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Entropy Waves, The Zig-Zag Graph Product, and New
Constant-Degree Expanders

Omer Reingold Salil Vadharh Avi Wigdersori
August 1, 2001

Abstract

The main contribution of this work is a new type of graph product, which we callitheag product
Taking a product of a large graph with a small graph, the resulting graph inherits (roughly) its size from
the large one, its degree from the small one, and its expansion properties from both! Iteration yields
simple explicit constructions of constant-degree expanders of arbitrary size, starting from one constant-
size expander.

Crucial to our intuition (and simple analysis) of the properties of this graph product is the view of
expanders as functions which act as “entropy wave” propagators — they transform probability distribu-
tions in which entropy is concentrated in one area to distributions where that concentration is dissipated.
In these terms, the graph product affords the constructive interference of two such waves.

Subsequent work [ALW01, MWO01] relates the zig-zag product of graphs to the standard semidirect
product of groups, leading to new results and constructions on expanding Cayley graphs.
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1 Introduction

1.1 Expander Graphs

Expanders are graphs which are sparse but nevertheless highly connected. A precise definition will be given
in the next section, but here we informally list some properties of such graphs (which are equivalent when
formally stated and can serve as alternate definitions)

e The graph satisfies “strong” isoperimetric inequalities.

e Every set of vertices has “many” neighbors.

e Every cut has “many” edges crossing it.

e Arandom walk on the graph converges quickly to the stationary distribution.

Expander graphs have been used to address many fundamental problems in computer science, on top-
ics including network design (e.g. [Pip87, PY82, AKS83]), complexity theory ([Val77, Sip88, Urg87]),
derandomization ([NN93, INW94, IW97]), coding theory ([SS96, Spi96]), and cryptography(gB]L
Expander graphs have also found some applications in various areas of pure mathematics [KR83, Lub94,
Gro00, LPO1].

Standard probabilistic arguments ([Pin73]) show that almost every constant-degBeyfaph is an
expander. However, explicit and efficient construction of such graphs (which is required by most of the
computer science applications above) seems to be much harder. This problem lead to an exciting and exten-
sive body of research, developed mainly by mathematicians intrigued by this computer science challenge.

Most of this work was guided by the algebraic characterization of expanders, developed in [Tan84,
AMB85, Alo86a]. They showed the intimate relation of (appropriate quantitative versions of) all the properties
above to the spectral gap in the adjacency matrix (or, almost equivalently, the Laplacian) of the graph. Using
it, expanders can be defined as follows: An infinite fandfy of D-regular graphs is aexpander family
if for all n the second largest (in absolute value) eigenvalue of the adjacency matgxisfbounded
uniformly from above by the samg < D. (Note that the degre® is independent of,; this is what we
mean by “constant degree?)

This algebraic definition naturally led researchers to consider algebraic constructions, where this eigen-
value can be estimated. The celebrated sequence of papers [Mar73, GG81, AM85, AGM87, JM87, LPS88,
Mar88, Mor94] provided such constant-degree expanders. All these graphs are very simple to describe:
given the name of a vertex (in binary), its neighbors can be computed in polynomial time (or even loga-
rithmic space). This level of explicitness is essential for many of the applications. However, the analysis
bounding the eigenvalue is quite sophisticated (and often based on deep mathematical results). Thus, it is
hard to intuitively understand why these graphs are expanders.

A deviation from this path was taken in [Ajt94], where a combinatorial construction of cubic expanders
was proposed. It starts with an arbitrary cubievertex graph and applies a sequence of polynomially many
local operations which gradually increase the girth and turn it into an expander. However, the resulting
graphs do not have any simply described form, and they lack the explicitness level (and hence applicability)
of the algebraic constructions mentioned above.

10n an intuitive level, the connection between the spectral gap and the combinatorial and probabilistic properties of expanders
listed above should not be surprising. For example, it is well known that the standard random walk on the graph converges
exponentially with base /D to the stationary uniform distribution. Moreover, equal partitions of the vertices of a graph, thought
of as+1-vectors, are orthogonal to the uniform distribution, and so the bilinear form representing the number of edges in the cut
can be bounded in terms of the gap betwé&eandA.



In this work, we give a simple, combinatorial construction of constant-degree expander graphs. More-
over, the analysis proving expansion (via the second eigenvalue) is as simple and follows a clear intuition.
The construction is iterative, and needs as a basic building blatkgde, almost arbitraryexpander of
constant size. The parameters required from it can be easily obtained explicitly, but exhaustive search is an
equally good solution since it requires only constant time. Simple operations applied to this graph generate
another whose size is increased but whose degree and expansion remain unchanged. This process continues,
yielding arbitrarily large expanders.

The heart of the iteration is our new “zig-zag” graph product. Informally, taking a product of a large
graph with a small graph, the resulting graph inherits (roughly) its size from the large one, its degree from
the small one, and its expansion properties from both! (That is, the composed graph has good expansion
properties as long as the two original graphs have good expansion properties.)

In the next subsections we give high level descriptions of the iterative construction, the new graph
product, the intuition behind it, various extensions. We then mention subsequent work on the relation of
the zig-zag product in graphs to the semidirect product in groups and its applications to expanding Cayley
graphs.

1.2 Overview of Expander Construction

In this section, we describe a simplified, but less efficient, version of our expander construction and omit
formal proofs. Our full construction is described in detail in Section 3. Throughout this section, all graphs
are regular, undirected, and may have loops and parallel edgesadfdeency matrix of an N-vertex
graphG is the matrixM whose(u, v)'th entry is the number of edges between verticesdwv. If the graph
is D-regular, thenormalized adjacency matrix is simply M /D. Note that this stochastic matrix is the
transition probability matrix of the natural random walk @nevery step of which moves a “token” from a
current vertex along a uniformly chosen edge to a neighboring vertex. It is easy to see that this matrix has
an eigenvalue of 1, corresponding to the constant eigenvector, and it turns out that all other eigenvalues have
absolute value less than 1. Our primary interest will be the second largest (in absolute value) eigenvalue
(which is known to govern the convergence rate of the random walk, and as mentioned above is the essence
of expansion).

Thus, three essential parameters play a role in an expander — size, degree and expansion. We classify
graphs accordingly.

Definition 1.1 An (N, D, \)-graph is any D-regular graph onN vertices, whose normalized adjacency
matrix has 2nd largest (in absolute value) eigenvalue at most

The Basic Operations. We use two operations on (the adjacency matrices of) graphs — the standard
matrix squaring, and our new zig-zag graph product. Here is their effect on these three parameters.

SQUARING: Let G? denote the square ¢f. That is, the edges i6? are paths of length 2 i6". Then
Fact1.2 (N,D,)\)? — (N, D?,)\?)

THE ZIG-ZAG PRODUCT. Let G @ G5 denote the zig-zag product 6f andG». Then,

Theorem 1.3 (Nl, Dl, )\1)®(D17 DQ, )\2) — (N1 . Dl, D%, A1+ Ao+ )\%)

(The eigenvalue bound 0f + X + A3 is improved somewhat in Sections 3 and 4.2.)



The lterations. Let H be any(D*, D,1/5)-graph, which will serve as the building block for our con-
struction. We define a sequence of graghsas follows.

L4 G1 :H2
e Git1=G:@QH

From Fact 1.2 and Theorem 1.3 above, it is easy to conclude that this sequence is indeed an infinite family
of expanders:

Theorem 1.4 For everyi, G; is an(N;, D?,2/5)-graph with N; = D%

This construction is not as efficient as we would like — computing neighborhoa@gakes time polyno-
mial in N; rather than polynomial itog V;. As we show in Section 3, this is easily overcome by augmenting
the iterations with another standard graph operation.

1.3 The Zig-Zag Graph Product

The new product mentioned above takes a large graph and a small one, and produces a graph that (roughly
speaking) inherits the size of the large one but the degree of the small one. This was the key to creating
arbitrarily large graphs with bounded degrees. Naturally, we are concerned with maintaining the expansion
properties of the two graphs. First, we describe the product.

For simplicity, we assume that the edges in duregular graphs ar®-colored; that is, they are par-
titioned to D perfect matchings. (This assumption loses generality, and we will remove it in the formal
construction in Section 2.) For a colore [D] and a vertex let v[i] be the neighbor o along the edge
coloredi. With this simple notation, we can formally define the zig-zag prd@Jyend then explain it).

Definition 1.5 LetG, be anD;-regular graph on/N;] and G2 a Do-regular graph onD;]. ThenG, @G,
is a D3-regular graph on[N,] x [D;] defined as follows: For alb € [N,],k € [D1],4,5 € [D2], the edge
(i,7) connects the vertepu, k) to the verteXv[k[i]], k[7][j]).

What is going on? Note that the size of the small gréplis the degree of the large gragh. Thus a
vertex name inG; @ G, has a first component which is a vertex of the large graph, and a second which is
viewed both as a vertex of the small graguid an edge color of the large one. The edge lab&}ki@ G is
just a pair of edge labels in the small graph. One step in the new product graph from a(vekiealong
the edg€(7, j) can be broken into three substeps.

1. (v, k) — (v, k[i]) — A step (“zig”) in the small graph moving to k[:]. This affects only the second
component, according to the first edge label.

2. (v,k[1]) — (v[k[i]], k[¢]) — A step in the large graph, changing the first component according to the
second, viewed as an edge color.

3. (v[k[d]), k[7]) — (v[k[i]], k[¢][7]) — A step (“zag”) in the small graph moving:] to k[i][j]. This
affects only the second component, according to the second edge label.



1.4 Intuition

Why does it work? More precisely, why does Theorem 1.3 hold? What this theorem says intuitively, is that
G, @G- is a good expander as long as b6thand G, are good expanders. Consider the above three steps
as a random walk ot¥; @ G». Then Steps 1 and 3 are independent random steps on the small graph. If at
least one of them “works” as well as it does in the small graph, this would guarantee that the new graph is
as good expander as the small one. So let’s argue (very intuitively) that indeed one of them “works”.

A random step in an expander increases Hie)(entropy of a distribution on the verticgmovided that
it is not already too close to uniforni.et us consider a distribution on the vertices of the new giaph).
Roughly speaking, there are two cases.

e If the distribution of the second componént(conditioned orw) is not too uniform, then Step 1
“works”. Since Step 2 is just a permutation and Step 3 is a random step on a regular graph, these steps
cannot make the distribution less uniform and undo the progress made in Step 1.

e If k£ (conditioned orvw) is very close to uniform, then Step 1 is a “waste”. However, Step 2 is then
like a real random step in the large expandgr This means that the entropy of the first component
v increases. Note that Step 2 is a permutation on the vertic€s@fG>, so if entropy increases in
the first component, it decreases in the second. That means that in Step 3 we are in the good case (the
conditional distribution on the second component is far from uniform), and the entropy of the second
component will increase by the expansion of the small graph.

The key to this product is that Step 2 is simultaneously a permutation (so that any progress made in Step
1is preserved) and an operation whose “projection” to the first component is simply a random step on the
large graph (when the second component is random). All previous discussions of expanders focused on the
increase of entropy to the vertex distribution by a step along a random edge. We insist on keeping track
of that edge name, and consider the joint distribution! In a good expander, if the edge is indeed random,
the entropy propagates from it to the vertex. This reduces the (conditional) entropy in the edge. Thus the
“entropy wave” in Step 2, in which no fresh randomness enters the distribution on vertiGe@af,, is

what facilitates entropy increase in Steps 1 or 3. Either the “zig” step does it, if there is room for more
entropy ink, or if not (which may be viewed as destructive interference of the large and small waves in Step
1), Step 2 guarantees constructive interference in Step 3. Moreover, Step 1 is not redundant as, if there is no
or little initial entropy ink, the wave of Step 2 (being a permutation) may fléodith entropy, destroying

the effect of Step 3.

The formal proof of Theorem 1.3 follows this intuition quite closely, and separately analyzes these two
extreme cases. Indeed, since it becomes linear algebra, these two cases are very natural to define, and the
only ones to worry about — all intermediate cases follow by linearity! Moreover, the variational definition
of the second eigenvalue better captures the symmetry of the zig and zag steps (and gives a better bound
than what can be obtained from this asymmetric intuition).

1.5 Expanders and Extractors

Here we attempt an intuitive explanation of how we stumbled on the definition of the zig-zag product, and
the intuition that it does what it should. While this subsection may not be self contained, it will at least lead
the interested reader to discover more of the fascinating world of extractors.

The current paper is part of research described in our conference paper [RVWO00] which deals with
constructions of both expanders and extractors. Extractors are combinatorial objects, defined by [NZ96],
which, roughly speaking, “purify” arbitrary nonuniform probability distributions into uniform ones. These
objects are as fascinating and as applicable as expanders (see, e.g., the survey papers [Nis96, NT99)). Like



expanders, their applications demand explicit construction. Like with expanders, the quest for such construc-
tions has been extremely fruitful and illuminating for complexity theory. Unlike expanders, the construction
of optimal extractors is still a challenge, although the best existing ones are quite close to optimal (see the
current state of the art, as well as a survey of previous constructions, in [RSWO00, TUZ01]).

Expander graphs were ingredients in some previous extractor constructions (as extractors may be viewed
as graphs as well). Here the situation is reversed. The expander construction of thisopaped our
discovery of nearly optimahigh min-entropyextractors, which handle the “purification” of distributions
which are already not too far from being uniform. A key idea in approaching optimality (following [RR99])
was preserving the unused entropy in a random step on an extractor. This lead to a (more complex) type of
Zig-zag product, and from it, iterative constructions of such extractors. Translating this idea to the expander
world turned out to be cleaner and more natural than in the extractor world. It lead to our understanding of
the role of the edge-name as a keeper of the unused entropy in a step of a standard random walk, and to the
zZig-zag product defined above.

1.6 Extensions to the Expander Construction

The list below details the extensions and refinements we obtain to the basic expander construction outlined
above. All these will be part of the formal sections which follow.

More Explicit Graphs. As mentioned above, this construction is not as efficient as we would like —
computing neighborhoods ; takes time polynomial idV; rather than iflog V;. rather tharpolylog(V;).

As we show in Section 3, this is easily overcome by augmenting the iterations with another standard graph
operation, namely taking tensor powers of the adjacency matrix.

Describing Graphs by “Rotation Maps”. Another explicitness problem in the simple construction above

is the assumption that the ollr-regular graphs are given together with a propecoloring of the edges.

This property is not preserved by the zig-zag product. To avoid it, we describe graphs more generally by
their “rotation maps,” and show how this description is explicitly preserved by all graph operations in our
construction.

Smaller Degree. A naive and direct implementation of our graph product yields expanders whose degree
is reasonable, but not that small (something under 1000). In Section 3.2, we show how to combine this con-
struction, together witlone, constant-sizeycle, to obtain an infinite family of explicit degree 4 expanders.
Again, this combination uses the zig-zag product. In fact, using the replacement product described below,
we obtain explicit degree 3 expanders (which is the smallest possible).

Choice of the Base Graph. Our expander construction requires an initial “constant size” base diaph

as a building block. While exhaustive search can be used to find suéh(amce it is constant size), for
completeness we include two elementary explicit constructions (from [Alo86b, AR94]) which can be used
instead.

Better Degree vs. Eigenvalue Relation. The best relationship between degree and 2nd largest eigenvalue
is obtained byRamanujan graphs, in which the 2nd eigenvalue2g D — 1/D. This equals the first
eigenvalue of thé-regular infinite tree, and it is known that no finiie-regular graph can have a smaller

2nd largest eigenvalue (cf., [Alo86a, LPS88, Nil91]). Remarkable graphs achieving this optimal bound were
first constructed independently by [LPS88] (who coined the term Ramanujan graphs) and by [Mar88].



Our constructions do not achieve this tight relationship. The zig-zag product, applied recursively to one
fixed Ramanujan graph, will yield-regular expanders of 2nd largest eigenvall@/D/*). A “partially
derandomized” variant of our zig-zag product, given in Section 6, improves this relation and achieves second
eigenvalueD(1/D/3).

A Simpler Product. Perhaps the most natural way to combi@ewith G, when the size of7, is the

degree of7; is simply replace every vertex 6f; with a copy ofG, in the natural way, keeping the edges of

both graphs. Thiseplacement product, which was often used for degree-reduction purposes (e.g., when
G4 is a cycle the resulting graph has degree 3) turns out to enjoy similar properties of the zig-zag product:
if both G; and G5 are expanders, so is their replacement product. Moreover, the proof is by a reduction —
the zig-zag product is a subgraph of the cube (3rd power) of the replacement product, immediately giving
an eigenvalue bound.

1.7 Subsequent Work: Connections with Semidirect Product in Groups

Subsequent to this work, it was shown in [ALWO01] that the zig-zag (and replacement) products can be
viewed as a generalization of the standard semidirect product of groups. This was used in [ALWOQ1] to con-
struct a family of groups which is expanding with one (constant size) set of generators, but is not expanding
with another such set. The connection was further developed in [MWO01] to produce new families of ex-
panding Cayley graphs, via bounds on the the number of irreducible representations of different dimensions
in terms of the expansion.

1.8 Organization of the Paper

In Section 2, we give preliminary definitions and basic facts. In Section 3, we define the zig-zag graph
product, describe the construction of expanders, and state their properties. In particular, it deals with the
first four “extensions” listed in the previous subsection. In Section 4, we analyze the expansion of the zig-
zag product. In Section 5, we discuss some ways to obtain the base graph used in our expander construction.
In Section 6, we give two extensions to the basic zig-zag product. The first is a “derandomized” variant of
our basic zig-zag product, which enjoys a better relationship between the degree and the expansion. The
second is the simple, natunaplacemenproduct.

2 Preliminaries

2.1 Graphs and Rotations

All graphs we discuss may have self loops and parallel edges. They are best described by their (nonnegative,
integral) adjacency matrix. Such a graphuisdirected iff the adjacency matrix is symmetric. It iB-
regular if the sum of entries in each row (and column)lis(so exactlyD edges are incident to every
vertex).
Let G be aD-regular undirected graph oW vertices. Suppose that the edges leaving each vertéx of
are labeled from to D in some arbitrary, but fixed, way. Then foyw € [N] and: € [D], it makes sense
(and is standard) to say “thi&h neighbor of vertexv is w". In this work, we make a point to always keep
track of the edge traversed to get framo w. This is formalized as follows:

Definition 2.1 For a D-regular undirected graplt7, therotation map Rotg : [N] x [D] — [N] x [D] is
defined as followsRotg(v, i) = (w, ) if the i'th edge incident ta leads tow, and this edge is thg'th
edge incident taw.



This definition enables us to remove the simplifying assumption made in the introduction, which was that
the label of an edge is the same from the perspective of both endpoinRotHv, i) = (w,j) = i = .
From Definition 2.1, it is clear tha&ot; is a permutation, and moreovBbts o Rot is the identity map.

We will always view graphs as being specified by their rotation maps. Hence we call a farofly
graphsexplicit if for every G € G, Rot¢ is computable in timeoly(log V), whereN is the number of
vertices ofG. That is, graphs iy are indexed by some parameters (such as the number of vertices and the
degree, which may be required to satisfy some additional relations) and there should be a single algorithm
which efficiently compute®Rotgs for any G € G when given these parameters as an additional input. The
notationpoly() stands for a fixed (but unspecified) polynomial function in the given variables. We will
often informally refer to an individual graph as explicit, as shorthand for saying that the graph comes from
an explicit family.

Our constructions will be iterative (or recursive), and will be based on a sequence of composition op-
erations, constructing new graphs from given ones. The definition of these compositions (or products) will
show how the rotation map of the new graph can be computed using “oracle access” to the rotation maps
of the given graphs. (By giving an algorithm “oracle access” to a funcfiome mean that the algorithm is
given power to evaluatg¢ on inputs of its choice at the cost of 1 time step per evaluation.) Given the time
complexity of such a computatiandthe number of oracle calls made, it will be easy to compute the total
time required by a recursive construction.

2.2 Eigenvalues and Expansion

The normalized adjacency matrix M of G is the adjacency matrix aff divided by D. In terms of the
rotation map, we have:

My = 5 - |{(0,9) € [D] : Rot(ui) = (0,9)}].
M is simply the transition matrix of a random walk é¢h By the D-regularity of G, the all-1's vector

1y = (1,1,...,1) € RY is an eigenvector ai/ of eigenvalue 1. Itis turns out that all the other eigenvalues
of M have absolute value at most 1, and it is well-known that the second largest eigenvaluis af
good measure afi’s expansion properties [Tan84, AM85, Alo86a]. We will use the following variational
characterization of the second largest eigenvalue.

Definition 2.2 A\(G) denotes thesecond largest eigenvalugin absolute value) oti’s normalized adja-

cency matrix. Equivalently,

NG) — s M 0

ally (o, q) ally |laf ~

Above, (-, -) refers to the standard inner product®M and||c|| = v/{«, a).

The meaning of\(G) can be understood as follows: Suppase [0,1}" is a probability distribution
on the vertices ofy. By linear algebrag can be decomposed as= uy + 7+, whereuy = 1y /N is
the uniform distribution anet- L uy. ThenMn = uy + M~ is the probability distribution on vertices
obtained by selecting a vertexaccording tor and then moving to a uniformly selected neighbowoBy
Definition 2.2,||[M7t|| < A(G) - ||7*||. ThusA(G) is a measure of how quickly the random walk @n
converges to the uniform distribution. Intuitively, the smalld(7) is, the better the expansion properties
of G. Accordingly, an (infinite) familyG of graphs is called a family acéxpandersif these eigenvalues are
bounded away from 1, i.e. there is a constant 1 such that\(G) < X for all G € G. It was shown by
Tanner [Tan84] and Alon and Milman [AM85] that this implies (and is in fact equivalent to [Alo86a]) the



standard notion ofertex expansion there is a constamnt > 0 such that for everys € G and for any sef
of at most half the vertices i@¥, at least(1 + ¢) - |S| vertices ofG are connected to some vertexSn

As mentioned in the introduction, we refer talaregular undirected grapi on NV vertices such that
AMG) < X as an(N, D, \)-graph. Clearly, achieving expansion is easier as the degree gets larger. The
main goal in constructing expanders is to minimize the degree, and, more generally, obtain the best degree-
expansion tradeoff. Using the Probabilistic Method, Pinsker [Pin73] showed that most 3-regular graphs
are expanders (in the sense of vertex expansion), and this result was extended to eigenvalue bounds in
[Alo86a, BS87, FKS89, Fri91]. The best known bound on the eigenvalues of random graphs is due to
Friedman [Fri91], who showed that mastregular graphs have second largest eigenvalue at2ng +
O((log D)/ D) (for evenD). In fact, the bound o2v/D — 1/D is the best possible for an infinite family
of graphs, as shown by Alon and Boppana (cf., [Alo86a, LPS88, Nil91]). Graphs whose second largest
eigenvalue meets this optimal bound are caResnanujan graphs It is easy to verify that this value is the
largesteigenvalue of the random walk on thinite D-regular tree.

While these probabilistic arguments provide strong existential results, applications of expanders in com-
puter science often requiexplicit families of constant-degree expanders. The first such construction was
given by Margulis [Mar73], with improvements and simplifications by Gabber and Galil [GG81], Jimbo and
Maruoka [JM87], Alon and Milman [AM85], and Alon, Galil, and Milman [AGM87]. Explicit families of
Ramanujan graphs were first constructed by Lubotzky, Phillips, and Sarnak [LPS88] and Margulis [Mar88],
with more recent constructions given by Morgenstern [Mor94].The best eigenvalues we know how to achieve
using our approach a@(1/D'/3).

2.3 Squaring and Tensoring

In addition to the new zig-zag product, our expander construction makes use of two standard operations on
graphs — squaring and tensoring. Here we describe these operations in terms of rotation maps and state
their effects on the eigenvalues.

Let G be aD-regular multigraph oriN] given by rotation maRot;. Thet'th power of G is the
Dt-regular graphG! whose rotation map is given Botg: (vo, (k1, k2, ..., k) = (ve, (e, b1, -+ -, 41)),
where these values are computed via the (yl¢;) = Rotg (vi—1, ki).

Proposition 2.3 If G is an (N, D, \)-graph, thenG' is an (N, D!, \!)-graph. MoreoverRotg: is com-
putable in timepoly(log N, log D, t) with ¢ oracle queries tQRot:.

Proof: The normalized adjacency matrix 6f is thet'th power of the normalized adjacency matrix@f
so all the eigenvalues also get raised todkiepower. |

Let G, be aD;-regular multigraph ofV; | and letGo be aD,-regular multigraph ofV,]. Define the
tensor product G; @G5 to be theD; - D,-regular multigraph ofiV; | x[N2] given byRotq, oa, (v, w), (4, 7))
((v',w'), (i, 7")), where(v',i") = Rotg, (v,7) and(w',j") = Rotg, (w, 7). In order to analyze this con-
struction (and our new graph product), we need some concepts from linear algebra. ForveetBs
andg € Rz, theirtensor product is the vectolr @ 8 € R¥1"N2 whose(i, j)'th entry isq; - 8;. If Ais an
N; x Ny matrix andB is anNy, x N, matrix, there is a uniqué&/’; N x N1 N; matrix A ® B (again called
thetensor product) such thal A ® B)(a ® ) = (Aa) ® (Bp) for all «, S.

Proposition 2.4 If G is an(Ny, D1, A1)-graph andG, is an(N,, D2, A2)-graph, thenG; ® G is an (N -
Ny, Dy - Dy, max(A1, A2))-graph. MoreoverRotq, g, IS computable in tim@oly (log Ny Na, log Dy D)
with one oracle query t®ot, and one oracle query tBotg, .



Proof: The normalized adjacency matrix 6f ® G+ is the tensor product of the normalized adjacency
matrices ofG; andG,. Hence its eigenvalues are the pairwise products of eigenvalugsasfdG>. The
largest eigenvalue is- 1, and the second largest eigenvalue is eithek or A; - 1. |

3 The Zig-Zag Product and the Expander Construction

In the introduction, we described how to obtain a family of expanders by iterating two operations on graphs
— squaring and the new “zig-zag” product. That description used a simplifying assumption about the edge
labeling. In terms of rotation maps, the assumption wasRhatv,i) = (w,j) = ¢ = j. In this section,

we describe the construction in terms of arbitrary rotation maps and prove its properties. The expander
construction given here will also use tensoring to improve the efficiency to polylogarithmic in the number
of vertices. This deals with the first two items in the “extensions” subsection of the introduction, which are
summarized in Theorem 3.2. The third item — obtaining expanders of dégvil€ollow in Corollary 3.4.

The analysis of the zig-zag product is deferred to the following section.

3.1 The Zig-Zag Graph Product

We begin by describing the new graph product in terms of rotation mapsGLUe¢ a D;-regular multi-
graph on[N;] andG; a D»-regular multigraph ofiD; |. Theirzig-zag productis a D3-regular multigraph
G1 @Gy on [N7] x [Dy]. We view every vertexw of Gy as being blown up to a “cloud” ab; vertices
(v,1),...,(v,Dy), one for each edge @, leavingv. Thus for every edge = (v, w) of G, there are two
associated vertices @, @ Gy — (v, k) and (w, £), wheree is the k'th edge leavingy and the/’th edge
leavingw. Note that these pairs satisfy the relation /) = Rotg, (v, k). SinceGs is a graph orD;],
we can also imagine connecting the vertices of each such cloud using the edgedNaoiv, the edges of
G1@G@G, are defined (informally) as follows: we connect two verti¢es:) and(w, ¢) if it is possible to get
from (v, k) to (w, ¢) by a sequence of moves of the following form:

1. Move to a neighboring vertgy, k') within the initial cloud (using an edge 6%).
2. Jump across clouds (using edgef G,) to get to(w, ¢').
3. Move to a neighboring vertejw, £) within the new cloud (using an edge 6f).

To make this precise, we describe how to computeltbe;, 7, givenRotg, andRotg,.

Definition 3.1 If G, is a.D;-regular graph on/V; ] with rotation mapRot¢, andGs is a Dy-regular graph
on [D;] with rotation mapRot, , then theirzig-zag productG; @G, is defined to be th&3-regular graph
on[N;] x [D1] whose rotation maftots,z, is as follows:

Rotg,@a, (v, k), (4,7)):
1. Let(k',') = Rotg, (k,1).
2. Let(w, ') = Rotg, (v, k).
3. Let(4,5') = Rote, (7', 7).
4. Output((w, ), (5',1')).

The important feature of this graph product is that2 G is a good expander if botfy; andG- are,
as shown by the following theorem.
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Theorem 3.2 If Gy is an (N1, D1, A1)-graph andG, is a (Dy, Dy, X2)-graph, thenG; @ G, is a (IV; -
Dy, D3, f(A1, X2))-graph, wheref (A, A2) < A+ A2+ A2 and f(A1, A2) < 1 when)y, A2 < 1. Moreover,
Rotg,@q, can be computed in timgoly (log IV, log Dy, log D,) with one oracle query t®otg, and two
oracle queries tRotg,.

Stronger bounds on the functigi{\;, \2) are given in Section 4.2. Before proving Theorem 3.2, we
show how it can be used to construct an infinite family of constant-degree expanders starting from a constant-
size expander.

3.2 The Recursion

The construction is like the construction in the introduction, except that we use tensoring to reduce the depth

of the recursion and thereby make the construction run in polylogarithmic time (in the size of the graph).
Let H be a(D8, D, \)-graph for someD and). (Various method for obtaining such &hare described

in Section 5.) For every > 1, we will define a(D%, D?, \;)-graphG;. G1 is H?> andGs is H ® H. For

t > 2, G, is recursively defined by

G = (G ®GL%J>2®H.

Theorem 3.3 For everyt > 0, G, is an (D8, D%, \;)-graph with\; = A\ + O()\?). Moreover,Rotg, can
be computed in timpoly(t, log D) with poly(¢) oracle queries tRoty.

Proof: A straightforward induction establishes that the number of vertic€g i D® and that its degree
is D2. To analyze the eigenvalues, defige= max{\1,...,\;}. Then we havey, < max{u; 1,42 | +
A+ A?} for all t > 2. Solving this recurrence gives < X\ + O(\?) for all t. For the efficiency, note that
the depth of the recursion is at masg, ¢t and evaluating the rotation maps Gy requires 4 evaluations of
rotation maps for smaller graphs, so the total number of recursive calls is attst= 2. |

In order for Theorem 3.3 to guarantee that grapfig: are expanders, the second largest eigenvalue
of the building blockH must be sufficiently small (say, < 1/5). This forces the degree &f and hence the
degree of the expander family to be rather large, though still constant. However, by zig-zagging the family
{G}} with a cycle, we can obtain a family of degree 4 expanders. More generally, we can use this method
convert any family of odd-degree expanders into a family of degree 4 expanders:

Corollary 3.4 For every\ < 1 and every odd, there exists & < 1 such thatifG is an(N, D, \)-graph
andC is the cycle onD vertices, thelG@C is a(N D, 4, \')-graph.

Proof: As with any connected and nonbipartite grapliC') is strictly less than 1 for an odd cyclé
(thoughA(C) — 1 asD — o). Thus, the corollary follows from Theorem 3.2. |

4 Analysis of the Zig-Zag Product

This section has two subsections. In the first, we give the basic (suboptimal) bound of Theorem 3.2. This
bound uses only the intuitive ideas of the introduction, and suffices for the construction of the previous
section. In the next, we state and prove a tighter eigenvalue bound. It uses extra information about the
zZig-zag product (which is less intuitive). It also gives more information about the worst interplay between
the two extreme cases studied in the basic analysis, and may hopefully shed a bit of light on the structure of
the eigenvectors of the zig-zag product.
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4.1 The Basic Eigenvalue Bound

Now we prove Theorem 3.2. Recall the intuition behind the zig-zag product. We aim to show that for any
(non-uniform) initial probability distributionr on the vertices ofq @G-, taking a random step af; @G-
results in a distribution that is more uniform. We argued this intuitively in the introduction, by considering
two extreme cases, based on the conditional distributions inducedobythe M “clouds” of D; vertices
each: one in which these conditional distributions are far from uniform, and the second in which they are
uniform. The actual linear algebra proof below will restrict itself to these two cases by decomposing any
other vector into a linear combination of the two. Also, the argument in the introduction was not symmetric
in the first and second steps on the small graph. Using the variational definition of the second largest
eigenvalue, we get a cleaner analysis than by following that intuition directly.

Let M be the normalized adjacency matrix@f@G-. According to Definition 2.2, we must show that,
for every vectore € RV1'Pt such thate L 1y, p,, |[{(Ma, a)| is smaller thana, o) by a factorf (A, A2).
For intuition, « should be thought of as the nonuniform component of the probability distributieferred
to above, i.er = uy, p, + a, Whereuy, p, = 1y, p, /N1 D is the uniform distribution ofV; D, ]. Thus,
we are showing that becomes more uniform after a random steg®H@®@ Gs.

For everyv € [Ny], definea, € RPt by () = k. Also define a (linear) mag' : RVi-P1 — RN
by (Ca), = ZkD:ll ayk. Thus, for a probability distribution on the vertices oy @ Gs, , is a multiple
of the conditional distribution on “cloud” and C'w gives the marginal distribution on set of clouds. By
definition,« = ) e, ® «,, Wheree, denotes the'th standard basis vector iRV1. By basic linear

algebra, everyy, can be decomposed (uniquely) intp = aﬂ + o whereaﬂ is parallel tolp, (i.e., all of
its entries are the same) ang is orthogonal talp, (i.e., the sum of its entries are 0). Thus, we obtain a

decomposition ofv:
a = Z Ey @ Oy
v

= Zev®ozu~|—Zev®OévL
v v

def

oll + ot

This decomposition corresponds to to the two cases in our intuitibtorresponds to a probability
distribution on the vertices af; @ G5 such that the conditional distributions on the clouds are all uniform.
o+ corresponds to a distribution such that the conditional distributions on the clouds are all far from uniform.
Another way of matchingd! with the intuition is to note thatl = Ca®1p,/D;. Sincea anda- are both
orthogonal tal y, p, , S0 isall and hence als@« is orthogonal tdly; .

To analyze how)M acts on these two vectors, we reldte to the normalized adjacency matrices of

G, and G4, which we denote by and B, respectively. First, we decomposé into the product of three
matrices, corresponding to the three steps in the definitia® @ G,’s edges. LeB be the (normalized)
adjacency matrix of the graph V] x [D;] where we connect the vertices within each cloud according to
the edges ofr,. Bis related taB by the relationB = Iy, ® B, wherely, is theN; x N; identity matrix.
Let A be the permutation matrix correspondingRot, . The relationship betwee# and A is somewhat
subtle, so we postpone describing it until later. By the definitiotid® G, we haveM = BAB. Note
that bothB and A are symmetric matrices, due to the undirectedness ahdG-.

Recall that we want to boundM «, «/)|/(«, «). By the symmetry of3, we have

(Ma,a) = (BABa, a) = (ABa, Ba). (1)
Now note thaiBall = oll, because!! = Ca®1p, /Dy, B = Iy, ® B, andBlp, = 1p,. This corresponds

to the fact that if the conditional distribution within each cloud is uniform, then taking a rangestep
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does nothing. Hencé&ta = B(all + a') = ol + Ba-. Substituting this into (1), we have
(Ma,a) = (A(dl + Bat), ol + Bat). 2
Expanding and using the fact théfis length-preserving (because it is a permutation matrix), we have
(Ma,a)] < [(Aal, )|+ 200l - [Ba*| + | Bat 2. 3

_ Now we apply the expansion properties®@f and G, to bound each of these terms. First, we bound
| Bat||, which corresponds to the intuition that when the conditional distributions within the clouds are far
from uniform, they become more uniform when we take a randbratep.

Claim 4.1 |Bat|| < Ao - [l

Proof of claim:

Bat = B(Zev(@aj‘)
v

= Zeu ® Bay.

v
By the expansion ofyy, || Bag|| < Az - [|eg|| for all v. Hence||Bat|| < Ay - [Ja™]. O

Next, we bound(Aall, oll)|, which corresponds to the intuition that when the conditional distribution
within each cloud is uniform, the jump between the clouds makes the marginal distribution on clouds them-
selves more uniform.

Claim 4.2 |(Ad!l, ally| < X; - (I, ally.

Proof of claim: To prove this, we must first relatbto A. Recall that, whert is uniformly
distributed,Rot¢, (v, k) gives a pair(w,£) wherew is a uniformly selected neighbor of
Similarly, if e, € RM is thev’th standard basis vector, thete, gives the uniform distribution
over the neighbors af. This similarity is captured by the formutdd(e, ® 1p,/D;) = Ae,
for all v. (Tensoringe, with 1, /D, corresponds to taking the uniform distribution o¥eand
applyingC corresponds to discardingand looking just atv.) Because the,’s form a basis,
this formula extends to all vectofse RV : C[l(ﬁ ® 1p,/D1) = AB. Applying this formula
toall = Ca® 1p, /Dy, we haveCA(all) = ACa. Thus,

(Adl oy = (Adl,Cca®1p,)/D,
= (CAdl,Ca)/D;
= (ACq,Ca)/D;.

Recalling thatC« is orthogonal tdly, , we may apply the expansion Gf to obtain:

(Adl )| < - (Ca,Ca)/Dy
= M\ (Ca®lp,,Ca®1p,)/D?
~ A (ol oy,

13



Substituting the bounds of Claim 4.1 and 4.2 into (3), we have:

[(Ma, )] < Ap - flal|? + 22 - [l - o] + A3 - flo)? (4)
If we let p = ||all||/||a] andg = ||at||/||al, thenp? 4+ ¢*> = 1, and the above expression can be
rewritten as:
(Mo, a)

<A PP+ 200 pg+ A3 ¢F < A+ A+ NS
(o, a)

This shows that we can talfg\;, \2) < A;+ Ao +>\§. It remains to show that we can sgt\;, A) < 1
as long as\;, A\ < 1. We consider two cases, depending on the lengthodf||. First, suppose that

lat[| < 52+ - [|a||. Then, from (4), we have

1- X\ 1- M) 1- X\
(0l < ol +20 - (52 ) a4 0 (20 )l < (1= 22 ) -

Now suppose thato-|| > L21-[|a|. Notice thatBa™ is orthogonal tavl: (Bat, oll) = (o, Ball) =

(a-, ally = 0. Using this, we can bound (2) as follows:

(Ma,a)| = [(A(al + Bab), ol + Bab)| < ol + Bat|2 = |l + || Bar|?
1—X)\?2
< Ha||2—Haﬂﬁﬂé-naw?sHan?—(l—A%)-( " ) .

Thus, we can take

- (1—>\1)2‘(1—/\%)}<1'

f()\l,)\z) S 1—min{ 9 , 9)\%

4.2 Improved Analysis of the Eigenvalue

In this subsection we state and prove an improved upper bound on the second largest eigenvalue produced
by the zig-zag product.

Theorem 4.3 (Thm. 3.2, improved) If G; is an(Ny, D1, A1)-graph andGs is a (D1, D2, \2)-graph, then
G1@Gyisa(Ny - Dy, D2, f(A1, A2))-graph, where

FOwLA) = 21— X+ 54/(0- 28208 + 438
Although the functionf (A, A2) looks ugly, it can be verified that it has the following nice properties:
1. f(A0)=f(0,A) =Xxandf(\1) = f(1,A) =1forall A € [0,1].
2. f(A1, A2) is a strictly increasing function of both and X, (except when one of them is 1).
3. If Ay < land); < 1,thenf(A, o) < 1.
4. f(A1,A2) < A+ Agforall Ay, Ag € [0,1].

Proof: The proof proceeds along the same lines as the proof of Theorem 3.2, except that we will use a
geometric argument to directly bound (2) rather than first passing to (3). That is, we must bound (using the
same notation as in that proof)

(Ma,a)  (A(d! + Bat),all + Bat)

() ladl + a2

The key observation is:
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Claim 4.4 A is a reflection through a linear subspageof RV: V1. Hence, for any any vectar, (Av, v) =
(cos 20) - ||v||?, whered is the angle betweemand S.

Proof of claim: By the symmetry ofd, we can decomposgM: D~1 into the sum of orthogonal
eigenspaces ofl. SinceA? = Iy, p,, the only eigenvalues of are +1. TakeS to be the

1-eigenspace ofl. O
Thus, the expression we want to bound is

cos? ¢

[(Ma, )|
cos2 ¢/’

(o, @)

whered is the angle betweeall + Ba' andS, ¢ € [0,7/2] is the angle between! andall 4 o, and
¢’ € [0,7/2] is the angle betweenl! anda/l + Ba™t. If we also lety be the angle betweesd! and S, then
we clearly haved € [y — ¢/, 9 + ¢'].
Now we translate Claims 4.1 and 4.2 into this geometric language. Claim 4.1 constrains the relationship
betweeny’ and¢ by

Ha” + BOJJ‘HZ B

= | cos 20| - T T all? ~ | cos 26 -

tan ¢’ Bat
ang’ _ |[Ba_| < .
tan ¢ okl

Claim 4.2 say$cos 29| < A;. For notational convenience, we will denote the exact valuéswafd) /(tan ¢)
and| cos 21| by pue andu,, respectively. We will work with these values until the end of the proof, at which
point we will upper bound them by and ;.

To summarize, we want to maximize

cos? ¢

20| - ———.
| cos 26)] cos? ¢/

5)
over the variable$, ¢, ¢/, and, subject to the following constraints:

1. ¢,¢',¢ €10,7/2].

2.0€p—¢ ¢+ ¢2

3. tan ¢’/ tan ¢ = po.

4. | cos 29| = p.

There are two cases, depending on whethes 22| ever achieves the value 1 in the interfal- ¢, ¢ + ¢/'].

Case |: ¢/ < min{¢y,n/2 —4}. Then

|cos20] = max{|cos2(yp + ¢)],|cos2(¢p — ¢')|}
= |cos 21 - cos2¢’| + | sin 29 - sin 2¢'|.
After some trigonometric manipulations, we have
cos® ¢ 1
cos2 ¢/ 2

2We do not requird € [0, /2] so that we do not have to worry about “wraparound” in the intefal &, ¢ + ¢']. Adding a
multiple of /2 to 6 does not change the value of (5).

1
| cos 26| - (1 - 113) cos 2 + (1 + p3) cos 24 cos 26| + §|2,uz sin 2¢) sin 24|
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The choice ofp which maximizes this is to haygos 2¢, sin 2¢) be a unit vector in the direction ¢f(1 +
143) cos 21, 249 sin 21)), SO

cos? ¢

29| . <% ¢
| cos 26)] cos? ¢/

1 1
5 (1= 1)) cos 20 + 5/ (1 + pB)? cos? 24 + 4u3 sin? 29

1 1
= S—p)m+ 5\/(1 +p3)2pd +4p5(1 — p7).

Case ll: ¢’ > min{y, 7/2 —4}. In this case, we cannot obtain any nontrivial bound s 26|, so, after
some trigonometric manipulations, the problem is reduced to bounding:

cos? ¢ cos? ¢ 9

| cos 26| - o = p3 + (1 — p3) cos? ¢. (6)

cos? ¢/ ~ cos?

The condition¢’ > min{+, 7/2 — ¢} implies thatcos2¢/ < |cos2¢| = pi. After some trigonometric
manipulations, we have

(1 + p3) cos® ¢ — 3

(1 — p3) cos? ¢ + pj’

cos2¢' =
and the conditioros 2¢/ < py is equivalent to

(1 + )
(1 — 1) + p3(1 + )

Substituting this into (6) and simplifying, we conclude that

cos? ¢ <

cos? ¢ 203
cos? ¢’ 1 —py + p3(1+ )

| cos 26 -

It can be verified that the bound obtained in Case | is an increasing functjgraotl ;> and is always
greater than or equal to the bound in Case II. Therefore, replagiagd s by A\; and ), in the Case |
bound proves the theorem.

|

5 The Base Graph

Our construction of an infinite family of expanders in Section 3.2 requires starting \ith &, \)-graph

H (for a sufficiently small\, say< 1/5). SinceD is a “constant,” such a graph can be found by exhaustive
search (given that one exists, which can be proven by (nontrivial) probabilistic arguments [Alo86a, BS87,
FKS89, Fri91]). However, for these parameters, there are simple explicit constructions known. We describe
two of them below. The first is simpler and more intuitive, but the second yields better parameters.

5.1 The Affine Plane

The first construction is based on the “projective plane” construction of Alon [Alo86b], but we instead use
the affine plane in order to mak¥ exactly D* and then use the zig-zag product to obtain a graph with
N = D?. For a prime powey = p', letF, be the finite field of size; an explicit representation of such a
field can be found deterministically in timely(p, t) [Sho90]. We define a graphP, with vertex seff?,

and edge sef((a,b), (c,d)) : ac = b+ d}. That is, we connect the vertgx, b) to all points on the line

Loy = {(z,y) : y = ax — b}. (Note that we have chosen the sigrbab make the graph undirected.)
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Lemma 5.1 AP, is an (¢?, g, 1/,/q)-graph. Moreover, a rotation map fokP, can be computed in time
poly(log ¢) given a representation of the fiel.

Proof: The expansion oAP, will follow from the fact the square oAP, is almost the complete graph,
which in turn is based on the fact that almost all pairs of lines in the ffameersect. LetV/ be theg” x ¢
normalized adjacency matrix ofP,; we will now calculate the entries df/?. The entry ofM? in row
(a,b) and column(d’,t’) is exactly the number of common neighbors(efb) and(d, b’) in AP, divided
by ¢, i.€.,|Lap N Ly p|/q*. If a # d', thenL,;, and L, j intersect in exactly one point. #f = ¢ and

b # V', then their intersection is empty, andiit= ¢ andb = v/, then their intersection is of size Thus, if
we let], denote they x ¢ identity matrix andJ; theg x ¢ all-one’s matrix, we have

a, J, - Jg
w2z L Jo aly Ty _ Ly ®qlg+ (g — 1) ®Jg
| L, 7
J, Jy, - gl

Now we can calculate the eigenvalues explicitly.has eigenvalueg (multiplicity 1) and0 (multiplicity
qg—1). So(J, — I;) ® J, has eigenvaluesg — 1) - ¢, —1 - ¢, and0. Adding I, ® ¢I, increases all
these eigenvalues by and then we divide by’. Hence the eigenvalues af? are 1 (multiplicity 1), O
(multiplicity ¢ — 1), and1/q (multiplicity (¢ — 1) - ¢). Therefore, the second largest eigenvaluébhas
absolute value /,/g.

A rotation map forAP, is given by

_ J((t/a,t —b),t) ifa#0andt#0,
Roty((a,0),1) = { ((t,—b),a) ifa=0o0rt =0,

wherea, b,t € . |
Now, define the following graphs inductively:
AP, = AP,®AP,
1 :
APT = AP;@APq
From Proposition 2.4 and Theorem 3.2, we immediately deduce:

Proposition 5.2 AP is a (¢?"*Y),¢?,0(i//q))-graph?® Moreover, a rotation map foAP!, can be com-
puted in timepoly (7, log ¢) given a representation d,.

Taking: = 7 and a sufficiently large gives a graph suitable for the expander construction in Section 3.2.

5.2 Low-Degree Polynomials

The graphs we describe here are derived from constructions of Alon and Roichman [AR94], which are
Cayley graphs derived from the generator matrix of an error-correcting code. In order to give a self-contained
presentation, we specialize the construction to a Reed-Solomon code concatenated with a Hadamard code
(as used in, e.g. [AGHP92)).

For a prime poweg andd € N, we define a graphD, 4 on vertex se]F'q“rl with degree;®. For a vertex
a € F;H andz,y € F,, the the(z, y)'th neighbor ofa is a + (y, yz, ya?, ..., yz?).

*The hidden constant i0(i/\/q) can be reduced to 1 using the improved analysis of the zig-zag product in Theorem 4.3.

17



Proposition 5.3 LD, 4 is a (¢™*1,¢%,d/q)-graph. Moreover, a rotation map fdtD, 4 can be computed in
timepoly(log ¢, d) given a representation d, .

As above, takingl = 7 and sulfficiently large gives a graph suitable for our expander construction. These
graphs are better than those of Proposition 5.2 because the the eigenvalue-degree relationship is the optimal
A = O(1/v/D) (asq grows), which implies an eigenvalue 6f(1/D'/*) for the family constructed in
Theorem 3.3.

Proof: To simplify notation, lef = F,. Let M be theg?*! x ¢9*+! normalized adjacency matrix o, 4.
We view vectors inC?**" as functionsf : Fi+1 — C. We will now explicitly describe the eigenvectors of
M. Letp be the characteristic df, let( = ¢27/? be a primitivep'th root of unity, and letZ : F — E,

be any surjectivér, -linear map. (For simplicity, one can think of the special caseghatq andL is the
identity map.)

For every sequenee= (ag, . . .,aq) € F¢t!, define the functiory, : F**1 — Cby x,(b) = (L aibi),
Clearly, xo(b + ¢) = xa(b)xa(c) for anyb,c € L. Moreover, it can be verified that thig,} are
orthogonal under the standard inner prodycly) =5, f(b)g(b)*, and thus form a basis f@""" . Hence,
if we show that eacly, is an eigenvector oM, then they are all the eigenvectors/f. This can be done
by direct calculation:

Mx)®) = = Y M xalo
ceFd+1

1
= = ) Xalb+ (w52, yz?)
z,ycl

d
_ (Zaz,yEFXa(yayxa"'ayx )) 'Xa(b)

q2

= Ao Xa(D).

Thus, x, is an eigenvector ol with eigenvalue), and all eigenvectors ot/ are of this form. So we
simply need to show tha,| < d/q for all but onea € F**1. To do this, note that

1 1 o (@
M= Y Xallgyz, ... ,yat) = 5 Y (Hore(@),
g z,yel 1 z,yeF

wherep, (z) is the polynomiakiy + a1z + - - - + agz®. Whenz is a root ofp,, then( L(pa(#)) = 1 for all y,
and hencer contributes;/¢? = 1/q to \,. Whenz is not a root ofp, (z), yp. () takes on all values iff as
y varies, and hencg-(vP«(%)) varies uniformly over alp’th roots of unity. Since the sum of gilth roots of
unity is 0, theser’s contribute nothing toy,. Whena # 0, p, has at mostl roots, so\,| < d/q. |

6 Variants on the Zig-Zag Theme
The two subsections of this section contain two variants of the basic zig-zag product. The first is aimed at

improving the relation between the degree and the eigenvalue bound. The second is aimed at simplifying
the product, at the cost of deteriorating this relationship.
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6.1 A “Derandomized” Zig-Zag Product

In this section we provide a variant of our original zig-zag product, which achieves a better relationship
between the degree and the expansion of the resulting graph. The term “derandomized” will become clearer
when we define it.

Recall that the optimal second-largest eigenvalue for an infinite family-aégular graphs i®)(1/0/2),
and families of graphs meeting this bound (with the right constant) are referred to as Ramanujan. A basic
guestion is how close can we come to this optimal bound using our technigues. Starting with a constant-
size Ramanujan graph (or the graphs of Section 5.2), our basic construction of Theorem 3.3 achieves a
second-largest eigenvalue©f1/D'/*) for the family of expanders generated..

Here, we define a variant of the zig-zag product, which makes more efficient use of the expansion
of the small graph. Using the new product in our iterative construction (of Section 3.2) with an initial
constant-size Ramanujan graph or even the graphs of Proposition 5.3, we obtain a second-largest eigenvalue
of O(1/D'/3) for the family of expanders generated. It is an interesting open problem to construct families
of graphs achieving the optimal eigenvalli¢l/ D'/?) using a similar graph product.

We now turn to the formal definition of the new zig-zag product. It will have two “zig” moves and
two “zag” moves, but they will not be independent. The second “zig” and the first “zag” will use the same
random bits!

Definition 6.1 LetG; be aD;-regular graph on[V;| with rotation mapRot¢;, and letGs be aD,-regular
graph on[D;] with rotation mapRot,. Suppose that for eveiye [Dy], Rotg, (-, %) induces a permutation
on[D;].* Then themodified zig-zag productof G; and G5 is defined to be th®3-regular graphG; @'G,
on[N;] x [D;] whose rotation mafot;, ¢y, is as follows:

Rotgera, (v, k), (h, i, 4)):
1. Let(k', ') = Rotg, (k, h).
2. Let(k",4") = Rotg, (K, 1).
3. Let(w, ") = Rotg, (v, k").
4

. Find the unique’ € [D;] such that(¢",:") = Rotg, (¢',%) for somei”. (¢' exists by the assumption
onRotg,.)

5. Let(¢,5') = Rotg, (¢, j).
6. Output((w7£)7 (jlvivh’))'

Again, in this graph product we dwvo random steps on the small graph in both the zig and the zag
parts. However, to save random biie(, decrease the degree) we ube sameandom bits for the second
move of the zig part and the first move of the zag part. Thus the degree of the new gidplHiswever,
we will show that the bound on the eigenvalue will be as if these moves were independent. This proof will
follow the lines of the basic analysis of the original zig-zag product.

Theorem 6.2 If Gy is an (Ny, Dy, A\1)-graph andG; is a (D1, Do, \2)-graph, thenG; @' G5 is a (N -
Dy, D3, A\ + 2X3)-graph. MoreoverRot; y¢;, can be computed in timgoly(log N, log Dy, D,) with
one oracle query t®Rotg, and Dy + 2 oracle queries tRotg, .

“By this we mean that the functiofi(z) = “the first component oRotc, (x,i)” = “the i'th neighbor ofz” is a permutation
for everyi.
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Proof: We use the same notation as in the proof of Theorem 3.2. Like there, we need td fdundy)|/(«, ),
wherel is the normalized adjacency mat[ixﬁ‘{@)’GQ anda L 1y,p,. Let B; be theD; x D, permu-
tation matrix induced bYRotg, (+,7), and letB; = Iy, ® B;. Then

D,

. 1 .
B=— B;.
Note that the normalized adjacency matrix corresponding to Steps 2—4 in the definiig® @, is given
by
1 R
M ==Y B;AB

whereB! is the transpose (equivalently, inverse}3f Thus,M = BM'B. The main observation is that
not only doesBall = ol (as we used in the original analysis), but algo!l = o for everyi (becauses;
is a permutation matrix). Hence,

1 1 - .
ol = = ABTo) = Aol = [
M'a _Dl;BZABia _DI%:BZAa = BAdl.

Applying this (and the symmetry @ and M), we get

(Ma,a) = (Mdl,oly +2(Mdl, o) + (Mo, at)
= (Adl,ally +2(4dll, B2at) + (M'Bat, Bat).

Being the normalized adjacency matrix of an undirected, regular gidphas no eigenvalues larger than 1
and hence does not increase the length of any vector. Using this together with Claims 4.1 and 4.2, we have

(Mo, )| < [(Aal, )| +2llal|| - | B2t || + || Ba||?
< Ar- a2 4223 - flad ] - flact ]+ A3 - [l 12

As in the the proof of Theorem 3.2, using the fact thal]|> + || o ||?> = ||«||? yields the desired bound ®

6.2 The Replacement Product

In this section, we describe an extremely simple and intuitive graph product, which shares similar properties
to the zig-zag product. Namely, when taking the product of two expanders, we get a larger expander whose
degree depends only on that of the smaller graph. Here simplicity is the important feature, and the expansion
guality is not as good as above. This product is so natural that it was used in various contexts before. Indeed,
Gromov [Gro83] even estimates the 2nd eigenvalue of an iterated replacement product of the graph of the
Boolean hypercube with smaller copies of itself. (Of course, in this very special case the outcome is not
expanding, since the cube is not.) Our proof of its expansion will be a simple reduction to the expansion
properties of the zig-zag product. However, one can also prove it directly in a manner similar to the proof
of Theorem 3.2 (and thereby obtain a stronger bound).

Assume (as in the basic zig-zag product) thais a D; regular graph oifiV;] andGs is a De-regular
graph onD;]. A natural idea is to place a “copy” (or “cloud”) @¥, around each vertex @¥;, maintaining
the edges of both. More precisely, every vertex will be connected to all its original neighbors in its cloud, as
well as to one vertex in the neighboring cloud it defines. For examp(&, i then-dimensional Boolean
cube graph, and:; is the cycle om vertices, then the resulting graph is the so-catlebde connected cycle
which used to be a popular architecture for parallel computers. Note that in this example the small graph
had degree 2, and the product graph had degree 3. In general, the resulting graph would havg delgree
In terms of rotation maps, this product is defined as follows.
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Definition 6.3 If G, is a.D;-regular graph on/V; ] with rotation mapRot¢, andGs is a Dy-regular graph
on [D;] with rotation mapRotg,, then theirreplacement productG; OG- is defined to be theD, + 1)-
regular graph on[V;] x [D;] whose rotation mafRot¢ @, IS as follows:

ROtG1®G2((U7 k),l)
1. Ifi < Dy, let(m, j) = Rotg, (k,7) and output((v, m), j).

2. Ifi = Dy + 1, output(Rotq, (v, k), 7).

The expansion properties of the replacement product are given in the next theorem, relating it to those
of the zig-zag product.

Theorem 6.4 If Gy is an (N1, D1, A1)-graph andGs is a (Dy, Do, X2)-graph, thenG; O G is a (IV; -
Dy, Dy + 1,g9(A1, A2, D2))-graph, where (using the functighfrom Thm. 3.2 or 4.3)

g1, Az, D2) < (p+ (1= p)fF (A, M) 2,

andp = D3/(Dy + 1)3. In particular, g(A1, A2, D2) < 1 when\;, A, < 1. Moreover,Rotg,mq, can be
computed in timgoly(log N, log Dy, log D2) with one oracle query t®otg, or Rotg,.

Proof: The idea of the proof is that the graph of the zig-zag product is a regular subgré#md afbeof
the graph of the replacement product. Bétdenote the normalized adjacency matrix@®fG,. As in the
proof of Theorem 3.2, we lefl, B respectively denote the normalized adjacency matrices af,, and
define their “liftings” A, B in the same way. By inspection, we haVe = (A + D,B)/(Dy + 1). The key
observation is that

A+ DuBp .-

where BAB is the normalized adjacency matrix 6§ @ G, C is the normalized adjacency matrix of an
undirected, regular graph (and in particular does not increase the length of any vecter)-ajd (D, +
1)3. As eigenvalues of powers of matrices are the respective powers of the original eigenvalues (see Propo-
sition 2.3), we have

g(A, x2) < (p+ (1= p)f (A1, A2)) 2.

Thus, for “constant” degreds, the replacement product indeed transforms two expanders into a larger one.
As in Corollary 3.4, we can use this to get degree 3 expanders.

Corollary 6.5 For every\ < 1 and every odd, there exists & < 1 such thatifG is an(N, D, \)-graph
andC is the cycle onD vertices, thelGMOC is a (N D, 3, \')-graph.

To make the expansion properties in Theorem 6.4 independent of howIarige we now slightly
modify the replacement product to haits copies of each edge which goes between clouds. This makes
the degree of every vert@{,, of which D, stay within the same cloud, and the otligrall connect to the
same vertex in a neighbor cloud. This “balancing” make the random walk give the same weight to edges
defined byG, andGs.

Definition 6.6 If G is a D;-regular graph on[V;] with rotation mapRotg, andGs is a Dy-regular graph
on [D;] with rotation mapRot,, then theirbalanced replacement productG; ® G, is defined to be the
2D,-regular graph on[V;] x [D;] whose rotation maRot,@, is as follows:
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ROtGl@G2((U7 k),4):
1. Ifi < Dy, let(m, j) = Rotg, (k,7) and output((v, m), j).

2. Ifi > Dy, output(Rotg, (v, k), 7).

Theorem 6.7 If Gy is an (N1, Dy, A1)-graph andG; is a (D1, Ds, X2)-graph, thenG; ® G, is a (V; -
D1,2D4, h(A1, A2))-graph, where (using the functighfrom Thm. 3.2 or 4.3)

7 1 1/3
h(A1,A2) < (g t3 f(>\1,/\2)>

In particular, h(Ai, A2) < 1when);, A2 < 1. MoreoverRotq, @, can be computed in timsly (log N, log Dy, log D7)
with one oracle query t®ot, and one oracle query tBotg, .

Proof: The proof is the same as that of Theorem 6.4, noting insteadthat (4 + B) /2. |

As a final note, we observe the weakness of the replacement products relative to the zig-zag product.
Informally, in zig-zag the expansion quality of the product improves with those of its component, while in
the replacement it does not. More formally, while the functf@n,, A2) tends to zero when; and )\, do,
the functionsy(A;, A2, Do) andh(A;, A2) do not.
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