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Abstract

Strategyproof mechanisms provide robust equi-
librium with minimal assumptions about knowl-
edge and rationality but can be unachievable in
combination with other desirable properties such
as budget-balance, stability against deviations by
coalitions, and computational tractability. In the
search for maximally-strategyproof mechanisms
that simultaneously satisfy other desirable prop-
erties, we introduce a new metric to quantify
the strategyproofness of a mechanism, based on
comparing the payoff distribution, given truth-
ful reports, against that of a strategyproof “ref-
erence” mechanism that solves a problem relax-
ation. Focusing on combinatorial exchanges, we
demonstrate that the metric is informative about
the eventual equilibrium, where simple regret-
based metrics are not, and can be used for online
selection of an effective mechanism.

1 Introduction

Mechanism design addresses the problem of achieving de-
sirable outcomes in multi-agent systems despite private
information about valuations and individual self-interest.
Mechanism design finds applications in societal contexts
(e.g., school and medical residents matching [1]) and busi-
ness contexts (e.g., sponsored search auctions [9]), while
providing a formal paradigm by which to coordinate the
behavior of artificial agents (e.g., for task and resource al-
location). A central concept is that ofstrategyproofness:
is there a desirable mechanism in which it is a dominant-
strategy equilibrium for every agent to report its private in-
formation (ortype) truthfully? Strategyproofness simplifies
participation and removes the need for counterspeculation
about the behavior of other agents. But strategyproofness
can be unachievable together with other desirable proper-
ties. For example, strategyproofness can conflict with other
desired properties such as budget-balance [14], coalitional
stability or revenue properties [3], simple rules [9], and

computational tractability [13]. In addition, there are some
problems for which the design of a strategyproof mecha-
nism with desirable properties is unattainable with current
theoretical techniques. For these reasons, it is often nec-
essary to adopt approximately strategyproof mechanisms,
and for this it is useful to have a metric to quantify the
degree of strategyproofness of a mechanism to guide the
design process.

A standard measure of approximate strategyproofness isre-
gret, namely the loss in utility to an agent from reporting its
true type compared to its best possible misreport, given re-
ports of other agents. Anǫ-strategyproof mechanismis one
in which truthful reporting achieves withinǫ > 0 of the best
possible utility, for all possible reports of other agents and
all agent types [17]. This is meaningful whenǫ is small,
for example smaller than the cost an agent incurs in rea-
soning about how to manipulate, because it is reasonable
that agents will then behave truthfully. But, as the maxi-
mal regret gets large it is not clear that regret provides the
appropriate metric by which to quantify the degree of strat-
egyproofness of a mechanism or guide mechanism design.

Conceptually, one could imagine simply defining a metric
on the distance between equilibrium strategies and truthful
strategies. But this metric provides no guidance for how
to design approximately strategyproof mechanisms. More-
over, we are interested in a metric that does not require
solving for the equilibrium of a candidate mechanism, be-
cause this will tend to be the bottleneck in computational
approaches to identifying good mechanisms. We intro-
duce as a metric thenormalized Kullback-Lieber (KL) dis-
tancebetween the distribution of payoffs in a mechanism
and a distribution induced by a strategyproof “reference”
mechanism, where these payoffs (or utilities) are evalu-
ated given truthful bids (i.e. out of equilibrium), and re-
stricted to agents affected by the outcome (either positively
or negatively.) The metric requires that there exists a strat-
egyproof reference mechanism for some natural relaxation
of the problem.

In studying this KL-distance metric, we focus on mech-
anism design for combinatorial exchanges (CEs), which



extend combinatorial auctions to allow for multiple buy-
ers and multiple sellers. The design of highly efficient,
strategyproof CEs remains an open problem in mechanism
design.1 The Vickrey-Clarke-Groves mechanism is strate-
gyproof and efficient, but runs at a deficit. This provides the
reference mechanism. We evaluate the KL-distance metric
and a number of regret-based metrics on a family of ap-
proximately strategyproof mechanisms that were proposed
in Parkes et al. [14]. In providing experimental results, we
need to adopt an approximate method to compute equilib-
rium of different CE mechanisms because there is no com-
putationally tractable method to compute exact Bayesian-
Nash equilibrium in CEs. For this, we compute restricted,
partially-symmetric equilibria.

The KL-distance metric has a significant and strongly pos-
itive correlation with a parametrization of the amount by
which the equilibrium deviates from truthful reports, and a
strongly negative correlation with the allocative efficiency
in equilibrium. The metric identifies the Small rule from
Parkes et al. [14] as the best mechanism, and it is in-
deed this rule that provides highest efficiency and least bid-
shaving in equilibrium. In testing the power of the metric
for mechanism design, we show that the metric is effective
in guiding a search through a set of mechanisms and identi-
fying a highly efficient mechanism based only on observed
data. In closing, we discuss the implications of the met-
ric for advancing a new paradigm of heuristic mechanism
design and also present a number of open questions.

Related Work. Schummer [17] was the first to considerǫ-
strategyproof mechanisms and this approach was also con-
sidered by Kothari et al. [8] in the design of multi-unit auc-
tions. In doing so, these authors advocateworst-case regret
as a metric of approximate strategyproofness, namely the
worst-case loss in utility from behaving truthfully given all
possible reports of other agents. Another notion of approx-
imate strategyproofness is that ofstrategyproof with high
probability [2]. The aforementioned body of work is gener-
ally motivated by problems in which the approximation can
be arbitrarily small. Alternatively, Parkes et al. [14] first
advocated the idea of defining a payment rule that tries to
minimize the distance to the payments in the VCG mecha-
nism, in settings such as CEs for which the VCG payments
are unavailable because they run at a deficit. This approach
has been adopted and expanded upon in the context of com-
binatorial auctions, where core constraints can often pre-
clude VCG payments [11].2 Our work also relates to meth-

1It is well known that no mechanism exists that is efficient,
no deficit and individual rational [12]. But no “second best”
mechanism has been designed that maximizes expected efficiency
while retaining incentive compatibility, individual-rationality and
no deficit properties.

2Budish [4] recently advocated “strategyproofness in a large-
market” as a criteria for selecting amongst two, non-strategyproof
mechanisms. This asks whether the mechanism will become strat-
egyproof for a replica economy, in the limit as each agent be-

ods ofautomated mechanism design[6], in which system-
atic search is performed in the space of possible mechanism
rules, and especiallyempirical mechanism design[18, 19],
in which one couples search through a parametrized mech-
anism space with an empirical methodology for solving the
induced games.

2 A Heuristic Mechanism Design Paradigm

In the problem of mechanism design, there is a set of al-
ternativesA and a set of agentsN = {1, . . . , n} and
each agent has a private valuation functionvi(a) ∈ R for
each alternative. In the context of this paper, each alter-
native represents a trade of goods between agents. We
consider here the standard setting of quasi-linear utility
functions, where an agent’s utility (orpayoff) for alterna-
tive a and paymentp is ui(a, p) = vi(a) − p. A direct-
revelation mechanism asks each agent to make a claim
about its valuation, from which an alternativef(v̂) ∈ A

is picked based on claimŝv = (v̂1, . . . , v̂n) on valuations,
and paymentspi(v̂) ∈ R are collected from each agent. A
strategyproofmechanism is one in which it is a dominant-
strategy for each agent to report its true valuation, so that
vi(f(vi, v−i))−pi(vi, v−i) ≥ vi(f(v̂i, v−i))−pi(v̂i, v−i),
for all vi, all v̂i, and allv−i = (v1, . . . , vi−1, vi+1, . . . , vn).

In motivating the need for a metric to quantify approx-
imate strategyproofness, consider the following heuristic
approach to mechanism design: there is a space of non-
strategyproof mechanismsM, each of which has the same
outcome rule and good properties when agents are truth-
ful, and with properties that degrade as agents becomes
less truthful in equilibrium. Given this set of mecha-
nisms, adopt as the goal that of selecting the mechanism
in M that is maximally strategyproof. For example,
these could be mechanisms in which outcome rulef(v) ∈
arg maxa∈A

∑
i vi(a) but vary in their payment rules, so

that if agents are truthful the mechanism is efficient; i.e.,
maximizing the total value through its choice of alterna-
tive. In doing so, we seek a metric on approximate strate-
gyproofness that provides explicit design guidance because
the space of mechanisms may be too large to enumerate,
and works without computing the equilibrium of a candi-
date mechanism because this is computationally expensive.

A standard answer would be to select a mechanism that
minimizes the worst-caseex postregret from behaving
truthfully, across all agents and across all instances. The
regret of agenti when valuations arev = (v1, . . . , vn)
is regret i(v) = maxv̂i

(vi(f(v̂i, v−i)) − pi(v̂i, v−i)) −
(vi(f(vi, v−i))−pi(vi, v−i)). But is this the right answer?
Does this lead to a mechanism in which an agent’s equilib-
rium bids are closer to truthful, on average, than in the other

comes one of a continuum of agents with the same type. While a
very useful design criteria, this does not by itself meet our needs
of providing a metric with which to quantify approximate strate-
gyproofness.



mechanisms inM? In this paper, we propose a metric that
adopts a strategyproofreference mechanismm∗, and seeks
a mechanism that induces payoffs that are close in distri-
bution tom∗. The reference mechanism will be outside of
M, and with the same outcome rule but a payment rule that
makes the mechanism strategyproof.

3 The Metric and the CE Environment

The metric is defined as a KL-distance between payoff dis-
tributions to agents in a mechanismm = (f, p) and its
reference, strategyproof mechanismm∗. For a particular
instance, letπm(v) = (π1(v), . . . , πn(v)) define the pay-
off to each agent inm, i.e. πi(v) = vi(f(v))− pi(v). Sim-
ilarly, let π∗(v) = (π∗

1(v), . . . , π∗

n(v)) define the payoff to
each agent in the reference mechanismm∗. Let π ∈ Π
be a feasible joint payoff vector and letHm(π), H∗(π)
be the joint distribution of payoffs under mechanismm
andm∗ respectively, as induced by a distribution on val-
uations. In general, we have in mind a metric defined as
the multivariate KL-distance between these distributions:∫

π∈Π
H∗(π) log( H∗(π)

Hm(π) )dπ. To keep things relatively sim-
ple, we will consider in this paper a projection of these
multi-dimensional distributions down to one-dimensional,
normalized payoff distributions where the normalization is
based on a relevant statistic for a particular instance. The
particular projection is specific to the CE environment.

3.1 Combinatorial Exchanges

A CE is a market with multiple units of dissimilar, indivis-
ible items,G = {1, . . . , k}, and multiple agents, each of
which may be interested in both buying and selling items.
Each agenti has a valuationvi(λi) ∈ R on possible trades
λi = (λi1, ....λik), whereλij ∈ Z specifies the number of
units of itemj transferred to agenti. An efficient CE will
identify the trade that maximizes the total value across all
feasible trades, subject to feasibility constraints (supply ≥
demand). The Vickrey-Clarke-Groves (VCG) mechanism
adopts the role of the reference mechanism by relaxing the
no-deficit constraint. Given reported valuationsv̂, the VCG
selects the efficient tradeλ∗ based on reports, to maximize
the total value over all feasible trades (this problem can be
formulated and solved as a mixed-integer program). Let
V ∗(v̂) denote the total value (orsurplus) over all agents in
this trade. In the VCG mechanism, each agent’s payment is
pvcg,i(v̂) = v̂i(λ

∗) − (V ∗(v̂) − V ∗(v̂−i)), whereV ∗(v̂−i)
is the total reported value for the optimal trade without the
presence of agenti. The VCG mechanism is strategyproof,
but runs at a deficit.

Recognizing this, Parkes et al. [14] introduced a num-
ber of approximately SP mechanisms, defined for CEs.
These will play the role of the design spaceM in this pa-
per. Each mechanism adopts the same allocation rule as
in VCG (and therefore has good properties when agents
are truthful) but defines payments that are exactly bal-

anced. Conceptually, the payment rules all discount the
amount an agenti will pay relative to its reported valu-
ation v̂i(λ

∗) for the selected trade. In the VCG mecha-
nism, this discount is∆vcg,i(v̂) = V ∗(v̂) − V ∗(v̂−i), but
in each of these new mechanisms the discounts are con-
strained so that

∑
i ∆i(v̂) = V ∗(v̂), providing

∑
i pi(v̂) =∑

i(v̂i(λ
∗)−∆i(v̂)) = V ∗(v̂)−V ∗(v̂) = 0 and no-deficit.

The deviation from the payments of the VCG mechanism
opens up the possibility that an agent can gain by deviat-
ing from its truthful report. The regret of agenti is exactly
regret i(v̂) = ∆vcg,i −∆i(v̂), i.e. the amount by which the
discount is less than that in the VCG mechanism.

Each mechanism inM adopts a different method to allo-
cate the available surplus to agents. The mechanisms that
we consider are:Two Triangle, Threshold, Reverse, Large,
Small, Fractional, andEqual. The details are presented in
the Appendix. For now, we simply note that the Threshold
rule has been considered of particular interest because it de-
fines payments that minimize the maximal regret to agents,
given the no-deficit constraint. Connecting back to the ear-
lier notation, we can also observe that the payoffπi(v) to
agenti in instancev, and when agents are truthful, is simply
its discount∆i(v) while the payoff in the reference mech-
anism is∆vcg,i(v).

3.2 The KL-Distance Metric and Other Metrics

In the CE environment, we specialize the general multi-
variate KL-distance to a KL-distance onnormalizedpay-
off, where the payoffπm

i (v) to each agent in instancev
is normalized byV ∗(v), the total available surplus that
constrains the total available discounts provided to agents.
Given this, the normalized KL-distance metric for mecha-
nismm is defined as:

KLnorm(m) =

∫
∞

0

Ĥ∗(π)log

(
Ĥ∗(π)

Ĥm(π)

)
dπ, (1)

whereĤ∗(π) is the univariate distribution of the normal-
ized payoff π∗

i
(v)

V ∗(v) under the reference mechanism, given

the distribution on instances, and̂Hm(π) is similarly de-
fined for the mechanism being considered. We further re-
strict these distributions to payoffs associated with agents
that are active in the efficient trade. Note that the distri-
bution on payoffs is that induced by thetrue distribution
on valuations, not by the equilibrium distribution. We also
consider an unnormalized KL-distance metric.

In addition, we adopt a number of regret-based metrics:

L1(m) =

∫

v

||π∗

+(v), πm
+ (v)||1 g(v)dv (2)

L1norm(m) =

∫

v

||
π∗

+(v)

V ∗(v)
,
πm

+ (v)

V ∗(v)
||1 g(v)dv (3)

L2(m) =

∫

v

||π∗

+(v), πm
+ (v)||2 g(v)dv (4)



L2norm(m) =

∫

v

||
π∗

+(v)

V ∗(v)
,
πm

+ (v)

V ∗(v)
||2 g(v)dv (5)

L∞(m) =

∫

v

||π∗

+(v), πm
+ (v)||∞ g(v)dv (6)

L∞norm(m) =

∫

v

||
π∗

+(v)

V ∗(v)
,
πm

+ (v)

V ∗(v)
||∞ g(v)dv (7)

whereg(v) is the p.d.f. on valuation instancesv (for the
truthful distribution),π∗

+(v) andπm
+ (v) indicate the payoff

vectors restricted to agents that are active in the trade, and
L1(·, ·), L2(·, ·), L∞(·, ·) are standardL1, L2 andL∞ met-
rics. Note that although all of the metrics above are defined
over a continuous valuation space, practical evaluation will
require numerical integration over samples.

3.3 An Initial Evaluation in Three CE Scenarios

We consider three CE generators, and thus three different
problem scenarios.3 Two are variations on the combinato-
rial auction generators (DecayandUniform) introduced in
Sandholm [16]. To make these work in an exchange set-
ting, we first fix the set of available goods and then dis-
tribute them to the selling agents, and the demand for them
among the buying agents. With these endowments and ‘de-
mand sets’ specified, we then choose negative seller (re-
serve) values, and positive buyer values for XOR bundles
of items restricted to these endowments and ‘demand sets’,
according to Sandholm’s rules. The third is a new genera-
tor (Super), specifically designed for CEs, and with features
carefully crafted for super-additive valuations. Here every
goodg ∈ G is assigned a uniform random common value
c(g) ≥ 0, and a uniform random private value specific to
agenti, yi(g) ≥ 0. Agent i then has a value for an indi-
vidual goodwi(g) = βyi(g) + (1− β)c(g), for someβ (.5
in our experiments). The value to agenti for all bundles
of itemsS ⊆ Gi is then(

∑
g∈S wi(g))γ , for someγ > 1,

whereGi is the endowment/‘demand set’ for agenti. As
above, this value forms a negative (reserve) value for sellers
and a positive value for buyers.4

It is instructive to consider the distribution ofV ∗(v),
V ∗(v−i), and the VCG payoffV ∗(v) − V ∗(v−i) for trad-
ing agents that is induced by these generators. See Fig-
ures 1 and 2 for theSuperdistribution (the others are qual-
itatively similar). We can precisely identify the form of
these distributions. Fix instancev. Consider the setΛ of
feasible trades in a given market instance. Eachλ ∈ Λ
has a corresponding total valueV (λ, v), andV ∗(v) is by
definition the maximum over these. Thus theV ∗ distribu-

3Please contact the authors to obtain our data sets and specific
parametrizations.

4We do not use CATS [10] for the generation of our data sets
because its algorithms are explicitly designed for auctions and it
is not straightforward to extend its distributions in a way that ap-
propriately balances buyers and sellers. In the absence of such
reference distributions, we have opted for these simpler existing
generators, coupled with our own new generator.

Figure 1: Distribution of surplus and marginal-surplus

0 5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Value ($)

P
D

F

 

 

Histogram
Pareto Fit
Exponential Fit

Figure 2: Distribution of VCG payoffs

tion is that of the extreme values of the underlying distri-
bution of V . Such extreme value distributions have been
extensively studied in the statistics literature, and can be
precisely modeled by theGeneralized Extreme Value Dis-
tribution (GEV) p.d.f. Figure 1 shows the excellent fit of
the GEV that can be produced for bothV ∗ and V ∗

−i via
maximum likelihood estimation (MLE). The VCG payoff
distribution is the distribution of exceedences (byV ∗) over
V ∗

−i, and is well-modeled by aGeneralized Pareto Distri-
bution (GPD), though this model is typically motivated in
cases of exceedences over a fixed threshold. The MLE fit
of the GPD is illustrated in Figure 2, along with the fit of
a simple Exponential distribution (which is generalized by
the GPD), indicating that the extra parameters of the GPD
are improving the fit.

We can immediately consider how well each of the mech-
anisms performs at mimicking this distribution of payoffs.
Figure 3 shows an empirical c.d.f. of the payoff to trad-
ing agents under each of mechanism, when agents behave
truthfully (again for theSupergenerator, the others being
similar). One can visually confirm that the Small rule is the
one best tracking the VCG payoffs in distribution. Table 1
evaluates the normalized metrics on each mechanism, com-
puted over all three scenarios. Consistent with Figure 3, we
can observe that Small has the smallestKLnorm metric.
On the other hand, Threshold has the smallestL2norm and
L∞norm (regret-based) metrics. Notice that theL1norm
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Figure 3: Distribution of payoffs in each mechanism

Mechanism KLnorm L1norm L2norm L∞norm

Two Triangle 0.0735 0.5914 0.3170 0.1917
Threshold 0.0472 0.5914 0.2355 0.1016
Reverse 0.1251 0.5914 0.3066 0.2210
Small 0.0452 0.5914 0.4208 0.3527
Large 0.0559 0.5914 0.3110 0.2070
Fractional 0.0741 0.5914 0.2528 0.1513
Equal 0.3043 0.8037 0.3727 0.2576
No Discount 0.6372 1.5876 0.6679 0.4030

Table 1: Metric value at truth averaged across all three CE
scenarios. Minimal metric values inbold.

metric is identical across all rules except, No Discount and
Equal. This is because the other mechanisms always allo-
cate all available surplus as payoff to agents.5

4 Equilibrium Analysis

Computing the equilibrium of the various mechanisms
presents a challenge because this is an infinite game of in-
complete information, with a continuum of possible valua-
tions and thus possible agent strategies. The game also has
combinatorial structure. There are at present no tractable
methods to compute the exact Bayes-Nash equilibrium for
such problems. The state of the art approach is to search
for parametrized strategy profiles that constitute a restricted
equilibrium through iterated best-response dynamics [20].6

This is the approach that we adopt here, with adaptive grid
search to compute a best-response.

4.1 Computing Restricted Bayes-Nash Equilibrium

One simple restriction that one could impose is that ev-
ery agent shaves its valuation byα ≥ 0, and thus seek
a symmetric Bayes-Nash equilibrium. In the context of
a CE, agents would report valuations(1 − α)v and (1 +
α)v for buyers and sellers respectively (note that sellers

5TheL1norm metric differs for Equal only because it some-
times allocates an agent more payoff than the VCG payoff.

6An exact solver exists only for two-player games with one-
dimensional private valuations, based on a piecewise-linear strat-
egy representation [15].

have negative values.) This simplification realizes a one-
dimensional, continuous strategy space.

We compute a more fine-grained equilibrium by also run-
ning experiments in which we adopt two or three shave fac-
tors. With multiple shave factors, we associate each agent
in an instance endogenously with a valuation class depend-
ing on its valuation function. For example, with three shave
factorsα1, α2, andα3, we sort agent valuations into “low,”
“medium” and “high” valuation classes, with an agent in
each class associated with shave factorα1, α2 andα3 re-
spectively. We then search for an equilibrium defined in
terms of these three parameters. To sort agent valuations,
we first draw a number of samples of otherwise unused
agents from the same distribution that defines the CE sce-
nario, and for each of these agents, we record the 95th per-
centile of value across the trades that define its valuation
function. An agent’s valuation class is identified by com-
paring the value at the 95th percentile on the trades in its
valuation with the sampled values, and assigning a class
according to placement in the lower, middle, or upper third
(tritile) of this sampled distribution.

For any number of shave factors, our algorithm for find-
ing the equilibrium begins with provisional shave factors
{α̂k} (e.g., fork ∈ {1, 2, 3}) set to 0. It then repeatedly
generates a set of CE instances from the particular distri-
bution (Uniform, Decay or Super), and for each instance,
each agent is first placed into a valuation class when us-
ing multiple shave factors. In each iterationt of the al-
gorithm, and for each agenti, a grid search is performed
on α-values to find its best-response valueα̃i, while us-
ing provisionalα-values assigned to the other agents. For
each valuation class, the provisionalα̂k are then updated
asα̂t+1

k := θα̂t
k + (1 − θ)αt

k, whereθ = .5 andαt
k is the

mean of the best response values in iterationt calculated
for each agent associated with the classk. The width of the
grid search in periodt+1 is chosen endogenously, with 10
points covering a span of|α̂t

k−αt
k|. Search stops when this

error estimation falls below a fixed constantκ = 0.001.

4.2 Equilibrium: Results

Table 2 shows the results with one-dimensional and three-
dimensional strategy spaces (respectively “one class” and
“three classes”), for all three generators. In the case of
three classes, the reported shave factor is the average across
{α1, α2, α3}. The best mechanisms in each case are in-
dicated inbold. Surprisingly, the Threshold mechanism,
which has some theoretical support in minimizing theex
postregret across all these mechanisms, does not perform
nearly as well as the Small mechanism either in terms of
the size of shave factor (close to zero indicates approxi-
mate incentive-compatibility) or the resulting allocative ef-
ficiency. Recall that the Small mechanism is also the one



One Equilibrium Class Three Equilibrium Classes
Shave Factor Efficiency (%) Shave Factor Efficiency (%)

Rule Dec. Uni. Sup. Dec. Uni. Sup. Dec. Uni. Sup. Dec. Uni. Sup.
VCG 0.0 0.0 0.0 100 100 100 0.0 0.0 0.0 100 100 100
Two Triangle 0.1 0.2 0.6 99.99 100 99.99 0.1 0.4 5.6 99.99 100 97.95
Threshold 12.0 28.7 10.7 99.09 97.43 98.01 14.6 27.2 11.2 93.64 81.09 89.74
Reverse 14.9 57.7 52.3 98.70 83.38 51.52 13.0 65.8 57.6 98.99 77.30 56.08
Small 0.1 0.2 0.3 99.99 100 100 0.0 0.1 0.2 99.99 100 100
Large 2.6 2.3 9.8 99.96 99.99 98.26 2.8 2.9 67.1 99.96 99.98 78.83
Fractional 71.2 71.1 53.0 59.39 67.34 49.07 62.7 81.9 62.0 37.12 63.09 56.77
Equal 75.4 77.6 52.5 51.96 55.76 51.01 62.2 78.3 66.8 33.35 54.21 52.19
No Discount 75.6 76.0 53.2 51.56 59.01 48.23 62.3 80.9 72.4 34.15 50.11 48.21

Table 2: Restricted Bayes-Nash equilibrium: Shave Factor and Allocative Efficiency in Each Mechanism.

with the lowest KL-distance metric.7

To understand the effect of the Small payment rule, which
allocates payment preferentially to agents with a small
VCG payoff, we can study an individual agent’s incentive
to deviate. Figure 4 shows the profit gained by a single
agent in a representative single instance drawn from theSu-
per scenario, as the agent reportsVR compared to truthVT

for its winning trade and 0 for all other trades, under each
of the mechanisms. The profit is normalized to its maximal
possible profit, i.e. its VCG profit, and the experiment con-
siders only unilateral deviation by this agent with all other
agents reporting truthfully. The agent in question has a
large payoff under VCG, which the Large mechanism fully
allocates. As the agent deviates he suffers a loss under the
Large mechanism. Under all the other mechanisms (except
VCG) there is at least some gain from deviation. Unlike
the other rules, though, the Small mechanism exhibits a flat
plateau once the agent deviates by a small amount. Thus
the incentives to deviate significantly can be quite low un-
der Small, even for agents whose payoff in VCG is quite
large.

This analysis represents only a single agent in a single in-
stance. In order to get a more comprehensive picture we
can average several thousand such single-instance trajecto-
ries, as shown in Figure 5. Here we see that mis-reporting
makes an agent strictly worse-off under VCG, as expected.
But importantly, we see that the Small mechanism provides
only a small expected gain from deviation, and the maxi-
mal expected gain occurs with less shaving then the other

7One interesting anomaly in the data is for Large between the
“one class” and “three class” analysis. With one class, a balance
must be made in the equilibrium between those agents with high
valuations (likely to receive their full discount without any shave
under Large) vs. those with low valuations (unlikely to receive
any discount without shaving). In this case, the former constrains
the latter and agents choose not to shave much in equilibrium.
But with three shave factors there is increased discrimination, and
the optimal shave for those with small valuations becomes very
extreme. This, coupled with the fact that there are large numbers
of small discounts relative to a few large discounts, decreases the
efficiency of the Large rule in equilibrium.
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Figure 4: Profit gain by unilateral mis-report.

mechanisms. While still a non-equilibrium analysis (other
agents are truthful), this is suggestive of the good equilib-
rium performance under Small.

In determining a good strategy, an agent is in essence mak-
ing anex antetrade-off between potential gain from a suc-
cessful manipulation and potential loss given an unsuccess-
ful manipulation. By further conditioning on those mis-
reports that are successful (i.e., when an agent still trades)
and unsuccessful, we arrive at Figures 6 and 7. We see that
Small is near the bottom of the pack for both conditional
gain and conditional loss, indicating that success brings rel-
atively less gain while failure brings relatively more pain
than in other mechanisms. In comparison, an unsuccess-
ful manipulation does not hurt an agent as much under the
Threshold mechanism, contributing to its weaker equilib-
rium performance.

Remark. Unlike Small, the Threshold mechanism tends
to allocate payoff to fewer agents, and with very few (if
any) agents receiving their maximal payoff. This is driv-
ing the divergence from the VCG payoff distribution and
also this larger loss in payoff, conditioned on an unsuccess-
ful manipulation. By making the distribution on payoffs
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Figure 5: Expected profit by unilateral mis-report
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Figure 6: Conditional profit by unilateral mis-report

close to the reference, VCG mechanism, the Small mech-
anism makes the expected payoff, conditioned on success
and failure, both relatively close to the profile under VCG
(compared to the other mechanism rules); i.e., close to zero
for success and close to forfeiting the maximal payoff for
failure. Since the VCG payoff distribution is skewed such
that many agents have only small opportunities for gain
(see Figure 2), then many of these opportunities can be ad-
dressed by the Small mechanism with the remaining oppor-
tunities for gain entailing significant risk.

4.3 Metric Analysis

In this section we adopt the correlation between each metric
and the equilibrium shave factor and efficiency as a mea-
sure of the informativeness of the metric in quantifying the
degree of strategyproofness of a mechanism. The correla-
tion is determined over a data set of several thousand in-
stances. For each generator (Uniform, Decay and Super)
there are 6 mechanisms8 and 3 different equilibrium analy-

8We drop Equal, No Discount and VCG from this correlation
analysis; No Discount and VCG are not in the candidate class
of mechanisms, and Equal is outside the class we are especially
interested in because it sometimes allocates an agent more than
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Figure 7: Conditional loss by unilateral mis-report

Correlation with Efficiency at Truth

Metric Corr. ρ-value Significant?
KLnorm -0.3814 0.0044 Y
L1norm -0.1698 0.2197 N
L2norm 0.0154 0.9120 N
L∞norm 0.0220 0.8745 N

Correlation with Mean Shave at Truth

Metric Corr. ρ-value Significant?
KLnorm 0.3794 0.0047 Y
L1norm 0.1610 0.2447 N
L2norm -0.1001 0.4712 N
L∞norm -0.1147 0.4087 N

Table 3: Correlation between metrics evaluated at truth and
both efficiency and the amount of shaving, considering all
54 conditions (Significance at 0.05 level)

ses (for 1, 2 and 3 shave factors.) This provides 3 x 6 x 3
= 54 data points, with the average efficiency, average shave
factor, and metric computed for each and enabling a corre-
lation to be computed. The results are presented in Table 3.
We only present results for normalized metrics throughout
this section because they dominate in terms of statistical
significance.We see that the KL-norm metric is negatively
correlated with efficiency and positively correlated with the
equilibrium shave factor. In both cases this correlation is
significant at the 0.05 level, whereas the correlation for the
other, regret-based metrics is not significant.

Although of secondary importance, we can also consider
the informativeness of each metric invalidatinghow close
to truthful an equilibrium is, based only on observed data in
the equilibrium. This is interesting, for example, in evaluat-
ing the degree of strategyproofness of a mechanism based
only on observed, equilibrium behavior. The correlation
data, evaluated over the same 54 conditions but now in
equilibrium for each mechanism, is presented in Table 4.
We find that theL1norm is more informative, in equilib-

its VCG payoff.



Correlation with Efficiency in Equilibrium

Metric Corr. ρ-value Significant?
KLnorm -0.4989 1.2292e-04 Y
L1norm -0.6460 1.3269e-07 Y
L2norm -0.5119 7.6150e-05 Y
L∞norm -0.3762 0.0051 Y

Correlation with Mean Shave in Equilibrium

Metric Corr. ρ-value Significant?
KLnorm 0.2702 0.0482 Y
L1norm 0.5870 3.0820e-06 Y
L2norm 0.4615 4.4464e-04 Y
L∞norm 0.3738 0.0054 Y

Table 4: Correlation between metrics evaluated at equilib-
rium and both the efficiency and the amount of shaving,
considering all 54 conditions (Significance at 0.05 level)

Mechanism KLnorm L1norm L2norm L∞norm

Two Triangle 0.0820 0.6096 0.3271 0.1976
Threshold 0.0556 0.6991 0.2984 0.1367
Reverse 0.1421 0.9415 0.4896 0.3104
Small 0.0452 0.5903 0.4208 0.3534
Large 0.0668 0.8269 0.4494 0.2916
Fractional 0.1303 1.1456 0.5683 0.3477
Equal 0.2033 1.3758 0.7291 0.4919
No Discount 0.3114 1.9962 1.0311 0.6721

Table 5: Metric value at equil. averaged across all three
scenarios and equil. classes. Minimal values inbold.

rium, than theKLnorm and other metrics. A strong, and
significant correlation is also found for theL2norm metric.
TheL1norm measures the average (normalized) regret of
an agent. Our hypothesis for why the average equilibrium
regret is effective in this regard, is that the further a mech-
anism is from being strategyproof, the further agents will
deviate from truthful bidding in equilibrium, and the more
mistakes (ex post) that will occur. Note, though, that the
L1norm metric does not provide guidance for design be-
cause it requires a designer to reason about properties in
equilibrium. In fact, for a fixed distribution on agent re-
ports (e.g., at truth) almost all of the mechanisms have the
sameL1norm metrics (see Table 1).

In Table 5 we present the various metrics evaluated at the
equilibrium of each mechanism over the 54 conditions.
Here, it is apparent that Small is most effective at minimiz-
ing L1norm, i.e., in minimizing the average regret faced
by agents in equilibrium. In contrast, and counter to ac-
cepted wisdom, the Threshold rule (which is designed to
minimize maximal regret given reports) has higher average
regret in equilibrium. The Threshold rule is most effective
in minimizing theL2norm andL∞norm metrics, which
is perhaps unsurprising given its design.

5 Online Mechanism Selection

In this section, we adopt a straw-man experiment to un-
derstand the effectiveness of the various metrics in guid-
ing an online search for the best mechanism, using only
information that is available to an observer in equilibrium
play. Note that a simpler question about heuristic design
was already answered earlier: the Small mechanism has
the bestKLnorm metric, and thus would be adopted as the
best mechanism design under this lens. But here we ask a
different question: given observed equilibrium play, is the
KLnorm metric effective in suggesting a new mechanism
to switch to? The set-up is one of online search. We do not
get to evaluate the counterfactual equilibrium that would
exist under each candidate equilibrium, nor the true, under-
lying efficiency of an equilibrium. The only data that is
available is based on observing the equilibrium bids, allo-
cations and payments in a current mechanism.

The online search is instantiated for a particular metric and
proceeds as follows. The search takes place over a se-
quence of epochs, with a single mechanism deployed in
each epoch and an epoch consisting of a fixed number of
CE instances. The search is initialized somehow (here we
always initialize to the No Discount mechanism.) An epoch
provides two kinds of data. For the mechanism that is used,
it provides distributional information about the equilibrium
bids and the metric can be evaluated on the (revealed) pay-
offs received by agents. But it is also possible to take the
same distribution on bids, and evaluate the metric for each
of the other available mechanisms. That is, take the bids
as fixed and simply evaluate the metric on the payoffs that
would be induced by the other mechanisms (and ignoring
that the input is actually the equilibrium for the current
mechanism, and not the truthful distribution.)

At the end of each epoch, we evaluate each metric based on
the data collected in the equilibrium of the current mecha-
nism and switch to the mechanism with the lowest metric.
In evaluating the metrics, we retain data from previous runs
of the same mechanism as adopted in the current epoch,
enabling ever more accurate metrics to be calculated. The
only caveat is that we check for cycles and break them as
follows: e.g., suppose we are presently using mechanism
A and the metric over the data underA indicates mecha-
nismB to be best, butB has been selected in the past and
the data under mechanismB indicates that mechanismA
is best. If such a cycle is found, then the online search pro-
ceeds by evaluating the metric onA andB over thecom-
bineddata set from running bothA andB in the past and
selecting the best.

Figure 8 shows the results of running this algorithm for
each of the three different CE scenarios and for both 1
and 3 agent classes in defining the simulated equilibrium.
We compare the performance of the algorithm with the
KLnorm and L1norm (average regret) metrics. Each
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(a) Decay, 1 Class
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(b) Uniform, 1 Class
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(c) Super, 1 Class
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(d) Decay, 3 Class
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(e) Uniform, 3 Class
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Figure 8: Online selection: choosing the mechanism algorithmically. The labels along the x-axis indicate the rule chosen
in a given epoch under theKLnorm andL1norm rules respectively, using the abbreviations defined in the Appendix.

graph shows the epoch on the x-axis and the efficiency
of the chosen rule as a fraction of the ideal rule (Small)
on the y-axis; the epoch size was set to 100 for these ex-
periments. Online search with theKLnorm metric very
quickly chooses a good rule, and with performance that
tends to dominate that of search with theL1norm met-
ric. Performance of theL2norm andL∞norm is nearly
identical to that ofL1norm, and is thus omitted for clarity.
The online search performs least well in the Super scenario
3 class case, where it chooses to leave the Small rule for
Large based on the data available after epoch 3 and then
fails to return. From within its own equilibrium the Large
rule looks promising and the ideal Small rule is extremely
different in effect and distribution– making escaping the
Large local-maxima difficult.

6 Conclusions and Future Work

The KL-distance metric is defined on the difference be-
tween a distribution on agent payoffs in a mechanism and
that under a reference, strategyproof mechanism, both eval-
uated with respect to the true distribution on agent valu-
ations. This metric is shown to be more informative, in
terms of correlating with the deviation from truthful bid-
ding in equilibrium, than other regret-based metrics. As a
consequence, we also observe that minimizing maximalex
post regret (given truthful bids) does not necessarily lead
to optimal designs; e.g., the Threshold mechanism is de-
signed this way, but the Small mechanism generates a bet-

ter (closer to truthful) equilibrium while also minimizing
average regret in equilibrium. In the context of CEs, our
results establish that by seeking to match the payoffs in a
reference mechanism in distribution, a mechanism designer
can achieve a mechanism that is maximally strategyproof in
the sense of minimizing the amount by which agents will
deviate from truthful bidding in equilibrium.

A number of opportunities exist for future work. It will
be interesting to try to directly exploit theKLnorm metric
for the low-leveldesign of mechanisms in the CE domain;
i.e., look to design payment rules that will explicitly seek
a distribution on payments (and thus payoffs) that closely
approximates that of the VCG mechanism? Second, we
can consider different domains for which the VCG mech-
anism still provides the strategyproof benchmark, such as
combinatorial auctions with core constraints or sponsored
search with constraints that mandate “simple” payment
rules. Third, we would like to consider a mechanism design
problem in which the VCG mechanism does not provide
the strategyproof benchmark, for example in application to
redistribution mechanisms [5]. We can also look to couple
the framework with approximation algorithms; i.e., the mo-
tivation for the design question here was to circumvent an
impossibility result, but what if the motivation was compu-
tational intractability? We should elaborate on our hypoth-
esis that alignment with the payoff distributions in a ref-
erence mechanism is useful because it selects mechanisms



that for a large number of agents provide no advantage to
deviation while leaving opportunities for only a small num-
ber of agents, and thus a risky strategic proposition. Finally,
we propose to directly compute the KL-distance metrics on
the multivariate payoff distributions.

Acknowledgments

Thanks to the anonymous reviewers for their extremely
helpful comments on an earlier draft. Portions of this work
are supported by a Yahoo! research and KTC grant. David
Krych earlier pursued an empirical analysis of this fam-
ily of CE mechanisms in a Harvard College Undergraduate
Thesis, 2003.

Appendix: CE Mechanisms

The CE mechanisms that we study are all from Parkes et
al. [14], except forTwo Triangle(introduced here):

(E)qual: Simply split the available surplus equally among
the trading agents.

(F)ractional Allocate surplus in proportion to the VCG
discounts.

(S)mall Allocate surplus from smallest∆vcg,i to largest,
never exceeding∆vcg,i.

(L)arge Allocate surplus from largest∆vcg,i to smallest,
never exceeding∆vcg,i.

(T)hreshold Allocate surplus to minimize the maximum
∆vcg,i − ∆i, subject to∆i ≤ ∆vcg,i, ∀i ∈ N .

(R)everse Allocate surplus to maximize the minimum
∆vcg,i − ∆i, subject to∆i ≤ ∆vcg,i, ∀i ∈ N (and
allocating all of the surplus).

(W)Two Triangle Allocate half of the surplus by Thresh-
old and then run Small with the residual.

TheNo Discountmechanism simply has each agent pay its
reported valuation for the trade. The Equal mechanism is
the only rule in which an agent’s discount may be greater
than in the VCG mechanism. Each of the mechanisms were
designed to minimize different distance metrics between al-
located payoffs (or discounts) and VCG payoffs. For exam-
ple, the Threshold rule minimizes the maximal difference
to VCG payoffs across all agents.
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