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__________________________________________________________________________ 

ABSTRACT— Abundant tubular macrofossils occur in finely laminated siltstones and shales of the 

548-542 Ma Schwarzrand Subgroup, Nama Group, Namibia. The Nama tubes occur in both the 

Vingerbreek and Feldschuhhorn members commonly in dense populations and always in fine-grained, 

lower shore-face lithologies deposited below fairweather wave base. The tubes are preserved mostly 

as compressed casts and molds that range in width from 0.6 to 2.1 mm; apparently incomplete 

specimens reach lengths up to 10 cm. All specimens show sinuous bending and occasional brittle 

fracture, indicating an original construction of strong but flexible organic matter.  Feldschuhhorn 

specimens preserve fine longitudinal pleats or folds that record pliant organic walls, but the older 

Vingerbreek populations do not.  Similarly, some specimens in the Feldschuhhorn Member display 

branching, while Vingerbreek tubes do not.  The abundant Feldschuhhorn tubes are assigned to the 

widespread Ediacaran problematicum Vendotaenia antiqua; however, the distinctive Vingerbreek 

population remains in open nomenclature.  The most abundant fossils in Nama rocks, these tubes 

resemble populations in Ediacaran successions from Russia, China, Spain, and elsewhere. Beyond 

their local importance, then, such tubes may turn out to be the most abundant record of Ediacaran life.  

_________________________________________________________________________ 
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INTRODUCTION 

PALEONTOLOGISTS COMMONLY discuss Ediacaran life in terms of acritarchs and the distinctive 

Ediacara-type macrofossils so characteristic of much of the period.  A number of deposits, however, 

indicate that a broader diversity of macroscopic organisms inhabited Ediacaran oceans.  Calcified 

macrofossils associated with microbialites in Namibia, China, Oman, and North America preserve 

skeletal organisms not recorded by Ediacaran casts and molds (e.g., Germs, 1972; Grant, 1990; 

Grotzinger et al., 2000; Wood et al., 2002; Hua et al., 2007).  Permineralized and compression fossils 

preserve a further diversity of unskeletonized macrofossils, with particularly well preserved and 

intensively studied assemblages in the Doushantuo Formation, China (e.g., Steiner, 1994; Yuan et al., 

1999; Xiao and Knoll, 2000; Xiao et al., 2002, 2004; Tang et al., 2008).   

 Simple macroscopic tubes have long been found as compression fossils in basinal shales of 

Neoproterozoic age. These include simple cylindrical tubes, annulated cylindrical tubes, cylindrical 

tubes with transverse bands, cylindrical tubes with flanges, cylindrical tubes with transverse cross-

walls, and cylindrical tubes with perforated cross-walls (Sokolov, 1968; Xiao and Dong 2006; Lui et 

al., 2008; Dong et al. 2008 and references therein). The simplest of these fossils are often grouped as 

vendotaenids and commonly cover bedding planes in Ediacaran shales of the Eastern European 

Platform and elsewhere (Gnilovskaya et al., 1988). Indeed, Droser and others (2005) have proposed 

that many structures reported as Ediacaran trace fossils are actually the casts and molds of tubular 

bodies, representing members of this greater diversity of macrofossils. Here we report two populations 

of tubular macrofossils, preserved largely as compressed casts and molds in fine-grained lithologies 

throughout the upper Ediacaran succession of the Nama Group, Namibia.  Along with comparable 

populations in coeval rocks from Europe and Asia, these tubes preserve what may have been among 
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the most abundant and widespread of all Ediacaran macroorganisms.  

 

GEOLOGIC SETTING 

The Nama Group of southern Namibia is interpreted as a late Neoproterozoic to Early 

Cambrian foreland basin fill that developed in northern and southern subbasins separated by the Osis 

arch (Figure 1; Gresse and Germs, 1993; Grotzinger and Miller, 2008). In the southern subbasin, 

Nama stratigraphy comprises six major marine ramp sequences containing mixed carbonate and 

siliciclastic lithologies (the Schwarzrand and Kuibus subgroups) overlain by alluvial and shallow 

marine siliciclastic rocks (the Cambrian Fish River Subgroup) (Saylor et al., 1995, 1998; Grotzinger, 

2002; Grotzinger and Miller, 2008). Geochronological constraints on Nama deposition are provided 

by a number of U/Pb zircon dates on intercalated ash beds.  In the Schwarzrand Subgroup, the lower 

Spitskop Member of the southern subbasin has been dated at 545.1 ±1 Ma, while a second ashbed in 

the upper part of the member reveals a 543±1 Ma age; in the Kuibis Subgroup, the lower Hoogland 

Member in the northern sub-basin has been dated at 548.8 ±1 Ma (Grotzinger et al., 1995) (Figure 1).  

These dates bracket the fossils described here. 

All fossils described were recovered from the southern (Witputs) sub-basin.  Fossils occur in 

both the lower and upper parts of the Schwarzrand Subgroup, in the Vingerbreek Member of the 

Nudaus Formation, and in the Feldschuhhorn Member of the overlying Urisis Formation.  These shale 

members constitute outer shelf facies, formed during transgressive backstepping of coarser shelf 

sandstone units (Grotzinger and Miller, 2008). 

The Vingerbreek Member consists of green mudstone with interbedded shale and sharp-based, 

thin- to medium-bedded, tabular-bedded sandstones which form 5–15 m thick, upward-shoaling 

parasequences (Grotzinger, 2002). Wave-rippled sandstones and siltstones are interbedded with these 
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tabular-bedded sandstones and shales, or form separate units up to several meters thick of 

amalgamated rippled beds. The rippled beds are generally 2–10 cm thick and contain straight-crested, 

climbing, oscillatory and combined-flow ripples. Toward the top of some of the parasequences and 

near the top of the member, the tabular sandstones can be amalgamated into a stack of several beds 

without intervening shale. The tabular-bedded layers contain rare low-angle hummocky and trough 

cross-stratification and, in places, small- to medium-scale oscillation ripples that mark the top of beds. 

Gutter and flute casts and ball-and-pillow structures are present, indicating sporadic high-velocity 

flow events and rapid deposition. The ripple-marked units indicate shallow water depths above fair-

weather wave base; however, hummocky cross-beds in the tops of some amalgamated sandstone 

stacks record a greater water depth.  Many of the fossils in the Vingerbreek Member occur in beds 

interpreted as the interval of maximum flooding of the shelf. 

The Feldschuhhorn Member is a succession of green shales, siltstones, and sandstones 

deposited on Huns Formation limestones with a sharp contact.  It represents flooding of the carbonate 

shelf and backstepping of shallow marine carbonate environments.  Locally, pinnacle reefs formed 

during the accompanying increase in accommodation space, which culminated in shale deposition. It 

has not been possible to determine whether the onlapping shales and siltstones were deposited at the 

same time as the reefs at the top of the Huns, or subsequently (Saylor, 2003; Grotzinger and Miller, 

2008).  As with the Vingerbreek Member, the Feldshuhhorn shales occupy a position of maximum 

flooding on the shelf. 

 

MATERIALS AND METHODS 

 Compressed tubular macrofossils occur in both the Vingerbreek and Feldschuhhorn members. 

In both horizons, the fossils occur in thinly laminated grey to dark grey siltstones interpreted as lower 
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shore-face sediments deposited below fair-weather wave base during maximum flooding (Saylor, 

2003; Grotzinger and Miller, 2008).  A section through the fossiliferous upper Feldschuhhorn Member 

at the farm Sonntagsbrunn at 27o 18’ 03” S, 17o 39 18 E (Figure 2.1) shows that fossils occur through 

70 m of section, always in fine-grained, parallel-laminated rocks interbedded with fine-grained 

sandstones deposited during storms.  Sandstone bedding surfaces rarely contain simple trace fossils; 

otherwise the tubes are the only macrofossils evident in outcrop.  Vingerbreek fossils found at the 

Kliphoek farm at 26o 45’ S 16o 33’ E occur sporadically through approximately 50 m of section in a 

similar environmental but slightly older stratigraphic context (Figure 2.2).  In both localities, tubular 

macrofossils are abundant, occurring in high concentrations of randomly oriented individuals that 

cover bedding surfaces.  

Morphological details of collected samples were analyzed using light microscopy and 

Scanning Electron Microscopy. Qualitative analysis of Vingerbreek and Feldschuhhorn samples was 

completed using a Zeiss Supra55 Field Emission Scanning Electron Microscope with an Energy 

Dispersive X-ray Spectrometer (EDAX). Spectra represent semi-quantitative chemical compositions 

of matrices and internal molds. Count peaks occur at voltages specific to individual elements based on 

the abundance of reflected X-rays produced by the interaction of minerals with the electron beam.  We 

measured length and width of individual tubes on approximately 75% of all collected hand samples to 

generate size distributions. 

Repository. — All specimens have been deposited in the Collections of the Geological Survey 

Museum, Windhoek, Namibia, under accession numbers F608 – F620. 

 

RESULTS 

Preserved Morphology. – Morphological detail is preserved primarily in compressed casts and 
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molds of tube walls (Figures 3, 4).  The ribbon-like compressed tubes show little evidence of width 

variation along individual axes.  Widths range from 0.6 mm to 2.1 mm (Figure 5) and commonly, but 

not always, show limited variation among individuals on single bedding surfaces. Vingerbreek and 

Feldschuhhorn populations both show a bimodal width distribution (Figure 5).  Tubes reach lengths of 

up to 10 cm, but, in life, were presumably longer, as no definitively complete fossils were found. 

Tubes typically have sharp terminations that are most easily interpreted as breaks rather than tips.  A 

few of the Feldschuhhorn specimens show terminal swellings (Figure 3.5), but we are hesitant to 

interpret such structures, as they have the potential to be taphonomic artifacts. No clearly 

differentiated terminations were observed in hundreds of specimens from both localities. 

Unambiguous branching, both pseudomonopodial and dichotomous, occurs in Feldschuhhorn material 

(Figures 3.4, 3.5).  In some cases, distinct lineations separate branches from the main tube wall 

(Figure 3.5).  These are interpreted as either seamless branching flattened in two dimensions—i.e., 

where the main body of the tube is folded over the branching tube—or as a stem –like junction. No 

comparable pattern is evident in Vingerbreek specimens.   

Vingerbreek and Feldschuhhorn populations similarly differ in terms of folding (Figure 3.2), 

which is evident in numerous Feldschuhhorn samples, but absent from Vingerbreek fossils (Figure 4). 

A number of Feldschuhhorn samples show distinct longitudinal striations (Figure 6.3), interpreted as 

taphonomic artifacts formed during compression of originally cylindrical bodies. Rare specimens from 

both horizons preserve faint transverse lineations (Bradley, 1998) (Figure 6.5). In Feldschuhhorn 

specimens, we also interpret these as taphonomic artifacts formed diagenetically due to their rarity and 

superficial quality (for comparison, see irregularly annulated specimens of the thin [approximately 40-

–140 mm wide] organic tube Rugosoopsis; Herman and Podkovyrov, 2007).  Vingerbreek specimens 

have more robust annulations that may be original structures; they are also, however, rare.  
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It is worth asking whether the organisms that produced these fossils were originally ribbon-like 

rather than tubular.   Fossils in both assemblages are commonly preserved as partially compressed 

internal molds, and it is difficult to conceive of a mechanism by which originally flat, ribbon-like 

organisms would produce robust three-dimensional fossils. Moreover, we could not expect to see 

compression folds in fossils of originally two-dimensionalorganisms.  Thus, we hypothesize that the 

original organisms had cylindrical bodies.  Whether these bodies were  solid, as in some metazoans, or 

hollow (fluid-filled), as in many algae, is more difficult to address.  Regardless of their inner contents, 

however, the organisms preserved as Nama tubes had a differentiated external wall or sheath that 

preserved better than any internal tissues.  

 Taphonomy. — In hand specimens, the majority of the fossils stand out clearly because of their 

strong color contrast to the surrounding matrix; individuals are generally either rust-red or black. 

Based on EDAX peak locations and values, internal molds of Feldschuhhorn fossils consist primarily 

of iron-rich phyllosilicates, including chlorite, with a minor feldspar component occasionally present 

(Figure 7.1). Chlorites in tube fillings may well have originated via diagenesis of smectite group 

clays, especially in the presence of other iron minerals (Eberl et al., 1984).  The surrounding matrix of 

Feldschuhhorn specimens is similarly clay-rich; infill material differs from matrix predominantly in 

its elevated C and Fe abundances (Figures 7.1, 7.2).  SEM analysis of Feldschuhhorn specimens 

(Figure 6.4) shows a distinctive honeycombed pattern in the walls of the fossils not found in the 

surrounding matrix, consistent with the formation of pyrite crystals that were subsequently weathered 

out by oxidizing fluids.  Early diagenetic pyrite formation is commonly associated with bacterial 

sulfate reduction in conjunction with locally high levels of reactive iron (Raiswell and Canfield, 

1998), and both are expected where an influx of fine-grained siliciclastic sediment shields organic-

walled organisms from oxygen (e.g., Zhu et al.,  2005; Brock et al., 2006).  Subsequent oxidation 
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would account for the rust-red coloration and presumptive change in oxidation state of templating 

iron.  

 Vingerbreek tubes and matrix show rough similarity in infill and matrix composition with 

some significant differences (Figure 7.3).  Relative to matrix, tube infillings are enriched in Fe and, 

notably, Mg, but depleted in K, Al, and Si. Elevated levels of iron in Vingerbreek samples could be 

due to similar processes at work in the Feldschuhhorn specimens. No evidence of evacuated pyrite 

crystals were observed under SEM, consistent with the tubes’ darker and presumably unoxidized 

coloration.  EDAX mapping of Mg shows covariation with Fe on a fine spatial scale, suggesting that 

Mg may be present in limited solid substitution within or absorption on Fe minerals.  A handful of 

samples from the Vingerbreek are preserved as raised ridges, as opposed to compressions, a 

preservation style unique to this member (Figure 4.3, 8.3).  

Similar macrofossils in other localities are commonly preserved as carbonaceous 

compressions, but that is not the case for most of the specimens considered here.  Several features, 

however, indicate that the fossils were originally carbonaceous.  Specimens show sinuous bends, 

indicating that living and recently dead specimens were flexible.  Moreover, under SEM, multiple 

specimens from the Feldschuhhorn Member show distinct longitudinal striations interpreted as pleats 

or folds, again indicating a pliant wall composition (Figure 6.3).  The organic content of most tube 

walls is low or non-existent; hydrofluoric acid maceration of Vingerbreek samples failed to reveal 

preserved organic matter. However, a single locality in the Feldschuhhorn Member contains tubes 

preserved by thin carbonaceous films, detected using low voltage EDAX (Figures 3.6, 7.2, 8.4).   

The Nama tubes were buried by discrete pulses of sediment influx, each millimeter-scale 

lamina consigning the tubes beneath it to death and shielding their remains from oxidation.  The high 

abundances and random orientation of tubes suggest that benthic populations were preserved more or 



 

 

10

10

less in place.  A striking feature of the preserved populations on almost all bedding planes of both 

members is that the tubes tend to be of near-constant diameter on any single bedding plane – tube 

width varies between bedding planes, but rarely within them. Assuming width is a proxy for age, this 

suggests the preservation of “even age stands” on individual bedding surfaces, formed when episodic 

perturbations removed incumbent populations and opened space for local recolonization. One 

exception to this pattern is seen in the tube fossils preserved as carbonaceous films in the 

Feldschuhhorn Member (Figure 3.6). These fossils show a broader size distribution, but bedding 

planes are much less distinct at this locality, consistent with a greater degree of time averaging 

 In short, Vingerbreek and Feldschuhhorn siltstones and shales both contain abundant 

macrofossils of originally tubular organisms, but they preserve different populations.  The 

Feldschuhhorn populations record occasionally branching tubes prone to decomposition by sulfate 

reducing bacteria, axial twisting during burial, and folding upon compression.  The older Vingerbreek 

fossils do not branch, do not twist during deposition or fold during compression, and do not appear to 

have been equally accessible to sulfate-reducers (which could reflect environment as much as wall 

chemistry).  

 

DISCUSSION 

Traces versus Body Fossils. – Could the tubular fossils actually be trace fossils, or are they properly 

interpreted as body fossils?   Feldschuhhorn tubes show several morphological features that 

immediately distinguish them from trace fossils, including the presence of folds and elevated levels of 

carbon (Figures 3.5, 7.2).  In contrast, Vingerbreek material lacks obvious folds and does not show 

elevated levels of carbon. The Vingerbreek locality does include specimens preserved as raised ridges 

(Figure 4.3), which, if found in isolation, might well be interpreted as simple trace fossils. The 
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differences in the composition of the Vingerbreek tubes and the surrounding matrix could be 

explained by changes caused by the passage of a burrower, including deposit of mucus and subsequent 

diagenesis.    

 The Vingerbreek population highlights a problem that can be particularly acute for Ediacaran 

strata: it is sometimes difficult, if not impossible, to distinguish a tubular macrofossil from a simple 

trace fossil with confidence. A number of lines of evidence indicate that, despite this difficulty, the 

Vingerbreek tubes bear greater similarity to known body fossils than to known trace fossils. Many 

specimens show sharp terminations formed by breakage, a feature that would not be found in a trace 

fossil. The general similarities in depositional setting and bedding plane distribution between 

Vingerbreek and Feldschuhhorn tubes also argue in favor of a common interpretation for the two 

populations.  Further, the lack of evidence for cross-cutting relationships or bioturbation in these strata 

provides still further evidence in support of a body fossil interpretation.  Thus, we interpret the 

Vingerbreek material as the direct remains of tubular organisms preserved through different pathways. 

Such a conclusion supports the hypothesis that some structures reported as Ediacaran trace fossils are 

actually the casts and molds of tubular bodies (Droser et al., 2005).  

 Phylogenetic Affinities and Global Distribution. — Morphologically similar compression 

fossils occur in other Ediacaran and early Cambrian successions, including localities in Spain, the East 

European Platform, and China (Table 1, Figure 9).  The Vendian succession of the East European 

Platform is particularly well known for its carbonaceous tubes, of which Vendotaenia is the most 

widely known. Vendotaenia is described as having compressed tube- or ribbon-like thalli with rare 

branching and longitudinal fibrous textures; tube widths range from 0.25-3.5 mm (Gnilovskaya, 1971, 

1983, 1990; Gnilovskaya et al., 1988) (Figures 9.1, 9.2).  Vendian Vendotaenia are preserved as 

carbonaceous films, especially in drill core samples, yet they provide close counterparts in terms of 
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morphology and size to the Feldschuhhorn specimens.  Thus, we assign the Feldschuhhorn fossils to 

Vendotaenia antiqua Gnilovskaya 1971.   Germs et al. (1986) recovered fragmented macrofossils 

from drill core samples of Schwarzrand shales and assigned them to Vendotaenia sp.  Our attribution 

is consistent with that determination, but made with much higher confidence.  

Vendotaenia antiqua has commonly been interpreted as an alga, and Gnilovskaya (1983) 

interpreted morphological features as cell walls and oogonia.  Vidal (1989), however, viewed these 

features as artifacts, reinterpreting V. antiqua as the preserved sheaths of sulfur-oxidizing bacteria 

such as Thioploca.  Modern Thioploca are filamentous and have thin organic sheaths marked by 

longitudinal striations – both features are consistent with Nama and other Vendotaenia fossils.  

Moreover, the abundance of Thioploca at the oxic/anoxic interface is consistent with the hypothesis 

that sulfur-oxidizing bacteria radiated as rising oxygen levels increased the PO2 gradient at the 

sediment/water interface of Ediacaran oceans (see Canfield and Teske, 1996; Fike et al., 2006; 

Canfield et al., 2007).   Such an interpretation, however, breaks down when one considers size: while 

Thioploca is large by bacterial standards, its sheaths have linear dimensions an order of magnitude 

lower than those of the Ediacaran fossils even when taking into consideration width expansion due to 

compression (Schultz et al., 1999).  Moreover, Thioploca is not known to display branching. In the 

absence of additional character information, we leave V. antiqua among the problematica, but 

consider an algal interpretation reasonable.   

Bearing in mind that the simple morphology of Ediacaran tubes creates challenges for 

taxonomy (see below), Vendotaenia populations have not only been reported from numerous localities 

within Redkino and Kotlin (<555 and >543 Ma: Martin et al., 2000) strata of the Eastern European 

Platform, but indeed, are globally distributed in Ediacaran shales (Hofmann, 1992).  Macroscopic 

carbonaceous tubes occur in pre-Ediacaran successions (Hofmann, 1992), but rarely in the abundance 
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observed in Ediacaran rocks.   

As noted above, the Vingerbreek tube fossils differ in a number of salient characteristics from 

Feldschuhhorn V. antiqua populations.  Consistent with such morphological diversity within the 

Nama, a global diversity of tubular macrofossils is preserved in other Ediacaran and Lower Cambrian 

shales.  On the East European Platform, for example, Gnilovskaya (1988) recognized nine 

vendotaenid genera, differentiated by size, branching pattern and/or surface texture.  Several of these 

could be synonymous, but clearly, more than one type of organism contributed to the tubular 

compressions in Ediacaran rocks from European Russia.  Among the proposed Russian taxa, 

Tyrosotaenia podolica Gnilovskaya 1971 is of particular interest (Figure 9.3).  Gnilovskaya (1971) 

described Tyrasotaenia as unbranched ribbons with smooth surfaces, occasionally folded, and 

displaying both twisting and bending.  Type populations of T. podolica differ from Vingerbreek 

populations most conspicuously in their smaller size (Table 1) and propensity to twist and bend 

sharply. 

The Nama tubes also bear comparison to Sinocylindrica yunnanensis, smooth carbonaceous 

ribbons found in the Ediacaran Doushantuo Formation and Lower Cambrian Chengjiang Formation of 

China (Xiao et al., 2002).  Tubes of S. yunnanensis are 0.2–0.35 mm wide and inferred to be flexible. 

Some specimens show signs of folding, but no evidence of branching (Xiao et al., 2002). S. 

yunnanensis has been compared to both cyanobacterial sheaths and laminarian brown algae such as 

Chorda (Hou et al., 2004). Other carbonaceous tubes from the Doushantuo formation, the Chengjiang 

Formation, and coeval material from Eastern European cores bear resemblance to the Nama tubes as 

well, especially longitudinally striated material from the Perevalok Formation of the Central Urals 

(Grazhdankin et al., 2007; Xiao et al., 2002) and unnamed Vendotaenia-like carbonaceous tubes from 

the Chengjiang Formation (M. Moczydlowska-Vidal, unpublished data).  
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Another comparison worth noting is with the basal Cambrian carbonaceous tube Sabellidites 

(Sokolov, 1972; Korkutis, 1981). Sabellidites and the Vingerbreek fossils are similar: both are long, 

thin, and unbranched compressed fossils of hypothesized originally cylindrical bodies. The 

Vingerbreek tubes differ from Sabellidites in that some populations of the latter form interwoven 

filaments (Ivantsov, 1990; Moczydlowska, 2003), of which no evidence is found in Nama fossils.  

Sabelliditids also commonly show distinct transverse laminations that impress upon the encompassing 

matrix (Korkutis, 1981).  Specimens in previously examined Vingerbreek material include individuals 

with faint transverse annulations (Bradley, 1998), but their occurrence is neither as pronounced nor as 

widespread within the population as the annulations in Sabellidites. We are hesitant to affix generic 

and specific names to the Vingerbreek population, preferring to leave it in open nomenclature until 

global restudy of Ediacaran tubular fossils provides a clear taxonomic framework for these simple but 

abundant fossils.   

While the Nama localities preserve a wider range of morphologies and preservation modes 

than most previously studied areas, diverse tubular fossils recently reported from the latest Ediacaran-

basal Cambrian of central Spain are similarly diverse. Work in progress suggests the presence of both 

vendotaenids and sabelliditids, with examples of the latter only occurring in the upper part of the 

series (Vidal et al., 1994; Contreras Sanchez et al., 2006; Jensen et al., 2007).  Tubular fossils occur in 

great abundance in dark mudstones and fine sandstones and are the only macrofossils present.  The 

fossils reflect various modes of preservation, including carbonaceous films and phyllosilicate casts, as 

well as sediment-filled ridges and grooves (Contreras Sanchez et al., 2007; Jensen et al., 2007). In the 

latter mode of preservation there is a strong similarity to simple trace fossils and it is possible that 

some of the trace fossils reported from these strata are instead three-dimensionally preserved tubular 

organisms (Jensen et al., 2005b, 2006, 2007).  
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Modern Analogs. — Tubular and ribbon-like fossils found in the Nama formation and other 

localities may include large prokaryotes, but most probably represent algae or metazoa.  No perfect 

modern analogs exist, but various extant algae exhibit morphologies consistent with both groups of 

Nama tubes. Within the brown algae, for example, Chorda filum bears the most obvious 

morphological similarity to the unbranched Vingerbreek fossils (Graham and Wilcox 1999).  Chorda 

occurs in shallow marine environments and consists of long, narrow, flexible fronds that attach to the 

sea floor by means of a holdfast, with unbranched fronds reaching two to three meters in length. The 

walls of brown algae contain high amounts of the polysaccharide alginate (Chizhov et al., 1999), a 

viscous gum that could potentially allow for preservation under conditions of rapid burial.  However, 

the Laminariales, the phaeophyte order to which Chorda belongs, are thought to have diverged only in 

the Cenozoic, making direct comparison with Ediacaran fossils difficult (Graham and Wilcox, 1999). 

Another morphological analog is provided by the green alga Enteromorpha, a cylindrical variant of 

the Chlorophyte Ulva (Figure 10), although such algae probably have a relatively low preservation 

potential.  Within the red algae, intertidal Nemalion bears the strongest morphological resemblance to 

the Feldschuhhorn tubes (Xiao et al., 2002), with long, occasionally branched fronds. Comparison 

with macroalgal analogs appears fruitful when taking into consideration the presence of branching in 

Feldschuhhorn specimens.  In the absence of preserved reproductive structures or other morphological 

details, however, it would be challenging to differentiate cylindrical fossils of macroscopic green, red, 

or brown algae. 

The Vingerbreek fossils preserved with apparent faint transverse annulations are consistent 

with growth along an open apical margin, a kind of growth found only in metazoans.  Broad 

comparisons can be drawn between the Vingerbreek tubes and structures found in a handful of extant 

metazoan groups, including pogonophoran worm tubes and scyphozoan polyp sheaths (Babcock et al., 
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2005). Scyphozoan tubes are chitinous and elastic, whereas pogonophoran tubes consist of a protein-

chitin complex; both have the potential for preservation as strong but flexible compressions in the 

fossil record. Sabelliditid fossils have been interpreted as scyphozoan tubes by some workers, 

pogonophorans by others (Sokolov, 1967; Hofmann, 1994).  However, most such organisms show 

variation in width along their lengths and display external morphological features not found in any of 

the Nama compression fossils. Additionally, the lack of annulations in dozens of specimens examined 

from each locality and the faint and superficial quality of those observed emphasizes the possibility 

that those seen in isolated specimens could be preservational artifacts.  

Both algal and metazoan interpretations of the Nama tubes are consistent with current 

knowledge of the timing of animal and macroalgal evolution in Ediacaran Period (Narbonne, 2005; 

Xiao et al., 2004; Knoll et al., 2006). We favor an algal interpretation for the Feldschuhhorn 

population of V. antiqua based on their morphology, while the Vingerbreek tubes remain more 

enigmatic.  Regardless of taxonomic affinity, the global distribution and sudden appearance of such 

tubes signal a widespread expansion of macroscopic organisms in basinal environments of Ediacaran 

oceans. 

 Timing of Appearance of Tubular Macrofossils. —  While carbonaceous macrofossils are 

known throughout the Proterozoic record, high-density populations of macroscopic tubes such as 

those preserved in Nama shales have not been reported from pre-Ediacaran successions; nor are they 

much in evidence after the Cambrian Period.  In the Vendian succession of the East European 

Platform, compressed tubes occur predominantly in the Kotlin horizon, above the regional record of 

conventional Ediacaran fossils (Gnilovskaya et al., 1988).  Whether this represents evolutionary 

sequence or ecological circumstance is uncertain.  Unlike the underlying Redkino succession, Kotlin 

beds are predominantly carbonaceous shales deposited in off-shore environments. Vendotaenids do 
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occur regionally in the Redkino succession wherever off-shore shales are preserved.  In the Nama 

Group, tubular macrofossils, conventional Ediacaran remains, and calcified macrofossils are 

interstratified, segregating along paleoenvironmental lines.  Earlier Ediacaran history is less well 

represented by sedimentary rocks than the later history of this period; nonetheless, we know of no 

well-documented occurrences of densely packed vendotaenid or other tube fossils in rocks older than 

approximately 555 million years.   

 We interpret the apparent time restriction of densely packed tube fossils to reflect the 

combined effects of evolutionary innovation and taphonomic processes.  Closure of the taphonomic 

window for dense tube populations reflects the advent of significant bioturbation, especially in deep 

shore-face environments (Orr et al., 2003): the distinct, finely laminated bedding planes on which 

Nama tubes occur are a rarity in productive oxic Phanerozoic shelf areas (Jensen et al., 2005a). 

Moreover, the Cambro-Ordovician expansion of diverse macroalgae and invertebrate benthos across 

platform and shelf environments concomitantly reduced the seafloor space available for colonization 

by tube organisms.   

What, then, opened the window for tube fossilization?  There is no reason to believe that 

taphonomy governed this opening, as macroscopic compressions are commonly preserved in 

Proterozoic shales (Hofmann, 1992; Butterfield, 2003).   Both macroscopic and demonstrably 

multicellular eukaryotes first appeared well before the Ediacaran Period (Hofmann, 1992; Butterfield, 

2000), but the delayed expansion of diverse, macroscopic algae and macroscopic animals (Xiao et al., 

2004; Narbonne, 2005) occurred only in concert with rising oxygen tensions in the Ediacaran 

atmosphere and oceans (Fike et al., 2006; Canfield et al., 2007, 2008; McFadden et al., 2008; Scott et 

al., 2008; Shen et al., 2008).  In this respect, it is not the oxygen content of the surface ocean that is of 

concern as much as oxygen levels in and above the oxygen minimum zone.  Increasing geochemical 
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evidence suggests that subsurface water masses were commonly anoxic until 580-560 million years 

ago, with episodic recurrence of oxygen deprivation even later (Fike et al., 2006; Canfield et al., 2007, 

2008; McFadden et al., 2008; Scott et al., 2008; Shen et al., 2008).  To the extent that Ediacaran tube 

organisms were multicellular eukaryotes, colonization of basinal substrates would only have been 

possible as oxygen partial pressures increased.  At the same time, Late Neoproterozoic oxygenation 

dramatically changed the nitrogen cycle, enabling nitrate abundances to build up throughout the 

oceans.  This circumstance would also have favored the expansion of eukaryotic photoautotrophs 

across continental shelves and platforms (Anbar and Knoll, 2002; Knoll et al., 2007).    

The establishment of a strong oxygen gradient between seawater and subsurface sediments 

would also have facilitated the expansion of chemoautotrophic prokaryotes that exploit the 

oxic/anoxic interface (Canfield and Teske, 1995) until bioturbation modified that gradient.  Thus, the 

global expansion of tube fossil populations in Ediacaran oceans is consistent with our understanding 

of Neoproterozoic environments and evolution.  

Ecological Significance. — While they lack the charismatic features of the contemporaneous 

Ediacaran fauna, tubular fossils such as those from the Nama Group may well be the most common 

and abundant macrofossils in the Ediacaran Period. They have the potential to account for a large 

proportion of terminal Ediacaran biomass, opening a new page in carbon cycling.  In modern marine 

systems, primary production rates in macroalgal communities range from 1.75 to 14.6 kg/m2/yr 

(Graham and Wilcox, 1999), rates equal to or greater than those in the most productive terrestrial plant 

communities.  

 

CONCLUSIONS 

The morphological simplicity of the Nama tube fossils and a general lack of distinguishing 
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features make definitive taxonomic categorization difficult. Whether algal or animal, documentation 

of widespread tubular macrofossils supports the hypothesis put forth by Droser et al. (2005) that many 

of the bedding plane features originally interpreted as simple trace fossils in Ediacaran successions in 

fact record body fossils of cylindrical or ribbon-like organisms.   What we lose in the ichnofossil 

diversity of Ediacaran rocks, we make up in the abundance and taxonomic richness of body fossils.  

The consistent presence of tubular compression fossils in tens of meters of section in the Nama Group 

and in numerous other globally distributed localities indicates that these organisms were a significant 

component of Ediacaran biomass and may prove to be the most abundant macrofossils in the 

Ediacaran system as a whole. Estimates of terminal Neoproterozoic organic carbon cycling and 

reconstructions of ecosystem function must take into consideration the role of such tubular 

macroorganisms in global marine environments. A satisfying functional and biogeochemical 

understanding of these fossils, however, will come only with a more comprehensive examination of 

the distribution, diversity, abundance, and phylogenetic relationships of tubular macrofossils in late 

Neoproterozoic rocks. 
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FIGURE CAPTIONS 

 

FIGURE 1—  Stratigraphy of the southern subbasin of the Nama Group, Namibia. Inset: locality map. 

Outcrop locality 1: Vingerbreek Member at Kliphoek farm. Outcrop locality 2: Feldschuhhorn Member 

at Sonntagsbrunn farm. F, Feldschuhhorn Member; Ka, Kaines Member; Ma, Mara Member; Kl, 

Kliphoek Member; M, Mooifontein Member. After Grotzinger et al. 1995.   

 

 

FIGURE 2 — 1, Stratigraphic section of the Feldschuhhorn Member, Schwarzrand Subgroup; 2, 

Stratigraphic section of the Vingerbreek Member, Nudaus Formation, Schwarzrand Subgroup.  

 

 

FIGURE 3 —: Vendotaenia antiqua Gnilosvkaya 1971 from the Feldschuhhorn Member. 1, slab, 

F608; 2, individual tube showing folding of tube wall, F609; 3, specimen showing sinuous bending, 

indicating an originally flexible tube wall, F610; 4, specimen showing dichotomous branching, F611; 

5, specimen showing branching and possible differentiated termini, F612; 6, tubes preserved as 

carbonaceous films, F613. Scale bar: 1, 2cm; 2, 3 mm; 3, 5 mm; 4, 5, 1 mm; 6, 4 mm.  

 

 

FIGURE 4 — Vingerbreek Member fossils. 1, slab, F614; 2, specimen showing bending and 

overlapping of tubes as well as pitting of preserved surface, F615; 3, specimens preserved as raised 

ridges. Scale bar: 1, 5mm; 2, 2mm; 3, 1 cm.  
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FIGURE 5 — Histogram of tube widths measured from collected samples. 

 

 

FIGURE 6 — SEM images of fossils. 1, Feldschuhhorn tube showing partial infill and impression into 

matrix ; 2, Vingerbreek tube showing partial infill and impression into matrix as well as surface pitting; 

3, Feldschuhhorn specimen showing longitudinal striations ; 4, Close up of 3 showing pits left by 

evacuated pyrite crystals; 5, Feldschuhhorn specimen showing surficial transverse lineations; 6, 

Kliphoek specimen showing tube infill overhanging slab edge. Scale bars as noted.  

 

 

FIGURE 7 — EDS spectra of Nama tube fossils. All spectra are normalized to the oxygen peak. Black 

line represents tube wall, gray line represents matrix, arrows point to significant peak differences. 1, 

Feldschuhhorn specimen showing elevated levels of Fe and C in tube wall. Spectra taken at 5 kv. Inset 

shows spectra from 0-1 keV; 2, Feldschuhhorn specimen preserved as thin carbonaceous film, showing 

elevated levels of C with respect to matrix. Spectra taken at 5 kv. Inset shows spectra from 0-1 keV; 3, 

Vingerbreek specimen showing elevated levels of Fe and Mg in the tube wall and elevated levels of Al, 

Si, and K in matrix. Spectra taken at 10 kv. 

 

 

FIGURE 8 —  Idealized preservation pathways for Nama tube fossils. 1: Tube on seafloor 2: Burial 3: 

Buried tube decays, replaced by sediment, and preserved as raised ridge - seen in Vingerbreek member 

4: Tube preserved solely as carbonaceous compression - seen in isolated locality of Feldschuhhorn, and 
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globally (see text) 5: Buried tube compressed and filled in with aluminosilicates, carbonaceous 

material remaining. 6: Tube coated with iron-rich minerals - potential Feldschuhhorn preservation 

pathway 7: Tube preserved solely as mineral infill - seen in Feldschuhhorn and Vingerbreek members 

8: Tube preserved solely as impression into underlying sediment - seen in both Feldschuhhorn and 

Vingerbreek members.  

 

 

FIGURE 9 — Eastern European platform comparative material. 1, Carbonaceous Vendotaenia sp. 

revealed in core split; 2, Vendotaenia  macerated from core material; 3, Tyrasotaenia macerated from 

core material. Scale  bar: 1, 3mm; 2, 100 µm; 3, 400 µm.  

 

 

FIGURE 10 — The green alga Enteromorpha, a morphological variant of Ulva, on intertidal rocks in 

southwestern Newfoundland. 

















TABLE 1 – Comparison of Nama populations with previously described Ediacaran and Cambrian tubular  
macrofossils. 1,2 Gnilovskaya, 1971,1988, 1990. 3Sokolov 1972b. 4 Xiao et al. 2002.     

 
 

Branching Longitudinal 
striations 

Transverse 
striations 

Twisting& 
Folding 

Width 
mm 

Age Carbonaceous 

Vendotaenia1 Rare Y N Y 0.25-3.5 Ediacaran – 
?Cambrian 

Y 

Tyrasotaenia2 N N N Y 0.3-0.5 Latest 
Ediacaran- basal
Cambrian 

Y 

Sabellidites3 N N Y Y 0.5 - 3 Ediacaran – 
Cambrian 

Y 

Sinocylindrica 
yunnanensis4 

N N N Y 0.2-0.35 Ediacaran - 
Cambrian 

Y 

Vingersbreek 
fossils 

N N Rare N 0.6-2.0 Ediacaran N 

Feldschuhhorn 
fossils 

Rare Y Rare Y 0.6-2.1 Ediacaran Rare 
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