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Extracting Randomness from Samplable Distributions
EXTENDED ABSTRACT

Luca Trevisan� Salil Vadhany
Abstract

The standard notion of arandomness extractoris a pro-
cedure which converts any weak source of randomness into
an almost uniform distribution. The conversion necessar-
ily uses a small amount of pure randomness, which can be
eliminated by complete enumeration in some, but not all,
applications.

Here, we consider the problem ofdeterministicallycon-
verting a weak source of randomness into an almost uni-
form distribution. Previously, deterministic extractionpro-
cedures were known only for sources satisfying strong in-
dependence requirements. In this paper, we look at sources
which aresamplable, i.e. can be generated by an efficient
sampling algorithm. We seek an efficient deterministic pro-
cedure that, given a sample from any samplable distribution
of sufficiently large min-entropy, gives an almost uniformly
distributed output. We explore the conditions under which
suchdeterministic extractorsexist.

We observe that no deterministic extractor exists if the
sampler is allowed to use more computational resources
than the extractor. On the other hand, if the extractor is al-
lowed (polynomially) more resources than the sampler, we
show that deterministic extraction becomes possible. This
is true unconditionally in the nonuniform setting (i.e., when
the extractor can be computed by a small circuit), and (nec-
essarily) relies on complexity assumptions in the uniform
setting.

One of our uniform constructions is as follows: assum-
ing that there are problems inE = DTIME(2O(n)) that
are not solvable by subexponential-size circuits with�6
gates, there is an efficient extractor that transforms any
samplable distribution of lengthn and min-entropy(1�
)n
into an output distribution of length(1�O(
)n), where
 is
any sufficiently small constant. The running time of the ex-
tractor is polynomial inn and the circuit complexity of the�Columbia University, Department of Computer Science, and U.C.
Berkeley, Computer Science Division.luca@cs.columbia.edu.yInstitute for Advanced Study, Princeton, NJ, and Harvard University,
Cambridge, MA. E-mail:salil@deas.harvard.edu. Work done
while at MIT, while supported by an NSF Mathematical Sciences Postdoc-
toral Research Fellowship.

sampler. These extractors are based on a connection be-
tween deterministic extraction from samplable distributions
and hardness against nondeterministic circuits, and on the
use of nondeterminism to substantially speed up “list de-
coding” algorithms for error-correcting codes such as mul-
tivariate polynomial codes and Hadamard-like codes.

1 Introduction

Randomness has proved to be a very useful tool in com-
puter science. In algorithms, it has yielded the only known
polynomial-time solutions for some problems, such as pri-
mality testing [SS77, Mil76, Rab80] and certain approx-
imate counting problems [KLM89, JS89]. In distributed
computing, there are several protocol problems, such as
Byzantine agreement, which have only randomized solu-
tions [FLP85]. And in cryptography, secret keys must be
chosen at random (else they are not secret), and even the
cryptographic algorithms themselves must often be ran-
domized in order to be secure [GM84].

When randomness is used in the design of algorithms
and protocols, the source of randomness is modeled as an
ideal process that outputsunbiasedand independentran-
dom bits. On the other hand, the conceivable sources of
randomness that an algorithm can effectively access (e.g.,
statistics on disk access time, or keyboard typing), while
containing a noticeable amount of entropy, can be very bi-
ased and involve heavy dependencies. A large body of re-
search, initiated in [Blu86, SV86, CG88, VV85], has been
devoted to fill this gap between realistic sources of random-
ness with biases and dependencies and perfect sources of
randomness. Ideally, one would like to have a “compiler”
that, given an algorithm/protocol that is guaranteed to work
well only with a perfect source of randomness, produces an
algorithm/protocol that is guaranteed to work well with a
large class of imperfect random sources.



1.1 Simulation of Probabilistic Algorithms Using
Extractors

For the case of probabilistic algorithms, one way of de-
signing such “compilers” is to design arandomness extrac-
tor, as proposed by Nisan and Zuckerman [NZ96]. A ran-
domness extractor is a procedure that on input a sample
from a weak random source and a truly random string gives
an output that is statistically close to uniform. Formally,a(k; ")-extractoris a procedure EXT : f0; 1gn � f0; 1gt !f0; 1gm such that ifX is random variable of min-entropy
at leastk, andUt is the uniform distribution overf0; 1gt,
then EXT(X;Ut) is "-close to uniform.1 A large body of
research has produced explicit constructions wherek can be
essentially arbitrary,m is very close tok, andt isO(logn)
(see, e.g., [NT99, Zuc97, Tre99, RSW00] and the refer-
ences therein). By definition, once we have such a(k; ")-
extractor, we can perform any task which is designed to usem truly random bits using instead a single sample from a
random source of min-entropyk together witht truly ran-
dom bits. Since we still need some truly random bits, this
does not yet achieve the goal of using only a weak source
of randomness. However, in most algorithmic applications,
the need fort additional truly random bits can be eliminated
by enumerating all2t posibilities and combining the algo-
rithm’s outputs for each, e.g. by majority vote (for decision
problems). This incurs a slowdown of factor of2t, but for-
tunately this is still polynomial since we use an extractor
with t = O(log n).

Note that the fact that randomness extractors can be used
to run randomized algorithms with only a weak random
source (and no additional truly random bits) does not mean
that one canextractalmost uniform bits from a weak ran-
dom source without additional truly random bits. Indeed,
for any deterministic function EXT : f0; 1gn ! f0; 1gm,
there is a distributionX of min-entropyn � 1 for which
EXT(X) is very biased (in fact, one for which the first bit
of EXT(X) is constant) [CG88].

1.2 Deterministic Extraction

The reason why extractors can be used for the simula-
tion of probabilistic algorithms is essentially that when a
probabilistic algorithm usest bits of randomness, it can
always be simulated deterministically at the price of a2t
slowdown factor. In other applications of randomness, such
as probabilistic encryption [GM84] or Byzantine agree-
ment [FLP85], randomness is required by the very nature
of the problem, and there is no possibility of trading off ef-
ficiency for randomness. For such applications, it appears

1A distributionX hasmin-entropyk if for any elementa of its rangePr[X = a℄ � 2�k. Two distributionsX andY are"-closeif for any
subsetS of their rangejPr[X 2 S℄� Pr[Y 2 S℄j � ".

unavoidable to look for extraction procedures that convert
a weak random source into an almost uniform distribution
deterministically, without the help of extra randomness. Be-
cause of the above-mentioned impossibility results, such
deterministic extractors will not work for every source of
sufficiently large min-entropy. However it is still possible
that there are fairly general and natural families of weak
random sources for which efficient deterministic extraction
is possible.

When random bits are needed in practice (e.g., to gen-
erate keys in a cryptographic protocol), a typical approach
is to collect weakly random data, and feed it into a crypto-
graphic hash function. The output of the hash function is
then used as if it were a sequence of random bits. However,
we know of no theoretical justification for this way of us-
ing a fixed cryptographic hash function to do deterministic
extraction.

On theoretical side, there is a considerable body of work
devoted to the problem of deterministic extraction. In fact,
most of the early work on the use of weak random sources
was devoted to the construction of deterministic extrac-
tors for increasingly general classes of distributions. A
classical algorithm by von Neumann [vN51] (improved by
Elias [Eli72]) extracts randomness from a sequence ofinde-
pendentcoin tosses of the same biased coin. Blum [Blu86],
generalizing von Neumann’s result, showed how to extract
randomness from any distribution described by a Markov
chain. Chor and Goldreich [CG88] (improving results of
Santha and Vazirani [SV86] and Vazirani [Vaz87]) show
how to extract randomness given two independent weak
random sources with enough min-entropy. Another line of
work considers the problem of deterministically extracting
randomness from various types of sources where an ad-
versary can fix some subset of the bits, mostly motivated
by applications of such extractors in cryptography and dis-
tributed computing (cf., [CGH+85, BBR88, BL90, LLS89,
CDH+00]).

The extraction algorithms presented in the above papers
work for classes of distributions that satisfy fairly strong in-
dependenceproperties (which is a particularly problematic
assumption for physical sources of randomness). Indepen-
dence requirements are explicit in most of the works, and
are also implicit in [Blu86], where the process that sam-
ples the distribution has limited memory and works on-line,
so that far-away parts of the output of the distribution can
only have limited dependencies. In order to circumvent the
impossibility of deterministic extraction for many sources
of interest (in particular, ones without strong independence
guarantees), researchers were led to consider the weaker
task of efficiently simulating randomized algorithms with
such sources [VV85, CG88, Vaz84, CW89, Zuc96], and
eventually to the notion of extractors which can use a small
number of additional truly random bits [NZ96].



1.3 Our Results

Our aim is to identify as general a class of sources as
possible for which efficient deterministic extraction can be
done. Specifically, we examinesamplable distributions;
that is, sources that can be generated by an efficient sam-
pling algorithm (or circuit). The only other requirement we
place on the source is that it contains some randomness to be
extracted (as measured by min-entropy). In particular, we
do not impose any independence conditions on the source.
This class of samplable distributions contains as special
cases most of the previously studied sources for which de-
terministic extraction was found to be possible. In addition
to their generality, one can argue that samplable distribu-
tions are a reasonable model for distributions actually aris-
ing in nature. Indeed, considerable efforts were made to
extend Levin’s theory of average-case complexity [Lev86]
to this class of samplable distributions [BCGL92, IL90].

Having settled on this class of sources, what we’re look-
ing for are functions EXT : f0; 1gn ! f0; 1gm with the fol-
lowing property: for every sourceX of some min-entropyk which is samplable by a circuit of some sizes, EXT(X)
is "-close to uniform. Note that although we are placing a
computational restriction on the sampler, we are requiring
the output of the extractor to bestatisticallyclose to uni-
form. The reason for this choice is that it is possible to
achieve this stronger property (as shown by our construc-
tions). In addition, for extracting a small number of bits
(as in several of our results), there is no difference between
statistical and computational indistinguishability.2

Nonuniform Extractors and Negative Results. Our first
observation is that extracting randomness from samplable
distributions is impossible unless the extractor is allowed to
use more computational resources than the sampler. On the
other hand, if we allow the running time of the extractor to
be polynomially larger than the running time (or even circuit
size) of the sampler, we show that extraction becomes pos-
sible. Our first result in this vein demonstrates the existence
of good deterministic extractors3 computed by polynomial-
size circuits. More precisely, for everys andn, there is an
extractor of sizepoly(s) that extracts almost all the random-
ness from any distribution onf0; 1gn samplable by a circuit
of sizes.4

2It should be noted that once one can extract a small number of bits that
are statistically close to uniform, the pseudorandom generator construc-
tions of [NW94, IW98] can transform these into many bits thatare compu-
tationally indistinguishable from uniform (under complexity assumptions
that are weaker than the ones we make).

3Here, and from this point on, the termdeterministic extractoralways
refers to a deterministic extractor for samplable distributions.

4Dodis, Sahai, and Smith [DSS00] have used our proof to show that
there are small circuits which compute good “adaptive statistical exposure-
resilient functions,” by observing that these are a specialcase of extractors
for samplable distributions.

A Connection to Nondeterministic Average-case Hard-
ness. While the nonuniform extractors mentioned above
illustrates the feasibility of deterministic extraction,it
would be preferable to have a construction in which the
extractor is efficiently computable by a uniform algorithm.
However, we show in Section 3 that the existence of such
extractors implies separations of complexity classes beyond
what is currently known. Therefore, in order to construct
uniform deterministic extractors, we will need to make
complexity assumptions.

Let us consider for starters the task of extracting one al-
most unbiased bit (already a nontrivial problem). Our first
result is that if a Boolean function is hard to compute byNP-circuits (i.e., circuits that can have special gates solv-
ing SAT instances) of sizes with advantage better than
,
then it is also a good extractor against samplers of size abouts that sample a distribution of lengthn of min-entropy aboutn � log(1=
). The basic idea in the proof of this result is
quite simple: suppose thatf is a function hard on average
for NP-circuits, and thatX is a samplable distribution on
which f(X) is, say, biased towards 1. Then the followingNP circuit can predictf(x): givenx, first check whetherx is in the range ofX , which is something that can be done
efficiently using nondeterminism (sinceX is samplable). Ifx is in the range, then guess thatf(x) is 1, otherwise make a
random guess. For a randomx, this approach guessesf(x)
with an advantage that depends on the bias off(X) and on
the min-entropy ofX .5

Although the assumption that we have a function that
is hard-on-average forNP-circuits (as opposed to stan-
dard circuits) has been used before (e.g., by Arvind and
Köbler [AK97]), it is still natural to ask whether the non-
deterministic hardness assumption is really necessary. In
Section 4, we observe that a Boolean function can be very
hard-on-average against standard circuits, yet it may not be
a good extractor for samplable distributions, even for min-
entropyn � 1. So it appears that a somewhat nonstandard
hardness assumption is required. Still, it is of interest to
weaken the assumption, as we do next.

Using Worst-case Hardness. Our next goal is to start
with a reasonableworst-casecomplexity assumption, such
as the one used by Klivans and van Melkebeek [KvM99]:
that E = DTIME(2O(n)) contains a problem that is
not solvable byNP-circuits of size2o(n). We would
like to show that such an assumption implies the ex-
istence of polynomial-time computable predicates with
strong average-case hardness againstNP-circuits; by the
previous results, such predicates would be good deter-

5This explanation is a bit oversimplified: our idea works as described
only if X is a samplable “flat” distribution. For non-flat distributions, a
more sophisticated reduction is needed, which involves theuse of approx-
imate counting algorithms with anNP-oracle [Sip83, Sto85, JVV86].



ministic extractors. This looks like the standard prob-
lem of worst-case to average-case reduction, as solved in
[BFNW93, Imp95, IW97, STV99], and observed to extend
to NP-circuits in [KvM99]. However, in all such results,
one gets predicates that are hard to predict with an advan-
tage that is at least inversely proportional to the size of the
adversary (and, for a stronger reason, on the time needed
to compute the predicate). It then follows that an extractor
computable in timet(n) obtained using such techniques and
the previously mentioned connection can only extract ran-
domness from a source of min-entropy aboutn� log t(n).

In order to extract from sources of lower entropy, we ex-
ploit our ability to use nondeterminism in the reduction, in
the spirit of the results of Feige and Lund [FL96] about
the average-case complexity of the permanent. Our start-
ing point is the worst-case to average-case reduction in
[STV99]. That reduction uses an error-correcting code ob-
tained by “concatenating” a multivariate polynomial code
and a Hadamard code, and is analyzed by providing a “list-
decoding” procedure for the polynomial code and using
the Goldreich–Levin [GL89] list-decoding procedure for
the Hadamard code. We show that the use of “approxi-
mate counting” (implementable with anNP oracle [Sip83,
Sto85, JVV86]) can greatly improve the efficiency of the
list-decoding algorithm for the polynomial code. But we
do not know whether a similar improvement is possible for
the Hadamard code. Instead, we show how to use approx-
imate counting and uniform sampling (also using anNP
oracle [JVV86, BGP98]) to get a very efficient solution to a
somewhat different problem that still suffices for determin-
istic extraction.

The final result is that starting from a problem inE that
does not admit circuits of size2o(n) with �5-gates, we
get an efficient extractor that extracts one almost unbiased
bit from any samplable distribution of lengthn and min-
entropy(1 � 
)n, for some constant
 > 0. In order to
extract from distributions samplable by circuits of sizes,
the extractor needs running time onlypoly(s). The some-
what unusual assumption can be thought of as a “scaling” ofEXP 6� �5=poly, which is true as long as the Polynomial
Hierachy does not collapse.

Extracting Many Bits. So far, we described results giv-
ing extractors that only produce one almost unbiased bit,
while it is of course much preferable to extract a number of
random bits that be as close as possible to the entropy of
the source. We first show that our coding-theoretic methods
can be used to extract approximately a logarithmic number
of random bits. To this end, we use the same polynomial
code as before, but in place of the Hadamard code, we use
a similar code on a bigger alphabet. Once we have these
logarithmic number of random bits, we can use them as the
truly random bits for the extractor of Zuckerman [Zuc97],

which we then use to extract almost all the entropy from
our source. Formally, we prove that if there is a problem
in E that does not admit circuits of size2o(n) with �6
gates, there is an efficient deterministic extractor that ex-
tracts(1 � O(
))n bits from any samplable distribution of
min-entropy(1�
)n, where
 is any sufficiently small con-
stant. Again, the running time of the extractor is polynomial
in the circuit complexity of the samplers.

1.4 Perspective

Our main motivation for studying samplable distribu-
tions is their generality. However, this generality has a
price; the extractor must use more computational resources
than the sampler, and has to rely on complexity assump-
tions. Given the current state-of-the-art in complexity the-
ory, it seems unavoidable that even under strong assump-
tions, to get an extractor for distributions of lengthn sam-
pled by circuits of size, say,O(n logn) one has to come up
with a fairly complex and impractical solution. On the other
hand, we think that it is interesting to explore the limits of
the possibility of deterministic extraction, and it seems that
samplable distributions are a good and natural borderline
example.

Seemingly, our definition is orthogonal to the one used
by Chor and Goldreich [CG88] for two independent weak
random sources. In the Chor–Goldreich setting, distribu-
tions can be arbitrarily complex, but they satisfy a strong in-
dependence requirement. In our case, distributions have to
be samplable but can involve arbitrary dependencies. How-
ever, there is a connection. In this paper, we give “computa-
tional” constructions, using a hard predicate to build our de-
terministic extractors; when the result is not a deterministic
extractor, a reduction shows that the predicate is not hard.
As shown in [Tre99], such computational constructions can
have interesting and unexpected information-theoretic in-
terpretations, and it is natural to look for the information-
theoretic interpretation of the results of this paper. As it
turns out, the information-theoretic analogue of determinis-
tic extractors for samplable distributions is exactly the prob-
lem of extracting randomness from two independent weak
random sources! Briefly, if we have two independent weak
random sourcesX1 andX2, thenX2 has a large descrip-
tion size (i.e., Kolmogorov complexity) even conditioned
onX1 = x1 for anyx1. Thus, similar to [Tre99], we can
view X2 as the truth table of a hard predicate relative toX1, which can be used to deterministically extract random-
ness fromX1. Such an interpretation of our results gives
(unconditional) constructions of deterministic extractors for
two independent weak random sources, for the case where
the two sources have different lengths, and the longer one
has a very low entropy rate. The details of these corollar-
ies will be given in the full version of the paper (including



additional optimizations that be done in the information-
theoretic setting).

Part of the purpose of this paper is to point out the need
for a further development of the theory of deterministic ex-
tractors, and to invite the reader to come up with alternative
definitions and constructions. We believe that it would be
very good to come up with a natural and general class of
distributions that admit an efficient (implementable!) de-
terministic extractor. Such a deterministic extractor could
then be used in place of cryptographic hash functions in or-
der to extract randomness in practice, with the advantage of
having a sound motivation for its use.

One natural direction for such research would be to seek
deterministic extractors for distributions which have space-
bounded samplers, rather than time-bounded ones as we
have. As with pseudorandom generators (cf., [Sak96]),
there is hope forunconditionalresults in the space-bounded
setting. The samplers considered by Blum [Blu86], namely
finite-state Markov chains, can be viewed as a limited form
of space-bounded of computation, but the extractors given
there only work when the number of bits received from
the source is much greater than the number of states in the
Markov chain. A much richer class of sources would be ob-
tained by looking at distributions onf0; 1gn sampled by anO(log n)-space machine.

2 Preliminaries

Probability Distributions. Let X andY be probability
distributions on a discrete universeU . X is said havemin-
entropyk if for all x 2 U , Pr [X = x℄ � 2�k. It will
also be convenient for us to have the following equivalent
terminology.X hasdensityÆ in U if maxx2U Pr [X = x℄ =1=(Æ � U). Note that ifX is uniform over a subsetS of U ,
thenÆ is the density ofS inU (hence the terminology). Note
that a distribution has density at leastÆ in f0; 1gn iff it has
min-entropyn� log(1=Æ).

Thestatistical differencebetweenX andY is defined to
be SD(X;Y ) def= maxS�U jPr [X 2 S℄� Pr [Y 2 S℄j= 12 �Xx2U jPr [X = x℄� Pr [Y = x℄j :
If SD(X;Y ) � ", we say thatX andY are"-close. Um
denotes the uniform distribution onf0; 1gm. If X is a dis-
tribution onf0; 1g, then we callSD(X;U1) thebiasof X .

We will consider probability distributions given by sam-
pling algorithms. IfA is a probabilistic algorithm (Turing
machine), we writeA(x; y) for the output ofA on inputx and random coinsy. A(x) denotes the output distri-
bution ofA on inputx when the coinsy are chosen uni-

formly at random. Aprobabilistic circuit is a Boolean cir-
cuit C : f0; 1gm � f0; 1gr ! f0; 1gn. Forx 2 f0; 1gm,
we writeC(x) for the distribution onf0; 1gn obtained by
selectingy uniformly in f0; 1gr and evaluatingC(x; y).

We say that a probability distribution issamplable by sizes if there is a circuit of sizes which samples from it. An en-
semblefXng of probability distributions isuniformly sam-
plable in timet(n) if there is a probabilistic algorithmA
such thatA(1n) = Xn for everyn and the running time ofA on input1n is at mostt(n).
Extractors. A function EXT : f0; 1gn � f0; 1gd !f0; 1gm is a (k; ")-extractorif for every distributionX onf0; 1gn of min-entropyk, EXT(X;Ud) is "-close toUm.6

As shown by Nisan and Zuckerman [NZ96] it is necessary
to investd � 
(log(n � k) + log 1=") truly random bits
for any nontrivial extraction (i.e., whenm � d � 1 andk � n � 1).7 In order to make extraction possible with-
out investing any truly random bits, we restrict to samplable
distributions:

Definition 2.1 A functionEXT : f0; 1gn ! f0; 1gm is an(k; ")-deterministic extractor against circuit-sizes if for ev-
ery distributionX onf0; 1gn which has min-entropyk and
is samplable by sizes, EXT(X) is "-close toUm.

Definition 2.2 A family of functionsfEXTn : f0; 1gn !f0; 1gm(n)g is a (k(n); "(n))-deterministic extractor
against timet(n) if for every ensemble of distributionsX = fXng such thatX is uniformly samplable in timet(n) and Xn is a distribution onf0; 1gn of min-entropyk(n), we haveEXT(Xn) is "(n)-close toUm(n) for all
sufficiently largen.

Nondeterministic Circuits. We denote the levels of the
polynomial-time hierarchy as follows:�0 = P, �i+1 =NP�i . A �i-algorithm is an algorithm with an ora-
cle for �i. Similarly, a �i-circuit is a Boolean circuit
which can have gates for some fixed�i-complete prob-
lem (e.g., QBFi�1) in addition to the usual̂ , _, and: gates. By replacing “algorithm” or “circuit” with “�i-
algorithm” or “�i-circuit” in the definitions above, we can
also defineprobabilistic �i-algorithms, probabilistic �i-
circuits, distributionssamplable by�i-circuits of sizes,(k; ")-deterministic extractors against�i-circuits of sizes,
etc.

Definition 2.3 A functionf : f0; 1gn ! f0; 1g is (s; ")-
hard for�i-circuits if for every�i-circuit C of size at most

6This definition of extractor, taken from [NT99], is weaker than the
original definition proposed in [NZ96] (which requires thatthed-bit seed
be explicitly included in the output). But this definition suffices for most
applications of extractors.

7Better (and tight) bounds ond can be found in [RT97].



s, we have Pr[f(x) = C(x)℄ � 1=2 + "=2
3 Nonuniform Extractors & Negative Results

Proposition 3.1 For everys, n, k � n, and ", there ex-
ists an(k; ")-extractorEXT : f0; 1gn ! f0; 1gm against
circuit-sizes, withm = k � 2 log(1=")� O(log s). More-
over,EXT can be computed by a circuit of sizepoly(s).

The proof, that will appear in the full version of this
paper, is based on a version of the Leftover Hash Lemma
for t-wise independent functions that shows that there is
anexp(�
(t)) probability that a function picked from the
family is not a good extractor for a fixed weak random
source. (The standard Leftover Hash Lemma for pairwise
independent families [ILL89] does not give a high enough
success probability for our purposes.) A union bound then
shows that with high probability over the choice of the func-
tion from the family, it is simultaneously a good determin-
istic extractors for all weak random sources having small
samplers.

Note that in Proposition 3.1, the extractor has a higher
circuit complexity than the samplers from which it extracts.
This is necessary, even if we only want to extract one bit
from a distribution of min-entropyn� 1:

Proposition 3.2 There is a constant
 such that no function
EXT : f0; 1gn ! f0; 1g computable by a circuit of sizes
is a (n� 1; 1=5)-deterministic extractor against circuit size
 � s.8
Proof: Without loss of generality, we may assume that
EXT(x) = 1 for at least half of its inputs. Consider the
distributionX sampled by the following algorithm:

1. Selectx uniformly in f0; 1gn.

2. If EXT(x) = 1, outputx. Otherwise, output a uni-
formly selectedx0 2 f0; 1gn.

It is easy to see thatX has min-entropyn � 1 and is sam-
plable by sizeO(s). Moreover, EXT(X) = 1 with proba-
bility at least3=4.

In subsequent sections, we aim to construct deterministic
extractors that are efficiently computable byuniformalgo-
rithms. The following two corollaries show that such ex-
tractors imply separations between deterministic complex-
ity classes and nonuniform or probabilistic ones. Since such
separations are beyond the current state-of-the-art in com-
plexity theory, our constructions should (and will) be based
on complexity-theoretic assumptions.

8The constant of1=5 can be replaced by any constant less than1, at the
price of increasing
.

Corollary 3.3 SupposefEXTn : f0; 1gn ! f0; 1gg is
a family of functions computable in timet(n) such that,
for everyn, EXTn is an(n � 1; 1=5)-deterministic extrac-
tor against circuit-sizes(n). Then there is a language inDTIME(t(n)) of circuit complexity at least
(s(n)).
Proof: LetL = fx 2 f0; 1g� : EXTjxj(x) = 1g. Proposi-
tion 3.2 implies that this language has circuit complexity at
leasts(n)=
.

A similar argument holds in the uniform setting:

Corollary 3.4 SupposefEXTn : f0; 1gn ! f0; 1gg
is family of functions computable in timet(n) and
is an (n � 1; 1=5)-deterministic extractor against timet0(n). Then there is a language inDTIME(t(n)) nBPTIME(
(t0(n)).
4 Extractors from Average-Case Hardness

The following lemma relates the average-case complex-
ity of a Boolean function to its extraction property.

Lemma 4.1 Let f : f0; 1gn ! f0; 1g be (s; ")-hard for�1-circuits. LetX be a flat distribution onf0; 1gn of min-
entropyn�� samplable by a circuit of sizes�O(n). Thenf(X) is 2� � "-close to uniform.

The (omitted) proof of Lemma 4.1 follows the intuition
outlined in the introduction: If there were a samplable dis-
tribution X of high min-entropy on whichf were biased
towards 1, then a�1-circuit could obtain an advantage in
computingf on a random inputx by testing whetherx were
in the support ofX .

In the standard information-theoretic setting, if a func-
tion extracts randomness out of every flat distribution of
min-entropyk, then it follows that it also extracts random-
ness out of any (not necessarily flat) distribution of min-
entropyk (cf., [CG88]). This is due to the fact that any
distribution of min-entropyk is a convex combination of
flat distributions of min-entropyk. In our framework, it is
no more true (or at least no longer clear) that any samplable
distribution of min-entropyk is a convex combination of
flat samplabledistributions of min-entropyk. So we need
an additional technical step in order to remove the flatness
requirement.

Before continuing, let us pause for a moment to consider
the nondeterministic complexity assumption that we made
in the above lemma, and discuss its strength. As seen in
the previous section, it is necessary to make a complex-
ity assumption in order to construct uniform deterministic
extractors. However, it is not natural that the assumption
should be about nondeterministic hardness, and it would
be more appealing to have a construction based on stan-
dard average-case hardness. Even though we do not know



whether nondeterministic hardness assumptions areneces-
saryto construct deterministic extractors, we can argue that
standard hardness is not sufficient. Let� be a one-way per-
mutation, and letB be a hard-core predicate for�: thenf(x) = B(��1(x)) is a hard-on-average function; however,
it is not an extractor because it is easy to sample from the
conditional distribution ofx such thatf(x) = 0 (and this
distribution has min-entropyn� 1). We can conclude that,
if one-way permutations exist, it’s not possible to prove that
every hard-on-average predicate is a deterministic extractor
against small samplers.

Now we proceed to relate nondeterministic hardness to
deterministic extraction for samplable distributions that are
not necessarily flat. Now, when trying to computef(x), it
will no longer suffice to test whether an inputx is merely
in the range of a distributionX on whichf is biased. In-
stead, we will guess the valuef(x) randomly with a bias
that depends on (an approximation to) the probability mass
of x underX . This can be accomplished by a�1-circuit be-
cause approximate counting can be can be performed with
anNP oracle [Sip83, Sto85, JVV86].

Lemma 4.2 Let f : f0; 1gn ! f0; 1g be (s; ")-hard for�1-circuits. Then, for every� � n, f is a(n��; 2�+1 �")
extractor against circuit-size(2�"s)
(1).

We remark that Lemma 4.2 generalizes to give determin-
istic extractors which extract several bits from nonboolean
functions which are sufficiently hard-on-average for�1-
circuits.

5 Extractors from Worst-Case Hardness

In the previous section, we saw that the property of a
function being a deterministic extractor is in some sense a
generalization of a function being hard to compute on aver-
age. In this section, we show how to construct deterministic
extractors from functions that are hard to compute in the
worst case. To do this, we follow the usual paradigm for
transforming a worst-case hard functionf to an average-
case hard function̂f : we takef̂ to be an encoding off
in an appropriate error-correcting code [BFNW93, STV99].
To prove the correctness of such a construction, one typ-
ically argues that given any small circuitC which com-
putesf̂ on average, i.e. has some advantageÆ over “ran-
dom guessing”, one can can use a decoding algorithm for
the error-correcting code to build another small circuitC 0
which computesf everywhere, contradicting the worst-case
hardness off . However, existing results of this form will
not yield the results we desire. The reason is that these de-
coding procedures typically produce aC 0 of size polyno-
mial in 1=Æ, whereas we are interested in values of1=Æ that
are much larger than the hardness off . (If we are extract-
ing from a source of min-entropyk, Æ will be comparable to

1=2n�k, whereas the circuit complexity off will be at most
the running time of the extractor, which we would like to bepoly(n).)

In the spirit of the results of Feige and Lund [FL96]
about the average-case complexity of the permanent, we
overcome this difficulty by exploitingnondeterminismin
our reduction. Specifically, by augmenting the polynomial
reconstruction algorithm given in [STV99] with nondeter-
minism, we obtain the following result:

Lemma 5.1 Let F be a finite field (with some fixed, effi-
cient representation), and letp : Ft ! F be a polynomial
of total degree at mostd. If there is a�i-circuit C which
computesp correctly on at least aÆ = 
pd=jFj fraction
of points (where
 is a universal constant), then there is a�i+2-circuit C 0 of sizepoly(jCj; d) which computesp cor-
rectly everywhere.9

Proof sketch: It is shown in [STV99] that there exists a
pointz 2 Fm such that for at least a 15/16 fraction of lines` throughz,

1. pj` andCj` agree on at least aÆ=2 fraction of points on`.
2. There does not exist any degreed polynomialh : ` !F other thanpj` which agrees withCj` in at least aÆ=4

fraction of points oǹ and satisfiesh(z) = p(z).
Fix such az, and consider the following procedure, which
attempts to computep atx 2 Fm :

1. Let` be the line throughx andz.

2. Nondeterministically guess a degreed polynomialh :`! F.

3. Verify thath agrees withC on approximately aÆ=2
fraction of points oǹ and satisfiesh(z) = p(z). If so,
outputh(x). Otherwise, rejecth.

This procedure can be implemented efficiently using
nonuniformity (to hardwirez, p(z), andC) and two levels
of nondeterminism (one to guessh and one to perform ap-
proximate counting [Sip83, Sto85, JVV86]). Thus, we ob-
tain a�i+2-circuit computingp in at least a15=16 fraction
of points, which can be converted into one which computesp everywhere via the “self-corrector” of [GLR+91]. 2

This lemma implies that if we start with a functionf
which is worst-case hard for�3-circuits and encode it as
a low-degree polynomial, we obtain a function̂f which
is very hard on average for�1-circuits, as desired. How-
ever, there is still a problem. WhileÆ = 
pd=jFj is very

9The size ofC0 does not explicitly refer tolog jF j andt because the
size ofC is at least the length of its input, which ist log jF j.



small, it is still a substantialrelative advantage over ran-
dom guessing, which would give success probability1=jFj.
The usual method for getting around this difficulty, is to
“concatenate” the polynomial encoding with an “inner” en-
coding whose output lies in a much smaller alphabet (e.g.,f0; 1g). By combining the decoding procedure for the poly-
nomial encoding with an analogous one for the inner code,
one proves that no small circuit can compute the new func-
tion in a1=2+Æ0 fraction of points. Unfortunately, we know
of no such inner code where we do not incur thepoly(1=Æ0)
blow-up in decoding that we hoped to avoid, even if we use
nondeterminism.

To solve this problem, we exploit the fact that what we
need for deterministic extraction is weaker than standard
average-case hardness, and it turns out that the most com-
monly used inner code has the properties we need. Forw 2 f0; 1gn, theHadamard encodingof w is the functionHadw : f0; 1gn ! f0; 1g obtained by settingHadw(x)
to be the mod-2 inner product ofw andx. The following
lemma lists the only property of this code that we will use
(aside from the fact that, givenx andw, Hadw(x) can be
computed in timepoly(n)).
Lemma 5.2 LetX be any distribution onf0; 1gn of densityÆ and let" > 0. Then# fw : Hadw(X) has bias at least"g � 1Æ � "2 :
Forms of Lemma 5.2 have been proven by Lindsey,
Alon [Alo86], and Chor and Goldreich [CG88]. In the full
version of this paper, we give a direct proof.

Although Lemma 5.2 does not explicitly give an efficient
decoding algorithm, we can easily obtain one using nonde-
terminism:

Lemma 5.3 For every fixedi, there is a probabilistic�i+2-
algorithmHadDe
odei with the following property: LetC
be a probabilistic�i-circuit which samples a distributionX on f0; 1gn of densityÆ and letw 2 f0; 1gn be such
thatHadw(X) has bias at least". ThenHadDe
odei(C; ")
runs in timepoly(jCj; 1=") and outputsw with probability
(Æ � "2).
The key point is that although the success probability of the
decoding procedure depends onÆ, the running time does
not.

Proof sketch: With one level of nondeterminism, approx-
imate counting [Sip83, Sto85, JVV86] can be used to dis-
tinguish thosev such thatHadv(X) has bias at least" from
those such thatHadv(X) has bias at most"=2. With one
more level of nondeterminism, we can use [JVV86, BGP98]
to uniformly sample from the set ofv that pass this test.2

To obtain deterministic extractors, we combine the poly-
nomial encoding and Hadamard code via the standard “con-
catenation” technique. LetF = GF(2q),10 and for a func-
tion p : Ft ! F, define theHadamard encodingof p to
be the functionp0 : Ft � f0; 1gq ! f0; 1g defined byp0(x; y) = Hadp(x)(y), where we viewp(x) 2 F as a an
element off0; 1gq.

By combining the decoding procedures of Lemmas 5.1
and 5.3, we obtain the following procedure for decoding the
concatenated code.

Theorem 5.4 LetF = GF(2q), letp : Ft ! F be a polyno-
mial of degree at mostd, and letp0 : Ft �f0; 1gq ! f0; 1g
be its Hadamard encoding. Suppose there is a distributionX on Ft � f0; 1gq which is of densityÆ and is samplable
by sizes such thatp0(X) has bias". Then there is a�5-
circuit11 of sizepoly(s; d; 1=") which computesp0 every-
where, provided thatÆ2 � "4 � 
s djFj ;
where
 is a universal constant.

Proof sketch: For everyx 2 Ft , let Xx denote the
conditional distribution onf0; 1gq induced by condition-
ing the first component ofX to be x. From the facts
thatX has densityÆ andp0(X) has bias", it follows that
for at least an
(Æ") fraction of x 2 Ft , Xx has density
(Æ") in f0; 1gq andp0(x;Xx) has bias
("). EachXx is
samplable by a�1-circuit (via [JVV86, BGP98]), so using
Lemma 5.3 we obtain a�3-circuit computingp on at least
a 
(Æ") � 
(Æ") � "2 fraction of points. The theorem now
follows from Lemma 5.1. 2

This immediately gives us a construction of deterministic
extractors from Boolean functions that are worst-case hard
for �5-circuits.

Theorem 5.5 If there is a problem in E =DTIME(2O(n)) which has�5-circuit complexity2
(n)
for all n, then there is a constant
 > 0 such that for alln
ands satisfyingn � s � 2
n, there is a((1 � 
)n; 1=s)-
deterministic extractorEXTn;s : f0; 1gn ! f0; 1g against
circuit-size s such that EXTn;s is computable in timepoly(s).
Proof sketch: Letf : f0; 1g` ! f0; 1g be a function com-
putable in time2O(`) with �5-circuit complexity2
(`). Our

10The restriction to fields of characteristic 2 is inessentialand only done
to make passing between field elements and strings overf0; 1g cleaner.

11By “sharing” some of the nondeterminism at different levelsof the
reduction, the number of levels of nondeterminism introduced can be re-
duced a bit. For the sake of modularity in the exposition, we have chosen
not to optimize this parameter.



extractor will be the Hadamard encoding of an appropriate
polynomialp : Ft ! F extendingf . We can set the param-
eters so thatd, s, and1=" are each2
(`), jFj is anywhere
betweend2 andexp(2
(`)), Æ = 1=F
(1) , andt = O(1),
while Æ2 �"4 � 
pd=jFj and the conclusion of Theorem 5.4
produces a circuit of size smaller than the circuit complexity
of f . This implies thatp0 extracts one bit from any distri-
bution onFt of densityÆ (which is samplable by sizes).
Now note that the input length ofp0 is n = (t + 1) log jF j,
and it extracts one bit from from samplable distributions of
min-entropyn� log(1=Æ) = (1�
(1))n. Furthermore, the
extractor can be computed in time2O(`) = poly(s). 2
6 Extracting Many Bits

We begin by describing the replacement for the
Hadamard code which will enable us to extract a loga-
rithmic number of bits. The construction we use is the
“hard-core function” of Goldreich and Levin [GL89].
For y 2 f0; 1gn+m, defineHCFy : f0; 1gn ! f0; 1gm
by HCFy(x) = HCF1y(x)HCF2y(x) � � �HCFmy (x),
where HCFiy(x) is the mod-2 inner product ofx andyiyi+1 � � � yi+n�1.

Analogous to Lemma 5.2, the only property ofHCF we
need is the following.

Lemma 6.1 LetX be a distribution overf0; 1gn of densityÆ. Then the number of stringsy 2 f0; 1gn+m such that9 a 2 f0; 1gmPr[C(X; y) = a℄ > 2�m + " is at most22m=Æ"2.
The (omitted) proof of this lemma proceeds via a reduc-

tion to Lemma 5.2, using Vazirani’s XOR Lemma [Vaz84]
and the linearity of the inner product..

Following the same line of reasoning as in Section 4,
we obtain the following extractors which extract logarith-
mically many bits:

Theorem 6.2 If there is a problem in E =DTIME(2O(n)) which has�5-circuit complexity2
(n)
for all n, then there is a constant
 > 0 such that for alln
ands satisfyingn � s � 2
n, there is a((1 � 
)n; 1=s)-
deterministic extractorEXTn;s : f0; 1gn ! f0; 1glog s
against circuit sizes such thatEXTn;s is computable in
timepoly(s).

Now, to extract more than a logarithmic number of bits,
we use a simple observation about high min-entropy sources
from [GW97]: If we partition a high min-entropy source
into a prefix and suffix, then these two part each contain
a lot of “independent randomness”. More precisely, ifX = (X1; X2) is of lengthn = n1 + n2 (whereni is
the length ofXi) and has min-entropyn��, thenX1 has

min-entropyn1 � �, and even conditioned on (most val-
ues of)X1, X2 has min-entropy (roughly)n2 � �. Thus,
if X is samplable, we can use the extractor of Theorem 6.2
to deterministically extract logarithmically many bits fromX2 that are (almost) uniform and independent ofX1. These
bits can then be used as a seed for a standard extractor, such
as the one of Zuckerman [Zuc97], to extract lots of random-
ness fromX1. (The extractors in [Zuc97] are very good
for sources whose min-entropy is at least a constant frac-
tion of their length; they use a logarithmic-length seed and
extract a large constant fraction of the randomness from the
source.) One small subtlety in this argument is that we need
the conditional distribution ofX2 givenX1 to be samplable,
which does not follow from the samplability ofX . This
conditional distribution is, however, samplable with anNP
oracle (via [JVV86, BGP98]), so we just have to move ev-
erything one level higher in the hierarchy.

Putting these ideas together, we obtain:

Theorem 6.3 If there is a problem in E =DTIME(2O(n)) which has�6-circuit complexity2
(n)
for all n, then for all sufficiently small constants
 > 0 and
everyn � s � 2
n, there is a((1 � 
)n; 1=n)-extractor
EXTn;s;
 : f0; 1gn ! f0; 1gm against circuit sizes withm = (1�O(
))n. EXTn;s;
 is computable in timepoly(s),
where the exponent of the polynomial depends on
.
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