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ABSTRACT
The main concrete result of this paper is the first explicit
construction of constant degree lossless expanders. In these
graphs, the expansion factor is almost as large as possible:
(1− ǫ)D, where D is the degree and ǫ is an arbitrarily small
constant. The best previous explicit constructions gave ex-
pansion factor D/2, which is too weak for many applications.
The D/2 bound was obtained via the eigenvalue method,
and is known that that method cannot give better bounds.

The main abstract contribution of this paper is the in-
troduction and initial study of randomness conductors, a
notion which generalizes extractors, expanders, condensers
and other similar objects. In all these functions, certain
guarantee on the input “entropy” is converted to a guaran-
tee on the output “entropy”. For historical reasons, specific
objects used specific guarantees of different flavors. We show
that the flexibility afforded by the conductor definition leads
to interesting combinations of these objects, and to better
constructions such as those above.

∗A full version of this paper will be posted on
the Electronic Colloquium on Computational Complexity,
http://www.eccc.uni-trier.de/eccc/.
†Part of this research was performed while visiting the In-
stitute for Advanced Study, Princeton, NJ.
‡Work begun while at MIT and the Institute for Advanced
Study, supported by an NSF Mathematical Sciences Post-
doctoral Research Fellowship.
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The main technical tool in these constructions is a natural
generalization to conductors of the zig-zag graph product,
previously defined for expanders and extractors.

Categories and Subject Descriptors
G.2.1 [Discrete Mathematics]: Graph Theory; G.3 [Prob-

ability and Statistics]: Random Number Generation

General Terms
Theory, Algorithms

Keywords
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1. INTRODUCTION
The quest for explicit construction of extractors, expanders,

and their relative functions which “enhance” randomness,
has been one of the richest areas in the interaction between
computer science and pure mathematics. Moreover, the
huge and diverse set of applications of such functions in
both computer science and pure mathematics makes them
central objects for further understanding. We will not elab-
orate here on either the constructions nor the applications
which are not directly relevant to this paper.

Our paper can be viewed as another step in this important
process. The progress made here is of two types. The first
is in resolving a long-standing open problem in this area —
the explicit construction of “lossless” expanders and their
unbalanced relatives. The second is in suggesting a gen-
eral notion of a randomness conductor that encompasses all
the previously studied “randomness-enhancing” functions.
Needless to say, the two are related – our new construction
was discovered in, and is best described by, the framework
of conductors. The rest of the introduction describe both.



1.1 Lossless Expanders
In this subsection we define lossless expanders,1 and ex-

plain why they were hard to construct by existing tech-
niques. We then briefly discuss their applicability in several
areas.

Consider a bipartite graph G with N inputs I, M outputs
O, and every input connected to D outputs. G is called
an (K, A)-expander if every set X of at most K inputs is
connected to at least A · |X| outputs.

Clearly, the best one can hope for with these parameters
is A as close as possible to D; when A = (1 − ǫ) · D for a
small ǫ we call the expander lossless. We can hope for such
expansion factor only up to K ≈ M/D. A nonconstructive
probabilistic argument shows that such graphs do exist with
D = O(log(N/M)), and this value of D is best possible.
(Here and below, we fix ǫ to be an arbitrarily small constant
for simplicity.)

Our main result is an explicit construction of such “loss-
less” expanders for any setting of the parameters N, M .
When they are within a constant factor of each other, the
degree of our graphs is constant, and linear-sized subsets
of N expand losslessly. More specifically, the degree of our
graphs is D = polylog(N/M) when N/M is relatively small
(so that an optimal graph of size poly(N/M) can be found
by, say, exhaustive search) and D = exp(polyloglog(N/M))
in general. (Here, for simplicity, we fix ǫ to be an arbitrarily
small constant). The size of sets that expand losslessly in all
cases is Ω(M/D), which is the best possible up to a constant
factor.

1.2 Previous Work
The best previous construction of constant degree, even

for the special case N = M , achieved only expansion A =
D/2. It is obtained from expanders which have optimal sec-
ond largest eigenvalue — namely, the Ramanujan graphs of
[16, 18]. Moreover, Kahale [15] showed that some (asymp-
totically) Ramanujan graphs do not expand by more than
D/2, showing that to get lossless expanders one has to by-
pass the eigenvalue method.

Lossless expanders with weaker parameters were obtained
before. Ta-Shma, Umans and Zuckerman [31] coined the
term “lossless condenser”(which we call here “lossless con-
ductors”), and gave a very elegant construction for the very
unbalanced case (N ≫ M), with almost optimal degree D =
polylog(N) (though with a suboptimal bound K < M ǫ on
the size of sets which losslessly expand). The only constant-
degree lossless expanders (with N = M) were obtained by
Alon [4] based on graphs of high girth, but again only very
small sets (A = Nα for some constant α) expand losslessly.

Also, weaker objects of a similar nature were constructed
before. Raz and Reingold [23] introduced a method which
appends a buffer to a “lossy” extractor, which retains the
“lost” entropy. This translates to highly unbalanced, non-
constant degree graphs which are lossless for sets of a given
size K (rather than for all sets of size up to K). Their
technique is essential in our construction. Very recently,
Capalbo [11] constructed explicit unique neighbor expanders
(for the case N = M) of constant degree. In these graphs,
for any set X, |X| ≤ K of inputs, a constant fraction of the
vertices in N(X) has a unique neighbor in X. This prop-

1We use this term here for both the balanced and unbal-
anced variety. We later use the term lossless conductors for
them.

erty trivially holds in lossless expanders, but turns out to
be sufficient in some of their applications. Capalbo’s con-
struction uses the high min-entropy extractors of [26] and
graph products. Our paper may be viewed also as a sig-
nificant extension of his construction, as well as that of the
“min-entropy” expanders suggested in [26].

1.3 Applications
We now turn to list a wide variety of known applications

of (balanced and unbalanced) lossless expanders. In almost
all of them the application depended on a probabilistic con-
struction of such an object, and our construction is the first
to make them explicit. First, it will be useful to deduce a
few properties of lossless expanders.

Lemma 1.1. Let G be a bipartite graph with N inputs, M
outputs, every input vertex of degree D, and every subset of
input vertices S of size at most K have at least (1 − ǫ)D|S|
output neighbors Γ(S) for ǫ ≤ 1/2. Then for every such
subset S we have

1. At most a 2ǫ fraction of the vertices in Γ(S) have de-
gree ≥ 2 into S.

2. A least a (1 − 2ǫ)D|S| vertices in Γ(S) are unique
neighbors, namely have degree 1 into S.

3. At least a (1 − 2ǫ) fraction of the vertices in S have a
unique neighbor.

4. For every δ ≥ 2ǫ, at least a 1−δ fraction of the vertices
in S each have more than (1−2ǫ/δ)D unique neighbors.

5. For every δ ≥ 2ǫ, at most 2ǫ/(δ − 2ǫ)|S| inputs not in
S each have at least δD neighbors in Γ(S), provided
|S| ≤ (1 − 2ǫ/δ)K.

6. Any δ fraction of edges from S touches at least (δ −
ǫ)D|S| outputs.

Now we can see how different properties are used in different
applications. We use the same parameters as in the lemma.

Distributed Routing in Networks.There has been sub-
stantial interest and literature on constructing networks in
which many pairs of nodes can be connected via vertex or
edge disjoint paths, and furthermore so that these paths may
be found efficiently, hopefully in a distributed manner and
even if requests for connections arrive on-line. Examples are
the papers [20, 6, 9]. In essentially all of them, the networks
are lossless expanders, or at least contain them as compo-
nents. To see why consider the following easier problem,
which is actually at the heart of most of these algorithms.

Assume G describes a distributed network. Assume that
a set S of inputs in G needs to find a complete matching
into the outputs, i.e. a matching which matches all the ver-
tices in S. By utilizing Property (3), an iterative distributed
algorithm in which these vertices look for unique neighbors
converges in O(|S|) work and communication, and O(log |S|)
parallel phases. This may be viewed as a first step in con-
structing disjoint paths.

Linear-Time Decodable Error-Correcting Codes.A large
body of work, best known under Low Density Parity Check
(LDPC) codes, constructs good codes from graphs with good



expansion properties (e.g. [17, 28, 29] and the references
therein). The following, which is from [28], illustrates the
power of lossless expanders in this context. Specifically,
they yield asymptotically good linear codes of every con-
stant rate, with trivial linear time (and O(log n) parallel
steps) decoding algorithm.

Here G describes the parity check matrix of the code.
A codeword (of length N) is an assignment of bits to the
inputs, so that every output has zero parity of the inputs
it is connected to. The rate is ≥ 1 − M/N , which can be
made an arbitrarily close to 1 with constant degree D. We
now show how to correct any set of at most K errors. The
(possibly corrupted) message is an assignment to the input
nodes which induces some values on the output nodes via
parity. While not all outputs have a zero value, every input
node (independently) acts as follows: if more than 2D/3
of its neighbors have value 1, it flips its value. It is easy
to see, via Properties (3) and (5), that the total number of
corrupted inputs will shrink by a constant factor each round.

By using our lossless expanders in this construction, the
resulting codes have relative rate 1−δ and minimum distance
δ/polylog(1/δ), which, for small δ, beats the Zyablov bound
and is quite close to the Gilbert-Varshamov bound.

Bitprobe Complexity of Storing Subsets.An ingenious
scheme for storing K-subsets of [N ] in binary vectors of
length M was recently proposed by [10]. The scheme allows
to determine (with high probability) membership of any ele-
ment v ∈ [N ] in the stored set by querying only one random
bit in the vector. The optimal construction of the smallest
value of M (for constant error) relies on lossless expanders.
Let us see how.

G will determine the storage scheme as follows. Given a
set S of inputs of size K, we will represent it by labelling the
outputs with binary values. This will be done in such a way
that the vast majority of neighbors (1− δ)|D| of each vertex
in N will correctly indicate whether v ∈ S. Thus querying
a random neighbor of v ∈ [N ] will only err with probability
δ.

Why should such a labelling exist? As in the previous
examples, lets attempt to get it greedily. First, label all
output vertices in Γ(S) by 1, and the rest by 0. This clas-
sifies correctly vertices in S, but might misclassify vertices
in a set T disjoint from S, each of whose vertices has at
least δD neighboring outputs in Γ(S). Fix the problem by
(re)labelling all outputs in Γ(T ) by 0. This certainly fixes
the problem in T , but may create one in a subset U of S.
Fix Γ(U) to 1, etc. By picking δ = 6ǫ, Property (5) guaran-
tees that the sizes of the problematic sets shrink by a factor
of 2 in each iteration; hence the procedure terminates.

Fault-tolerance and a Distributed Storage Method.By
Property (6), lossless expanders have incredible fault-tolerance:
removing all but δD neighbors of every input in G in an ar-
bitrary way is still a lossless expander (with the same K
and new ǫ′ = ǫ/δ. This property was used (with δ ≈ 1/2) in
a distributed storage scheme due to [35], who gave a near-
optimal deterministic simulation of PRAMs by a network
of communicating processors. Both models have M pro-
cessors, and they differ in that in the first every data item
can be accessed in unit time, whereas in the second, items
which reside in the same processor cannot be accessed si-
multaneously. If the number of data items N used (read

and updated) by the PRAM program is much larger than
M , naive methods for distributing the items fail.

The idea in [35] is to use G so that inputs represent the
N data items, and the outputs represent (the memories) of
the N processors. Each item has D = 2c−1 “copies”, which
are distributed in its neighbors. When attempting to read
or update a data item, each processor is required to access
only c copies. When updating, it updates all c (and time-
stamps them). When reading, it takes the value of the most
recently updated among the c “copies” it has. Intersection
of any two c subsets implies consistency. Efficiency follows
from a similar (but more complex and delicate) argument
to the distributed routing construction, since here many (c)
disjoint complete matchings are needed.

Hard Tautologies in Proof Complexity.The field of Proof
Complexity studies propositional proof systems and tries to
prove lower bounds on the sizes of such proofs for concrete
tautologies. There has been significant progress in this field,
especially in accomplishing this task for relatively simple
proof systems. (See, for example, the excellent survey [7].)
A sequence works [34, 36, 13, 8, 1, 2] have gradually elu-
cidated expansion as a key to hard tautologies for several
complexity measures (width/degree, size, space) in the im-
portant (simple) proof systems Resolution and Polynomial
Calculus.

Some tautologies are constructed in [1] from a graph G
by letting every input vertex be viewed as a function of the
bits labelling the outputs of G. (Note that this is opposite
to LDPC codes and moreover these functions may not be
parities). The tautology expresses the statement that no
M -bit sequence in the outputs can make all functions zero
simultaneously. Losslessness is essential to the lower bound
proofs.

It should be noted that in proof complexity, unlike compu-
tational complexity, existential lower bounds are interesting.
Still, explicit examples are always more informative.

1.4 Randomness Conductors
In this subsection, we motivate a general framework for

studying “randomness-enhancing” functions. Each of the
many variants on this theme: expanders, concentrators, dis-
persers, extractors, condensers, ... may be viewed a function
f : [N ] × [D] → [M ]. Each function guarantees some ran-
domness properties of the distribution f(X, U) given some
guarantees on the randomness in the distribution X, where
U is the uniform distribution on [D].

As these objects were originally defined for different sets
of applications and motivations, what is exactly meant by
“randomness” and “guarantees” in the above description
can vary quite a bit. These choices have different advan-
tages and disadvantages. For example:

Set Expansion.This is the most classical measure of ex-
pansion — the support of f(X, U) should be larger than the
support of X, provided the latter is not too large. It is also
used to define dispersers [27] and a-expanding graphs [21],
though these refer to X of given size support. While this
measure is often the one that we want in applications, it
tends to be too weak for compositions.

Eigenvalue Expansion.It is well-known that the second
largest eigenvalue of a graph is a good measure of its expan-



sion [32, 5, 3]. This measure turns out to be equivalent to
measuring the Renyi entropy of f(X, U) as a function of the
Renyi entropy of X. The eigenvalue was very convenient for
analyzing algebraic constructions of expanders, and indeed
was the measure of choice for almost all previous construc-
tions of constant-degree expanders. However, in some ways
it is too strong. As mentioned earlier, it cannot give expan-
sion greater than D/2 and also cannot achieve small degree
for very unbalanced graphs.

Extraction. Extractors, introduced by Nisan and Zucker-
man [19], ask that f(X, U) is close (in statistical difference)
to the uniform distribution on [M ] provided that X has suf-
ficient min-entropy. This turns out to overcome most of the
deficiencies of the notions mentioned above — extractors
can have very small degree for unbalanced graphs, and are
eminently composable. (For example, since the output of an
extractor is close to uniform, it is very natural to use the
output of one extractor as the second input to another.) On
the other hand, extractors cannot be lossless [19, 22], and
also their definition only discusses X whose min-entropy is
at least some value and thereby does not guarantee expan-
sion of small sets.

Condensing.Condensers differ from extractors in that, in-
stead of asking that f(X, U) is close to uniform, they only
require f(X, U) is close to some distribution having suffi-
cient min-entropy. Various formalizations of this basic idea
have appeared in the recent extractor literature [23, 25, 31],
where it has been seen that condensers can be lossless, and
can be used to discuss expansion of small sets. However,
since condensers do not provide an almost-uniform output,
they are not quite as composable as extractors (though they
compose quite nicely with extractors).

Not surprisingly, there are numerous connections and re-
ductions between the above objects, and our paper could
be viewed as making more specific connections of this type.
However, we feel that a global view of all these objects is a
better description of how we came about our construction,
and that these objects merit a more unified study in the fu-
ture. In particular, it seems useful to have a single notion
which captures both extraction (which must be lossy) and
lossless condensers simultaneously.

In the most general form, randomness conductors2 capture
all of the above objects: every function f is a conductor,
and its quality is measured for all values of parameters: for
every two values of entropy, kin and kout , we measure the
statistical difference of f(X, U) to the nearest distribution of
entropy kout , taking worst case over all sources X of entropy
kin . In this paper we choose “entropy” above to mean min-
entropy, but we suspect that similar results can be obtained
when it means Renyi’s 2-entropy.

In this work, we primarily restrict ourselves to simple con-
ductors (which are still more general than what we really
need). In these we fix both error (statistical difference)
as well as the difference between the input and output en-
tropies (kout − kin) to given values. When this difference
is d = log2 D, the conductor is lossless, as all the incoming

2The analogy with water, heat or electricity conductors is
meant to be suggestive.

entropy (from the source X and the uniform distribution U)
is close to being preserved at the output. When the output
entropy can reach m = log2 M , we have an extracting con-
ductor, which combines extractors and condensers in one.
We use other types of conductors, too, but we’ll delay their
description to the technical section.

It turns out that quite a few known objects, such as ex-
panders, hash functions, and some special constructions of
extractors (e.g. those of Trevisan [33, 24]) are conductors
of good parameters. We just need to combine them in the
right way! Our main technical result is a new zig-zag prod-
uct for conductors which, like in the zig-zag products for ex-
panders and extractors in [26], combines (three) conductors
into a larger one, maintaining their conductivity properties.
This leads in particular to our construction of constant-
degree lossless expanders. While the intuition behind the
new zigzag product is similar to the two old ones in [26], the
technical details involved in proving its properties are more
delicate, due to the higher requirements from conductors.

2. PRELIMINARIES
Expanders are graphs which are sparse but nevertheless

highly connected. The standard definition of expanders is
in terms of set expansion — every (not too large) subset of
vertices in an expander should be connected to a large num-
ber of neighbors. A quantitative version of such a definition
follows:

Definition 2.1. A bipartite graph G = ([N ], [M ], E) is
a (K, A)-expander if every subset X ⊆ [N ] of at most K
vertices is connected to at least A · |X| neighbors.

Typically we are interested maximizing the expansion factor
A while minimizing the left-degree D. Every bipartite graph
as above can be viewed as a function E : [N ] × [D] → [M ],
where E(x, r) is the r’th neighbor of x, and conversely. (We
allow multiple edges between two vertices.) In this represen-
tation, a (somewhat convoluted) way of viewing set expan-
sion is to say that for every probability distribution X on
[N ] whose support Supp(X) is of size at most K, E(X, U)
has support of size at least A ·Supp(X). Thus, if we think of
“support size” as a measure of randomness, then expanders
can be viewed as “randomness enhancing” functions. How-
ever, it turns out to be extremely useful to adopt stronger
measures of “randomness” than support size, and to do so
we need some definitions.

Let X and Y be random variables over a set S. (Through-
out the paper we identify random variables and their distri-
butions). The min-entropy of X is defined to be

H∞(X)
def
= log(1/ max

a∈S

Pr[X = a]),

where here and throughout this paper, all logarithms are
base 2. X is a k-source if H∞(X) ≥ k. (In particular, the
uniform distribution on a set of size 2k is a k-source.) We
say that X and Y are ε-close if the statistical difference
between X and Y is at most ε. That is, if

max
P⊆S

|Pr[X ∈ P ] − Pr[Y ∈ P ]|

=
1

2

∑

a∈S

|Pr[X = a] − Pr[Y = a]| ≤ ε.

X is a (k, ε)-source if it is ε-close to some k-source.



Now we are prepared to discuss other kinds of “randomness-
enhancing” functions and in doing so, it will be convenient
to represent everything in bits. For any integer n, we denote
by (n) the set of all n-bit strings, {0, 1}n. Denote by Un the
uniform distribution over (n).

Definition 2.2 ([19]). A function E : (n)×(d) 7→ (m)
is a (k, ε)-extractor if for any k-source X over (n), the
distribution E(X, Ud) is ε-close to Um.

Viewed as a bipartite graph, an extractor guarantees that
all subsets of the left-hand side [N ] of size at least K ver-
tices have a neighborhood of size at least (1 − ε) · M (and
even more, that the edges are distributed almost uniformly
among the neighbors.) Here, and throughout the paper, we
adopt that capital letters are 2 taken to the corresponding
lowercase letter, e.g. N = 2n, K = 2k, M = 2m.

3. CONDUCTORS
As discussed in the introduction, we consider one of the

main contributions of this paper to be the introduction of
randomness conductors. In this definition we would like to
to encompass a wide spectrum of “randomness enhancing”
combinatorial objects. Loosely, all of these objects can be
viewed as functions E : (n) × (d) → (m) with some relation
between the randomness guarantee on the distribution X
of their first input and the randomness guarantee of their
output distribution E(X, Ud).

Definition 3.1 (randomness conductors). Let ε be
a real valued function ε : [0, n] × [0, m] 7→ [0, 1], (where
[a, b] denotes the real interval between a and b). A function
E : (n)× (d) 7→ (m) is an ε(·, ·) randomness conductor if
for any kin ∈ [0, n], any kout ∈ [0, m] and any kin -source X
over (n), the distribution E(X, Ud) is a (kout , ε(kin , kout))-
source.

Note that any function E : (n) × (d) 7→ (m), is an ε(·, ·)
randomness conductor for ε which is identically one. More
generally, the requirement of Definition 3.1 from E, is moot
for any specific pair (kin , kout) such that ε(kin , kout) = 1.
This property makes objects like extractors and condensers
restricted special cases of conductors.

Definition 3.1 is flexible enough to handle a wide variety
of settings, previously dealt with by expanders, extractors,
condensers, hash functions and other objects. In particular,
the definition can handle (a) the balanced case (m = n)
and the unbalanced case (m < n), (b) the lossless case
(kout = kin + d) and the lossy case (kout < kin + d), (c)
the extractor scenario (where kout = m) and the condenser
scenario (where kout may be much smaller than m).

One can also consider defining randomness conductors us-
ing a variety of different measures of randomness. Neverthe-
less, for our definition we fix a particular measure. Namely,
we use a combination of statistical difference (L1 norm) and
min-entropy. In this we follow the definition of extractors.
As discussed in the introduction, our motivation for such a
definition includes the following considerations:

• This definition is strong enough to imply vertex expan-
sion: For every kin , kout , if the support of a distribution
X is at least 2kin , then the support of E(X, Ud) is at
least (1 − ε(kin , kout)) · 2

kout .

• This measure if randomness is very amenable to com-
position as demonstrated by the extractor literature
and by the results of this paper.

• This definition is not “too strong” in the sense that
it allows relatively small seed length (the parameter
d) even in the unbalanced case where m < n. The
corresponding definitions that are based solely on min-
entropy or Renyi entropy require very high degree in
this case.

We note that an alternative definition may involve a com-
bination of statistical difference and Renyi entropy (rather
than min-entropy). We suspect that similar results can be
obtained with this definition. (In fact, the two definitions
are closely related.)

Special cases of interest
For the constructions of this paper, it will simplify notation
to work with several special cases of conductors. In these
special cases, both the error parameter and the difference
between the input and output min-entropies will be fixed
rather than varying as in the general definition.

Definition 3.2 (simple conductors). A function E :
(n)× (d) 7→ (m) is a (kmax , ε, a) simple conductor if for any
0 ≤ k ≤ kmax , and any k-source X over (n), the distribution
E(X, Ud) is a (k + a, ε)-source.

In the above definition, we allow a to be negative, so that
we can discuss conductors which lose more than d bits of
entropy. Now we look at two further restrictions. The first
of these requires that the conductor is an extractor when
the input min-entropy is large. This forces kmax = m − a,
so we drop kmax from the notation.

Definition 3.3 (extracting conductors). A func-
tion E : (n)× (d) 7→ (m) is an (ε, a) extracting conductor if
for any 0 ≤ k ≤ m − a, and any k-source X over (n), the
distribution E(X, Ud) is a (k + a, ε)-source.

Note that if E : (n) × (d) 7→ (m) is an (ε, a) extracting
conductor then it is also an (m − a, ε) extractor.

The second restriction is that the conductor is lossless.
That is, the output min-entropy equals the total amount
of randomness invested, namely the input min-entropy plus
the number of truly random bits. In other words, a = d, so
we drop a from the notation.

Definition 3.4 (lossless conductors). A function E :
(n) × (d) 7→ (m) is a (kmax , ε) lossless conductor if for any
0 ≤ k ≤ kmax , and any k-source X over (n), the distribution
E(X, Ud) is a (k + d, ε)-source.

As observed by Ta-Shma, Umans, and Zuckerman [31], loss-
less conductors3 are equivalent to bipartite graphs of left-
degree D = 2d such that every set of left vertices of size at
most 2k expands by a factor (1 − ε) · D.

The last two special cases combine the above two cases,
by requiring that we have a lossless conductor such that a
prefix of the output is an extracting conductor. We will use
the notation 〈E,C〉 : (n) × (d) 7→ (m) × (b) to indicate that
E : (n) × (d) 7→ (m), C : (n) × (d) 7→ (b), and 〈E,C〉 is
the concatenation of these two functions (i.e., 〈E,C〉(x, r) =
E(x, r) ◦ C(x, r)).
3They referred to such objects as lossless condensers.



Definition 3.5 (buffer conductors). A pair of func-
tions 〈E,C〉 : (n) × (d) 7→ (m) × (b) is an (kmax , ε, a) buffer
conductor if E is a (ε, a) extracting conductor and E′ =
〈E,C〉 is an (kmax , ε) lossless conductor.

It will also be useful for our construction to consider a
restricted type of buffer conductors, where E′ = 〈E,C〉 is a
permutation (note that in this case, E′ is trivially also an
(n, 0) lossless conductor).

Definition 3.6 (permutation conductors). A pair
of functions 〈E,C〉 : (n) × (d) 7→ (m) × (b), where n + d =
m + b is an (ε, a) permutation conductor if E is a (ε, a)
extracting conductor and E′ = 〈E,C〉 is a permutation over
(n+d).

4. SOME CONSTRUCTIONS
In this section, we describe some basic conductors. The

first set of them will be shown to exist using the Proba-
bilistic Method. These will serve us in two ways. They
will be components in our zig-zag product when their size
is a fixed constant (as they can be found by brute force).
Furthermore, we’ll see that for every size, our final explicit
constructions come very close to the performance of these
random constructions.

The second set are “known” explicit conductors. By this
we mean past constructions of random-like objects, such as
expanders, extractors and hash functions, which happen to
have useful parameters as conductors for our zig-zag.

We then extend known composition techniques from ex-
tractors and condensers to conductors. This will help im-
prove the parameters of the above constructions.

The proofs for Theorems 4.1–4.3 employ standard prob-
abilistic arguments and are deferred to the final version.
Closely matching lower bounds can be obtained by reduc-
tions to the known lower bounds for extractors [19, 22]; de-
tails are given in the full version of the paper.

Lemma 4.1 (nonconstructive extracting conductor).
For every n, m ≤ n, and ε > 0, there is an (ε, a) extracting
conductor E : (n) × (d) → (m) with

• d = log(n − m + 1) + 2 log(1/ε) + O(1),

• a = d − 2 log(1/ε) − O(1)

In terms of graphs, these parameters say the degree is D =
Θ(log(2N/M)/ε2), and the expansion factor is A = Θ(ε2D).
The expression for a says that even these optimal extracting
conductors lose 2 log(1/ε) bits of entropy.

Lemma 4.2 (nonconstructive lossless conductor).
For every n, m ≤ n, and ε > 0, there is a (kmax , ε) lossless
conductor E : (n) × (d) → (m) with

• d = log(n − m + 1) + log(1/ε) + O(1).

• kmax = m − d − log(1/ε) − O(1).

In terms of graphs, these parameters say that
D = Θ(log(2N/M)/ε) and the size of sets that expand loss-
lessly is Kmax = Θ(εM/D).

The above two can be combined into one, as a buffer con-
ductor.

Lemma 4.3 (nonconstructive buffer conductors).
For every n, m ≤ n, b, ǫ > 0, there is a (kmax , ε, a) buffer
conductor 〈E,C〉 : (n) × (d) → (m) × (b) with

• d = log(n − m + 1) + 2 log(1/ε) + O(1), and

• a = d − 2 log(1/ε) − O(1)

• kmax = m + b − d − log(1/ε) − O(1)

We now describe some explicit conductors implied by ex-
isting constructions. The first is based on expanders with
bounded second eigenvalue. The analysis merely involves
converting the guarantees on Renyi entropy directly pro-
vided by the eigenvalue bound into ε-closeness to min-entropy.
For the case of extraction (output min-entropy equals out-
put length), this kind of analysis was done in [14]. What
follows is a generalization to lower min-entropies.

Any constant-degree expander on (n) with bounded sec-
ond eigenvalue yields a conductor which uses the d random
bits to do a random walk on the graph. Roughly speaking,
each step adds Ω(1) bits of entropy, so this gives a = Ω(d).
We get a permutation conductor, by letting the buffer “re-
member” the sequence of edges taken (equivalently, take the
rotation map of graph in the sense of [26]). This gives:

Lemma 4.4 (eigenvalue-based conductors). For ev-
ery n, a ≤ n, and ε > 0, there is an explicit (ε, a) per-
mutation conductor 〈E,C〉 : (n) × (d) → (n) × (d) with
d = O(a + log(1/ε)).

The key feature of the above conductors is that d does not
depend on n. They are suboptimal in that a constant frac-
tion of the entropy in d is lost. In order to achieve loss-
lessness, we obtain explicit conductors from the extractor
literature, using both constructions and composition tech-
niques from this literature. In particular, drawing upon [14,
30, 33, 23, 24, 31], we obtain the following.

Lemma 4.5. For any kmax ≤ n, m, and ε > 0, there
exists an explicit (kmax , ε, a) buffer conductor 〈E,C〉 : (n)×
(d) → (m)×(b) with d = O(log n+log3(m/ε)+log3(kmax/ε)),
a = d−2 log(1/ε)−O(1), and m+b = kmax +d+log(1/ε)+
O(1).

The above conductors are optimal in all parameters except
for d. The expression for d is suboptimal in that in two
respects: Most importantly for us, it depends on n, m, and
kmax rather than just on n−m, which means it cannot give
constant-degree conductors. This problem will be solved by
using our new zig-zag product to combine these extractors
and the ones of Lemma 4.4. A second deficiency, which we
don’t solve, is that this dependence is polylogarithmic rather
than logarithmic. For lack of space, the constructions and
proofs underlying Lemma 4.5 is deferred to the final version.

5. ZIG-ZAG FOR CONDUCTORS
In this section we show how to compose conductors via

the zig-zag product of [26]. When applied to the conductors
described in Section 4, this composition will imply constant-
degree, lossless expanders. (Details appear in Section 7.)

The original zig-zag product.Let us first briefly recall the
intuition of the zig-zag product for expanders from [26]. This
intuition relies on the view of expanders as graphs that “in-
crease entropy”. This roughly means that a random step on



an expander, starting from a distribution X on the vertices,
arrives at a distribution X ′ with “higher entropy” (as long
as X did not contain “too much” entropy to begin with).
The analysis in [26] as in most previous constructions of ex-
panders interprets “entropy” as Renyi’s H2-entropy. In this
section we analyze zig-zag with respect to a combination of
L1 distance and min-entropy (which indeed gives us much
more flexibility). Nevertheless, the intuition in both cases
can be described using a very abstract notion of entropy.

Let N = 2n1 , D1 = 2d1 , and D2 = 2d2 . Let E1 :
(n1)× (d1) → (n1) be the neighbor function of a D1-regular
expander graph G1 on N1 vertices and let E2 : (d1) ×
(d2) → (d1) be the neighbor function of a D2-regular ex-
pander graph G2 on D1 vertices. For simplicity, let us
assume that for every x1 ∈ (n1), r1 ∈ (d1) the function
E1(E1(x1, r1), r1) = x1 and similarly for E2 (i.e., every edge
has the same label when viewed from either of its endpoints).
The zig-zag product of G1 and G2 is a (D2)

2-regular ex-
pander graph G = G1 ©z G2 on N1 · D1 vertices. The neigh-
bor function E of G is defined as follows: For any x1 ∈ (n1),
x2 ∈ (d1),r2 ∈ (d2) and r3 ∈ (d2) define

E(x1 ◦ x2, r2 ◦ r3)
def
= y1 ◦ y2, where

r1
def
= E2(x2, r2), y1

def
= E1(x1, r1), and y2

def
= E2(r1, r3).

Note that a random step on G consists of a (random) step
on G2 followed by a (deterministic) step on G1 and finally
another (random) step on G2.

Assume now that G1 and G2 are both expander graphs
and that for i = 1, 2, a random step on Gi “adds ai bits
of entropy”. Further assume that D1 ≪ N1 (hence we will
refer to G1 as the “large graph” and to G2 as the “small
graph”). The analysis of [26] shows that G is also an ex-
pander and more specifically that a random step on G “adds
a = min{a1, a2} bits of entropy”:

Consider a random step starting at a distribution X =
(X1, X2) on the vertices of G that is missing at least a bits
of entropy. It can be shown that it is sufficient to consider
two extreme cases, based on the conditional distributions
of X2 given particular assignments X1 = x1 (for x1 in the
support of X1). In the first case, all of these conditional
distributions of X2 are far from uniform, i.e., missing at
least a bits of entropy. In this case, the first step on G2 (in
the evaluation r1 = E2(x2, r2)) will add a bits of entropy
(taken from the randomness in r2). It is easy to show that
the next two steps preserve this entropy. In the second case,
the conditional distributions of X2 are all uniform. In this
case, the first step on G2 is useless. However, now the second
step (y1 = E1(x1, r1)) is in fact a random step on G1. This
step shifts at least a bits of entropy from r1 into y1 (in
addition to the entropy present in x1). Finally, the last step
(y2 = E2(r1, r3)) on G1 adds (the now missing) a bits of
entropy to r1 (taken from the fresh randomness in r3).

The new zig-zag product.The zig-zag product discussed
above combines a large graph with a small graph, and the
resulting graph inherits (roughly) its size from the large one,
its degree from the small one, and its expansion properties
from both. Iteration of this product was used in [26] to con-
struct constant-degree expanders with an elementary anal-
ysis. However, these expanders have the disadvantage that
their expansion is suboptimal (as a function of their degree).
This deficiency can easily be traced back to the expander

composition itself: Although the degree of G is quadratic in
the degree of G2, the expansion of G is at most that of G2.
Indeed, the analysis sketched above only guarantees that
one of the random steps on G2 adds entropy. The zig-zag
theorem for conductors presented here manages to avoid ex-
actly this problem. For that we use a different variant of the
zig-zag product that applies to (possibly unbalanced) bipar-
tite graphs. (Essentially the same variant was used in [26] to
construct extractors for high min-entropy.) The main differ-
ences are: we will augment the first application of E2 so that
we also obtain a buffer which will retain any entropy that
would have otherwise been lost in the first step, and we will
replace the second application of E2 with an application of a
conductor E3 to both buffers from the earlier steps to carry
all of the remaining entropy to the output. (In the original
product, r1 plays the role of the buffer in the application of
E1, but the product below will be more general.) This gen-
eralization forces us to work with unbalanced graphs, and
in a sense, the advantage of the new zig-zag theorem is in
the ability to perform the “expander analysis” (as opposed
to the easier “extractor analysis”) of [26] in the setting of
unbalanced graphs.

Definition 5.1 (zig-zag product [26]). Let 〈E1,C1〉 :
(n1)×(d1) 7→ (m1)×(b1), 〈E2,C2〉 : (n2)×(d2) 7→ (d1)×(b2),
and E3 : (b1 + b2)× (d3) 7→ (m3) be three functions. Set the
parameters n = n1 + n2, d = d2 + d3, m = m1 + m3, and
define the zig-zag product

E : (n) × (d) 7→ (m)

of these functions as follows: For any x1 ∈ (n1), x2 ∈
(n2),r2 ∈ (d2) and r3 ∈ (d3) define

E(x1 ◦ x2, r2 ◦ r3)
def
= y1 ◦ y2, where

〈r1, z1〉
def
= 〈E2,C2〉(x2, r2)

〈y1, z2〉
def
= 〈E1,C1〉(x1, r1), and

y2
def
= E3(z1 ◦ z2, r3).

Note that r1 and y1 are computed in exactly the same way as
in the original zig-zag product described above, except that
at the same time we produce the buffers z1 = C2(x2, r2), z2 =
C1(x1, r1) to hold any leftover entropy. The second appli-
cation of E2 has been replaced with an application of E3

to collect the entropy from the buffers. In the full version,
we analyze the way the zig-zag product operates on conduc-
tors. We consider a very wide setting of the parameters,
and show how the zig-zag product can produce both ex-
tracting conductors and lossless conductors. (In fact, it can
produce conductors that are simultaneously extracting and,
for different parameters, lossless). The remainder of this
section, however, discusses a particular, simplified example
that demonstrates the operation of the zig-zag product (and
in particular, how this product can imply constant-degree
lossless expanders).

Since this example is solely for demonstrational purposes,
its parameters are quite inferior to those we actually obtain.
Let e be some fixed large constant multiple of log3(1/ε).
The graphs we use in the composition are the following:

• The “big graph” 〈E1,C1〉 : (n1) × (100e) 7→ (n1) ×
(100e), is an (ε, 5e) permutation conductor (that can
be taken from Lemma 4.4).



• The first small graph 〈E2,C2〉 : (106e)×(e) 7→ (100e)×
(8e), is a (106e, ε, 0) buffer conductor and E3 : (108e)×
(e) 7→ (104e) is a (102e, ε)-lossless conductor. (Both
〈E2,C2〉 and E3 can be taken from Lemma 4.5.)

Let E : (n1+106e)×(2e) 7→ (n1+104e) be the zig-zag prod-
uct of these functions. The zig-zag theorem for conductors
implies that E is an (n1+100e, O(ε))-lossless conductor. (As
a “bonus”, E is also unbalanced).

A rather good intuition for why this is true can be ob-
tained by a simple (though informal) “bookkeeping”. As
with the description of the expander composition earlier,
we try to follow the “entropy flow” from the input (X1 ◦
X2, R2 ◦R3) to the output Y1 ◦Y2 through the computation
of E. Where X1 ◦ X2 is a k-source for some k ≤ n1 + 100e,
and R2, R3 are both uniform over (e). The intermediate
steps in this computation are (R1, Z1) = 〈E2,C2〉(X2, R2),
(Y1, Z2) = 〈E1,C1〉(X1, R1), and Y2 = E3(Z1 ◦Z2, R3). The
output is Y1 ◦ Y2.

As in the original zig-zag analysis, it is sufficient to con-
sider two extreme cases, based on the conditional distri-
butions of X2 induced by particular assignments X1 = x1

(where x1 is in the support of X1):

• Case I: For every x1 in the support of X1, there are
less than 100e bits of entropy in X2| X1 = x1.

• Case II: For every x1 in the support of X1, there are
at least 100e bits of entropy in X2| X1 = x1.

In the first case, applying E2 squeezes the entropy of X2

into R1. (The progress we have made is condensing the
source by 6e bits.) Therefore, X1 ◦R1 contains some k′ ≥ k
bits of entropy and Z1 contains the remaining k + e−k′ ≤ e
bits. Since 〈E1,C1〉 is a permutation, (Y1, Z2) still contains
k′ bits of entropy, from which at most 100e are in Z2 (since
it is 100e bits long) and the rest are in Y1. We can conclude
that Y1 contains some k′′ ≥ k − 100e bits of entropy and
Z1◦Z2 contains the remaining k+e−k′′ ≤ 101e bits. Finally,
applying E3 squeezes all of the entropy from Z1 ◦Z2 and the
additional e bits from R3 (coming to a total of k + 2e− k′′)
into Y2. We can therefore conclude that, Y1 ◦ Y2 contains
the desired k + 2e bits.

In the second case, the extracting property of E2 implies
that R1 is close to uniform (even conditioned on X1). Thus
E1, being an extracting conductor, will either push 5e bits
of entropy from R1 into Y1, or will fill Y1 up (if there is
no room). Since before this step, we have at least k − 106e
entropy bits in X1 (as at most 106e can be in X2), the former
will ensure that there are at least k−101e bits of entropy in
Y1, while the latter will ensure at least n1. Given that k ≤
n1 +100e, we see that Y1 will have entropy at least k−101e.
Thus Z1 ◦Z2, which contains all the remaining entropy, has
at most 101e+e = 102e bits of entropy. Therefore, as before,
E3 will squeeze all this entropy plus its seed length e into
Y2. So, in this case, too, Y1 ◦ Y2 contains the desired k + 2e
bits of entropy.

6. THE ZIG-ZAG THEOREM
In this section, we state the general zig-zag theorem for

conductors. It treats a much more general setting of param-
eters than the one needed for our constructions. We try to
clarify the interaction between parameters below, but still
it may help to think of the components of the composition

as follows (which is what we will use to obtain our main
results):

• The “big graph” 〈E1,C1〉 will be the permutation con-
ductor of Lemma 4.4, m1 = n1, b1 = d1, and d1 will
be taken to be a sufficiently large constant,

• The “small graphs” 〈E2,C2〉 and E3 will be optimal
“constant-size” nonconstructive conductors from Lem-
mas 4.1, 4.2, 4.3 or explicit ones from Lemma 4.5, so
d2 = polylog n2, d3 = polylog(b1 + b2).

Theorem 6.1. Let 〈E1,C1〉 : (n1) × (d1) 7→ (m1) × (b1)
be an (ε, a1) permutation conductor. Let 〈E2,C2〉 : (n2) ×
(d2) 7→ (d1)×(b2) be an (n2, ε, a2) buffer conductor. Let E3 :
(b1 + b2) × (d3) 7→ (m3) be an (ε, a3) extracting conductor.

Let E : (n)×(d) 7→ (m) be the zig-zag product of 〈E1,C1〉,
〈E2,C2〉 and E3 and set

a = min{ d2 + a3, a1 − (n2 − m3) − log 1/ε,

m3 + a2 − d1 − (n1 − m1) − log 1/ε}.

Then E is an (5ε, a) extracting conductor.

In Theorem 6.1, all of the conductors E1, E2 and E3 are
extracting conductors. This is necessary if we want E to also
be an extracting conductor. However, the composition still
gives meaningful results even if the only extracting conduc-
tor is E2 (this conductor must be extracting so that when
X2 has large entropy R1 will indeed be close to uniform and
the application of E1 useful). A particularly useful case is
when E3 is a lossless conductor, as then we can obtain a
lossless conductor (which is how we will beat the degree /2
barrier).

Theorem 6.2. Let 〈E1,C1〉 : (n1) × (d1) 7→ (m1) × (b1)
be an (ε, a1) permutation conductor. Let 〈E2,C2〉 : (n2) ×
(d2) 7→ (d1) × (b2) be an (n2, ε, a2) buffer conductor. Let
E3 : (b1 + b2) × (d3) 7→ (m3) be an (m3 − a3, ε) lossless
conductor.

Let E : (n)×(d) 7→ (m) be the zig-zag product of 〈E1,C1〉,
〈E2,C2〉 and E3 . If the following conditions hold:

• a1 ≥ d2 + a3 + (n2 − m3) + log 1/ε.

• m3 ≥ d1 + (n1 − m1) + (d2 − a2) + a3 + log 1/ε.

Then E is also a (k′
max , 5ε) lossless conductor, for k′

max =
m − a3 − d2.

Interpretation. As discussed above, the goal of the conduc-
tor composition is to avoid the inherent (factor of 2) entropy
loss of the expander composition. For any distribution on
the vertices X = X1 ◦ X2 (of min-entropy k ≤ m − a), we
want the output Y1 ◦ Y2 = E(X1 ◦ X2, R2 ◦ R3) to gain en-
tropy from both parts of the random input R2◦R3 (the “edge
label”). In fact, in some settings of the parameters (which
will be ones we use), Theorem 6.1 implies that the entropy
in Y1 ◦ Y2 is k + d2 + a3. That is, we gain all of the entropy
in R2 and all of the entropy that E3 is capable of adding.
Furthermore, if E3 is a lossless conductor then Theorem 6.2
will imply that E is also lossless. An additional useful fea-
ture of the product is that the output length m of E may
be shorter than its input length n (which is naturally more
difficult for achieving losslessness).



Under which conditions will the resulting conductor E in
Theorems 6.1 and 6.2 be able to add the desired d2 + a3

bits of entropy? First, we will need that the first part of
the output (Y1) together with the two buffers (Z1, Z2), will
contain all of the entropy in the system so far. That is,
they contain k bits of entropy from the source plus the d2

bits of R2. This will follow easily from the losslessness of
〈E1,C1〉 and 〈E2,C2〉. The next condition is nontrivial. We
need Y1 to contain enough entropy so that the conditional
entropy left in the buffers (Z1, Z2) will be less that m3 −a3.
In such a case, E3 will manage to condense into Y2 all of
the entropy from the buffers plus a3 additional bits. As our
analysis will show, this condition can be translated into two
(more concrete) conditions:

• When R1 is close to uniform, the conductor E1 must
“push” a1 bits of entropy into Y1 (if there is room
for them) or fill Y1 up (if there is no room). More
specifically, we need that:

a1 ≥ d2 + a3 + (n2 − m3) + log 1/ε.

• The length of m3 must be large enough to contain the
entropy that may remain in Z1, Z2 and the additional
a3 bits from R3. More specifically we need that:

m3 ≥ d1 + (n1 − m1) + (d2 − a2) + a3 + log 1/ε

Under these conditions, we indeed have a = d2 + a3. Oth-
erwise, the application of E3 loses some entropy as can be
seen in the (somewhat complex) definition of a. Note, that
under almost the same conditions, the application of E3 in
the setting of Theorem 6.2 is indeed lossless (which allows
E to be lossless as well).

The intuition for the proof of Theorems 6.1 and 6.2 fol-
lows the same kind of entropy “bookkeeping” that was given
for the example in Section 5. To carry out the manipula-
tions of (min-)entropy that are required to formalize these
arguments, we use known techniques from the extractor lit-
erature. In particular, the arguments we use are strongly
influenced by the notion of block sources [12] and its useful-
ness for randomness extraction [19] (cf., [26]). The actual
proof is deferred to to the full version of the paper.

7. PUTTING IT TOGETHER
In this section, we apply the zig-zag product for conduc-

tors to the conductors in Section 4 to obtain our main re-
sults. (We just state the results here; the straightforward
but tedious proofs are deferred to the full version.) In all
cases, we will take 〈E1,C1〉 to be the permutation conductor
obtained from Lemma 4.4 (i.e., the rotation map of a power
of a constant-degree expander). By taking 〈E2,C2〉 to be
an optimal buffer conductor (as in Lemma 4.3) and E3 to
be an optimal lossless conductor (as in Lemma 4.2), we get
the following:

Theorem 7.1. For every n, t ≤ n, ε > 0, there exists a
(kmax , ε) lossless conductor E : (n) × (d) → (n − t) with

• d = O(log(t + 1) + log(1/ε)), and

• kmax = (n − t) − d − log(1/ε) − O(1),

Moreover, E can be computed in time poly(n, log(1/ε)) given
two appropriate conductors of size S = poly(2t, 1/ε), which
can be found probabilistically in time poly(S) or determin-

istically in time 2poly(S).

Note that these parameters are optimal (matching Lemma 4.2)
up to the constants hidden in the O-notation. In graph-
theoretic terms, this lemma gives bipartite graphs with N
vertices on the left, M = N/T vertices on the right, of de-
gree D = poly(log T, 1/ε) with sets of size K = Ω(εM/D)
expanding by a factor (1 − ε)D. The graphs can be com-
puted efficiently provided t and 1/ε are small (e.g. in the
constant-degree case).

In a similar fashion, we get an extracting conductor us-
ing Theorem 6.1, taking E3 to be the optimal extracting
conductor of Lemma 4.1.

Theorem 7.2. For every n, t ≤ n, ε > 0, there exists an
(ε, a) extracting conductor E : (n) × (d) → (n − t) with

• d = O(log(t + 1) + log(1/ε)), and

• a = d − 2 log(1/ε) − O(1),

Moreover, E can be computed in time poly(n, log(1/ε)) given
two appropriate conductors of size S = poly(2t, 1/ε), which
can be found probabilistically in time poly(S) or determin-

istically in time 2poly(S).

The above conductors are near-optimal in terms of pa-
rameters, and are efficiently constructible in the case of low
or constant degree case. To improve the computation time
for general parameters, we can use instead the explicit con-
ductors of Lemma 4.5. This gives:

Theorem 7.3. For every n, t ≤ n, ε > 0, there is an
explicit (kmax , ε) lossless conductor E : (n) × (d) → (n − t)
with

• d = O(log3(t/ε)), and

• kmax = (n − t) − d − log(1/ε) − O(1)

Moreover, E can be computed in time poly(n, log(1/ε)).

Theorem 7.4. For every n, t ≤ n, ε > 0, there is an
explicit (ε, a) extracting conductor E : (n) × (d) → (n − t)
with

• d = O(log3(t/ε)), and

• a = d − 2 log(1/ε) − O(1),

Moreover, E can be computed in time poly(n, log(1/ε)).

Without much additional work, we can also combine The-
orems 7.2 and 7.1 in a couple of ways: First, we can con-
struct buffer conductors 〈E,C〉 where E has the parame-
ters of Theorem 7.2 and 〈E,C〉 has the parameters of Theo-
rem 7.1. Second, we can construct a single function E that is
an extracting conductor with the parameters of Theorem 7.2
and, for slightly lower min-entropies, is also a lossless con-
ductor with the parameters of Theorem 7.1. Similar com-
binations can be done for Theorems 7.3 and 7.4. We omit
formal statements of all these combinations here.
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