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Extracting Randomness from Samplable Distributions

EXTENDED ABSTRACT
Luca Trevisart Salil Vadhar
Abstract sampler. These extractors are based on a connection be-
tween deterministic extraction from samplable distribos
The standard notion of andomness extract@ a pro- and hardness against nondeterministic circuits, and on the

cedure which converts any weak source of randomness intause of nondeterminism to substantially speed up “list de-
an almost uniform distribution. The conversion necessar- coding” algorithms for error-correcting codes such as mul-
ily uses a small amount of pure randomness, which can betivariate polynomial codes and Hadamard-like codes.
eliminated by complete enumeration in some, but not all,
applications.
Here, we consider the problem déterministicallycon-
verting a weak source of randomness into an almost uni-
form distribution. Previously, deterministic extractipro- 1 Introduction
cedures were known only for sources satisfying strong in-
dependence requirements. In this paper, we look at sources
which aresamplablei.e. can be generated by an efficient
sampling algorithm. We seek an efficient deterministic pro-  Randomness has proved to be a very useful tool in com-
cedure that, given a sample from any samplable distribution puter science. In algorithms, it has yielded the only known
of sufficiently large min-entropy, gives an almost unifgrml  polynomial-time solutions for some problems, such as pri-
distributed output. We explore the conditions under which mality testing [SS77, Mil76, Rab80] and certain approx-
suchdeterministic extractorexist. imate counting problems [KLM89, JS89]. In distributed
We observe that no deterministic extractor exists if the computing, there are several protocol problems, such as
sampler is allowed to use more computational resources Byzantine agreement, which have only randomized solu-
than the extractor. On the other hand, if the extractor is al- tions [FLP85]. And in cryptography, secret keys must be
lowed (polynomially) more resources than the sampler, we chosen at random (else they are not secret), and even the
show that deterministic extraction becomes possible. Thiscryptographic algorithms themselves must often be ran-
is true unconditionally in the nonuniform setting (i.e.,evh  domized in order to be secure [GM84].
the extractor can be computed by a small circuit), and (nec-
essarily) relies on complexity assumptions in the uniform
setting.
One of our uniform constructions is as follows: assum-
ing that there are problems i = DTIME(29(") that
are not solvable by subexponential-size circuits wiip
gates, there is an efficient extractor that transforms any
samplable distribution of lengtthand min-entropy1 —-)n
into an output distribution of lengtfl — O(vy)n), wherey is
any sufficiently small constant. The running time of the ex-
tractor is polynomial inn and the circuit complexity of the

When randomness is used in the design of algorithms
and protocols, the source of randomness is modeled as an
ideal process that outputmbiasedand independentan-
dom bits. On the other hand, the conceivable sources of
randomness that an algorithm can effectively access (e.g.,
statistics on disk access time, or keyboard typing), while
containing a noticeable amount of entropy, can be very bi-
ased and involve heavy dependencies. A large body of re-
search, initiated in [Blu86, SV86, CG88, VV85], has been
devoted to fill this gap between realistic sources of random-
ness with biases and dependencies and perfect sources of

*Columbia University, Department of Computer Science, an@.U  randomness. ldeally, one would like to have a “compiler”
Beffkde}’, Computer Science Divisiohuca@s. col unbi a. edu. that, given an algorithm/protocol that is guaranteed tokwor

Institute for Advanced Study, Princeton, NJ, and Harvardzersity, well only with a perfect source of randomness, produces an
Cambridge, MA. E-mail:sal i | @leas. harvard. edu. Work done . . .
while at MIT, while supported by an NSF Mathematical Scien@estdoc- algorithm/protocol that is guaranteed to work well with a
toral Research Fellowship. large class of imperfect random sources.




1.1 Simulation of Probabilistic Algorithms Using unavoidable to look for extraction procedures that convert
Extractors a weak random source into an almost uniform distribution
deterministicallywithout the help of extra randomness. Be-

For the case of probabilistic algorithms, one way of de- cause of the above-mentioned impossibility results, such
signing such “compilers” is to designrandomness extrac- ~ deterministic extractors will not work for every source of
tor, as proposed by Nisan and Zuckerman [NZ96]. A ran- Sufficiently large min-entropy. However it is still possebl
domness extractor is a procedure that on input a samplghat there are fairly general and natural families of weak
from a weak random source and a tru|y random String givesrandom sources for which efficient deterministic extrattio
an output that is statistically close to uniform. Formadly, IS possible.

(k, e)-extractoris a procedure gt : {0,1}" x {0,1}! — When random bits are needed in practice (e.g., to gen-
{0,1}™ such that ifX is random variable of min-entropy erate keys in a cryptographic protocol), a typical approach
at leastk, and U, is the uniform distribution ovef0, 1}¢, is to collect weakly random data, and feed it into a crypto-

then ExT(X,U;) is e-close to uniform: A large body of graphic hash function. The output of the hash function is
research has produced explicit constructions wher@n be  then used as if it were a sequence of random bits. However,

essentially arbitraryy is very close td;, andt is O(logn) we know of no theoretical justification for this way of us-
(see, e.g., [NT99, Zuc97, Tre99, RSWO00] and the refer- ing a fixed cryptographic hash function to do deterministic
ences therein). By definition, once we have sudt.&)- extraction.

extractor, we can perform any task which is designed to use  on theoretical side, there is a considerable body of work
m truly random bits using instead a single sample from a geyoted to the problem of deterministic extraction. In fact
random source of min-entropgytogether witht truly ran- most of the early work on the use of weak random sources
dom bits Since we still need some truly random bits, this was devoted to the construction of deterministic extrac-
does not yet achieve the goal of using only a weak sourceyrs for increasingly general classes of distributions. A
of randomness. However, in most algorithmic applications, ¢|assical algorithm by von Neumann [vN51] (improved by
the need fot additional truly random bits can be eliminated gjias [Eli72]) extracts randomness from a sequendeds-

by enumerating a2’ posibilities and combining the algo-  pendentoin tosses of the same biased coin. Blum [BIu8é],
rithm’s outputs for each, e.g. by majority vote (for decisio  generalizing von Neumann'’s result, showed how to extract

problems). This incurs a slowdown of factor®f but for-  randomness from any distribution described by a Markov
tu.nately this is still polynomial since we use an extractor chain. Chor and Goldreich [CG88] (improving results of
with t = O(logn). Santha and Vazirani [SV86] and Vazirani [Vaz87]) show

Note that the fact that randomness extractors can be use@ow to extract randomness given two independent weak
to run randomized algorithms with only a weak random random sources with enough min-entropy. Another line of
source (and no additional truly random bits) does not meanwork considers the problem of deterministically extragtin
that one carextractalmost uniform bits from a weak ran- randomness from various types of sources where an ad-
dom source without additional truly random bits. Indeed, versary can fix some subset of the bitS, most'y motivated
for any deterministic function r : {0,1}" — {0,1}™, by applications of such extractors in cryptography and dis-

there is a distributionX’ of min-entropyn — 1 for which tributed computing (cf., [CGF85, BBR8S, BL9I0, LLS89,
ExT(X) is very biased (in fact, one for which the first bit cpH+00]).

of ExT(X) is constant) [CG88]. The extraction algorithms presented in the above papers

o ] work for classes of distributions that satisfy fairly stgin-
1.2 Deterministic Extraction dependencproperties (which is a particularly problematic
assumption for physical sources of randomness). Indepen-

The reason why extractors can be used for the simula-dence requirements are explicit in most of the works, and
tion of probabilistic algorithms is essentially that when a are also implicit in [Blu86], where the process that sam-
probabilistic algorithm uses bits of randomness, it can ples the distribution has limited memory and works on-line,
always be simulated deterministically at the price df‘a  so that far-away parts of the output of the distribution can
slowdown factor. In other applications of randomness, suchonly have limited dependencies. In order to circumvent the
as probabilistic encryption [GM84] or Byzantine agree- impossibility of deterministic extraction for many sousce
ment [FLP85], randomness is required by the very natureof interest (in particular, ones without strong indeperuden
of the problem, and there is no possibility of trading off ef- guarantees), researchers were led to consider the weaker
ficiency for randomness. For such applications, it appearstask of efficiently simulating randomized algorithms with

1A distribution X hasmin-entropyk if for any elementa of its range such sources [VV85.’ CG88, Vazs4, CW89’ Zuc9e], and
Pr[X = a] < 2-*. Two distributionsX andY" aree-closeif for any eventually to the notion of extractors which can use a small
subsetS of their rangg Pr[X € S] — Pr[Y € S]| < e. number of additional truly random bits [NZ96].




1.3 Our Results A Connection to Nondeterministic Average-case Hard-
ness. While the nonuniform extractors mentioned above
Our aim is to identify as general a class of sources asillustrates the feasibility of deterministic extractioit,
possible for which efficient deterministic extraction can b would be preferable to have a construction in which the
done. Specifically, we examingamplable distributions extractor is efficiently computable by a uniform algorithm.
that is, sources that can be generated by an efficient samHowever, we show in Section 3 that the existence of such
pling algorithm (or circuit). The only other requirement we extractors implies separations of complexity classes ineyo
place on the source is that it contains some randomness to bwhat is currently known. Therefore, in order to construct
extracted (as measured by min-entropy). In particular, we uniform deterministic extractors, we will need to make
do not impose any independence conditions on the sourcecomplexity assumptions.
This class of samplable distributions contains as special Let us consider for starters the task of extracting one al-
cases most of the previously studied sources for which de-most unbiased bit (already a nontrivial problem). Our first
terministic extraction was found to be possible. In additio result is that if a Boolean function is hard to compute by
to their generality, one can argue that samplable distribu-NP-circuits (i.e., circuits that can have special gates solv-
tions are a reasonable model for distributions actually-ari ing SAT instances) of size with advantage better than
ing in nature. Indeed, considerable efforts were made tothenitis also a good extractor against samplers of sizetabou

extend Levin’s theory of average-case complexity [Lev86]
to this class of samplable distributions [BCGL92, IL90].

Having settled on this class of sources, what we're look-

ing for are functions ET : {0,1}" — {0, 1} with the fol-
lowing property: for every sourc& of some min-entropy
k which is samplable by a circuit of some sigeEXT(X)

s that sample a distribution of lengthof min-entropy about
n — log(1/7). The basic idea in the proof of this result is
quite simple: suppose thdtis a function hard on average
for NP-circuits, and thatX is a samplable distribution on
which f(X) is, say, biased towards 1. Then the following
NP circuit can predictf(x): givenz, first check whether

is e-close to uniform. Note that although we are placing a z is in the range of, which is something that can be done
computational restriction on the sampler, we are requiring efficiently using nondeterminism (sincé is samplable). If

the output of the extractor to b&tatistically close to uni-
form. The reason for this choice is that it is possible to

x isin the range, then guess thfdtr) is 1, otherwise make a
random guess. For a randamthis approach guessgér)

achieve this stronger property (as shown by our construc-with an advantage that depends on the biag(df ) and on

tions). In addition, for extracting a small number of bits
(as in several of our results), there is no difference betwee
statistical and computational indistinguishabifity.

Nonuniform Extractors and Negative Results. Our first

the min-entropy ofY .

Although the assumption that we have a function that
is hard-on-average foNP-circuits (as opposed to stan-
dard circuits) has been used before (e.g., by Arvind and
Kobler [AK97]), it is still natural to ask whether the non-

observation is that extracting randomness from samplabledeterministic hardness assumption is really necessary. In

distributions is impossible unless the extractor is alldwe

Section 4, we observe that a Boolean function can be very

use more computational resources than the sampler. On th8ard-on-average against standard circuits, yet it may @ot b

other hand, if we allow the running time of the extractor to
be polynomially larger than the running time (or even citcui

a good extractor for samplable distributions, even for min-
entropyn — 1. So it appears that a somewhat nonstandard

Size) of the Samp]er’ we show that extraction becomes poshardness a.SSUmption is required. Stl”, it is of interest to

sible. Our first result in this vein demonstrates the existen
of good deterministic extractotfsomputed by polynomial-
size circuits. More precisely, for evegyandn, there is an
extractor of sizeoly (s) that extracts almost all the random-
ness from any distribution of0), 1}" samplable by a circuit
of sizes.*

2|t should be noted that once one can extract a small numbétsdahiat
are statistically close to uniform, the pseudorandom geoerconstruc-
tions of [NW94, IW98] can transform these into many bits e compu-
tationally indistinguishable from uniform (under comptgxassumptions
that are weaker than the ones we make).

SHere, and from this point on, the terdeterministic extractoalways
refers to a deterministic extractor for samplable distidns.

4Dodis, Sahai, and Smith [DSS00] have used our proof to shatv th
there are small circuits which compute good “adaptive sttatil exposure-
resilient functions,” by observing that these are a speciaé of extractors
for samplable distributions.

weaken the assumption, as we do next.

Using Worst-case Hardness. Our next goal is to start
with a reasonableorst-casecomplexity assumption, such
as the one used by Klivans and van Melkebeek [KvM99]:
that E DTIME(29(™) contains a problem that is
not solvable byNP-circuits of size2°(™. We would

like to show that such an assumption implies the ex-
istence of polynomial-time computable predicates with
strong average-case hardness agdWiBt-circuits; by the
previous results, such predicates would be good deter-

5This explanation is a bit oversimplified: our idea works asaibed
only if X is a samplable “flat” distribution. For non-flat distributi® a
more sophisticated reduction is needed, which involvesitizeof approx-
imate counting algorithms with aN'P-oracle [Sip83, Sto85, JVV86].



ministic extractors. This looks like the standard prob- which we then use to extract almost all the entropy from
lem of worst-case to average-case reduction, as solved irour source. Formally, we prove that if there is a problem
[BFNW93, Imp95, IW97, STV99], and observed to extend in E that does not admit circuits of siz2(") with X¢

to NP-circuits in [KvM99]. However, in all such results, gates, there is an efficient deterministic extractor that ex
one gets predicates that are hard to predict with an advaniracts(1 — O(v))n bits from any samplable distribution of
tage that is at least inversely proportional to the size ef th min-entropy(1—~)n, wherey is any sufficiently small con-
adversary (and, for a stronger reason, on the time neededtant. Again, the running time of the extractor is polyndmia
to compute the predicate). It then follows that an extractor in the circuit complexity of the samplers.

computablein time(rn) obtained using such techniques and

the previously mentioned connection can only extract ran- 1 4 Perspective

domness from a source of min-entropy about log t(n).

In order to extract from sources of lower entropy, we ex- : I . o
: o S L Our main motivation for studying samplable distribu-
ploit our ability to use nondeterminism in the reduction, in . . . : : .
tions is their generality. However, this generality has a

the spirit of the results of Feige and Lund [FL96] about . ™. :

. price; the extractor must use more computational resources
the average-case complexity of the permanent. Our start- .
. S .~ 7. "than the sampler, and has to rely on complexity assump-
ing point is the worst-case to average-case reduction in

[STV99]. That reduction uses an error-correcting code ob- tions. Given the current state-of-the-art in complexitg-th
. " - o . ory, it seems unavoidable that even under strong assump-
tained by “concatenating” a multivariate polynomial code

. - ... tions, to get an extractor for distributions of lengtlsam-
and a Hadamard code, and is analyzed by providing a “list- o )
. . .~ pled by circuits of size, say)(n logn) one has to come up
decoding” procedure for the polynomial code and using

the Goldreich—Levin [GL89] list-decoding procedure for with a fairly (.:omplex_a_nd_lmprac.ncal solution. On th_e (_)ther

P . hand, we think that it is interesting to explore the limits of
the Hadamard code. We show that the use of *approxi- the possibility of deterministic extraction, and it seeifmestt
mate counting” (implementable with &P oracle [Sip83, P y '

Sto85, JVVB6]) can greatly improve the efficiency of the Zi;nrgla}lgle distributions are a good and natural borderline
list-decoding algorithm for the polynomial code. But we S P : | definition is orth o th d
do not know whether a similar improvement is possible for eemingly, our dennition Is orthogonal to the one use

the Hadamard code. Instead, we show how to use approx—by Chor and Goldreich [CG88] for two independent weak

imate counting and uniform sampling (also using i random sources. In the Chor—Goldreich setting, distribu-
oracle [JVV86, BGP98]) to get a very efficient solution to a tions can be arbitrarily complex, but they satisfy a stromg i

somewhat different problem that still suffices for determin dependence requirement. In our case, dlstr|but|or_13 have to
istic extraction. be samplable but can involve arbitrary dependencies. How-

The final result is that starting from a problemEnthat Egiglj[’hc%rr?sltsrt?c(t:icc))?\geﬁtsl?nn. ;nhtz;(sj p?g;g;’{z tgol \gi”(ao(r;j?téta-
does not admit circuits of siz2°(™) with X5-gates, we » USINg b

get an efficient extractor that extracts one almost unbiased SMMIStiC extractors; when the resultis not a deterrtinis
bit from any samplable distribution of length and min- extractor, a reduction shows that the predicate is not hard.

As shown in [Tre99], such computational constructions can
entropy(1 — v)n, for some constant > 0. In order to ; . . : .
A S . have interesting and unexpected information-theoretic in
extract from distributions samplable by circuits of sige : s . .
LT terpretations, and it is natural to look for the information
the extractor needs running time onlyly(s). The some-

what unusual assumption can be thought of as a “scaling” oftheore‘uc interpretation of the results of this paper. As it

EXP ¢ 55 /poly, which is true as long as the Polynomial t_urns out, the mformatlon-the_ore_ztlc gnal(_)gue of detersnin
: tic extractors for samplable distributions is exactly thetp
Hierachy does not collapse.

lem of extracting randomness from two independent weak
random sources! Briefly, if we have two independent weak
Extracting Many Bits. So far, we described results giv- random sourceX’; and X,, then X, has a large descrip-
ing extractors that only produce one almost unbiased bit,tion size (i.e., Kolmogorov complexity) even conditioned
while it is of course much preferable to extract a number of on X; = z; for anyz;. Thus, similar to [Tre99], we can
random bits that be as close as possible to the entropy ofview X, as the truth table of a hard predicate relative to
the source. We first show that our coding-theoretic methods X, which can be used to deterministically extract random-
can be used to extract approximately a logarithmic numberness fromX;. Such an interpretation of our results gives
of random bits. To this end, we use the same polynomial (unconditional) constructions of deterministic extrastor
code as before, but in place of the Hadamard code, we uséwo independent weak random sources, for the case where
a similar code on a bigger alphabet. Once we have thesehe two sources have different lengths, and the longer one
logarithmic number of random bits, we can use them as thehas a very low entropy rate. The details of these corollar-
truly random bits for the extractor of Zuckerman [Zuc97], ies will be given in the full version of the paper (including



additional optimizations that be done in the information- formly at random. Aprobabilistic circuitis a Boolean cir-
theoretic setting). cuitC : {0,1}™ x {0,1}" — {0,1}". Forz € {0,1}™,
Part of the purpose of this paper is to point out the needwe write C'(z) for the distribution on{0, 1}" obtained by
for a further development of the theory of deterministic ex- selectingy uniformly in {0, 1}" and evaluating’(z; y).
tractors, and to invite the reader to come up with altereativ We say that a probability distributiongamplable by size
definitions and constructions. We believe that it would be s if there is a circuit of size which samples from it. An en-
very good to come up with a natural and general class ofsemble{X,,} of probability distributions isiniformly sam-
distributions that admit an efficient (implementable!) de- plable in timet(n) if there is a probabilistic algorithmt
terministic extractor. Such a deterministic extractorldou such thatd(1™) = X,, for everyn and the running time of
then be used in place of cryptographic hash functions in or- A on input1” is at most(n).
der to extract randomness in practice, with the advantage of
having a sound motivation for its use. Extractors. A function ExT : {0,1}" x {0,1}¢ —
One natural direction for such research would be to seek(( 1}m js a (k, ¢)-extractorif for every distributionX on
deterministic extractors for distributions which haveapa () 117 of min-entropyk, EXT (X, U,) is e-close toU,,,.5

bounded samplers, rather than time-bounded ones as W& shown by Nisan and Zuckerman [NZ96] it is necessary
have. As with pseudorandom generators (cf., [Sak96]), 1o investd > Q(log(n — k) + log 1/¢) truly random bits
there is hope founconditionakesults in the space-bounded g, any nontrivial extraction (i.e., whem < d — 1 and
setting. The samplers considered by Blum [Blu86], namely ;. < n —1)7 In order to make extraction_possible with-

of space-bounded of computation, but the extractors giveng;stributions:

there only work when the number of bits received from

the source is much greater than the number of states in thdefinition 2.1 A functionExT : {0,1}" — {0,1}™ is an
Markov chain. A much richer class of sources would be ob- (k, ¢)-deterministic extractor against circuit-sizé for ev-
tained by looking at distributions of0, 1} sampled by an  ery distribution.X on {0, 1}™ which has min-entrop¥ and
O(log n)-space machine. is samplable by size, EXT(X) is e-close toU,,.

Definition 2.2 A family of functions{ExT,, : {0,1}" —
{0,1}™™} is a (k(n),e(n))-deterministic extractor
- o » against timet(n) if for every ensemble of distributions
Probability Distributions. Let X andY be probability X = {X,} such thatX is uniformly samplable in time
distributions on a discrete univerde X is said haveamin- t(n) and X,, is a distribution on{0,1}" of min-entropy

entropyk if for all z € U, Pr[X =g] < 27%. It wil k(n), we haveExT(X,) is e(n)-close toU,,, for all
also be convenient for us to have the following equivalent sufficiently largen.
terminology.X hasdensity in i/ if max, ey Pr[X =] =
1/(6 - U). Note that ifX is uniform over a subsef of U/,
thend is the density oF in i/ (hence the terminology). Note
that a distribution has density at leasn {0, 1}" iff it has
min-entropyn — log(1/46).

Thestatistical differencéetweenX andY is defined to

2 Preliminaries

Nondeterministic Circuits. We denote the levels of the
polynomial-time hierarchy as followsxy = P, X1 =

NP>, A X;-algorithm is an algorithm with an ora-
cle for X;. Similarly, a X;-circuit is a Boolean circuit

be which can have gates for some fix&é-complete prob-
lem (e.g., QBF_,) in addition to the usuah, Vv, and
SD(X,Y) def  ax IPr[X € §] - Pr[Y € 9| — gates. By replacing “algorithm” or “circuit” with X;-
scu algorithm” or “X;-circuit” in the definitions above, we can

also defineprobabilistic X;-algorithms probabilistic X;-

_ 1 Z [PriX =] -Pr[Y =q]|. circuits, distributionssamplable byX;-circuits of sizes,
2 = (k, €)-deterministic extractors again&t;-circuits of sizes,
etc.

If SD(X,Y) < ¢, we say thatX andY aree-close U,
denotes the uniform distribution ¢, 1}™. If X is a dis-
tribution on{0, 1}, then we calSD(X, Uy ) thebiasof X.

We will consider probability distributions given by sam-
pling algorithms. IfA is a probabilistic algorithm (Turing 6This definition of extractor, taken from [NT99], is weakeaththe
machine) we WriteA(x' ) for the output of4 on input original definition proposed in [NZ96] (which requires tlhé d-bit seed

! . Y P p . be explicitly included in the output). But this definitionfBces for most
z and random coing. A(x) denotes the output distri-  ;ppjications of extractors.

bution of A on inputz when the coing, are chosen uni- Better (and tight) bounds afican be found in [RT97].

Definition 2.3 A functionf : {0,1}"™ — {0,1} is (s,¢)-
hard forX;-circuitsif for everyX;-circuit C of size at most




s, we have Corollary 3.3 Suppose{ExT,, : {0,1}" — {0,1}} is
a family of functions computable in timé¢n) such that,
Prf(z) = C(x)] £ 1/2+¢/2 for everyn, EXT,, is an (n — 1,1/5)-deterministic extrac-
tor against circuit-sizes(n). Then there is a language in
3 Nonuniform Extractors & Negative Results ~ DTIME(t(n)) of circuit complexity at leas®(s(n)).

Proposition 3.1 For everys, n, k < n, ande, there ex- Proof: LetL = {x € {0,1}" : EXT}y|(w) = 1}. Proposi-

ists an(k, ¢)-extractor ExT : {0,1}" — {0,1}™ against Itlon ;3.2 implies that this language has circuit comple;ttya
circuit-sizes, with m = k — 2log(1/c) — O(log s). More- |€asts(m)/c.
over,EXT can be computed by a circuit of sipely s). A similar argument holds in the uniform setting:

The proof, that will appear in the full version of this Corollary 3.4 Suppose{ExT, : {0,1}* — {0,1}}
paper, is based on a version of the Leftover Hash Lemmais family of functions computable in timén) and
for ¢t-wise independent functions that shows that there isis an (n — 1,1/5)-deterministic extractor against time
anexp(—{(t)) probability that a function picked fromthe  #'(n). Then there is a language IDTIME(t(n)) \
family is not a good extractor for a fixed weak random BPTIME(Q(t (n)).
source. (The standard Leftover Hash Lemma for pairwise
independent families [ILL89] does not give a high enough 4 Extractors from Average-Case Hardness
success probability for our purposes.) A union bound then
shows that with high probability over the choice of the func-
tion from the family, it is simultaneously a good determin-
istic extractors for all weak random sources having small
samplers. Lemma4.l Let f : {0,1}"* — {0,1} be (s,e)-hard for

Note that in Proposition 3.1, the extractor has a higher ¥, -circuits. LetX be a flat distribution or{0,1}" of min-
circuit complexity than the samplers from which it extracts entropyn — A samplable by a circuit of size— O(n). Then
This is necessary, even if we only want to extract one bit f(X)is 22 - e-close to uniform.
from a distribution of min-entropy — 1:

The following lemma relates the average-case complex-
ity of a Boolean function to its extraction property.

The (omitted) proof of Lemma 4.1 follows the intuition
Proposition 3.2 There is a constantsuch that no function  gytlined in the introduction: If there were a samplable dis-
ExT : {0,1}" — {0,1} computable by a circuit of sizeé  tripution X of high min-entropy on whichf were biased
is a(n —1,1/5)-deterministic extractor against circuit size  {owards 1, then &;-circuit could obtain an advantage in
c-s. computingf on a random input by testing whether were
in the support ofX .

In the standard information-theoretic setting, if a func-
tion extracts randomness out of every flat distribution of
min-entropyk, then it follows that it also extracts random-
1. Selectz uniformlyin {0, 1}™. ness out of any (not necessarily flat) distribution of min-
entropyk (cf., [CG88]). This is due to the fact that any
distribution of min-entropyk is a convex combination of
flat distributions of min-entropg. In our framework, it is

Itis easy to see that has min-entropy, — 1 and is sam- N0 more true (or at least no longer clear) that any samplable

plable by sizeD(s). Moreover, &T(X) = 1 with proba- distribution of min-entropyk is a convex combination of
bility at least3 /4. [} flat samplabledistributions of min-entropy;.. So we need

an additional technical step in order to remove the flatness

In subsequent sections, we aim to construct deterministicrequirement.
extractors that are efficiently computable tmyiform algo- Before continuing, let us pause for a moment to consider
rithms. The following two corollaries show that such ex- the nondeterministic complexity assumption that we made
tractors imply separations between deterministic complex in the above lemma, and discuss its strength. As seen in
ity classes and nonuniform or probabilistic ones. Sincésuc the previous section, it is necessary to make a complex-
separations are beyond the current state-of-the-art in comity assumption in order to construct uniform deterministic
plexity theory, our constructions should (and will) be lthse extractors. However, it is not natural that the assumption
on complexity-theoretic assumptions. should be about nondeterministic hardness, and it would

8The constant of /5 can be replaced by any constant less thaat the be more appealing to have a construction based on stan-
price of increasing. dard average-case hardness. Even though we do not know

Proof:  Without loss of generality, we may assume that
ExT(z) = 1 for at least half of its inputs. Consider the
distribution X sampled by the following algorithm:

2. If ExT(z) = 1, outputz. Otherwise, output a uni-
formly selected:’ € {0, 1}™.




whether nondeterministic hardness assumptionsaces- 1/2"~k, whereas the circuit complexity gfwill be at most
saryto construct deterministic extractors, we can argue thatthe running time of the extractor, which we would like to be
standard hardness is not sufficient. krete a one-way per-  poly(n).)
mutation, and letB be a hard-core predicate far. then In the spirit of the results of Feige and Lund [FL96]
f(z) = B(=*(z)) is ahard-on-average function; however, about the average-case complexity of the permanent, we
it is not an extractor because it is easy to sample from theovercome this difficulty by exploitingrondeterminismn
conditional distribution ofr such thatf(z) = 0 (and this our reduction. Specifically, by augmenting the polynomial
distribution has min-entropy — 1). We can conclude that, reconstruction algorithm given in [STV99] with nondeter-
if one-way permutations exist, it's not possible to prov@th minism, we obtain the following result:
every hard-on-average predicate is a deterministic ebdrac o _ ) _
against small samplers. L_emma 5.1 Let IF be a finite field (with some fixed, _efﬂ-
Now we proceed to relate nondeterministic hardness toCient representation), and lgt: F* — F be a polynomial
deterministic extraction for samplable distributionstthee ~ Of total degree at most. If there is aX;-circuit C' which
not necessarily flat. Now, when trying to compufter), it computegp correctly on at least & = c/d/|F| fraction
will no longer suffice to test whether an inputis merely of pom_ts (yvhere: is a universal cons_tant), then there is a
in the range of a distributioX on which f is biased. In-  Zit2-circuit C" of sizepoly(|C/, d) which computep cor-
stead, we will guess the valydz) randomly with a bias ~ rectly everywheré.

that depends on (an approximation to) the probability mass ) . . .
of z underX . This can be accomplished bya-circuit be- Proof sketch: It is shown in [STV99] that there exists a

cause approximate counting can be can be performed Withoointz € ™ such that for at least a 15/16 fraction of lines
anNP oracle [Sip83, Sto85, JVV86]. ¢ throughz,

Lemma4.2 Let f : {0,1}" — {0,1} be (s,e)-hard for 1. p|¢ andC|, agree on at least® 2 fraction of points on
¥ -circuits. Then, foreverA < n, fisa(n—A,281!.¢) 2

i roUitgiz @A ) 2(1
extractor against circuit-siz€2%es) 1), 2. There does not exist any degeépolynomialh : £ —

We remark that Lemma 4.2 generalizes to give determin- I other tharp|, which agrees witl’| in at least &/4
istic extractors which extract several bits from nonbonlea fraction of points orf and satisfies.(z) = p(z).
functions which are sufficiently hard-on-average or-

- Fix such az, and consider the following procedure, which
circuits.

attempts to computeatz € "

5 Extractors from Worst-Case Hardness 1. Let/ be the line through andz.

2. Nondeterministically guess a degiépolynomialh :

In the previous section, we saw that the property of a .

function being a deterministic extractor is in some sense a
generalization of a function being hard to compute on aver- 3 Verify thath agrees withC' on approximately a/2
age. In this section, we show how to construct deterministic fraction of points orf and satisfie®(z) = p(z). If so,
extractors from functions that are hard to compute in the outputh(z). Otherwise, rejech.

worst case To do this, we follow the usual paradigm for

transforming a worst-case hard functignto an average- This procedure can be implemented efficiently using
case hard functiorf: we take f to be an encoding of nonuniformity (to hardwirez, p(z), andC) and two levels

in an appropriate error-correcting code [BFNW93, STV99]. of nondeterminism (one to gueBsand one to perform ap-
To prove the correctness of such a construction, one typ-proximate counting [Sip83, Sto85, JVV86]). Thus, we ob-

ically argues that given any small circuit which com- tain a¥; »-circuit computingp in at least al5/16 fraction
putesf on average, i.e. has some advantagwer “ran- of points, which can be converted into one which computes
dom guessing”, one can can use a decoding algorithm forp everywhere via the “self-corrector” of [GLFO1]. O

the error-correcting code to build another small ciretfit

which computeg everywhere, contradicting the worst-case ~ This lemma implies that if we start with a functigh
hardness off. However, existing results of this form will ~Which is worst-case hard fdt;-circuits and encode it as
not yield the results we desire. The reason is that these de@ low-degree polynomial, we obtain a functignwhich

coding procedures typically produceCd of size polyno-  is very hard on average fdk, -circuits, as desired. How-
mial in 1/, whereas we are interested in valued pf that ~ ever, there is still a problem. Whike = c\/d/|F| is very
are much larger than the hardnessfof(If we are extract- 9The size ofC’ does not explicitly refer tdog |F'| and¢ because the

ing from a source of min-entropy; 6 will be comparableto  size ofC is at least the length of its input, whichiigog | F|.



small, it is still a substantialelative advantage over ran- To obtain deterministic extractors, we combine the poly-
dom guessing, which would give success probablljtjF]. nomial encoding and Hadamard code via the standard “con-
The usual method for getting around this difficulty, is to catenation” technique. Lét = GF(2¢),'° and for a func-
“concatenate” the polynomial encoding with an “inner” en- tion p : F* — T, define theHadamard encodingf p to
coding whose output lies in a much smaller alphabet (e.g.,be the functionp’ : F x {0,1}¢ — {0,1} defined by
{0,1}). By combining the decoding procedure for the poly- p'(z,y) = Had,)(y), where we viewp(z) € F as a an
nomial encoding with an analogous one for the inner code, element of{0, 1}4.

one proves that no small circuit can compute the new func- By combining the decoding procedures of Lemmas 5.1
tioninal/2+ ¢’ fraction of points. Unfortunately, we know and 5.3, we obtain the following procedure for decoding the
of no such inner code where we do not incur plody (1/4") concatenated code.

blow-up in decoding that we hoped to avoid, even if we use

nondeterminism.
To solve this problem, we exploit the fact that what we

Theorem 5.4 LetF = GF(27), letp : F* — F be a polyno-
mial of degree at most, and letp’ : F* x {0,1}? — {0,1}

need for deterministic extraction is weaker than standardP€ its Hadamard encoding. Suppose there is a distribution

average-case hardness, and it turns out that the most co

monly used inner code has the properties we need. Fo

w € {0,1}", theHadamard encodingf w is the function
Had, : {0,1}" — {0,1} obtained by settinglad,, ()

to be the mod-2 inner product af andz. The following
lemma lists the only property of this code that we will use
(aside from the fact that, given andw, Had,, (z) can be
computed in timeyoly(n)).

Lemma 5.2 Let X be any distribution o{0, 1}" of density
d and lete > 0. Then

# {w : Had,,(X) has bias at least} < 6—12
- &

onF* x {0,1}7 which is of density and is samplable
y sizes such thatp’(X) has biase. Then there is &5-
circuit!! of sizepoly(s,d, 1/¢) which computep’ every-
where, provided that

d
62 -e' >y =,
| IF

wherec is a universal constant.

Proof sketch: For everyz € I, let X* denote the
conditional distribution on{0,1}¢ induced by condition-
ing the first component ofX to be z. From the facts
that X has densityy andp’(X) has bias, it follows that
for at least ar2(d¢) fraction ofz € F*, X has density

Forms of Lemma 5.2 have been proven by Lindsey, O(s¢) in {0,1}7 andp'(z, X*) has biag2(¢). EachX?® is

Alon [Alo86], and Chor and Goldreich [CG88]. In the full
version of this paper, we give a direct proof.
Although Lemma 5.2 does not explicitly give an efficient

samplable by &, -circuit (via [JVV86, BGP98]), so using
Lemma 5.3 we obtain &3-circuit computingp on at least
aQ(de) - Q(de) - €2 fraction of points. The theorem now

decoding algorithm, we can easily obtain one using nonde-follows from Lemma 5.1. 0

terminism:

Lemma 5.3 For every fixed, there is a probabilisti&; ; »-
algorithmHadDecode; with the following property: Let
be a probabilisticy;-circuit which samples a distribution
X on {0,1}" of densityé and letw € {0,1}" be such
thatHad,, (X) has bias at least. ThenHadDecode;(C,¢)
runs in timepoly (|C|, 1/¢) and outputsw with probability
Q0 - €%).

This immediately gives us a construction of deterministic
extractors from Boolean functions that are worst-case hard
for X5-circuits.

Theorem 5.5If there is a problem in E
DTIME(2°(™) which hasXs-circuit complexity22(")
for all n, then there is a constant > 0 such that for alln
and s satisfyingn < s < 27, there is a((1 — y)n,1/s)-
deterministic extractoEXT,, 5 : {0,1}" — {0,1} against

The key point is that although the success probability of the circuit-size s such that EXT,, s is computable in time

decoding procedure depends &nthe running time does
not.

Proof sketch: With one level of nondeterminism, approx-

imate counting [Sip83, Sto85, JVV86] can be used to dis-

tinguish those such thatlad, (X) has bias at leastfrom
those such thallad, (X) has bias at most/2. With one

poly(s).

Proof sketch: Let f : {0,1}¢ — {0, 1} be a function com-
putable in time2°® with ¥5-circuit complexity22(Y), Our

10The restriction to fields of characteristic 2 is inessertial only done
to make passing between field elements and strings{@udr} cleaner.

11By “sharing” some of the nondeterminism at different levefsthe
reduction, the number of levels of nondeterminism intratlican be re-

more level of nondeterminism, we can use [JVV86, BGP98] gy ced a bit. For the sake of modularity in the exposition, weehchosen

to uniformly sample from the set ofthat pass this test.O0

not to optimize this parameter.



extractor will be the Hadamard encoding of an appropriate min-entropyn; — A, and even conditioned on (most val-

polynomialp : F¥ — F extendingf. We can set the param-
eters so thatl, s, and1/e are eac2®(), |F| is anywhere
betweend® andexp(29(9)), § = 1/F?(M andt = O(1),
while 6% -e* > ¢,/d/|F| and the conclusion of Theorem 5.4
produces a circuit of size smaller than the circuit compexi
of f. This implies thap’ extracts one bit from any distri-
bution onlf of densityd (which is samplable by size).
Now note that the input length @f isn = (¢ + 1) log |F|,
and it extracts one bit from from samplable distributions of
min-entropyr —log(1/46) = (1—Q(1))n. Furthermore, the
extractor can be computed in tirB€©) = poly(s). |

6 Extracting Many Bits

We begin by describing the replacement for the
Hadamard code which will enable us to extract a loga-
rithmic number of bits. The construction we use is the
“hard-core function” of Goldreich and Levin [GL89].
Fory € {0,1}"*™, defineHCF, : {0,1}" — {0,1}™
by HCF,(z) HCF, (z)HCF} (z) - - - HCF}} (),
where HCF;(a:) is the mod-2 inner product of and
YiYi+1 " Yitn-1-

Analogous to Lemma 5.2, the only propertyld€F we
need is the following.

Lemma 6.1 Let.X be adistribution ovef0, 1} of density
d. Then the number of strings € {0,1}"*™ such that
Ja € {0,1}""Pr[C(X,y) = a] > 27™ + ¢ is at most
22 [ §e?.

The (omitted) proof of this lemma proceeds via a reduc-
tion to Lemma 5.2, using Vazirani's XOR Lemma [Vaz84]
and the linearity of the inner product..

Following the same line of reasoning as in Section 4,
we obtain the following extractors which extract logarith-
mically many bits:

Theorem 6.2 If there is a problem in E =
DTIME(2°(™) which has¥Xs-circuit complexity2?(™)
for all n, then there is a constant > 0 such that for alln
and s satisfyingn < s < 27, there is a((1 — vy)n,1/s)-
deterministic extractorExT, ; : {0,1}" — {0,1}\%°
against circuit sizes such thatExT,, s is computable in
timepoly(s).

Now, to extract more than a logarithmic number of bits,

we use a simple observation about high min-entropy sources

from [GW97]: If we partition a high min-entropy source
into a prefix and suffix, then these two part each contain
a lot of “independent randomness”. More precisely, if
X = (X1,Xy) is of lengthn = n; + ny (Wheren; is

the length ofX;) and has min-entropy — A, thenX; has

ues of) X7, X, has min-entropy (roughly)> — A. Thus,
if X is samplable, we can use the extractor of Theorem 6.2
to deterministically extract logarithmically many bitofn
X, that are (almost) uniform and independenff These
bits can then be used as a seed for a standard extractor, such
as the one of Zuckerman [Zuc97], to extract lots of random-
ness fromX;. (The extractors in [Zuc97] are very good
for sources whose min-entropy is at least a constant frac-
tion of their length; they use a logarithmic-length seed and
extract a large constant fraction of the randomness from the
source.) One small subtlety in this argument is that we need
the conditional distribution oX'» givenX; to be samplable,
which does not follow from the samplability of. This
conditional distribution is, however, samplable withIsi
oracle (via [JvV86, BGP98]), so we just have to move ev-
erything one level higher in the hierarchy.

Putting these ideas together, we obtain:

Theorem 6.3 If there is a problem in E
DTIME (2°(™) which hasYs-circuit complexity22()
for all n, then for all sufficiently small constanis> 0 and
everyn < s < 27", there is a((1 — ~)n, 1/n)-extractor
EXTp,s,y © {0,1}™ — {0,1}™ against circuit sizes with
m = (1-0(y))n. EXT, s, is computable in timgoly(s),
where the exponent of the polynomial depends.on
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