount factor, 7 > 0 is the coefficient
of relative risk aversion, ijf > 0 is the elasticity of
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intertemporal substitution, and the parameter 6 is
deflned as 6 = (1 - •y)/(l - >^~^). It is easy to see that (6)
reduces to the standard time-separahle, power utility
function with relative risk aversion 7 when i[r = 7 ^ In
this case 0 = 1, and the nonlinear recursion (6) becomes
linear.

(A5). The investor is infinitely lived.
Assumptions (Al) and (A2) on the number of risky assets and

state variables are simplifying assumptions, which we adopt for
expositional purposes. The approach of this paper can be applied
to a more general setting with multiple risky assets and state
variahles, at the cost of greater complexity in the analytical
solutions to the prohlem. Assumption (A3) is also a simpliflcation
that can he relaxed in order to study the effects of conditional
heteroskedasticity on portfolio choice. Assumption (A4) on prefer-
ences allows us to separate the effects on optimal consumption
and portfolio decisions ofthe investor's attitude toward risk from
the investor's attitude toward consumption smoothing over time.
Finally, assumption (A5) allows us to ignore the effects of a flnite
horizon on portfolio choice, hut this assumption too can he relaxed
in future work.

IL2. Euler Equations and the Value Function

The individual chooses consumption and portfolio policies
that maximize (6) suhject to the budget constraint,

(7) W,,j =

where W, is total wealth at the beginning of time t and i?p,,+1 is the
return on wealth (1).

Epstein and Zin [1989, 1991] have shown that with this form
for the budget constraint, the optima] portfo]io and consumption
policies must satisfy the following Euler equation for any asset i:

(8) 1 = E, c,
c,

Rpj+l

Equation (8) holds regardless of how many tradable assets are
available. In our simple model, i denotes the riskless asset, the
single risky asset, or the investor's portfolio p. When i = p, (8)
reduces to

(9) 1 = E, 8 1 ^ R*-p.t+i
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Dividing (6) by W, and using the budget constraint, we ohtain
the following expression for utility per unit of wealth:

(10) (1-8)
1/(1-*)

where V, = Ut/Wt. Epstein and Zin [1989, 1991] show that the
value function per unit of wealth can he written as a power
function of (1 — 5) and the consumption-wealth ratio:

(U)

Two special cases are worth noting. First, as ijf approaches one, the
exponents in (11) increase without limit. The value function has a
flnite limit, however, hecause the ratio C,/Wi approaches ( 1 - 6 )
[Giovannini and Weil 1989]. We consider this case in more detail
in subsection III.5. Second, as t|) approaches zero, V, approaches
CtfW,. A consumer who is extremely reluctant to substitute
intertemporally consumes the annuity value of wealth each
period, and this consumer's utility per dollar is the annuity value
ofthe dollar.

III. APPROXIMATE SOLUTION METHOD

Our proposed solution method builds on the log-linear approxi-
mations to the Euler equation and the intertemporal hudget
constraint proposed hy Campbell [1993]. By combining the approxi-
mations to these equations, we can characterize the properties of
at, the optimal allocation to the risky asset. We then guess a form
for the optimal consumption and portfolio policies; we show that
policies of this form satisfy the approximate Euler equation and
hudget constraint; and flnally we show that the parameters ofthe
policies can be identified from the primitive parameters of the
model.

IILl. Log Euler Equations

The first step in our proposed solution method is to log-
linearize the Euler equation (9) to ohtain

e
0 = e log 8 - - + + - var, '>,(+!

where lowercase letters denote variahles in logs and A is the
flrst-difference operator. This expression holds exactly if consump-
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tion growth and the return on wealth have a joint conditional
lognormal distribution. In our model the return on wealth is
conditionally lognormal, because the portfolio weight is known in
advance and so the return on wealth inherits the assumed
lognormality of the return on the risky asset. Consumption
growth, however, is endogenous in our model, and so we cannot
assume at the outset that it is conditionally lognormally distrib-
uted. In fact, our approximate solution implies that consumption
growth is not conditionally lognormal unless the elasticity of
intertemporal suhstitution, i}*, is one or the expected return on the
risky asset is constant. When these conditions do not hold, we
must derive the log Euler equation using both a second-order
Taylor approximation around the conditional mean of\ri,[,i,Ac ,+il
and the approximation log (1 + x) = x for small x.

Reordering terms, we ohtain the well-known equilihrium
linear relationship hetween expected log consumption growth and
the expected log return on wealth:

(12) E,Ac,^i = t|» Iog8 + Vp, + i!*E,rp.,,i,

where the term Vpj is a time-varying intercept proportional to the
conditional variance of log consumption growth in relation to log
portfolio returns:

(13) Vpj = V2iQ/^) var, (Ac,+, -

In a similar fashion we can log-linearize the Euler equation
for a general asset, (8). If we suhtract the resulting log-linear
Euler equation for the riskless asset from the log-linear Euier
equation for the risky asset, we flnd that

(14) E,r,, , , - rf + V2<Jixt = (O/̂ -Vi,,,, + (1 - e)(Ti^,,

where (T^^I = cov, {x,,i - Efr,ii,2,+ , - E^(+i). Under assumption
(A3) the conditional variance ofthe risky asset return, ci ] , = u\,
hut we avoid making this substitution until we use (A3) to solve
the model in suhsection III.4. Equation (14) is the starting point
for our analysis of optimal portfolio choice.

III.2. Log-Linear Budget Constraint

Following Camphell 11993,1996], we also log-linearize the
budget constraint (7) around the mean consumption-wealth ratio,
and we obtain

(15) Au;(+i =- Tp̂ +i -h (1 - (l/p))(c, - w,) + A,
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where k ^ log (p) + (1 - p) log (1 - p)/p, and p = 1 — exp |E(C( — Wi)\
is a log-linearization parameter. Note that p is endogenous in that
it depends on the average log consumption-wealth ratio which is
unknown until the model has been solved.

Camphell [1993] and Camphell and Koo [1997] have shown
that the approximation (15) is exact when the consumption-
wealth ratio is constant over time, and becomes less accurate as
the variahiUty ofthe ratio increases. In our model the consumption-
wealth ratio is constant when the elasticity of intertemporal
suhstitution is one or the expected risky asset return is constant.
When these conditions do not hold, the consumption-wealth ratio
varies, and we can only solve for it by using the approximation
(15). Hence to check the accuracy ofthe approximation we must
compare our solution with a discrete-state numerical solution. We
undertake this exercise in Camphell, Cocco, Gomes, Maenhout,
and Viceira [1998] and discuss the results briefly in suhsection
IV.6 helow.

The log-linearization (15) takes the return on the wealth
portfolio as given, and does not relate it to the returns on
individual assets. We can push the approach further hy using an
approximation to the log return on wealth:

(16) rp^t+i = ^M,t+i - ^f) + 7 + i/2a((l - a,)CTii,(.

This approximation holds exactly in a continuous-time model with
an inflnitesimally small trading interval, where Ito's Lemma can
he applied to equation (1). It has the effect of ruling out bank-
ruptcy even when the investor holds a short position with a, < 0 or
a leveraged portfolio with a, > 1. Thus, our portfolio solutions, like
those in the continuous-time models of Merton [1969,1971], allow
a, to vary outside the range from zero to

Combining (15) and (16), we get

(17) 1 (c, -

1
h + -

6. In the recent literature on long-horizon portfolio choice, Balduzzi and
Lynch [1997a, 1997b], Barberis [1999], and Brennan, Schwartz, and Lagnado
[1997] restrict short sales and borrowing, but Brandt [1999] and Kim and Omberg
[1996] do not.
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which is linear in log returns and log consumption, and quadratic
in the portfolio weight a,. |

IIL3. Characterizing the Optimal Portfolio Rule

The next step in our solution method is to characterize the
optimal portfolio rule hy relating the current optimal portfolio
choice to future optimal portfolio choices. This will then allow us
to guess a functional form for the optimal portfolio policy and to
identify its parameters.

Our strategy is to characterize the covariance terms ai j . , and
(Tij,i that appear in the log-linear portfolio-choice Euler equation
(14). Since the risky asset return is exogenous and the consump-
tion-wealth ratio is stationary in our model, it is convenient to
rewrite these moments in terms ofthe variance ofthe risky asset
return and its covariance with the consumption-wealth ratio. We
flrst note that, using the trivial equality, ;

(18) AC(+i = (ct+i - Wf^i) - (c, - W[) + \wt^i,

and the hudget constraint (17), we can write CTI <., as

o"i,c/ = cov, (ri,,+ i,Ac,+i)

= cov, (ri,,+i,c,+, - w,+i) + a,

where to ohtain the second equality we use the fact that
cov, (:J:,+I,^,) = O.

Similarly, equation (16) implies that

<̂ ij,.( = cov, (ri,,+i, a,ri,,+i + (1 - a,)rf+ 1/20,(1 - oLfhuj)

These expressions can he suhstituted into (14) to get

1 6
^t^u+i ~ 7 + 2 "̂ '̂̂ •' " iii ̂ ^^^-'^J "*" "'""i.i.'* + (1 -

which can be rearranged, using the fact that e = (1 - 7)/(l -
to get

(19) a, = - '- ' ^ ^
(Ti

This equation was flrst derived hy Restoy [1992]. It has two
terms, each one capturing a different aspect of asset demand. The
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first term captures that part of asset demand induced exclusively
hy the current risk premium—hence the adjective "myopic" often
used to descrihe it in the finance literature. The myopic compo-
nent of asset demand is directly proportional to the asset risk
premium and inversely proportional to the individual's relative
risk aversion. The second term is the "intertemporal hedging
demand" of Merton [1969, 1971, 1973]. It reflects the strategic
hehavior of the investor who wishes to hedge against future
adverse changes in investment opportunities, as summarized hy
the consumption-wealth ratio. Intertemporal hedging demand is
zero when returns are unpredictable, so <JI^.-U,.I = 0, or risk
aversion 7 = 1.̂  It is well-known that asset demand is myopic in
these special cases, hut much less is known ahout asset demand in
the general case.

Although equation (19) gives us meaningful information
ahout the nature ofthe investor's demand for the risky asset, it is
not a complete solution ofthe model, hecause the current optimal
portfolio allocation in (19) is a function of future portfolio and
consumption decisions, which are endogenous to the problem.

The dependence of today's portfolio allocation on future
portfolio and consumption choices operates through the condi-
tional covariance <Jic-u!,t- To see this, note that the approximation
to the intertemporal hudget constraint can he used to write the log
consumption-wealth ratio as a constant plus the discounted
present value of the difference between expected future log
returns on wealth and consumption growth rates [Campbell
1993]:

This equation follows from comhining the log-linear hudget con-
straint (15) with (18), solving forward the resulting difference
equation, and taking expectations. If we suhstitute the expression for
expected consumption growth (12) into this equation, we ohtain

(20)

-1!'log 5).

7. Log utility is the special case in which i[i = 1 as well as 7 = 1. But 7 = 1
deUvers zero intertemporal hedging demand regardless ofthe value of \|i I Giovan-
nini and Weil 1989].
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Hence, cri(._u,, depends on the individual's future portfolio and
consumption decisions, and (19) falls short of a complete solution
to the model.

in.4. Solving for the Optimal Policies

The final step in solving the dynamic optimization problem is
to guess a functional form for the optimal consumption and
portfolio policies and to identify the parameters of these policies
using the method of undetermined coefficients. We guess that the
optimal portfolio weight on the risky asset is linear in the state
variable, and that the optimal log consumption-wealth ratio is
quadratic in the state variahle. Hence, we guess that

(i) a, = OQ + Oix,,

(ii) C( - Wt = b(i + b^Xt + b<2x'f,

where |ao,a],6o,̂ i.̂ 2l are fixed parameters to be determined.
Under assumptions (A1)-(A5) we can show that guesses

(i)-(ii) are indeed a solution to the intertemporal optimization
prohlem ofthe recursive-utility-maximizing investor, and we can
solve for the unknown parameters |ao,ai,60,61,62!. Details are
provided in Appendices 1 and 2; here we give a brief intuitive
explanation ofthe solution.

The linear portfolio rule (i) has the simplest form consistent
with time variation in the investor's portfolio decisions. This
portfolio rule implies that the expected return on the portfolio is
quadratic in the state variable jc,, hecause an increase in Xi affects
the expected portfolio retiun both directly by increasing the
expected return on existing risky-asset holdings and indirectly by
changing the investor's optimal allocation to the risky asset.
Equation (20) shows that the log consumption-wealth ratio is
linearly related to the expected portfolio return, so it is natural to
guess that the log consumption-wealth ratio is quadratic in the
state variahle X(.

Of course, variances and covariances of consumption growth
and asset returns also affect the optimal consumption and portfo-
lio decisions. But the homoskedastic linear AR(1) process for Xt
implies that all relevant variances and covariances are either
linear or quadratic in the current state variahle, and thus
second-moment effects do not change the linear-quadratic form of
the solution. Appendix 1 states nine lemmas that express impor-
tant expectations, variances, and covariances as linear or qua-
dratic functions ofthe state variahle.
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We now state two propositions that enable us to solve for the
unknown coefficients ofthe model. The propositions are proved in
Appendix 2, using the lemmas from Appendix 1.

PROPOSITION 1. The parameters defining the linear portfolio policy
(i) satisfy the following two-equation system:

1

27

1

1 -

b2

7 -

7

7

1\

,

- 1

7

62 7 -

I 7

1\

CT,

Proof of Proposition I. See Appendix 2.

The first term in each of these equations is the myopic
component of asset demand in equation (19). Therefore, the
remaining terms represent intertemporal hedging demand. They
depend on the consumption coefficients 61 and 62* divided by one
minus the intertemporal elasticity of suhstitution (1 — *\>), as well
as on the scaled deviation of risk aversion from one, (7 - l)/7, and
the scaled covariance of the risky asset return with revisions in
the expected future return (Jf^Jol- There is no hedging demand if
this covariance is zero, for then the risky asset cannot be used to
hedge changes in investment opportunities. We discuss the effects
of these parameters on portfolio selection in more detail in our
calibration exercise in Section IV.

Proposition 1 expresses the coefficients ofthe optimal portfo-
lio policy as linear functions of the parameters of the optimal
consumption rule. Proposition 2 shows that these parameters
solve a recursive, nonlinear equation system whose coefficients
are known constants:

PROPOSITION 2. The parameters defining the consumption policy
(ii), 160,61,62!, are given by the solution to the following
recursive nonlinear equation system:

(21) 0 = AlO + An6o + ^nbi + A136? + A1462

+ A156I + A166162,

(22) 0 - A20 + A2161 + A2262 + A236I + A246162,

(23) 0 - A30 + A3162 + A326i,
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where \\ij\i = 1,2,3,7 = 1. • • • , 6| are constants given in
Appendix 2. These constants depend on the exogenous param-
eters ofthe model and on the log-linearization parameter p.

Proof of Proposition 2. See Appendix 2.

The equation system given in Proposition 2 can he solved
recursively, starting with the quadratic equation (23) whose only
unknown is 62. This equation has two possihle roots, which
are always real when 7 ^ 1 , and are real when 7 < 1 if
7(4>' - (1/P))2<T2 + (1 ^ •y)(ct,2 - (l/p))4(l)CT,̂  - (1 - 7)4(!)2(T; > 0.
The existence of real roots is necessary (hut not sufficient) for the
value function of the prohlem, given in Property 1 helow, to be
finite. We argue in the next section that one ofthe two roots, the
positive root of the equation discriminant, delivers the correct
solution to the model.

Once we have solved for 62, the second equation in the system
hecomes a linear equation in 61. Finally, given 161,62!, the first
equation ofthe system is also linear in 60. Using the known values
of 160,61,62! in Proposition 1, we can find \ao,ail

All of these calculations are conditional on a value for p, since
p helps to determine the constants A,j in (21), (22), and (23). One
can write the parameters as functions of p, for example 6o(p), 6i(p),
and 62(p), to express this dependence. But p itself depends on the
optimal expected log consumption-wealth ratio and hence on
the parameters: p = 1 - exp |E(C( - Wt)\ = 1 - exp |6o(p) +
bi(p)n + 62(p)(;î  + o-J)). The solution ofthe model is complete only
when a value of p has heen found to satisfy this nonlinear
equation. Unfortunately, an analytical solution is availahle only
in the case »1» = 1, where the optimal consumption policy is myopic
and p =̂  8. In all other cases, we resort to a numerical method. We
first set p = 8 and then find the optimal values of |ao,Oi,6o,6i,62|
given this value of p. For these optimal values we then compute
E(C( - Wf) and a new value of p, for which a new set of optimal
policies is computed. We proceed with this recursion until the
absolute value ofthe difference between two consecutive values of
pis less than 10 *.

This procedure converges extremely rapidly whenever there
exists a solution for p between zero and one. For some parameter
values, however, p converges to one, and the implied value
function of our model is infinite. It is well-known that this can
occur in infinite-horizon optimization prohlems; Merton [1971]
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and Svensson [1989], for example, derive parameter restrictions
that are required for finite value functions in continuous-time
models with constant expected returns. Unfortunately, the nonlin-
earity of the equation for p prevents us from deriving equivalent
analytical restrictions in our model with time-varying expected
returns, hut the prohlem tends to arise whenever the utility
discount rate is too low or the expected excess equity return is too
high on average or too variahle relative to the risk of equity
investment.

7/7.5. Properties ofthe Solution

Propositions 1 and 2 identify the parameters of the optimal
policies and the value function per unit of wealth. If we pick the
solution for 6̂  given hy the positive root of the discriminant in
(23), Propositions 1 and 2 also imply the following properties of
the solution. Here we merely state these properties; proofs are
given in Appendix 3.

PROPERTY 1. The approximate value function per unit of wealth is
given hy

(24) V, = exp

and 62/(1 - i[() > 0. Therefore, the value function per unit of
wealth is a convex function of Xt, the expected log excess
return on the risky asset.

PROPERTY 2. The slope of the optimal portfolio rule—the coeffi-
cientai—is positive. Also, iim^^^ai = Oandlim^^oO^i = +^-

Property 1 characterizes the approximate value function per
unit of wealth. Equation (24) shows that the log value function per
unit of wealth is a quadratic function ofthe state variahle whose
coefficients are the coefficients of the log consumption-wealth
function divided by one minus the elasticity of intertemporal
suhstitution.^

Property 1 tells us that the value function per unit of wealth
is convex in x,, so it increases with jc, when Xi is large enough and

8. This expression has a well-defined limit as i|i — 1. The solutions to
equations (22) and (23) imply that &i/(l - <\i) and 62/(1 - 'I') are functions only of p

d d d d d d i t l j P t 3 h t h t S h | 1
q ( ) ( py i \ 2 I y p

and 7, and do not depend directly on ijj. Property 3 Bhows that p = S when i|) —»1.
Finally, equation (21) implies that (60 - ^ log(l - 8))/(l - i]*) does not depend
directly on i|f when p - S. Thus, (24) is well defined as i|; —-1.
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decreases with X( when Xt is small enough. The intuition for this
result is as follows. The investor can profit from predictahie excess
returns on the risky asset, whether these are positive or negative.
Property 2 implies that the investor increases the allocation to the
risky asset as its expected excess return increases. If excess
returns are expected to be sufficiently positive, the investor will
profit by going long; whereas if they are expected to be sufficiently
negative, the investor will profit by going short. Thus, movements
in Xi to extreme positive or negative values increase the investor's
utility.

Property 2 generalizes a known comparative-statics result for
an investor with power utility facing constant expected returns in
a continuous-time model. In that setting the allocation to the risky
asset is constant over time, and it increases with the expected
excess return on the risky asset. In static models with more
general utility functions, however, it is possihle for the allocation
to the risky asset to decline with the expected excess return on the
risky asset, because the income effect of an increase in the risk
premium can overcome the substitution effect flngersoU 1987,
Chapter 3]. Property 2 shows that this does not happen in our
dynamic model with Epstein-Zin-Weil utility. The coefficient ai is
always positive and increases from zero when -y is infinitely large
to infinitely large values as 7 approaches zero.

PROPERTY 3. The solution given by Propositions 1 and 2 ap-
proaches known, exact solutions as the parameters of utility
approach the following special cases:

a) When 41 =5̂  1 and 7 — 1, equation (23) hecomes linear and
M l - *) -»l/2(T^(l/p - ct)2) > 0. In this case, the optimal
portfolio rule is myopic: OQ -» I/27 and a^ -» l/yal. This
portfolio rule is the known, exact solution of Giovannini
and Weil [19891, in which portfolio choice is myopic even
though consumption choice is not. The portfolio rule
maximizes the conditional expectation ofthe log return on
wealth.

b) When i|; ^ 1 and 7 =!t 1, 6̂  ^ 0, 62 ^ 0, p — 8, and b^ —
logd - 6). This consumption rule is the known, exact
solution of Giovannini and Weil [1989], in which consump-
tion choice is myopic—in the sense that the consumption-
wealth ratio is constant—even though the optimal portfo-
lio rule is not.



450 QUARTERLY JOURNAL OF ECONOMICS

c) When i|; — 1 and 7 — 1, so that utility is logarithmic, 61 —
0, 62 -* 0, p ^ 8, 60 — log (1 - 5), ao — V2, and a^ — l/a^.
This is the known, exact solution for log utility in which
hoth the optimal consumption rule and the optimal portfo-
lio rule are myopic.

d) When (TJ —* 0, so that expected returns are constant, hoth
the optimal consumption rule and the optimal portfolio
rule converge to the known, exact, myopic solution. The
portfolio parameters ao —> I/27 and a] — l/7o-y.

It is important to note that the previously known results
mentioned in parts a) and b) of Property 3 are only partial. That is,
the exact portfolio rule is known for the case 7 = 1, but our
approximate solution method is still needed to determine the
optimal consumption rule. The exact consumption rule is known
for the case i|f = 1, hut our solution method is still needed to
determine the optimal portfolio rule. In this case our solution is
exact (in continuous time) since the optimal consumption-wealth
ratio is constant so our log-linear version of the intertemporal
budget constraint holds exactly.

Property 3 holds only if we choose the positive root of the
discriminant in the quadratic equation for 62, (23). If instead we
choose the negative root of the discriminant, the approximate
solutions diverge as the preference parameters approach the
known special cases. This is our main reason for choosing the
positive root ofthe discriminant.*^

PROPERTY 4. The optimal portfolio rule does not depend on ili for
given p.

This property holds hecause only the ratios 6i/(l - \\>) and
62/(1 - »]>) appear in the portfolio rule, and these ratios do not
depend on (|/ for given p. The property shows that the main
preference parameter determining portfolio choice is the coeffi-
cient of relative risk aversion 7 and not the elasticity of intertem-
poral suhstitution ili. Conditioning on p, i|; has no effect on portfolio

9. We would like to be able to show analytically that the unconditional mean
ofthe value function, a measure of welfare we study in Section V below, is always
higher when we choose the positive root ofthe discriminant in (23). Unfortunately,
we have been unable to do this; but in our calibration exercise we have verified that
the positive root always gives the higher unconditional mean for every set of
parametervalues we consider. We do have a stronger analytical result when 7 < 1.
In this case the negative root of the discriminant, violates a necessary and
sufficient condition (derived hy straightforward extension ofthe results of Constan-
tinides 11992]) for the existence ofthe unconditional mean ofthe value function.
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choice. However, p itself is a function of v])—recall that p = 1 -
exp jE[Cf - Wr\\~so the optimal portfolio rule depends on \\i indi-
rectly through p. Our calibration results in Section IV show that
this indirect effect is small.

PROPERTY 5. The parameters a, and 62, the slope of the portfolio
policy, and the curvature of the consumption policy, do not
depend on fi for given p.

Property 5 shows that some aspects of the optimal policy—the
sensitivity of the risky asset allocation to the state variahle and
the quadratic sensitivity of consumption to the state variable-
are independent of the average level of the excess return on the
risky asset. Of course, other aspects—the average allocation to the
risky asset, the average con sumption-wealth ratio, and the linear
sensitivity of consumption to the state variahle—do depend on the
average risk premium. We discuss this dependence in greater
detail in subsection IV.3.

IV. CALIBRATION EXERCISE

rV.l. Data and Estimation

An important advantage of our approach is that we can
calibrate our model using real data on asset returns. To illustrate
this, we use quarterly U. S. financial data for the sample period
1947.1-1995.4.10 In our calibration exercise, the risky asset is the
U. S. stock market, and the risk-free asset is a short-term debt
instrument. To measure stock returns and dividends, we use
quarterly returns, dividends, and prices on the CRSP value-
weighted market portfolio inclusive of the NYSE, AMEX, and
NASDAQ markets. The short-term nominal interest rate is the
three-month Treasury bill yield from the Risk Free File on the
CRSP Bond tape. To compute the real log risk-free rate, the
beginning-of-quarter nominal log yield is deflated by the end-of-
quarter log rate of change in the Consumer Price Index from the
Ibbotson files on the CRSP tape. Log excess returns are computed
as the end-of-quarter nominal log stock return minus the begin-
ning-of-quarter log yield on the risk-free asset.

10. A similar exercise using annual U. S. data for the period 1872-1993 is
reported in the NBER Working Paper version of this article [(Jampbell and Viceira
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The state variable is taken to be the log dividend-price ratio,
measured as the log of the total dividend on the market portfolio
over the last four quarters divided by the end-of-period stock
price. Campbell and Shiller [1988aJ, Fama and French [1988],
Hodrick [1992], and others have found this variable to be a good
predictor of stock returns. We estimate the following restricted
VAR(l) model:

where (ei,(+i,e2./+]) — NiO,n), and report the maximum likelihood
estimation results in Table I. Since (25) is equivalent to a
multivariate regression model with the same explanatory vari-
ables in all equations, ML estimation is identical to OLS regres-
sion equation by equation. The standard errors for the slopes,
intercepts, and the residual variance-covariance matrix are based
on Proposition 11.2 in Hamilton [1994]; using these standard
errors, which assume that the variables in tbe model are station-
ary, the slopes and the elements of the variance-covariance matrix
all appear to be statistically different from zero.'^

The parameters in (3), (4), and (5) that define the stochastic
structure of our model can be recovered from the VAR system (25)
as follows: fj. = % + 6iPoAl ~ Pi), <|J = pi, a^ — *liil22. <̂ ,, = ^ i i ' ^'^d
CT^^ = Bjiiia. Table I reports these implied parameters along with
standard errors computed using the delta method. All of the derived
parameters except o^ are significantly different from zero at the 5
percent confidence level. The unconditional expected log excess return
;/ is estimated at 5 percent per year (1.25 percent per quarter), while
the log real risk-free rate r^is a meager .28 percent

rV.2. Solution of the Model

Using the parameter estimates in Table I, we compute the
individual's optimal portfolio allocation and consumption-wealth
ratio for a range of values of relative risk aversion and elasticity of

11, Note, however, that pt is close to one. Elliott and Stock [1994] have shown
that the /-ratio for Oi under the null Ho\ 61 = 0 does not have a standard asymptotic
normal distribution when the log dividend-price ratio follows a unit-root or
near-unit-root process, and 1112 ^ 0, We do not pursue this issue further here, and
proceed to calculate standard errors under the assumption that the estimated
system is stationary, but we note that standard errorB computed under this
assumption should be treated with some caution.

12. These parameter estimates differ slightly from those reported in the
NBER Working Paper version of this article. The reason is that there, because of a
computational error, we used the dividend-price ratio instead of ita log when
estimating (25).
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TABLE I I
ESTIMATES OF THE STOCHASTIC PROCESS FOR RETURNS (1947.1-1995.4)

(A) Restricted VARd):

(B) Derived model:

1 - ' • /

- pt+1

1 5.296E

(0.540E

-4.290E
(0.5^

1 .

/ 0.173 1
(0.066)

-0.146 +

/ 0.047 \
(0.020)
0.957

(0.073)/ (0.022),

- 3 -4.290E - 3
- 3) (0.522£ - 3)

- 3 6.397E - 3

- 3) (0.653£ - 3)

id, - p,) +

^ (

^ " (

).O28

).91O,

x,^j = 1.250B - 2 + 0.957 (x, - ;/) + "n,,!
(0.005) (0.022)

/ 5.296E - 3 -0.203£ - 3
<^ <̂ «.n\ _ (0.540S - 3) (0.090£ - 3)
"«« (T* / -0.203£; - 3 0.014£^ - 3

(0.090J? - 3) (0.012E - 3)/

= 0.071£ - 2 a^&t = 3.215£ - 2 corr(T|,u) = -0.737

Table I reports ML eHtimates of the atochaHtic prucesa driving exp€Krt«d and unexpected retums in the
model. These esUmateB are based on quarterly returns, dividendH and priceH from CRSP for the period
1947 1-I99B.4, Stock market dsta are for Ihe CRSP value weighted market portfolio induBive of the NYSE.
AMEX, and Ni\SDAQ markets, and the short-t«rm nominal interest rat.e m the three-month Troasury bill
yield from the Risk Free File on lh>' CRSP Bund tape. Panel A reports MI. point .'HtimateB iind standard errors
(inpnrentheBeslof a restricted VARd) modfl (see equation (24) in text) for oxcess log returns and the li^
dividend-price ratio. Panel B reports estimates Tor the parameters defining the stochastic structure of the
model. These eetiinates and their standard errurs (in parentheHea) are derived from the estiroatea in Panel A.
Standard errors are obtained using the delta method.

intertemporal substitution. We set 8, the time discount parameter
under time-additive utility, to .94 in annual terms. This is
equivalent to a 6.2 percent annual log time discount rate.

We consider relative risk aversion coefficients -y =
|.75,l,l-50,2,4,10,20,40|, and elasticity of intertemporal substitu-
tion coefficients i|) = |1/.75,1,1/1.50,1/2,l/4,l/10,l/20,l/40|. The
literature on the equity premium puzzle has shown that high
levels of risk aversion are needed to reconcile aggregate consump-
tion data with asset market data in the standard power-utility
framework; here we are able to compare the portfolio allocations
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and consumption rules implied by low and high risk aversion
coefficients. We consider low elasticities of intertemporal substitu-
tion, both because we want to include the power-utility cases in
which the elasticity of intertemporal substitution is the reciprocal
of risk aversion, and because a low elasticity of intertemporal
substitution seems to be required to explain the insensitivity of
consumption growth to real interest rates in postwar U. S. data
[Hall 1988, Campbell and Mankiw 1989].

Tables II, III, and IV and Figures I and II report the results of
this exercise. To make it easier to interpret our results, we
normalize the parameters defining the optimal portfoho and
consumption policies (i) and (ii), so that the intercepts of the
optimal policy functions are the optimal allocation to stocks and
the optimal consumption-wealth ratio when the expected simple
excess return, E([i2i,(+i] - Rf, is zero. At this point in the state
space the risky asset is a "fair gamble" offering no risk premium.
Thus, a myopic risk-averse investor would allocate no wealth to it,
and all the demand for the risky asset is intertemporal hedging
demand. The expected simple excess return is zero when the
expected log excess return Xt is equal to -(ry/2. Therefore, the
parameters reported in the tables are aj, ai, 6*, b*, and 62 in

(26) «( = aj + ai(x, + <JI/2)

and

(27) c,-w, = bl + b* {x, + {ulm + b^ix, + (

where a% = a^~ ai((r^/2), bl = b^- 6I(CT^/2) + h
.̂ and oj and h^ do not have asterisks because they coincide

with the original parameters.
The main diagonal of each panel in the tables corresponds to

standard power-utility preferences, since the elasticity of intertem-
poral substitution is the reciprocal of risk aversion along the main
diagonal. The numbers reported in the tables summarize the
optimal decisions of a recursive-utility individual who observes
the true process for returns. Since we do not observe the true
process but must estimate it, we have also computed—but we do
not report here to save space—the standard errors for these
parameters, using the delta method.̂ ^ These standard errors

13. The deltamethodrequires the computation of derivatives of the parame-
ters of interest (for example, a\) with respect to |fto,6i.Po,Pi,ll|- Since no analytical
formulas are available, we use two-sided numerical derivatives based on a
proportional perturbation parameter equal to lO-*. The standard errors are
reported in the NBER Working Paper version of this article.
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TABLE II
OPTIMAL PORTFOLIO POLICY

R,R.A.

0.75
1.00
1.50
2.00
4.00

10.00
20,00
40.00

0.75
1.00
1.50
2.00
4.00

10.00
20.00
40.00

1/.75
-38.6

0.0
27.1
33.8
29.9
16.0
8.8
4.6

1/.75
222.5
188.8
145.5
118.5
68.1
29.9
15.5
7.9

(A)

1.00
-29,4

0.0
23.5
30.7
29.8
17.2
9.7
5.2

1,00
225.1
188.8
144.4
117.5
68.1
30.3
15.8
8.1

E.I,,S.

Exponentiated intercept: at X

1/1.5
-23.4

0.0
20.5
27.9
29.7
18.5
10.8

5.8

(B)

1/1.5
227.3
188.8
143.3
116.6
68.0
30.7
16.1
8.3

1/2
-21.0

0.0
19.2
26.6
29.6
19.2
11.4
6,2

Slope: a

1/2
228.3
188.8
142.9
116.1
68.0
30.9
16.3
8.4

1/4
-18.2

0.0
17.5
24.8
29.5
20.4
12.4
6.8

1

1/4
229,6
188.8
142.2
115.5
68.0
31.3
16.6
8.6

100

1/10
-16.7

0,0
16.6
23.9
29.4
21.2
13.1
7.3

1/10
230.4
188.8
141.8
115.1
67.9
31.5
16.8
8.7

1/20
-16,2

0,0
16.3
23.6
29.4
21.4
13.3
7.4

1/20
230.6
188.8
141,7
115,0
67.9
31.6
16.8
8.7

1/40
-16.0

0.0
16.2
23.5
29.4
21.6
13.4
7.5

1/40
230,7
188.8
141.7
115.0
67.9
31.6
16,8
8.7

Pant'l A reports the optimal percentafiG allocation lo stocks when the oxpected gross excese return ia Jiero
for diffcrenl levels of rolalive riak aversion nnd elasticities «f interlempiiral aubBtitution. Panel B reports the
change-in percentage pointw-in the optimal allocation to altjcke when the expected log escess return
increasee hy 1 percent per quarter. These numbers are all haaed on the parameter estimateB for the return
procew reported in T^hle U (sample period 19,17:1-1995:4), The values on the main diagonal corrospond to the
power utility caae.

show that the intercepts of the optimal policies are estimated with
less precision than the parameters determining the slope and
curvature of the optimal policy. ]

IV.3. The Optimal Portfolio Rule

Tahles II and III and Figure I summarize the optimal
portfolio decision. Panel A in Tahle II reports a*, the optimal
allocation to stocks when the expected gross excess return is zero,
while Panel B in the same table reports O], the slope of the optimal
portfolio policy. Panel A in Tahle III reports the average total
demand for stocks as a fraction of wealth, while Panel B reports
the share of this average total demand that is attributable to the
average hedging demand for stocks.

Figure I, which is divided into four panels, illustrates the
portfolio rule a,. Figure Ia fixes I|J at 1/0.75 and plots af for a wide
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TABLE III
MEAN OPTIMAL PERCENTAGE ALLOCATION TO STOCKS AND PERCENTAGE MEAN

HEDGING DEMAND OVER MEAN TOTAL DEMAND

R.R.A.

0.75
1.00
1.50
2.00
4.00

10,00
20.00
40.00

(A)

1/.75
298.4
286.0
247.4
213.2
133.1
61.3
32.2
16.5

E ,I.S.

Mean optimal percentage allocation to stocks:
at

1,00
311.6
286,0
242.1
208.6
132.7
63,1
33,6
17.4

= [ag; 4- (

1/1.5
320,9
286,0
237.6
204.4
132,7
65,1
35.2
18.4

Il(^ +C

1/2
324.7
286.0
235,5
202.5
132.6
66.1
36.1
18.9

r^/2)] X 100

1/4
329,6
286.0
232.7
199.7
132.4
67.7
37.5
19.8

1/10
332.2
286.0
231.4
198.3
132.3
68.9
38.4
20.4

1/20
333.1
286.0
230.9
197.8
132.3
69.3
38.8
20.6

1/40
333.4
286.0
230.7
197.6
132.3
69.5
38.9
20.7

(B) Fraction due to hedging demand (percentage):
] X 100

0.75
1,00
1.50
2.00
4.00

10.00
20.00
40.00

1/.75
-27.8

0.0
22.9
32.9
46.3
53.4
55.6
56.6

1.00
-22.4

0.0
21.3
31.5
46.2
54.7
57.5
58.8

1/1.5
"18.8

0.0
19.8
30.1
46.1
56.0
59.4
61,1

1/2
-17.4

0.0
19.1
29.4
46.1
56.7
60,3
62.1

1/4
-15.7

0.0
18.1
28.4
46.0
57.8
61.9
63.9

1/10
-14.8

0.0
17.6
27.9
46.0
58.5
62.8
64.9

1/20
-14.5

0.0
17.4
27.7
46.0
58.7
63.1
65,3

1/40
-14.4

0.0
17.4
27.6
46.0
58.8
63.2
65.5

Panel A reports the mean optimal percentage allocatioQ to stocks, for different leveiH of relative risk
aversion and elasticities of intertemporal substitution. Panel B reports the percentage mean hedging demand
over mean totul demand, i.e., the fraction of the mean allocation due to hedging demand. Mean hedging
demand is calculated as o,_i,^,.Jii:y,ii) = a.i/j-.-y.'iO - u,iti;l.4<)ly. These numbers are all hased on the
parameter estimates for the return process reported in Table II (sample period 1947:1-1995:4). The values on
the main diagonal correspond to the power utility case.

range of 7 values; Figure Ib repeats this exercise fixing ^ at H-
Figures Ic and Id, on the other hand, fix -y at 0.75 and 4,
respectively, and plot a, for a wide range of v|j values. In all these
figures we consider values of x, in the interval (// - 2ij^,// -I- a^),
and the horizontal axis is the log of the expected gross excess
return; i.e., logEtlRu+i/Rf] = x, + a^/2. The right vertical hne
intersects the horizontal axis at the log of the unconditional mean
gross excess return, log E[Rij^i/Rf] = fi + rrf/2 + (T) /̂2.

The most striking lesson from the tahles, and from Figure I, is
that relative risk aversion is far more important than the
elasticity of intertemporal suhstitution in determining the opti-
mal portfolio allocation to stocks. The variation in parameters
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across rows of the tables, as -y changes, is far greater than the
variation across columns, as ij; changes. Similarly, the a, lines in
Figures Ic and Id are all close together, whereas those in Figures
Ia and Ib vary widely in both slope and intercept. This result can
be understood by recalling Property 4 of our solution; i.e., that a,
depends on i|j only through the dependence of p on \\i. Our calibration
results show that this indirect effect through p is very small.

Panel A in Table II shows that the intercept of (Xf, at, is
positive when 7 > 1. It is zero when 7 = 1, as we already know
from the analysis of the special case with unit relative risk
aversion, and negative when 7 < 1. These results hold regardless
of the value of i|/. To interpret this behavior, recall that a* is the
optimal allocation to stocks when the expected excess gross return
is zero. Since the myopic demand for stocks is zero at this level of
the expected excess gross return, a* is completely determined by
hedging demand. Thus, at the point in the state space where the
risky asset has a zero expected excess return, the sign of hedging
demand is positive for investors with 7 > 1.

Panel B in Table II shows that the coefficient ai, the slope of
the a, function, is positive for all levels of 7 and ([J as implied by
Property 2 of our solution. Like the intercept ao, the slope O] varies
substantially across 7 for a given level of \\i, but changes very little
across \\i for a given level of 7. As 7 increases, a^ rapidly approaches
zero, indicating that the optimal portfolio rule is very responsive to
changes in expected excess returns when the individual is close to
dsk-neutral but is almost flat when the individual is highly risk-
averse. This finding is also implied by Property 2 of our solution.̂ "*

Panel B in Table II also shows that whenever 7 > 1,
intertemporal hedging demand increases the slope of the portfolio
rule; equivalently, hedging demand itself has a positive slope. To
see this, note that when 7 = 1, hedging demand is zero and the
slope coefficient of 188.8 is entirely attributable to the myopic
component of asset demand. For higher values of 7, the myopic
slope shrinks in proportion to 7. Thus, it is 94.4 for 7 = 2,47.2 for
7 = 4, and so forth. The slope coefficients reported in Panel B in
Table II shrink more slowly than this, implying a positive slope
contribution from hedging demand. The analytical foundation of
this result is that from Proposition 1 the slope of hedging demand

14. The standard errors not reported here show that the slope coefficient a\ is
much more precisely estimated than the intercept of the optimal portfolio rule.
One reason for this greater precision is that, as we showed in Property 5, the slope
of the portfolio rule is not sensitive to the mean excess stock return ^ whereas the
intercept does depend on fi.
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is -{b'Jil - ^)}i{y - l)/y)ia.^Jal)2i^, which is positive when 7 > 1
under our assumption of negative a^^. This implies that conserva-
tive long-borizon investors who are free to rebalance every period
are actually more aggressive market timers than conservative
short-horizon investors.^^

The results in Table II can be explained in intuitive terms as
follows. We have estimated a return-generating process which has
a negative sign for a-^,i, the covariance between unexpected stock
returns and revisions in expected future stock returns. This
implies that stocks tend to have high returns when their expected
future returns fall. Since the investor is normally long in stocks, a
decline in expected future stock returns is normally a deteriora-
tion in the investment opportunity set. There are offsetting
considerations that determine an investor's attitudes toward
assets that pay off when the investment opportunity set deterio-
rates. On the one hand, an investor with low risk aversion (7 < 1)
wants to hold assets that deliver wealth when wealth is most
productive; that is, when investment opportunities are good. This
investor has a negative hedging demand. On the other hand, an
investor with high risk aversion (7 > 1) wants to hold assets that
deliver wealth in unfavorable states of the world; that is, when
investment opportunities are poor. This investor has a positive
hedging demand. Interestingly, the hedging demand is not mono-
tonic in risk aversion because an extremely risk-averse investor
limits her exposure to the risky asset in all states of the world.
Thus, the magnitude of hedging demand first rises and then falls
with the coefficient of risk aversion. 1

Although the investor is normally long in stocks, if the
expected excess return becomes sufficiently negative, a decline in
expected future stock returns can represent an improvement in
the investment opportunity set because it creates a profitable
opportunity to short stocks. At this point in the state space, the
sign of hedging demand for stocks reverses. This explains why
hedging demand has both a positive intercept and a positive slope,
allowing a sign reversal of hedging demand for sufficiently
negative x,.'**

The average level of excess simple stock returns, fi + (r^/2,
plays an important role in this argument. We have estimated /i +
ul/2 to be positive and quite large; this leads the investor
normally to maintain a long position in stocks for which a

15. Barberi8[1999Iflnds that conservative huy-and-hold investors who know
the parameters of the stock return process are ahout equally a^resBive market
timers whether they have a short or a long horizon.



460 QUARTERLY JOURNAL OF ECONOMICS

decrease in the expected stock return represents a deterioration
in investment opportunities. If fi + cr̂ /2 were negative, however,
the investor would normally have a short position in stocks for
which a decrease in the expected stock return represents an
improvement in investment opportunities. In this case the normal
sign of hedging demand would be negative for an investor with 7 >
1. The slope of hedging demand is unaffected by the average level
of excess returns, however, as shown in Property 5, so in this case
a sign reversal of the normal hedging demand occurs for suffi-
ciently positive Xf

This intuitive discussion suggests that we should be able to
derive analytical results about the signs of the coefficients a* and
b* in our model. Indeed, it is straightforward to show that when
fl + (Ty/2 = 0,a* = b* ^ O.ln this case the model is symmetrical;
positive deviations of x, from its mean have exactly the same effect
(in absolute value) as negative deviations, and both myopic and
hedging demand for the risky asset are zero whenx, is at its mean.
Unfortunately, we have been unable to derive comparable analyti-
cal results about the signs of a* and fc* when ^ + a\l2 ^ 0.
However, in numerical explorations we have found that with 7 > 1
and o-̂ iu < 0, a j and 6*^1 - i}*) always have the same sign as ;i -h
o-y/2 whenever the value function is finite, consistent with our
intuitive discussion of hedging demand. ̂ ^

Panel A in Table III reports the mean optimal allocation to
stocks as a percentage of tota! wealth. The mean allocation is
positive at all levels of 7 and ([r. On average, a recursive-utility
individual with low or moderate levels of risk aversion will short
the riskless asset in order to hold more than 100 percent of her
wealth in the risky asset. Large levels of relative risk aversion are
needed to keep mean stock demand below 100 percent; this is a
manifestation of the equity premium puzzle in our model with
exogenous asset returns and endogenous portfolios.

Panel B in Table III shows that average hedging demand is a
very important part of total stock demand for investors whose
relative risk aversion coefficients are not close to one. Average
hedging demand is calculated using (19), by setting x, — fi and
subtracting from the total risky-asset allocation the total alloca-

16. Kim and Omberg [1996] give a clear account of this efFect [Figure 4 and pp.
153-154].

17. Kim and Omberg [1996] obtain more general analytical results for their
simpler model with utility defined over terminal wealth,
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tion when 7 ^ 1 divided by the level of relative risk aversion:

Average hedging demand is negative, and often large, for inves-
tors with risk aversion coefficients of 0.75; for the illustrated risk
aversion coefficients above one, it is positive and accounts for at
least 20 percent of stock demand and often above 50 percent.
Thus, intertemporal hedging motives can easily double the equity
demand of risk-averse investors. This makes it harder to explain
the equity premium puzzle with moderate levels of risk aversion,
a point emphasized by Campbell [1996]. Brandt 11999] obtains
similar results for the special case of power utility with risk
aversion equal to 5, when he considers horizons of twenty years or
more.

rV.4. Optimal Consumption Behavior ,

TabJe IV and Figure II summarize the optimal consumption
policy. Panel A in Table IV reports the exponentiated mean of the
optimal log consumption-wealth ratio. Figure II is similar to
Figure I, but it plots C,/Ty, = exp \ci - Wi\ instead of a,. Both table
and figure reveal an important difference between the optimal
consumption rule and the optimal portfolio rule: the optimal
consumption-wealth ratio is very sensitive to both the level of the
elasticity of intertemporal substitution and the level of risk
aversion, while we have already noted that the optimal portfolio
rule moves noticeably only with the level of risk aversion. The
pattern of variation across the panel has interesting features. At
low levels of risk aversion 7, the optimal consumption-wealth
ratio decreases as the elasticity of substitution \\f rises (a move-
ment along a row from right to left). At high levels of risk aversion,
on the other hand, the optimal consumption-wealth ratio in-
creases with 41. Similarly, at low levels of the elasticity of
substitution ilf—specifically, i]/ < 1—the optimal ratio rises with
risk aversion 7, while at high levels of i|/, it declines with 7. The
optimal ratio is independent of 7 when ^ - 1, as we already know
from Property 3 of the solution.

This pattern of variation is also illustrated in Figures Ila
through lid, where the vertical sorting of the C,/Wt curves is
reversed as we move from ^ = 1/0.75 in Figure Ila to iji = '/i in
Figure lib, and from 7 = 0.75 in Figure lie to 7 - 4 in Figure lid.
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TABLE IV
OPTIMAL CONSUMPTION-WEALTH RATIO AND LoNG-TteRM EXPECTED LOG

RETURN ON WEALTH

R.R.A.

0.75
1,00
1,50
2,00
4.00

10.0
20.0
40.0

0.75
1.00
1.50
2.00
4.00

10.0
20.0
40.0

1/.75
0,58
0.78
1.03
1.19
1.52
1,79
1.90
1,96

1/.75
3.79
3.84
3.72
3.48
2.57
1,37
0.78
0,45

(A)

E.I.S,

Consumption-Wealth ratios:
C,fW, = exp

1.00
1.53
1.53
1.53
1,53
1.53
1.53
1.53
1.53

1/1.5
2.46
2.29
2.04
1.88
1.55
1.28
1.17
1.11

|E[c, - w,^\

1/2
2.92
2.66
2,30
2,05
1,56
1,15
0.98
0.90

X 100

1/4
3.62
3.22
2.67
2.31
1.57
0.94
0.70
0.57

1/10
4.04
3.55
2.90
2.47
1.58
0,82
0.52
0,37

(B) Long-term expected log return on wealth:

1.00
3.77
3.84
3.70
3.46
2,57
1.40
0.81
0.46

E[rp,

1/1.5
3.74
3.84
3.69
3.43
2.56
1.43
0.83
0.48

i+il X 100

1/2
3.73
3.84
3.68
3.42
2.56
1,44
0,85
0.49

1/4
3.72
3.84
3.67
3.40
2.56
1.46
0.87
0.50

1/10
3.71
3.84
3.67
3.40
2.56
1.48
0.89
0.51

1/20
4.18
3,66
2,97
2,52
1.58
0.78
0.46
0.30

1/20
3.71
3.84
3.66
3.39
2.56
1.49
0,89
0.52

1/40
4.25
3,72
3,01
2.54
1.58
0.76
0.44
0.27

1/40
3.71
3.84
3.66
3.39
2.56
1.49
0,89
0.52

Pane) A reports percentage exponentiated mean optimal log consumption-wealth ratios per quarter, i.e.,
100 times the exponential of JEIC - w,] = b* -^ b*[^i + al/2) + bjini + /t'^ + ;i(r̂  ^ (7 /̂4), for different levels of
relative risk aversion and elasticities of intertemporal substitution. Panol B reports the percentage
unconditional mean of the quarterly log return on wealth. These numbers are all baaed on the parameter
eatimat«B for the return process reported in Table II laamplu period 1947:1-1996:41. The values on Uie main
diagonal correspond lo the power utility caae.

Figure II also shows that the sensitivity of the optimal log
consumption-wealth ratio to the state variable is modest for moat
parameter values; the curves for the optimal consumption policies
tend to be rather flat. Brandt [1999] reports a similar result in a
finite-horizon model for the case of power utility with risk
aversion of 5. Equation (20) explains this: it shows tbat the
consumption-wealth ratio is determined only by long-run con-
siderations. Tbe terms that appear on the right-hand side of
the equation are expected discounted values of all future ex-
pected returns and variances, not current expected returns and
variances.
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To interpret the patterns in Panel A of Table IV, consider first
the right-hand column of the panel. This gives the exponentiated
mean optimal log consumption-wealth ratio for an individual who
is extremely reluctant to substitute consumption intertemporally
(41 = 1/40, close to zero). Such an individual wishes to maintain a
constant expected consumption growth rate regardless of current
investment opportunities. She can do this by consuming the
long-run average return on her portfolio, with a precautionary-
savings adjustment for risk. But in our model both the risk and
the average return are endogenous. If the investor is highly
risk-averse, as she is at the bottom of the column (7 = 40), then
she hoids almost all her wealth in the riskless asset and earns a
low return with little risk; if she is close to risk-neutral, as she is
at the top of the column (7 = 0.75), she borrows at the riskless
interest rate to earn a high but risky leveraged return. This
explains why the mean consumption-wealth ratio is so much
higher at the top of the column than at the bottom.

To clarify this interpretation. Panel B in Table IV reports the
unconditional mean log portfolio return, E[rp,+j].̂ ^ The mean log
returns in the right-hand column are close to the optimal consump-
tion-wealth ratios given in the right-hand column of the upper
panel (Panel A). They are particularly close at high levels of risk
aversion, shown at the bottom of the tables; at the top of the
panels the two variables diverge because the mean log return
reaches a maximum when the coefficient of relative risk aversion
7 = 1, and starts to fall when risk aversion declines from this
level, whereas the optimal consumption-wealth ratio keeps on
rising as 7 falls below one. The investor with unit risk aversion
maximizes the conditional expectation of the log portfolio return;
hence this investor must also have the highest unconditional
expected log portfolio return. The increase in the average consump-
tion-wealth ratio as 7 falls below one is caused by the precaution-

18, We can compute the long-term or unconditional expected log return on
'wealth by taking unconditional expectations in Lemma 4 of Appendix 1, i.e., by
calculating Ef E,(rp,,+1 )1, whicb gives

wherepo,pi. and pa are functions of a,) and ai defined in Lemma 4. We can rewrite
Po, p 1, and p2 as functions of the normalized parameters a 0 and a i by noticing that
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ary savings effect, which turns negative when i[i and 7 are on the
same side of unity as shown in equation (13).

Now consider what happens as the individual becomes more
willing to substitute intertemporally; that is, as \\) increases and
we move to the left in Panel A of the table. Equation (20) helps us
understand this. If we hold fixed the variance terms in (20), the
derivative ofc, - Wf with respect to i|) is -[p/(l - p)](E,[(l - p)/p] •
2J=i 9^fp,i+j + log 8), which is negative if the long-run expected
portfolio return exceeds the rate of time preference and positive
otherwise. Ignoring precautionary savings effects, an individual
who is willing to substitute intertemporally will have higher
saving and lower current consumption than an individual who is
unwilling to substitute intertemporally if the time-preference-
adjusted rate of return on saving is positive, but will have lower
saving and higher current consumption if the adjusted return on
saving is negative. Panel A in Table IV illustrates this pattern.
Investors with low risk aversion 7 at the top of the table choose
portfolios with high average returns, so a higher elasticity of
intertemporal substitution t]̂  corresponds to a lower average
consumption-wealth ratio. Highly risk-averse investors at the
bottom of the table choose safe portfolios with low average
returns, so for these investors a higher v|/ corresponds to a higher
average consumption-wealth ratio.

Our discussion so far has concentrated on the average level of
consumption in relation to wealth. We now give some intuition
about the sensitivity of the optimal ratio to the state variable i,.
Although we have noted that the slope of the optimal consumption
policy is always small in absolute value relative to the intercept.
Figure II shows that around the mean of the state space it is
negative when <!( > 1, and positive when v|) < 1. Moreover, it
increases in absolute value as 7 decreases. The intertemporal
substitution effect and the portfolio composition effect explain this
pattern. As X/ increases in the neighborhood of its positive mean,
so does the expected return on wealth, causing income and
substitution effects on consumption. When i|( > 1, the substitution
effect dominates, and the investor will cut consumption to exploit
favorable investment opportunities. When li/ < 1, the income effect
dominates, and the investor will increase consumption because a
given quantity of wealth can sustain a greater flow of consump-
tion. The effect of risk aversion appears because the state variable
X, increases only the expected return on the risky asset, not the
expected return on the riskless asset. An investor with a low risk
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TABLE V
VBLATIUTY OF CONSUMFNON GROWTH AND VOLATILITV OF THE LOG

CONSUMPTION-WEALTH RATIO

R.R.A.

0.75
LOO
1.50
2.00
4.00

10.0
20.0
40.0

1/.75
37.12
33.44
27.43
23.07
13.93
6.31
3.29
1.68

(A)

1.00
31.17
27.47
22.32
18.84
11.63
5.42
2.87
1.48

E.I.S.

Volatility of consumption growth:
otACfi] -

1/1.5
27.41
23.49
18.63
15.62
9.69
4.61
2.47
1.28

EA^ctn

1/2
26.12
22.08
17.28
14.41
8.93
4.29
2.31
1.20

]) X 100

1/4
24.71
20.55
15.83
13.12
8.16
3.99
2.17
1.14

1/10
24.13
19.91
15.26
12.65
7.95
3.97
2.19
1.15

1/20
23.97
19.74
15.11
12.54
7.92
4.00
2.21
1.17

1/40
23.90
19.66
15.05
12.49
7.92
4.02
2.22
1,18

(B) Volatility of the consumption-wealth ratio:
- Wii-i]) X 100

0.75
1.00
1.50
2.00
4.00

10.0
20.0
40.0

1/.75
8.97
7.77
6.11
5.04
2.94
1.30
0.67
0.34

1.00
0.00
0.00
D.OO

0.00

0.00

0.00

0.00

0.00

1/1.5
6.72
6.07
5.13
4.45
2.92
1.44
0.78
0.41

1/2
9.49
8.65
7.38
6.48
4.38
2.22
1.22
0.64

1/4
13.12
12.03
10.47
9.30
6.55
3.46
1.94
1.03

1/10
15.02
13.86
12.15
10.90
7.85
4.27
2.41
1.28

1/20
15.61
14.43
12.69
11.41
8.28
4.55
2.58
1.38

1/40
15.90
14.71
12.95
11.67
8.49
4.69
2.66
1.42

Panel A reports the percentage unconditional siaiidard deviation of cjuarterlj' log consuniption innova-
tions for different levels of relative risk aversion and elaBlicities of intertemiioralBubatitution. whilp Panel B
reports the percentage unconditional standard deviation of innovations in the quarterly log consumption-
wealth ratio. These numhers are all based on the parameter estimates for the return process reported in Tabk
II (sample period 1947:1-1996:4). The values on the main djagonal correepund to the power utility caae.

aversion coefficient is more heavily invested in the risky asset,
and thus her expected portfolio return is more sensitive to
changes in X,.

Finally, we consider the implications of the consumption rule
for the volatility of consumption relative to past expectations and
relative to wealth. Panel A in Table V reports the unconditional
standard deviation of consumption innovations for each set of
preferences we have considered, and Panel B reports the uncondi-
tional standard deviation of innovations in the log consumption-
wealth ratio.

Panel A in Tahle V shows that investors with low risk
aversion have extremely volatile consumption growth, for their
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consumption inherits the volatility of their portfolios. Investors
with unit elasticity of substitution in consumption have constant
consumption-wealth ratios, and so their consumption volatility
equals their portfolio volatility. Investors with low elasticity of
intertemporal substitution have somewhat less volatile consump-
tion, because they react to mean-reversion in stock returns by
cutting their consumption-wealth ratios when the stock market
rises. A 1 percent innovation in wealth causes these investors to
increase consumption by loss than 1 percent; they know that a 1
percent increase in consumption could not be sustained, even with
1 percent greater wealth, because the increase in wealth is
accompanied by a decrease in expected portfolio returns. Inves-
tors with high elasticity of intertemporal substitution respond to
the decrease in expected returns by cutting saving, so their
consumption is more volatile than their portfolio returns. Similar
results are reported by Campbell [1996] for a model with an
exogenous portfolio return process.

Panel B in Table V shows that investors with elasticities of
intertemporal substitution different from one have volatile con-
sumption-wealth ratios, because they do not consume a fixed
fraction of their wealth each period, but a varying fraction that
changes with the expected excess return on the risky asset. The
volatility of the consumption-wealth ratio is increasing in the
distance of the elasticity of intertemporal substitution from one,
and is decreasing in risk aversion since less risk-averse investors
have riskier portfolios whose expected returns are more sensitive
to changes in investment opportunities.

rV.5. Portfolio Allocation and Consumption, over Time

Our results can also be summarized by plotting the optimal
equity allocations and consumption-wealth ratios over time.
Figure III does this for preference parameters \y^ = VA,! = 4),
corresponding to power utility with moderate risk aversion, and
1*1* - '/|J7 = 20|, corresponding to a higher level of risk aversion.
The upper plot of each figure shows the optimal equity allocations,
while the lower plot shows the optimal consumption-wealth
ratios. The horizontal lines in the equity-allocation plots repre-
sent 0 percent and 100 percent holdings.

The figures show that stock holdings are highly volatile while
the optimal ratio of consumption to wealth is more stable, but
spikes up in periods where expected returns and optimal stock
holdings are unusually high. The investor with lower risk aver-
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sion holds on average a much larger proportion of her wealth in
stocks, and her consumption-wealth ratio is also larger on average
and more volatile. But both investors are keen stock-market
participants. In our model investors do not face restrictions on
short sales, so we allow the optimal allocation to stocks to be
either larger than 100 percent or negative. Figure III shows that
in the U. S. postwar period both investors are long in stocks
almost always, and the less risk-averse investor usually wants to
short the riskless asset and invest more than 100 percent of her
wealth in the market, except in periods of unusually low dividend
yields such as the early 1970s and the mid-1990s.

Barberis [1999] has obtained similar results for a Bayesian
investor who maximizes power utility defined over terminal
wealth and uses the log dividend-price ratio as a state variable;
with a ten-year investment horizon and access to historical data
over the period 1927-1993, Barheris' investor, who is not allowed
to short assets, is mostly 100 percent invested in stocks. Brennan,
Schwartz, and Lagnado [19971 have studied a similar problem
with power utility of terminal wealth, three state variables, three
assets, and frequent portfolio rebalancing. They also do not allow
short sales, and their optimal strategy for the period 1972-1992
often switches between 100 percent cash and 100 percent stocks.
Their optimal strategy is more volatile than Barberis' or ours
because they allow for a larger number of state variables.
Brennan, Schwartz, and Lagnado also include long-term bonds in
their analysis, but bonds do not play a major role in the optimal
portfolio.

rV.6. The Accuracy ofthe Solution
The analytical solutions we present in this paper are exact

only in the limit where time is continuous, and for parameter
values that imply a constant consumption-wealth ratio (ijf - 1 or
constant expected returns). For other parameter values our
solutions are only approximate. One way to assess their accuracy
is to compare them with solutions obtained using standard
numerical methods.

In Campbell, Cocco, Gomes, Maenhout, and Viceira 11998],
we have solved numerically for optimal policy functions in the
calibrated model of this paper. The numerical solution discretizes
the state space and approximates the distribution for the innova-
tions in the random variables using Gaussian quadrature with
nine quadrature points. The numerical method assumes that the



470 QUARTERLY JOURNAL OF ECONOMICS

portfolio allocation rule is a pth-order polynomial in the state
variable—in practice a third-order polynomial is adequate—and
uses a variant ofthe Newton-Raphson algorithm to optimize over
the coefficients of this polynomial.

The numerical solutions we obtain are very similar to the
approximate analytical solutions, except at the upper extreme of
the state space where both the numerical consumption and
portfolio allocation rules flatten out. Figure IV illustrates this in
the four cases we obtain when we combine vp = |l/.75,y4| and 7 =
|4,20]. The approximate analytical solution and the numerical
solution are particularly close between the vertical lines in the
plot that delimit the interval {pi - 2ij^,fi + 2aj.), but they do tend
to diverge at the right side ofthe plot where the state variable x, is
more than two standard deviations above its mean. The diver-
gence is more serious when 7 = 4 than when 7 = 20, because the
investor with 7 = 4 holds a riskier portfolio with a more volatile
expected return; the effect of this outweighs the greater utility
curvature for the investor with 7 ^ 20. For the same reason, the
divergence ofthe approximate from the numerical solution would
be smaller in a model with a more stable expected return on the
risky asset. Full details are provided in Campbell, Cocco, Gomes,
Maenhout, and Viceira [1998J.

V. THE UTILITY COSTS OF SUBOPTIMAL PORTFOLIO CHOICE

We have shown that a long-term investor who optimally
responds to the estimated predictability of stock returns will both
time the stock market and use stocks to hedge against deteriora-
tions in the investment opportunity set. However, we have not yet
shown that optimal timing and hedging produce large utility
gains. If the utility gains are small, they might easily be out-
weighed by small costs of formulating and executing the optimal
policy.

To address this issue, we use our approximate analytical
method to solve the intertemporal optimization problem of an
investor who follows an arbitrary portfolio rule but adjusts her
consumption optimally. We then compute the investor's value
function per unit of wealth under the suboptimal portfolio rule
and compare the unconditional expectation of this value function
with the unconditional expectation of the value function in the
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unrestricted problem.̂ ^ Throughout we assume that the investor
knows the stochastic process driving the return on the risky asset;
that is, we ignore the parameter uncertainty addressed by Kandel
and Stambaugh [1996] and Barberis [1999].

We consider three restricted portfolio rules. The first rule
ignores the timing implied by the optimal portfolio policy and sets
the equity allocation each period to the average allocation under
the optimal rule. This is a fixed portfoho rule that allows for
partial hedging in the spirit ofthe investment strategy advocated
by Siegel [1994]. Siegel argues that long-run investors should not
try to time the stock market, but should buy and hold large equity
positions because these positions involve little risk at long hori-
zons. Siegel's estimates of long-run stock market risk are low
because of the mean-reversion in stock returns that we have
captured with our VAR system. Thus, one can interpret Siegel's
strategy as a hedging strategy without market timing. The second
portfolio rule is the myopic rule that times the market but ignores
hedging considerations. This rule would be optimal if the covari-
ance a.̂ u were zero. The third rule sets the equity allocation each
period to the average allocation under the myopic rule, ignoring
both timing and hedging considerations.

Table VI describes the optimal consumption rules implied by
the restricted portfolio rules. For comparison it also includes in its
first row the optimal consumption rule (27) under the optimal
portfolio rule (26). The parameters of these rules of course depend
on the exogenous parameters ofthe model, but to save space, we
do not give further details here.

The top left panel of Table VII reports the unconditional mean
of the value function per unit of wealth that is implied by the
optimal, unrestricted consumption and portfolio rules in the
calibrated example discussed in the previous section. The other
three panels report the percentage change in the value function
when portfolio choice is restricted to one of the suboptimal rules
described above.

The table shows that suhoptimal portfolio choice can cause
large losses in utility. Failing to hedge intertemporally is harm-
less when risk aversion 7 = 1, since in this case the optimal
portfolio is myopic, but it can be a serious error for investors with
7 > 1. The losses from failing to hedge increase at first as risk

19. The implied value functions are exponentials of quadratic or linear
functions ofthe state variahle. The results in Constant! nides [1992] allow us to
ohtain explicit formulas for their unconditional expectations.
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TABLE VI
OPTIMAL CONSUMPTION RULES IMPLIED BY RESTRICTED PORTFOUO RULES

Hedging

Timing

No-timing

No-hedging

Timing

No-Timing

Portfolio rule

a( = do + a\(X[ + o'^/2

ot( = ao + (i\{}i + <Xy/2)

X, + crS/2

Optimal consumption rule
given portfolio rule

) Ct - Wt = bo + b\{X[ + ul/2)

1 c 1 ~ w, = 65""' + b'l''''(xt + o^/2)

„ , , . Lnhj 1 tnA, (/_ 1 _3/o\C( u'r — OQ + Oj (X( + a^rZ)

The second column in Table VI describes Ihe consumption rule followed by an inventor who atljUBU
consumption optimally given the portfolio rule described in the first column of the table. The firet row
deserihes the optimal consumption rule implied by the unconEtramed optimal portfolio rule. This rule IH
slate-dt pen dent and indudts a hedRinj; component. Therefore, the first row ofthe table deacribes the solution
to llu' intfrtcmporal optimi/.ation priiblcm we solve in Section III. The second row describes the optimal
consumption rule followed bj- an investor who tbllows a suboptioial portfolio rule cronsislinii; in allocating t*)
slAcks each period a fined fraction of her savings that equals the average allocation to atocks implied by the
optimal portfolio rule. Therefore, this investor ignores timing in her portfolio decisions, though she allows for
(imperfect) hedging. The third row ofthe table deserihes the optimal consumption rule followed hy an investor
who follows a niyopir portroliii niie. This suboptimal portfolio rule ignores hedging, but it is time-dependent.
Finally, the fourth row ofthe tahle describes the optimal portfolio rule followed by an investor who ignores
both hedging and timing and invests in stocks each period a fixed fraction of her savings that equals the
average myopic allocation to stocks.

aversion increases above one, but eventually diminish as ex-
tremely risk-averse investors have only very small equity posi-
tions and thus have little to hedge. Failing to time the market
causes large losses for all investors except those who are ex-
tremely risk-averse but extremely willing to substitute consump-
tion intertemporally. For all parameter values we consider, the
failure to time the market causes larger utility losses than the
failure to hedge intertemporally. These results confirm, for a
variety of investors with different levels of risk aversion and
elasticity of intertemporal suhstitution, the findings of Balduzzi
and Lynch 11997b] for finite-horizon investors with isoelastic
preferences defined over wealth and relative risk aversion coeffi-
cients of 2, 6, and 10.̂ " The results are also compatible with the

20. Balduzzi and Lynch find that utihty losses increase with the horizon ofthe
investor. Since we consider an infinite horizon, this helps to explain why we ohtain
somewhat larger utility costs than they do for similar levels of risk aversion.
Balduzzi and Lynch also flnd that utility costs remain suhstantial in the presence
of fixed and proportional transaction costs.
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findings of Kandel and Stambaugh [1996] and Barberis [1999]
that Bayesian investors experience large gains in certainty-
equivalent return when they optimally respond to evidence of
predictability in stock returns.

VI. CONCLUSION

One ofthe major objectives of modern financial economics has
been to put investment advice on a scientific basis. This task has
been accomplished for investors who have short horizons or
constant investment opportunities. Unfortunately, most investors
have long horizons, and there is considerable evidence that they
face time-varying expected returns on risky assets. Until very
recently financial economists have not even attempted to give
such investors precise quantitative advice about their portfolio
strategies.

Recent work on long-horizon portfolio choice has generally
ignored the consumption decision and has considered portfolio
choice for investors who consume nothing until a fixed terminal
date.'̂ ^ Our objective has been to analyze a model in which
investors optimize over both consumption and portfolio allocation.
Because the intertemporal consumption and portfolio choice
problem is highly intractable wben expected returns are time
varying, we have resorted to an analytical approximation. We
have replaced the Euler equations and budget constraint of the
exact problem with approximate equations that are much easier
to solve, and we have explored in detail the analytical solution of
the approximate problem.

We have used Epstein-Zin-Weil recursive preferences to
separate the influence of risk aversion and the elasticity of
intertemporal substitution on portfolio choice and consumption.
We have shown, for example, that portfolio choice depends on the
elasticity of intertemporal substitution only indirectly through
the effect of this elasticity on the average level of consumption
relative to wealth.

We have used our model to assess the quantitative impor-
tance of intertemporal hedging demand for risky assets by
long-lived investors. After calibrating the model to postwar quar-
terly U. S. stock market data, we find that intertemporal hedging

21. Very recent exceptions to this statement include Brandt [1999] and some
cases analyzed in Balduzzi and Lynch Li997a,1997bJ.
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motives can easily double the average total demand for stocks by
investors whose coefficients of relative risk aversion exceed one.
We also find that suboptimal myopic portfolio rules imply large
utility losses for such investors. These results support the conclu-
sion of other recent papers such as Barberis [1999], Balduzzi and
Lynch [1997a, 1997b], Brandt [1999], Brennan, Schwartz, and
Lagnado [1997], and Kim and Omberg [1996] that static models of
portfolio choice can be seriously misleading. Intertemporal portfo-
lio choice should not remain an abstruse theoretical topic, but
should be integrated into empirical research and investment practice.

An important caveat is that our analysis is partial equilib-
rium in nature. We solve the microeconomic problem of a given
investor facing exogenous asset returns, but we do not show how
these asset returns could be consistent with general equilibrium.
One possibility is that the representative investor has different
preferences from those assumed here, perhaps the habit-
formation preferences of Campbell and Cochrane 1.1999] that can
generate shifts in risk aversion and hence changing risk premi-
ums with a constant riskless interest rate. In this setting the
model has only limited applicability, since it describes the behav-
ior of atypical investors whose risk aversion is constant over time.
Alternatively, if all investors have the preferences assumed here,
their portfolio shifts could be supported in general equilibrium by
shifting asset supplies. Supplies of stock would have to fall with
the risk premium to accommodate investors' desire to reduce their
stockholdings. But such shifts in supplies are unlikely to be
consistent with macroeconomic data on aggregate portfolio shares.

Another caveat has to do with approximation error. Our
approximate solution is exact when the elasticity of intertemporal
substitution is one and the time interval between consumption
and portfolio decisions is infinitesimally small. In a companion
paper [Campbell, Cocco,. Gomes, Maenhout, and Viceira 1998] we
have checked the accuracy ofthe analytical approximate solution
in other cases by comparing it with a discrete-state numerical
solution in oiu* calibrated example. We have found that our
solution is generally a good approximation to the true solution,
but the approximation error does increase when the state variable
is more than two standard deviations above its mean. We have
also found that the numerical solution algorithm converges much
more rapidly and reliably when we are able to provide starting
values from the approximate solution.
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The approach of this paper can be applied to many related
problems. For simplicity, we have considered only a single risky
asset and a single state variable, but it is straightforward to
consider multiple risky assets and state variables. We can explore
horizon and rebalancing effects, in the manner of Barberis [1999]
and Brandt [1999], by assuming that the investor has a finite
rather than infinite horizon and restricting the frequency at
which she can rebalance her portfolio. We can allow the riskless
interest rate to vary over time, and can consider investor choices
among indexed or nominal bonds of different maturities [Camp-
bell and Viceira 1998]. We can allow for time variation in the
volatility of risky asset returns, and even for the presence of
exogenous labor income in the investor's budget constraint [Vi-
ceira 1997]. We believe that in all these cases there is much
understanding to be gained by taking an analytical approach to
the problem.

APPENDIX 1: SOME USEFUL LEMMAS

In this appendix we state as lemmas and prove nine useful
results. We use some of them to prove, in Appendix 2, the main
propositions ofthe paper.

LEMMA 1. The conditional expectation of future values ofthe state
variable is a linear function of its current value, while the
conditional expectation of future values ofthe squared state
variable is a quadratic function ofthe current state variable:

1 -
1 —

Proof of Lemma 1. By simple forward recursion of x, and xJ in
(3), we have

(=0
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and

(28) ix,,j - fif

+ 2<t> X ^^^t^j-i-i

The results stated in the lemma follow from the expressions
above, after taking conditional expectations at time (t + 1),
E,+ i, and the martingale assumption (A2), which implies that

= 0, E,+iTi,+/ - 0, and E,+I[X(+,-ITI,+/] = 0, Vi > 1. D

LEMMA 2. The innovation in next period's squared state variable
is linear in the current state variable:

Proof of Lemma 2. The proof for this lemma is similar to that
for Lemma 1. From (28), find:cf+j by setting j - 1: D

Lemma 2 then follows by appljang the conditional expectations
operator E( to this expression, under the martingale assumption
(A2). n

LEMMA 3. The unexpected return on the risky asset and the
conditional variance ofthe risky asset are given by

Proof of Lemma 3. This result follows trivially from (A2) and
(A3). It is stated here as a lemma for completeness. D

LEMMA 4. The expected portfolio return next period is quadratic
in the current state variable, and the unexpected portfolio
return is linear in the current state variable:
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and

where

Pi =

Proof of Lemma 4. From (16) and our guess (i) on the optimal
portfolio rule, we have that

where the last line follows from (2). Reordering terms, we get a
quadratic expression inx, whose coefficients are those given in the
statement ofthe proposition.

The expression for r^^,,^ - fypj^i also follows from (16)
and guess (i), as well as (Al)—constant r,- —and (A2)-(2),

(29) r^,,^i - E,rp.,^i = a,(

= (ao + i ( ) , + i .

D

LEMMA 5. Expected optimal consumption growth over the next
period is quadratic in the current state variable, and unex-
pected consumption growth is linear in the current state
variable: . >

E,dcM, = E^^,,.n + E,f:C(+i - Wi^^\ - - (c, - Wt) + k
P

= Co + C]Xt + C2I:?,

^ E A ( ) , ^ i -f 6i%-,i
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where

Co = r̂  + aod - ao) - + ^ + 601 - - + b

+

a i d -

Oi 2

a
2ao)7

- Og 4)2

2

r + ^1
1

p-

1

p

Proof of Lemma 5. From (18) and (15) we can write

(30) Ac I ^ r 1 "f" (C(4-i — Wi+t) ~~ (l/p)(c/ — Wt) "^ h

Therefore,

1
' '+1 '^^ p ' '

1
-I _ _

P

(T.

60
1

1 - - 61

where the second equality follows from Lemma 4 and our guess (ii)
on the optimal consumption policy, and the last equality follows
from (3) and Lemmas 1 and 2. Reordering terms, we get the
expression for E(Ac,41 in the lemma as well as \CQ,CI,C2\-

The expression for unexpected consumption growth follows
from (30), the expression for the unexpected portfolio return
derived in Lemma 4, and from noting that our guess (ii) on the
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optimal log consumption-wealth ratio implies that

(31) Ct+i - Wt^i - E,(c,+i - Wi4i) = bi(xi.,i - EfXi^O

481

where the second line follows from Lemma 2. •

LEMMA 6. The time-varying intercept in the Euler equation for
portfolio returns (13) is a quadratic function of the state
variable:

where

^ t̂ O +

2

1 - 7

>

ij; —

\2\—2

2 ^

— ™2

6162
1

v[;

i l l ; - 1

1,
2I
J

+ aoai[d

6,62

ai62l

1 - 7

v p - 1

(1 - 7

>

1 ^
1)2

/ I - 7
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Proof of Lemma 6. From (13), (15), and (18) we have

1
2

1

2

1

2

e
^.

e

6'

If we substitute in the bracketed expression above (29) and (31)
for (r^.,fi - E,rj,j+i) and (ĉ +i - w, + i) - E,(c,+ i ~ w,^-i) and com-
pute E, under assumptions (A2) and (A3), we find that Vp^i is a
quadratic function of a;,, with the coefficients given in the state-
ment of the lemma. •

LEMMA 7. The parameters defining the optimal consumption rule
(ii) satisfy the following three-equation system:

= k — ^ log 8 + (1 — v|/)rf + (1 —

1
1 - -

P

i | , ) - ( l - . t * ) a ? - + 62

Proof of Lemma 7. This follows from the log-linearized Euler
equation for the optimal portfolio given in (12), and Lemmas 4, 5,
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and 6. From (12) and Lemmas 4 and 6,

(32) E,ACi+i - 4. log 5 + Vpj + i{/E,rp,;

= i|/ log 8 + \\trf + VQ

483

+

1 -

^ 2

«̂ \
L2

which is a quadratic function of the state variable. But from
Lemma 5 we have that E,Ac,+i is also quadratic in x,:

(33)

where Co, Cj, and C2 are given in Lemma 5. Equating coefficients on
the right-hand side of (32) and (33), the lemma follows immedi-
ately. •

LEMMA 8. The covariance between unexpected stock returns and
changes in expected portfolio returns is linear in the state
variable:

cov, - E,)

1 - P 4 ,

+ (1

CT,

where \pij)2] are given in Lemma 4.
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Proof of Lemma 8. Lemma 4 implies that

.2

- 4>
.2

4>

1 - P 4 .

where the second equality follows from Lemma 2 and the third
one follows after computing the infinite summations in the second
one and reordering terms.

The result stated in the lemma follows immediately from
assumptions (A2) and (A3) about the distribution of («,| | , r\f+i),
the expression alrove, and the properties ofthe covariance operator. D
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LEMMA 9. The covariance between unexpected stock returns and
changes in the expected value of the intercept in the Euler
equation (13) is linear in the state variable:

cov.

2^2"
J

P4>

p4'
— P4*

p
- p 4 )

I

where |i'o.̂ i)î 2l are given in Lemma 6.

Proof of Lemma 9. Lemma 6 implies that

, . i - E,) - E,)xi+J

which is identical to the expression given in the proof of Lemma 8,
except that we have Vi and U2 instead of Pi and p2. Therefore, we
must have that

1 - P 4 ,

-I-

1 - P 4 ) ]

p

from which the lemma follows, under the distributional assump-
tions (A2) and (A3). . , a
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APPENDIX 2: PROOFS OF PROPOSITIONS

Proof of Proposition 1

From (A2), Efrî +̂i - 7 = Xt, and from (A3), CT^J,, = CTJ. Also,
from guess (ii),

= cov,

= cov,

^ - 4)) ^
where the second line follows from substituting guess (ii) forc, + i -
Wt+u the third line follows from (A2) and Lemmas 2 and 3, and the
last line follows from (A3) and the assumption of joint normality of

Using these results, we can rewrite (19) as

( 3 4 ) C L , - - - + -
7 (xl 27

which is linear in x,. But our guess (i) on the optimal portfolio
policy is that a, is linear in the state variable,

Grouping terms in (34), we obtain ao and aj as stated in Proposi-
tion 1. •

Proof of Proposition 2

Tbe proof for this proposition follows from Lemmas 6 and 7
and Proposition 1. Lemma 6 defines a nonlinear equation system
for |i;o,î i,'̂ 2L Wo-O

-I-

where the coefficients Vy are functions of the primitive parame-
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ters ofthe model (both those defining the preference structure and
those defining the stochastic structure of the model) and are
immediately identifiable from the statement of the system in
Lemma 6. For example, Vn ^ (1 - 7) (»1J - 1)CT2/2, and so on.

Similarly, Lemma 7 defines a second system for |uo,yi,t;2l,
and 160,61,62):

Vo - Sio + Bnbo + B^^bi + B^^bz + B^^a^ +

622^1 + B2362

where the coefficients .Sy are functions ofthe primitive parameters
ofthe model. For example, B^ = k - \\t\ogh + {1 - ^)rf, and so on.

Finally, Proposition 1 defines another system for |ao,ai| and
1 !

ai ~ A20 + A21O2,

where, again the coefficients Ay are also functions ofthe primitive
parameters of the model and are immediately identifiable from
the statement ofthe system in the proposition. For example, Aio =
1/(27), and so on.

By equating the right-hand sides of the first and second
system, we obtain another system whose unknowns are |ao,ai | and
\bo,b\,b2]. But the third system defines |ao,0]l as linear combina-
tions of 161,62!. Substituting this system into the one obtained by
combining the first and second systems, we obtain the equation
system for 160,61,62! given in the proposition. The coefficients Â
relate to the coefficients A^, By, and Vy as follows:

0 = -B,o + (Vn - Si5)A?o - S iAo + i-Bn)bo

0 - -Ba iAjo + (V22 - B25)AioA2o - B24A24A20
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+ t -Ba iAu - B22 + (V22 - -B25lAnA2o

+ [-B21A12 - B23 + (V22 - B25)(AioA2i

+ V23A10 + V25A20 - B24A2J62

+ [^21 + (^22 - B25)Ai2A2i + V23A12 +

- B25)AuA2i + y23Aii + V24A21

+ A12A20)

0 =

— B31A21 — B32

n

APPENDIX 3: PROOFS OF PROPERTIES

Proof of Property 1

The approximate value function per unit of wealth obtains by
direct substitution of guess (ii) into (11). We now use equation (23)
to characterize 62. This equation is

0 - A30 + A3162+ A3262-

Substituting Ay's for their values, we get

(35) 0 =
(1 - 7)24^(7,,

.2

2(1 - +

This equation has two roots, that we denote 1621,622!. A sufficient
(but not necessary) condition for these roots to be real is that

I.e.,

(1 -

A32A30 ^ 0;

+

This is always true when 7 ^ 1 , since (1 - 7) ^ 0;

(36) aX - al, = o .̂cr̂ d - corr («,TI)2) > 0;
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and all other terms in the expression for A32A30 are positive. When
7 < 1, we have A32A30 > 0, so the roots are real if

(37) Afi - 4A32A30 > 0.

To analyze the sign ofthe roots, rewrite equation (35) as

(38) 0 =

+ bl

or

0 = A30 + A3162 + bl

From standard theory on quadratic equations, the product ofthe
roots is given by A30, which is negative when 7 > 1 and positive
when 7 < 1:

'21 699 = A30

<0

>0

i f7>

i f7<

Therefore, when 7 > 1, the roots are real and have opposite sign and,
when 7 < 1, the roots have the same sign—provided that they are real.

Similarly, from standard theory on quadratic equations,

^21 + 622 = - A 3 1 ,

which is always positive if [i|i < 1,7 < 1,4)CT̂ U < O) or |il; > 1,7 >
1,4>CT̂« > 0!, and always negative if |»1J > 1, < l,4>a.^u "̂  O! or |vl» <
1,7 > 1,4>CTT,U > 0!, since (4)̂  - p-i) < 0, because 0 < p < l,\(^\ < 1
and, from (36), the term in brackets in the denominator of A3] is
positive.

Therefore, when 7 < 1 and 4>CT̂ ,, < 0, both roots are positive if
i|; < 1 and negative if\\f> 1, so that 62/(1 - i[») > 0. When 7 < 1
and ii}a^,, > 0, the same result still obtains, provided that the
condition for real roots (37) holds—this condition implies that
yal{<^^ - p'^)^ > - (1 - 7)24>CT.̂u(<l>2 - p-i), which is sufficient to
obtain the result for this case.

When 7 > 1, the roots of the equation alternate in sign. If
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4>o"̂u > 0, we can write the expression for the roots of equation (35) as

6? = (4* - 1)

where A, B,C,D are positive constants—provided that 7 > 1 and
4>CT̂u > 0—so choosing the positive root of the discriminant
delivers 62 < 0 if ^ > 1 and 62 > 0 if >[/ < 1, and 62/(1 - il;) > 0. The
opposite obtains if we choose the negative root. If 4><̂TIU < 0, we can
write the expression for the roots ofthe equation as

62 - 1)
B)

-D

and the same result obtains. D

Proof of Property 2

To prove Property 2, we need to consider two cases, the case in
which 4>CTT,U < 0 and the case in which ^a^^ ^ 0-

Case ^a^u < 0.
From the last part of the proof of Property 1, we have that

62/1 4J - 1) < 0 when we select the value of 62 associated with the
positive root ofthe discriminant of equation (23).

Plugging this result into the second equation of Proposition 1,
we obtain immediately that ai > 0 when 7 > 1, and <^a.^u < 0- since
all the terms in the equation are positive. Also, when 7 = 1 , the
second term in the equation is zero, so ai = 1/CT̂  > 0. When 7 < 1,
the first term is positive, but the second is negative, so we need to
prove whether the sum of both terms is positive. Solving for the
positive root ofthe discriminant in (35) and plugging the result in
the second equation in Proposition 1, we find that

(39)

where

A =

- l/p)

..2

+

167(1 - ,2

- 167(1 -

Since the denominator is always positive, the sign of the slope
depends on the sign ofthe numerator. A straightforward analysis
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ofthe numerator shows that a couple of sufficient conditions for it
to be positive are

^ 24>'

and

But if the first sufficient condition is violated, the second one is
immediately verified, so ai > 0.

Case ^a.^,, > 0.
From the last part of the proof of Property 1, we have that

62/d - i[;) > 0 when 7 < 1—provided that the condition for real
roots (37) in (35) holds. Plugging this result into the second
equation of Proposition 1, we obtain immediately that a-i > 0,
since 7 < 1 and 4>c,,u > 0. Therefore, the slope of the optimal
portfolio policy is always positive no matter what root we select for
the discriminant of equation (23).

When 7 > 1, solving for the negative root ofthe discriminant
in (35) and plugging the result in the second equation of Proposi-
tion 1, we find again (39), which is always positive when 7 > 1. If
we solve for the positive root ofthe discriminant in (35) and we
plug the result into the second equation of Proposition 1, we find
an expression similar to (39), except that the second term is
subtracted. A sufficient condition for this expression to be positive
is 4̂  corr (T|,,],U,+I) > 4> corr (-TI,+],W,+I)^, which is always true
because sign(4)CT^u) = sign (4) corr(Ti(+i,U(+i)) and |corr(Ti,+i,

!

The Limiting Behavior ofaj. >

Regardless ofthe sign ofthe covariance and 4>, Oi —' +=" as
7 —• 0 and a] —* 0 as 7 —• + 00. To prove these results, note that,
from (39), we have that the numerator of aj is 0(7), while the
denominator is 0(7^). Hence, taking appropriate limits, we obtain
the desired results. D

Proof of Property 3 \

Part a. When 7 = 1, Lemma 6 in Appendix 1 implies that VQ =
y] - 112 ^ 0 so the intercept term v,,j in the Euler equation (12) is
zero. We also see this by noticing that 7 = 1 implies 6 = 0.
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Substituting 7 = 1 in Proposition 1, we obtain the same myopic
portfolio rule as with log utility. It is straightforward to see that
this rule maximizes the conditional expectation ofthe log portfolio
return. However, the consumption-wealth ratio is no longer
constant unless 4' = 1, as we can see from Lemma 7 in Appendix 1.
Therefore, unit relative risk aversion implies a myopic optimal
portfolio policy and a nonmyopic optimal consumption policy.
Giovannini and Weil [1989] emphasize tbis result. •

Part b. When i|( —• 1, the equation system in Proposition 2
delivers 6̂  = 62 = 0 and

After substituting for the value of A, this result simplifies to

(40) 6o

Moreover, we know from standard arguments that p = 8. There-
fore, it is optimal for the individual to consume each period a fixed
fraction of her wealth. Following Giovannini and Weil [1989], we
call this optimally constant propensity to consume out of wealth a
myopic consumption policy.

However, the agent's optimal portfolio policy is not myopic.
This is because, from equation (41) in tbe proof of Property 3
below, we have that 62/(1 - 4*) and 6 /̂(1 - i|i) are nonzero con-
stants independent of i|/ for given p. Therefore, when 4" — 1* the
terms in |6i,62| in the system defining the optimal portfolio policy
in Proposition 1 do not vanish, and a nonmyopic portfolio policy
obtains. Giovannini and Weil [1989] also emphasize this result.

Part c. The values for 60, 61, and 62 obtain from the proof for
Part b. Substituting for 7 = 1 into Proposition 1, we obtain a^ = Vz

i = I/CT .̂ D

Part d. With constant expected returns, CT^U = 0. From
Proposition 1 we obtain the same portfolio policy as in the log
utility case, except that 7 =*̂  1: ao ^ 1/(27), and a, = 1/70"̂  Also,
since Xj is deterministic, (31) implies that c, - W( is constant. This
is the well-known result for the optimal portfolio rule when
returns are i.i.d. U

Proof of Property 4

A straightforward analysis of the solutions to equations
(22) and (23) in Proposition 2 shows that we can write 61 and
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62 as '

b, = (^- l)fi(7,p),

62 = (ill - I)f2(7,p),

where fi(7,p) and fi(7,p) are functions that do not depend on t|i.
After substitution in the equation system in Proposition 1, we find
that the parameters defining the optimal portfolio rule, !ao,ai!, do
not depend on 4* for given p. However, p itself is a function of
4/—recall that p = 1 - exp \E[ct - Wt]\—so the optimal portfolio
rule depends on \\f indirectly through p. D

Proof of Property 5

To prove this result, note that equation (23) in Proposition 2,
that determines 62, is found by equating the right-hand side ofthe
third equation in Lemmas 6 and 7, and substituting out ai using
the second equation in Proposition 1. None of these equations
depend on^i. | •
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