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Abstract

Goldwasser and Sipser [GS89] proved that every interaptiwef system can be transformed into
a public-coin one (a.k.a., an Arthur—Merlin game). Theamsformation has the drawback that the
computational complexity of the prover’s strategy is nagarved. We show that this is inherent, by
proving that the same must be true of any transformationfhvbindy uses the original prover and verifier
strategies as “black boxes.” Our negative result holds étae original proof system is restricted to be
honest-verifier perfect zero knowledge and the transfaonagn also use the simulator as a black box.

We also examine a similar deficiency in a transformationw&Fét al. [FGM™89] from interactive
proofs to ones with perfect completeness. We argue thahtirease in prover complexity incurred by
their transformation is necessary, given that their caigsiton is a black-box transformation which works
regardless of the verifier's computational complexity.
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1 Introduction

Since their introduction in 1985, the interactive proofteyss of Goldwasser, Micali, and Rackoff [ GMR89]
and Arthur—Merlin games of Babai [BM88] have played a cdmioée in complexity theory and cryptog-
raphy. A surprising result of Goldwasser and Sipser [GS88|vs that these two important models are
actually equivalent in expressive power. That is, evergranttive proof system can be transformed into
an Arthur—Merlin game (which is an interactive proof in whithe verifier's messages consist solely of
random coin flips). Although this result played an importaoie in subsequent theoretical work (cf.,
[FGM*89, BHZ87, 1Y87, BGG 88]), its applicability to cryptographic protocols is litad because the
transformation does not preserve the complexity of the garoln this paper, we demonstrate that this de-
ficiency is inherent. We do this by showing that a wide classarisformations cannot transform general
interactive proofs into public-coin onesg, Arthur-Merlin games) without increasing the prover's com-
plexity.

Interactive Proofs. Informally, aninteractive proof GMR89] for a decision problentl is an interactive
protocol (P, V') by which a computationally unboundgdover P tries to convince a polynomial-timeer-
ifier V' that some string: is a YES instance ofll.> Each of the two parties can privately flip coins, and
exchange messages in polynomially many rounds of interastiafter whichl” either accepts or rejects.
The definition requires:

1. (Completeness) I is aYES instance, theiv will accept with high probability after interacting with
P.

2. (Soundness) i is aNo instance, thery will reject with high probability after interacting witany
strategyP*.

A public-coininteractive proof system (gkrthur—Merlin gamé [BM88] is one in which the verifer's mes-
sages at each round of interaction consist solely of randomfkps.

Intuitively, it seems that general interactive proofs dtldoe much more powerful than public-coin
ones. Indeed, several examples of interactive proofs, maably the RAPH NONISOMORPHISM proof
system of [GMW91], appear to use private coins in an esdemtig However, this intuition is incorrect, as
Goldwasser and Sipser [GS89] demonstrated by giving a gemathod to transform any interactive proof
into a public-coin one.

From both a theoretical and practical point of view, it is brjant to compare the complexity of the
interactive proof systems produced by the GoldwassereBtpgnsformation with that of the original proof
system. In some complexity measures, the transformatieeris efficient. For example, it increases the
round complexity of the proof system by only an additive ¢ans However, the transformation does not
preserve the computational complexity of the prover sisateFor example, even if the original prover
could be implemented in polynomial time given some auxiliarformation (as is typically the case in
cryptographic applications), the resulting prover is noagnteed to have this property. We prove that this
is inherent in the techniques used.

Black-box transformations. To obtain our negative result, we follow the approach pioegédy Impagli-

azzo and Rudich [IR89], and focus on a characteristic shayedost known transformations of interactive
proof systems, including the one of Goldwasser and Sipspecifically, these transformations only use
the original prover and verifier strategies as “black boxeghat is, the new protocol only exploits the

"We allowII to be a promise problem [ESY84], rather than just a languRgemnally, apromise problenil = (IIy,IIy) is a
pair of disjoint sets of strings, referred toass andNoO instances, respectively.



input-output behavior of these strategies, rather thap#hngcular algorithms used to compute them. More
precisely, if(P, V') is the original interactive proof and®’, V') is the new interactive proof, then

1. The strategy oV’ on inputz can be computed by a polynomial-time algorithm given oracleess to
the strategy o on inputz.

2. The strategy of”’ on inputz can be computed by a (not necessarily efficient) algorithrargoracle
access to the strategies BfandV on inputz.

Here, by thestrategyof a partyA € {P, V'} on inputz, we mean the functionl, which takesA’s random
coins and the history of messages exchanged and outpsitaext message. We call a transformation
(P, V) — (P', V') satisfying the above two propertiebkack-box transformatianNote that the algorithms
used to computé”’ andV’ do not even explicitly look at the inpuf; the role played by the input is limited
to its effect on the strategies &f andV (i.e., the input toP’ and V" is just the length of in unary). We
say that a black-box transformatipneserves the prover's complexifithe strategy ofP’ on inputz can in
fact be computed in polynomial time given oracle accessdctrategied” andV on inputz.

With these definitions, we can state our main result:

Theorem 1 If one-way functions exist, then there is no black-box tiemsation from private-coin interac-
tive proofs to public-coin ones that preserves the provesisplexity.

A natural question is whether “current techniques” are abttuimited to black-box transformations.
First, we note that, in addition to the Goldwasser—Sipsandfiormation, most other general tranforma-
tions of interactive proofs are also black-box transfoioret. Examples include the Collapse Theorem
of Babai and Moran [BM88], the transformation of [FGM9] from interactive proofs to ones with per-
fect completeness, and transformations of honest-veréigr-knowledge proofs to general zero-knowledge
proofs [BMO90, OVY93, DGOW95, GSV98]. The only exceptiong wnow of are those that exploit
complete problems, such as [GMW91, BGKW88, LFKN92, Sha88{ typically this approach increases
complexity “to the maximum.” For example, another way toyar¢hat every problem possessing an inter-
active proof also has a public-coin interactive proof wolidto combine the inclusioblP ¢ PSPACE
with the direct public-coin interactive proof for ti2SPA CE-complete problem QANTIFIED BOOLEAN
FormMuLA [LFKN92, Sha92]. This approach necessarily yields intivaqroofs whose complexity is that
of QUANTIFIED BOOLEAN FORMULA, regardless of the complexity of the original interactiveqd.

Zero-knowledge proofs. The cryptographic interest in interactive proofs focusasarily onzero-knowledge
proofs[GMR89], which can be informally described as interactiveqgfs in which the verifier learns nothing
from the interaction other than the fact that the assert@ngdoproven is true. This property is formalized by
requiring that there is an efficient algorithm, callesimulator, whose output distribution (ovES instances)

is “similar” to the verifier's view of the interaction. Intiively, this means that the verifier learns nothing
since it could run the simulator instead of interacting vtith prover.

There are several choices in the definition of zero-knowdealgofs that give rise to notions of varying
strength. Regarding the quality of simulation, there arealcommon interpretations of “similarity” for
probability distributions, which lead to the notions prfectzero knowledgestatistical zero knowledge,
and computatationakzero knowledge. Another choice is whether we should onlyirecthat the verifier
learns nothing if it follows the specified protocol, or whettwe should demand the same for cheating
verifier strategies that can deviate arbitrarily from thecasfied protocol. The former is known &®nest-
verifier zero knowledgevhereas the latter is often callgeéneral zero knowledge

The Goldwasser—Sipser transformation does not preseysoanof zero knowledge property. This was
remedied by Okamoto [Oka96], who showed how to transforrmést-verifier statistical zero-knowledge
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proofs” into ones which use only public coins. Okamoto’'sitfarmation provided a crucial starting point
for a number of subsequent works on statistical zero knaydd@f., [SV97, GSV98, Vad99]). Like the
Goldwasser—Sipser transformation, neither Okamotoisstamation nor its later simplifications [GV99,
Vad99] preserve the complexity of the prover.

The statement of Theorem 1 does not immediately apply to ¢éine knowledge setting, because the
transformations of zero-knowledge proofs mentioned aluseeblack-box access to the simulator in addi-
tion to the prover and verifier. However, our proof gives sthimg much stronger than what is stated in
Theorem 1, and does imply an analogous result for transfaymméro-knowledge proofs.

Theorem 2 (Thm. 1, strengthened)Assume one-way functions exist. Then there is no blackrangfor-
mation from honest-verifier perfect zero-knowledge prgstesms to public-coin proof systems that preserves
the prover’s complexity, even if the new prover and verifreraso allowed black-box access to the simula-
tor for the original proof system.

In fact, we exhibit a specific problem and honest-verifierfgutrzero-knowledge proof on which any
such transformation must fail. The problem is calleIDINT SUPPORT, and is a restriction of B\TISTI-
cAL DIFFERENCE the complete problem for statistical zero knowledge givei$V97].

Unconditional results. The assumption that one-way functions exist can be remawed both Theo-
rems 1 and 2 if we augment the definition of black-box tramafiiron with another property satisfied by all
the black-box transformations we have mentioned. Namietytdansformations in [GS89, Oka96, GV99,
Vad99] all work even when the original verifier is not polynialriime. Clearly, in such a situation we cannot
hope for the new verifier to run in polynomial time. But it idlsheaningful to require that the new verifier
runs in polynomial time when given oracle access to the maigierifier's strategy on a given input, and that
completeness and soundness are preserved on an inpytiybasis. We call black-box transformation
that satisfies this propertysarong black-box transformatiorWwe can prove analogues of Theorems 1 and 2
for strong black-box transformations without any compateal assumption.

Perfect completeness. An interactive proof system is said to hgverfect completeneskthe verifier ac-
cepts with probability 1 when interacting with the provenars instances. Furest al. [FGM*89] showed
that every interactive proof can be transformed into ond pwirfect completeness. Their transformation
does not preserve the prover's complexity. We show thatghitherent in the fact that their construction is
a strong black-box transformation.

Proposition 3 There is no strong black-box transformation of general rieatéve proofs into ones with
perfect completeness that preserves that prover’s coriyplex

The restriction testrongblack-box transformations is important in our proof of Ryspion 3. In fact,
recent results on derandomization give (non-strong) blamktransformations in cases where we have ruled
out strong black-box transformations. We discuss this eotion with derandomization in more detail in
Section 5.

Additional Related Work.  Kilian [Kil90] introduced the terminology “robust transfmations” for trans-
formations of interactive proof systems that preserve thrapiexity of the prover, and gave a first step
towards achieving a robust transformation from intera&cfivoofs to zero-knowledge proofs. The defini-
tion of a robust transformation does not require that thgial verifier strategy be accessed only as a
black box. The complexity of the prover in interactive powfas previously studied by Bellare and Gold-
wasser [BG94]. They showed that, under a complexity-th@oessumption, there is a problerhin NP
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which is harder to prove than it is to decide; that is, no extéve proof forll has a prover which can be
implemented in polynomial time given an oracle for decidiig

2 The main result

Our proof of Theorem 2 is based on analyzing the effect of ekabsx transformation on a proof system for
a problem called BJOINT SUPPORT. The definition of DSJOINT SUPPORTINvVolves probability distribu-
tions encoded by circuits which sample from them. More pedyj if X is a Boolean circuit withmn input
gates anch output gatesthe probability distribution encoded h¥ is the distribution on{0, 1}" induced

by feeding X the uniform distribution o{0,1}™ and taking the output. For notational convenience, we
also denote this probability distribution BY. We write X = Y to indicate that the probability distributions
encoded by circuitX andY” are identical. Thesupportof probability distributionX on a universé/ is the
setSupp(X) C U of points which are assigned nonzero probability mass uAder

Definition 4 DISJOINT SUPPORT(DS) is the promise proble®S = (DSy-, DSy) given by:

DSy = {(X,Y) : Supp(X)NSupp(Y) = 0}
DSy = {(X,Y): X=Y}

In this definition, bothX and Y are circuits encoding probability distributions in the nrar described
above.

DISJOINT SUPPORTIs a restriction of $ATISTICAL DIFFERENCE(SD), the complete problem for statisti-
cal zero knowledge given in [SV97]. The interactive prodteyn for DS we consider is given in Protocol 5.
It is a restriction of the proof system for SD, which in turnbiased on ideas from the proof systems for
QUADRATIC NONRESIDUOSITY [GMR89] and GRAPH NONISOMORPHISM[GMW09L1].

Protocol 5: Proof system(P, V') for DISJIOINT SUPPORT

Input: Circuits Xy and X; (each withm input gates and output gates)

1. V: Selectb < {0,1}. Obtain a sample < X, (by choosing- + {0,1}" and letting
z = X,(r)). Sendz to P.

2. P:If z € Supp(X), letc = 1. Else letc = 0. Sendcto V.

3. V: If ¢ = b, accept. Otherwise, reject.

In order to understand what it means to apply a black box fmamstion to this protocol, we must
determine what power oracle access to the verifier stratadypaover strategy gives. For a fixed input
(Xo, X1), the verifier strategy has two components:

1. A function that takes the verifier's random cofifsr) and outputsX;(r).

2. A function that takes the verifier's random coiidsr) and a prover messageand outputsaccept
orreject according to whethelf = c.



Clearly, the second function provides no power as an oragleg it is just an equality test. Having oracle
access to the first function is equivalent to having orackess to each circuik, and X; individually.
The prover strategy is simply a membership oracleSigpp(X, ); that is the oracle returns 1 on inpuiff

x € Supp(Xy).

Motivation. Suppose this proof system could be converted to a public-@oe via a black-box transfor-
mation. This means that there are polynomial-time algorith/ and A, such that A/ X0,X1,5upp(X1) - g X0, X1)
gives a public-coin proof system fori®IOINT SUPPORT Recall thatdM and A are not givenX, and X;
explicitly as input, though they may run in time polynomialthe size of the input( X, X1)|.

For intuition as to why such ai/ and A cannot exist, let us suppose tha§ and X; can be arbitrary
one-to-one mappings frof0, 1}* to {0, 1}3* (such that eitheX, = X; or Supp(Xy) N Supp(X1) = 0)
and thatM and A are only given running time polynomial i In other words, we are no longer requiring
that X, and X are given by small circuits. In fact, let us suppose tkigand X; are selected uniformly at
random among all mappings satisfying the stated conditions

First, we argue that i#/ never queries the oracle f8upp(X; ), then we are done. ¥/ never queries the
oracle forSupp(X1), then the interaction betweéd and A can be simulated by a probabilistic polynomial-
time algorithmB just given oracle access f; and X;. By completeness and soundness, sudéh @n
determine whetheX, = X; or Supp(Xp) N Supp(X;) = 0, just given oracle access &, and X;. We
claim this is impossible. This is becausts view will be statistically independent of whether it issgn
aYES or NO instance; in both case® will simply see distinct, (almost) uniformly distributedeenents of
{0,1}%F at each point it querieX, and X ;.

Therefore, it suffices to show thaf’s oracle access upp(X) is “useless” in the sense that we can
removeM'’s queries toSupp(X;) without affecting the completeness or soundness of thef mysiem.
Here is where we exploit the fact that the proof system isiputdin. Consider the first query that M/
makes tdSupp(X ). If M has previously obtained by evaluatingX; at some point, then the response of
the oracle will certainly bd, so it need not ask the query. We claim that, with high prdhiglover the
choice of a randonYEs instance,M cannot generate any other queries that li€iupp(X;). Intuitively,
this is because the points at which it has querdgdgive M essentially no information about other points
in Supp(X7), and X is essentially independent of; (since two independently selected mappings from
{0,1}™ — {0, 1}3" will have disjoint ranges with high probability). Note thdtdoes not provide// with
any assistance in generating a useful query, sihoaly sendsy random coin flips. We conclude that we
can removeM'’s queries toSupp(X;) only slightly reducing the probability that accepts on a random
YES instance. So, completeness is preserved on almosgkalinstances, and soundness is preserved since
we have not modifiedi. This yields a contradiction.

The main lemma. While for motivation above, we allowed, and X; to have much higher complexity
than the algorithmsl/ and A, we want to prove that a black-box transformation must fedreif A/ and

A are given running time polynomial in the circuit sizesX§ and X;. We will show how to construct
efficient, pseudorandom versions of the mappifgsand X, used above, and these will suffice to complete
the proof. The following lemma states the properties that@eded to prove our main theorem.

Lemma 6 If one-way functions exist, then there are ensembles oftwlitions { DY } xen and {DX, }nen 0N
pairs of circuits such that:

1. D¥ and Dk, only produce pairg Xy, X1) such thatX, and X; both map{0, 1}* to {0, 1}** and both
are circuits of size at mostoly (k).

2. Pr[D% € DSy] =1andPr [DE € DSy] > 1-27F.
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3. For every probabilistic polynomial-time algorithi, there is a negligiblé function« such that

Pr [BXO’Xl(lk):l e [BXO:Xl(lk)zl} < a(k).

(Xo0,X1)«DE (Xo0,X1)«Dk,

4. For every probabilistic polynomial-time algorithi , the probability thatd/ succeeds in the follow-
ing experiment is bounded by negligible functiorkof

(@) Select( Xy, X;) « DY.
(b) RunM ~o-X1(1F) to obtain outpute.
(c) M succeedd = € Supp(X;) and M did not obtainx as a response to a query to thg -oracle.

We defer the proof of this lemma to the next section and paeeéh the proof of Theorem 1. The
proof essentially follows the motivation given above.

Proof of Theorem 1: Suppose the theorem is false. Then there are polynomial-digorithms) and A
such that M Xo-X1,8upp(X1) " 4X0.X1) gives a public-coin proof system forilBIoINT SUPPORT Recall that
M and A are not givenX, and X explicitly as input, though they may run in time polynomialthe size
of the input| (X, X1)|.

We may assume that the completeness and soundness erratsransgtl /3. In particular, the probabil-
ity that A accepts in the following experiment is at le@g8:

Experiment |
1. Select Xy, X;) + DL,

2. Run the interactive protocol betwe@diXo-X1:5upp(X1) (1) and AXo-X1(1%), at the end of whichd
accepts or rejects.

We will show that there is a probabilistic polynomial-timey@rithm 1, such that if A Xo-X1,8upp(X1) jg
replaced byM; ! in the above experiment will still accept with probability at leas?/3 — neg(k).
M, is defined as follows; °*" simply simulates\/Xo-X1.5upp(X1) yntil M tries to ask a query to the
Supp(X)-oracle. Ifz was previously obtained as a response to a query t&theracle, M, feedsM the
responsd, otherwise it gives the responge

To show thatA still accepts with probability2/3 — neg(k) when M, is used, it suffices to show that
M, answers all ofM’s queries correctly with all but negligible probabilityf this weren’t the case, then
the following algorithmAZ3; would violate Property 4 in Lemma G\Z[:f(o’xl first chooses uniformly from
{1,...,q(k)}, whereg(k) is polynomial bound on the number of querigsmakes to th&upp(X; )-oracle.
ThenMj; proceeds exactly a®l, until M makes itg’th queryz to theSupp(X;)-oracle, at which poinid/;
halts and outputs. Now, wheneverV/, would answer some query incorrecthfs succeeds if it choosas
corresponding to the first incorrect response, which happéth probabilityl/q (k).

Therefore, replacing/Xo-X1,5upp(X1) with M2X°’X1 will decreaseA’s acceptance probability in Exper-
iment | by at most a negligible amount. Now consider the pbdlsdic polynomial-time algorithmB which,
when given oracle access X and X, simulates the interaction betweﬁsf‘rj(o’x1 andAXoX1 and outputs
1iff A accepts. When giveiX, X;) < DSy, B will output 1 with probability at leas2/3 — neg(k) by
what we have just shown. When givéR,, X;) < DSy, B will output 1 with probability at most /3, by
the soundness of*o-X1, This contradicts Property 3 of Lemma 6. [

2A function o : N — [0, 1] is negligibleif for every polynomialp : N — N, a(n) < 1/p(n) for sufficiently largen.
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The above proof highlights the difficulty faced by a provemipublic-coin proof system. It is more
difficult for the prover to make “useful” queries to an orgdece it must essentially generate the queries
on its own; the verifier only provides random coin flips.

3 Proof of Lemma 6
The construction of circuits we need is based on pseudoraqemutations [LR88].

Definition 7 LetP = |J, Pk, wherePy, is a set of permutations, : {0,1}* — {0, 1}* indexed by seeds
s € {0,1}* (for some constant > 0). P is said to be a family aftrong pseudorandom permutatiéhthe
following properties hold:

1. Givens € {0,1}*° andz € {0, 1}*, ms(z) and 7, ! (x) can be evaluated in timgoly (k).

2. For every probabilistic polynomial-time algoritheh, there is a negligible function: such that

Py [A”sv”?l(l’f) - 1] B [A”‘l(l’f) - 1]‘ < a(k),

5<-{0,1}k¢ TG,k

wheregy, , denotes the set of all permutations { 1}*.

Luby and Rackoff [LR88] showed how to construct a pseudasem@ermutation family based on any
pseudorandom function family, which in turn can be consedidrom any one-way function [GGM86,
HILL99]. Simplified constructions and analyses of pseuddwan permutations can be found in [NR97].

Theorem 8 ([LR88, GGM86, HILL99]) If there exist one-way functions, then there exist pseutttmm
permutation families.

From pseudorandom permutation families, it is easy to coaspseudorandom one-to-one functions.

Lemma 9 Assume one-way functions exist. Then there is a family ofitis 7 = |J,, F), whereF, is
a set of one-to-one functiong : {0,1}* — {0,1}3* indexed by seeds € {0,1}*° (for some constant
¢ > 0), with the following properties:

1. Givens andz € {0, 1}*, f,(x) can be evaluated in timgoly (k).
2. For everyz € {0,1}*, f,(z) is distributed uniformly in{0, 1}3* (over the choice « {0, 1}*°).

3. For every probabilistic polynomial-time algoritheh, there is a negligible functior: such that

R A e

wheregy, 3. denotes the set of all one-to-one functions figmi }* to {0, 1}3%.

4. For every probabilistic polynomial-time algorithr, the probability thatA succeeds in the following
experiment is bounded by a negligible functiorkof

(@) Chooses « {0,1}*.
(b) Executed’s(1*) to obtain outputz.



(c) A succeedsf z is in the range off; and A did not obtainz as a response to a query to the
fs-oracle.

Proof: By Theorem 8, there is a strong pseudorandom permutatiotyfdh= J P,. We obtain our
function family 7 = (J 7}, as follows: A function inf, , € F}, is indexed by a permutation, € P3; and a
stringy € {0, 1}3%, and is defined by; , (z) = m5(200%*)®y. f,, is one-to-one becauses a permutation.
fsy(x) varies uniformly over{0, 113k just over the choice of;, so Property 2 holds. Properties 1 and 3
are straightforward to verify from the properties of psaadolom permutations. Property 4 also follows
from the definition of strong pseudorandom permutationss kasy to see thatt would succeed with
negligible probability iff were constructed using a truly random permutaiionstead of the pseudorandom
permutationr,, even ifA is also given the random translatignSince the success dfcan be checked using
oracle access to—! (together withy), it can be used to build a distinguisher for the strong pssartiom
permutation familyP. |

We now prove Lemma 6.

Proof of Lemma 6: LetP = [J Py be a family of strong pseudorandom permutations andlet | F
be the family of functions guaranteed by Lemma 9. The distigins D¥. and D%, are defined as follows:

D@: Selectf, and f; independently fron¥,. Let X, and X; be the circuits evaluating these functions.
Output(Xy, X).

Dk.: Selectf randomly fromF;, andr randomly fromP. Let X, be the circuit evaluating, and letX; be
the circuit evaluating’ o . Output(Xy, X).

We now prove that all the properties required by Lemma 6 hdlde circuit sizes ofX, and X; are
bounded bypoly (k) by the efficiency ofP and F, so Property 1 holds. For Property 2, note tlfisind
f o m both induce the uniform distribution on the rangefgfso va always producesio instances. To
see thatD¥. almost always produceses instances, note that for everyy € {0,1}*, the probability that
fo(z) = fi(y) is 273k (by Lemma 9, Item 2). Hence, the probability that the ranggafnd f, intersect is
at most(2¥)2 . 273% = 2% and Property 2 holds. For the indistinguishabilityZo§. and D% (Property 3),
observe that a polynomial-time algorithm would have onlganentially small advantage in distinguishing
the two distributions if all the functions usegy( f1, f, andx) to constructX, and X; were truly random
one-to-one functions. The indistinguishability then dals from the pseudorandomness of the families
andF. Finally, Property 4 follows immediately from Lemma 9, Itein |

4 Extensions

As mentioned in the introduction, the proof system fas@INT SuPPORTON Which our construction is
based is actually honest-verifier perfect zero knowledgeddinition, this means that there is a probabilistic
polynomial-time simulator which, when fedes instancez, produces an output distribution which is
identicalto the verifier's view of the interaction with the prover ompin z. (The verifier'sviewis a random
variable(7; ) consisting of a transcript of all the messages exchanged together with the verifierdaia
coinsr.) Such a simulator for Protocol 5 is given by Algorithm 10.



Algorithm 10: Simulator for DISJOINT SUPPORTproof system

Input: Circuits Xy and X (each withm input gates and output gates)
1. Select < {0,1}. Choose- < {0,1}™ and letz = X(r).
2. Letc =hb.
3. Output(z, ¢; b, r)

It is immediate to verify that, oNES instances of DS, this simulator’s output distribution isntical to
the V'’s view of Protocol 5. Now, a transformation from honestiier perfect zero-knowledge proofs to
public-coin proofs, such as the one given by Okamoto [Oka®@jht also make use of black-box access to
the simulator. But, for this proof system, black-box acdegte simulator is equivalent to black-box access
to the verifier. For a fixed inputXy, X ), the simulator simply takes a pdir, b) and output$ X;(r), b; b, ).

As was the case with the verifier, having oracle access tduhéion is equivalent to having oracle access to
Xp andX; individually. Therefore, having oracle access to the satarldoes not help in giving a black-box
transformation. This establishes Theorem 2.

A second observation about our construction is that thenagson that one-way functions exist is
unnecessary if we only want to rule ostrongblack-box transformations. Recall that a strong black-box
transformation of interactive proofs is one that works rdigss of the computational complexity of the
verifier's strategy; the Goldwasser—Sipser transformaf(eS89] is an example of such a transformation.
In such a case, the inputis irrelevant, except that it bounds the number of randomsased by the two
parties and the total amount of communication between tloelne & polynomial irjz|. To show that there
do not exist strong black-box transformations from priveténs to public coins that preserve the prover’s
complexity, it suffices to have an analogue of Lemma 6 in wkhehcondition on the sizes of the circuiXy
and X, is removed (though their input and output lengths shouldaieth and 3k, respectively). Such an
analogue can be provemconditionallyusing truly random permutations and one-to-one functiatiser
than pseudorandom ones.

5 Perfect completeness

Recall that an interactive proof is said to hgpefect completenestkthe verifier accepts with probability
1 onYEs instances. In this section, we discuss black-box transdtioms from interactive proofs to ones
with perfect completeness. Furer, Goldreich, Mansoys&ij and Zachos [FGWB9] have given such a
transformation, in fact a strong black-box transformatibut it does not preserve the prover's complex-
ity. Below, we explain why there can be no strong black-b@nsformation that preserves the prover's
complexity (Proposition 3).

Lemma 11 Suppose there is a black-box transformation from intevacfiroofs to ones with perfect com-
pleteness that preserves the prover's complexity. Therarfp interactive proof syster’, V') for any
problemlII, there is a probabilistic polynomial-time algorithr such that:

1. z € Iy = Pr[AP=Ve(1l)] = 1.

2. z € lly = Pr[AP=Ye(12h] < 1/2.



Above,P, andV, denote the strategies &f and V' on inputz. If the transformation is a&trongblack-box
transformation, then the same conditions hold evénig allowed to be computationally unbounded.

Proof: A simulates the transformed proof systéfl, V') on inputz and outputs 1 i/’ accepts. |

A subclass of interactive proofs are ones in which the venfaver interacts with the prover — these
are equivalent tPP algorithms. In such a cage, is useless, so Lemma 11 says that can deciddl
with one-sided error. Sinc¥ is polynomial time, this implies thdli € co-RP. Thus, we conclude that
BPP C co-RP. SinceBPP is closed under complement, we have:

Proposition 12 If there is a black-box transformation from interactive pf® to ones with perfect complet-
ness that preserves the prover's complexity, iB&#P = ZPP.

What does this reasoning give fstrongblack-box transformations? In this case, the verifier sgat
V; can be an arbitrary function from the space of its random tEises (say0, 1}") to {accept,reject}
which either accepts at least 2/3 of its inputs or rejecteadtl|2/3 of its inputs. Lemma 11 says that a prob-
abilistic poly(m)-time algorithm can distinguish between these two casds avie-sided error, given only
oracle access t,. This is impossible if there are no restrictions placed@nThis proves Proposition 3.

This provides an explanation for why the transformation dfdfet al. does not preserve the prover's
complexity, but we used the restriction to strong black-baxsformations in an essential way. The con-
clusion for non-strong black-box transformatio®EP = ZPP) was much weaker, in fact quite plau-
sible. This is not an accident. Under plausible intracigbdssumptions, a series of works (beginning
with [NW94] and culminating in [IW97]) have constructed psgerandom generators : {0, 1}0(1035 m)
{0,1}™ whose output looks pseudorandom to any algorithm runnitigie, say;»?. Such a pseudorandom
generator can be used to give a black-box derandomizatianydPP algorithm by running the algorithm
on all possible outputs of the generator. The resultingratyn is deterministic, so has not only one-sided
error, but zero error. Under stronger (but still plausil@de3umptions, analogous pseudorandom generators
can be made for constant-round public-coin interactivepsgstems [AK97, KvM99, BV99]. These gen-
erators can be used to derandomize such a proof system lgirgpthe verifier's messages (which consists
of random coin flips) with all possible outputs of the genaratThis preserves the prover's complexity
and the result is a deterministic proof systdam.(an NP proof system), so it certainly has perfect com-
pleteness. While these results do not cover all interagieef systems, they suggest that there may very
well be a black-box transformation from interactive protf®nes with perfect completeness that preserves
the prover’'s complexity. Proposition 12 shows that thetexrise of such a transformation is closely tied
to issues in derandomization; at a minimum it would im@¥YP = ZPP. As we currently only know
how to obtain the latter conclusion under intractabilitgwaptions, we would also expect the black-box
transformation to rely on such an assumption.

6 Conclusion

This main result of this paper demonstrates that, undedatdnassumptions, current techniques are in-
sufficient to convert private-coin interactive proofs iqablic-coin interactive proofs while preserving the
complexity of the prover. It would be interesting to give armabsolute separation, showing that it is strictly
easier to prove some statements to a private-coin verifger th a public-coin verifier. That is, construct
a problemII with a private-coin interactive prodfP, V') such thafll hasno public-coin interactive proof
where the prover can be implemented in polynomial time wititke access t&. Presumably such a result
would be under an intractability assumption. Bellare anti@asser [BG94] have given results of this na-
ture for a different issue, namely separating the power e én decide a language from the power needed
to prove membership.
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While we have considered the problems of converting interaproofs to ones with public coins or per-
fect completeness, there are several other general tramations of interactive proofs lacking one or more
desirable properties. For example, the transformatiom fgeneral interactive proofs to zero-knowledge
proofs [BGG"88] does not preserve the prover's complexity. Another gtarns the Collapse Theorem
of Babai and Moran [BM88], which does preserve the proverimplexity, but does not preserve any sort
of zero knowledge property. Both of these transformatiaesbéack-box transformations, and it would be
interesting to determine if this makes their deficienciesessary.
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