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Verifiable Random Functions

Silvio Micali* Michael Rabir Salil Vadhan

Abstract random string of the proper length. The possibility thus ex-
ists that, if it so suits him, the party knowing the seaday

We efficiently combine unpredictability and verifiability by declare that the value of his pseudorandom oracle at some
extending the Goldreich—Goldwasser—Micali construction pointz is other thary(z) without fear of being detected. It
of pseudorandom functionf from a secret sees, so that is for this reason that we refer to these objects as “pseudo-
knowledge of not only enables one to evaluafe at any random oracles” rather than using the standard terminology
point z, but also to provide aflNP-proof that the value  “pseudorandom functions” — the valugs(z) come “out
fs(z) is indeed correct without compromising the unpre- of the blue,” as if from an oracle, and the receiver must sim-
dictability of f, at any other point for which no such a proof ply trust that they are computed correctly from the seed
was provided. Therefore, though quite large, the applicability of pseu-
dorandom oracles is limited: for instance, to settings in
which (1) the “seed owner”, and thus the one evaluating
the pseudorandom oracle, is totally trusted; or (2) it is to
the seed-owner’s advantage to evaluate his pseudorandom
oracle correctly; or (3) there is absolutely nothing for the
PSEUDORANDOM ORACLES Goldreich, Goldwasser, and  gged-owner to gain from being dishonest.
Micali [GGM86] show how to simulate a random ora- One efficient way of enabling anyone to verify thfatx)
cle frqm a-b.it strings tob-bi.t strings by means of a con- really is the value of pseudorandom oragleat pointz
struction using aseed that is, a secret and short random clearly consists of publicizing the seed However, this
string. They show that, if pseudorandom generators existyij also destroy the unpredictability of,: anyone could
[BM84, Yao82], then there exists a polynomial-time algo- easily compute the value gt at any point.

rithm F(l;,f-) such that, lettings denote the seed, the func- We instead wish to provide a new type of pseudoran-
tion f, = F(s,-) : {0,1}* — {0,1}" passes all effi-  dom oracle. Informally, we want one in which the owner
cient statistical tests for oraclesThat is, to an observer  of the seeds can, as usual, evaluae at any point, but
with sufficiently limited computational resources, accessing also prove (with ailNP proof') that the so obtained values

a random oracle fronf0, 1} to {0, 1} is provably indis-  are indeed correct without compromising the unpredictabil-

1 Introduction

tinguishable from accessing (as an oragfg) even if al- ity of the value off, at any pointz for which no proof
gorithm F" is publicly known (provided that is still kept  of correctness foif,(x) is given. That is, given an input
secret). x, the seed-owner should be able to produce in polynomial

time the valuev = f,(z) together with a stringroof , ef-
THE PROBLEM OF CONSTRUCTING VERIFIABLE PSEUDO ficiently proving that is correct. The scheme should have
RANDOM FUNCTIONS. By its very definition, a pseudoran- the property that ainiquevaluew is provable as the value
dom oracle a la [GGM86] is naterifiable without knowl- of fs(xz). We call such a mathematical objecverifiable
edge of the seed (or any other additional information), upon (pseudo-)random functioVVRF for brevity.
receiving the value of a pseudorandom oracfg at point
x, one cannot distinguish it from an independently selected A’ WEAKER SOLUTION: PSEUDORANDOM ORACLES+
_ _ ZERO-KNOWLEDGE PROOFS If interaction were allowed,
| Laboratory for Gomputer Science, MIT, Cambridge, MA 02139. - ypEg could be constructed from GGM pseudorandom or-
Department of Applied Science, Harvard University, Caiipei, MA . .
02138. Work supported in part by NSF Contract CCR-9877138. acles via zero-knowledge proofs [GMR89] and a commit-
IMIT Laboratory for Computer Science. 545 Technology Square Mment scheme. Indeed, as suggested in a signature scheme

Cambridge, MA 02139. E-mail:salil@theory.lcs.mit.edu : of Bellare and Goldwasser [BG89], the owner of the seed
URL: http://theory.lcs.mit.edu/salil . Supported by a
DOD/NDSEG fellowship and partially by DARPA grant DABT63-L- LStrictly speaking, we actually allowiMLA proofs”, since their verifi-
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s to a pseudorandom oracfg can publish a commitment
to s. Whenever he wishes to prove thais the value of his
oracle at a point to a verifierl, he proves in zero knowl-
edge toV thatv = fs(z) and thatc is a commitment ta.

changed. But VRFs may also be useful in settings where
the public key is provided “on the fly” to prove that vari-

ous function values (given previously or at the same time)
are indeed consistent with one single VRF. In case the VRF

Such a statement is provable in zero knowledge because albutputs strings longer than the public key, it may even be

NP statements are provable in zero knowledge [GMW91].
The trouble with such an approach is that it requires inter-
action. A very efficient incarnation of this idea is given by
Naor and Reingold [NR97], but it still suffers from the need
for interaction.

Such interaction could be removed by using noninter-
active zero-knowledge proofs (NIZK) [BFM88, BDMP91],
as done by Bellare and Goldwasser [BG89]. This ap-
proach however suffers from another drawback: noninterac-

tive zero-knowledge proofs presuppose that the prover and

verifier share a bit-string that guaranteedo be random.

useful to provide the public key on the fly to prove that
a singlevalue is consistent with some VRF, as this would
limit the owner to relatively few choices.

In addition to introducing this notion, we provide an ex-
plicit VRF construction, based on a variant of the RSA as-
sumption. Informally stated, we prove:

Main Theorem: Assume that the RSA function with
large prime exponents cannot be inverted in polyno-
mial time. Then, there exists a VRF froffi, 1}* into

{0,1}.

So the question is who is to select this shared random string

R. Each of the possibilities has a deficiency that we wish to
avoid in defining VRFs:

1. The seed owner seledss If the seed owner selects the
shared random string improperly, the soundness of the
NIZK proof system is no longer guaranteed, so there
may be many valuesthat are “provable” ag; (z).

. The verifier select®: If the verifier selects the shared
random string improperly, the zero-knowledge prop-
erty of the NIZK proof system is no longer guaranteed.
Thus, by provingfs(x) = v with respect to such an
improperly choserR, the prover may leak knowledge
about the seed and f, will “lose” its pseudorandom-
ness.

. The seed owner and verifier jointly selétby a “coin-
flipping” protocol.: This requires interaction, which
we wish to avoid.

. A trusted third party select®: We do not want to as-
sume the existence of such a trusted third party.

OUR SOLUTION. We propose a notion of VRF’s which
needsneither interaction nor sharing a guaranteed ran-
dom string Rather, we only require that the owner of the
function f publish a public keyPK, which can be viewed
as a commitment to the functiof. (Indeed, something
must bind the owner to the function in order for “proving
the statemenf(z) = v” to make sense.) The crucial way
in which our notion differs from what the NIZK-based ap-
proach discussed above achieves is:

For any public keyPK , even an improperly chosen gree
unique valuer is provable as the value gf(x).

OVERVIEW OF THE CONSTRUCTION We motivate our
construction by first discussing the relationship between
VRFs and secure signature schemes. In a signature scheme
that is existentially unforgeable against a chosen message
attack [GMR88], the signature of a messagedenoted
SIG(z), is a value that is unpredictable (even given sig-
natures of chosen other messages), but verifiable (given the
proper public key). However, such schemes do not directly
give rise to VRFs by setting (z) to be SIG(z), for two
reasons:

1. There may be many valid signatures for a given string
x (violating the unique provability requirement).

2. SIG(x) is only unpredictable, not necessarily pseudo-
random.

We begin by discussing the first deficiency, as it is the
more serious one. Even though the definition does not guar-
antee the uniqueness of signatures, one might hope that ex-
isting signature schemes happen to have this property. How-
ever, most known secure signature schemes are @itblef
abilistic or history dependentEither property violates the
the unique provability requirement: if we defifiéz) to be
SIG(x), there may be a multiplicity of signatures efand
thus a multiplicity of f(x) values, all duly provable. One
can transform a probabilistic signature scheme, such as the
scheme in [GMR88], into a deterministic one if the signer
uses a GGM pseudorandom oracle to replace the random-
ness used. Even so, this does not yield a VRF because one
cannot be certain that the signer used the proper GGM ora-
cle when producingIG(z), and hence unique provability
is NOT guaranteed.

More generally, it is not enough that the specified signing

Thus, we may safely have the owner of the function unilat- algorithm produces a unique signature for every message.
erally select and publish the public key. The most obvious Rather, it should be the case that the verification algorithm
scenario in which this applies is when the public key can be accepts a unique (or at most one) signature for every mes-
published once and for all, in a location where it cannot be sage (given any fixed, but even improperly chosen, public



key). A signature scheme that satisfies this latter propertyrity. This restriction on input length is of no concern, be-
can be thought of as\erifiable unpredictable functigthat cause we increase the input length after converting it into a
is, a verifiable unpredictable function is defined analogously VRF using the tree-based construction mentioned above.
to a verifiable pseudorandom function except the pseudo-

randomness requirement is replaced with unpredictability. o Preliminaries3

So the two questions that remain are (1) do verifiable un-
predictable functions imply verifiable pseudorandom func-
tions?, and (2) can we construct verifiable unpredictable
functions? The natural approach to answering the first ques
tion is to use the hardcore bit construction of Goldreich and
Levin [GL89], which is a general tool for converting un-
predictability to pseudorandomness. That is, we replace
the verifiable unpredictable functiofi(x) with f'(z) =
(f(z),r), wherer is a randomly chosen binary string of the
same length ag(x) and(-, -) denotes mod-2 inner product.
Note that for this construction to preserve verifiability,
should be placed in the public key (the proof tligt:) = b
is a stringv such thatr, v) = b together with a proof that
f(xz) = v). Unfortunately, it has been shown by Naor and A(x);--- : p(z,y1, ...
Reingold [NR98] that using a public Goldreich—Levin vec- thatp(z,y1,...,yn, ) Will be true after the ordered ex-
tor r does not work in general for converting unpredictable ecution of the algorithms & S; v, ..., y, < A(z);---.
functions into pseudorandom functiohsThe way we get
around this obstacle is by noting that, a publican be
used if we restrict to functions whose input length is log-
arithmically related to the security. Then, we remove this
restriction on the input length via a tree-based construction
which converts any VRF with a fixed input length into one
whose domain ig0,1}".

Thus, we are left with the task of finding a veri-
fiable unpredictable function. Our construction builds
upon an RSA-based unpredictable number generator of
Shamir [Sha83], adapted to secure signature schemes by 2.
[GMY83, DN94, CD96, GHR99, CS99]. Shamir shows that
seeingr!/¢ mod m for different exponents;,,...,e;,

If A() is a probabilistic algorithm, then for any input
x, the notation A (z)” refers to the probability space that
‘assigns to the string the probability that4, on inputz,
outputse. If S is a probability space, then:*& S” de-
notes the algorithm which assignsit@an element randomly
selected according t§, and “z1,...,z, & S” denotes
the algorithm that respectively assignsio, . . . , x,, n ele-
ments randomly and independently selected accordifg to
If Fis a finite set, then the notation:“& F” denotes the
algorithm that chooses uniformly from F. If p(-,-,---)
is a predicate, the notatidPROB[z < S;y1,...,yn &
,Yn, ++)] denotes the probability

3 The Notion of a VRF
3.1 An Informal Exposition

VRF GENERATION. To be a VRF, a functiorf must pos-
sess both

1. a compactimplicit representationwhich does not en-
able one to evaluatg efficiently, and

a compactexplicit representatiorwhich enables any-
one to evaluatg efficiently.

does does not help one pred;ifh/‘”m1 mod m as long as
all of thesek + 1 exponents are relatively prime to each
other and tap(m). This suggests constructing a verifiable

The first representation can be viewed f&s public key
PK};, and the second as its correspondiregret keySK ;.
Of course,SK will be hard to compute fronP K. Ac-

cordingly, to formalize our notion of a VRF we make use of
a probabilisticgeneratingalgorithmG outputting a public
key with its matching secret key from a sequence of coin
tosses.

unpredictable function by placing andr in the public key,
and definingf (i) to bev = r'/¢* mod m. This can be ver-
ified simply by checking that® = r mod m; the solution
v € Z7, to this equation will be unique as long agis
guaranteed to be relatively primeddm). Thus, we obtain
all the desired properties as long as we can efficiently index VRF COMPUTATION AND VERIFICATION. Knowledge of
into a set of suck;’s which are guaranteed to be all rela- Sy enables one both to evaluafeand to prove the cor-
tively prime to each other and ti(m). We accomplish this ~ 'ectness of such evaluations. We actually envisagefthat
by restricting to exponents which are distinct primes larger i always computed together witproof ., a string “prov-
thanm, and we index into such a set by using the prime se- N its correctness”, by running an efficient algorittfron
guence generator of Cachin, Micali, and Stadler [CMS99]. inputsz and SK;. The functionf proper is thus evalu-
This turns out to yield a verifiable unpredictable function ated by running?, so as to obtain a function value and its

whose input length is logarithmically related to the secu- Proof, andthen “stripping out” the proof. The correctness of
proof ., is instead verified by running an efficient algorithm

V oninputsPKy, z, f(z), andproof ,. For convenience,

2Interestingly, they show that usingpaivate  does in fact work. This
is the only known application of the Goldreich—Levin handcbit where
keeping the vector private is necessary.

3Verbatim from [BDMP91] and [GMR88].



we denote the two componentsB{SK, ) by F1 (SK, x)
andF»(SK, z) (corresponding to thg(z) andproof ,, re-
spectively).

Because a proof of correctness ffitr) is only checked
againstf’s public key, we require that it is impossible to find
a public key (even a “fake” one) of a VRF for which one can
“prove” the correctness of two different VRF outputs for the
same VRF input.

VRF PSEUDORANDOMNESS Our VRFs are unpredictable

e V (the function verifie} is probabilistic; receives as
input four binary strings PK, x, v, andproof); and
outputs eitheES or NO.

Leta:N — NU {x} andb, s: N — N be any three func-
tions such thatu(k), b(k), s(k) are all computable in time
poly(k) anda(k) andb(k) are both bounded by a polyno-
mial in k (except whem takes on the value). We say that
(G, F, V) is averifiable pseudorandom function (VRkith
input lengtha(k),* output lengthb(k), andsecuritys(k) if
the following properties hold:

in a very strong sense, that suitably generalizes to our con-

text the original notion of [GGM86]. Informally, VRFs pass
all efficient statistical tests for functiotas those values for
which no proof of correctness was provided. In essence,
an efficient statistical test for verifiable functions is an ef-
ficient algorithmT" that is given the public key of one of
our functionsf, and then “experiments witli” by asking
and receiving both the function value and its corresponding
proof of correctness at any input of its choice. After this
experimentation phasé, outputs a string: in the domain

of f, theexam which is supposed to be different from any
input on which it has already queried the function. At this
point, 7" is provided with a value that, with equal proba-
bility, consists of either (a)f evaluated at the exam or (b)

a random value irnf’s range. Theri’ enters a “judgement
phase,” in which it attempts to guess whether (a) or (b) is the
case (after obtaining additional function values and proofs
at points of its choice other thar). We say that our VRFs
pass statistical tedt if the probability of 7" guessing cor-
rectly is not substantially better tharg2.

We find it convenient to think of" as comprising two
componentsT’y andT;. Tk is the experimental compo-
nent that querieg and computes the exam, whilgy the
judging component that, given the exam andries to dis-
tinguishes whether is the value off at the exam or a ran-
dom value. To enable coordination betwdgnandT’;, we
let s pass on td’; not only the exam, but also any piece
of “state” information that it may deem useful.

3.2 A Formal Definition

Definition (VRFs):
algorithms, where

LetG, F', andV be polynomial-time

¢ (G (thefunction generatdris probabilistic; receives as
input a unary string (theecurity parametek); and
outputs two binary strings (theublic keyPK andse-
cret keySK) ;

F = (F, F») (thefunction evaluatoyis determinis-
tic; receives as input two binary stringSK and an
input z to the VRF); and outputs two binary strings
(thevalue F; (SK, =) of the VRF onz and the corre-
spondingproof = F»(SK,z)); and

1. The following conditions hold with probability —
2=k over(PK, SK) <& G(1%):

(a) (Domain-Range Correctness):
forallz € {0,1}""®, F,(SK,z) € {0,1}"™,

(b) (Complete Provability): for att: € {0, 1}*" if
(v, proof) = F(SK , x),
PROB[(V (PK , z, v, proof) = YES] > 1—2~9k)
(this probability is over the coin tossesB).

2. (Unique Provability): For ever¥K , x, v1, v, proof ,
andproof , such thaw, # v, the following holds for
eitheri = 1ori = 2:

PROB|V (PK , z,v;, proof ;) = YES] < 2~9(%)

(this probability over the coin tosses b).

. (Residual Pseudorandomness): Tet= (T, T;) be
any pair of algorithms such thai (-, -) andZy (-, -, -)
run for a total of at mosk(k) steps when their first
inputis1*. Then the probability thaf succeeds in the
following experiment is at mosit/2 + 1/s(k):

(@) RunG(1*) to obtain(PK, SK).
(b) RunT/ %) (1%, PK) to obtain(z, state).

(c) Choose- < {0, 1}.
i. if r=0,leto=F(SK,z).

ii. if r =1, choosey & {0,1}"™,
(d) Ruan(SK")(lk, v, state) to obtainguess.

e T (T, T,) succeedsf z € {0,1}*"®),
guess = r, andx was not asked as a query to
F(SK,-) by eitherTy or 7.

If (PK,SK) & G(1*), we shall refer tof(-)
F,(SK,-) as anindividual VRFE If a(k) = = for all k, we
say that the VRF hasgnrestricted input length.

4Whena(k) takes the value, it means that the VRF is defined for
inputs of all lengths. Specifically, (k) = *, then{0, 1}“(k) is to be
interpreted as the set of all binary strings, as usual.



Remarks. 3. (Residual Unpredictability) LeT'(-, -) be any algorithm

1. Note the adversafy} = (Tg,T;) is givenF(SK, -) as that runs in times(k) when its first input isl*. Then
an oracle, and thus gets answers that include function the probability thafl” succeeds in the following exper-
values and proofs of their correctness. iment is at mosl /s(k):

2. A VRF with inr_)ut lengthu(k) and output Iengttb(k)_ 1. RunG(1*) to obtain(PK, SK).
can and securitg(k) can be converted into one with
input lengtha’ (k) = a(k) — [log, £(k)], output length 2. RunT*(K-)(1*%, PK) to obtain(z, guess).
b' (k) = b(k) - £(k), and security’ (k) = s(k)/L(k).
Simply definef’(z) = f(zowui)o f(xouz)o--- f(xo
Ug(k)), Whereuy, ..., uy ) are the first(k) strings of
length [log, £(k)]. (A factor of £ is lost in the secu-
rity because it takeé queries tof to simulate a single
query tof’, and because a factor bfs lostinthe ad- 4 Formal statement of results
versary’s success probability in the “hybrid argument”
based security reduction.) First, we exhibit general techniques for converting VUFs
Hence, to construct a VRF it is sufficient to fix= 1 to VRFs and increasing the input length for VRFs.
(i.e., to construct a “verifiable pseudorandom predi-
cate”), and vice versa. In this case, residual unpre- Proposition 1 (from VUF to VRF) If there is a VUF with
dictability can be so simplified: input lengtha(k), output lengthb(k), and securitys(k),

then, for anya’(k) < a(k), there is a VRF with input
3. (Residual Pseudorandomness for Predicates): Letlengtha/(k), output lengthb(k) = 1, and securitys’ (k) =

T(-,-) be any algorithm that runs in time(k) s(k)L/3 / (poly(k) - 2¢ (),
when its first input isl*. Then the probability
that7" succeeds in the following experimentis at Proposition 2 (increasing the input length) If there is a

3. T succeedsif =z € {0,1}"®, guess =
F,(SK,z), andz was not asked as a query to
F(SK,-)byT.

mostl/2 +1/s(k): VRF with input lengtha(k), output length 1, and se-
(@) RunG(1%) to obtaln(PK,SK).. curity s(k), then there is( ; VRF with unrestricted input
(b) RunT*(5:)(1*, PK) to obtain(z, guess). length, output lengtb(k) = 1, and security at least
(c) T succeedsf = € {0,1}*™, guess = min{s(k)/?,2¢*)/5} /poly(k).

F,(SK,z), andz was not asked as a query

to F(SK,-)byT. These two propositions reduce the problem of construct-
The reasons the “judgement” compon@htcan ing VRFs to constructing VUFs. We do the latter based on

be eliminated for predicates are: (a) there are & variantof the RSA assumption. We denoteHiyIMES,
only two possible values far, so all the oracle ~ the _?et_ Cf[f thdf'?r']t E’”meti' and (EI))RtSAfkt the set of Cfolm_ "

- F(SK,) 1k posite integers that are the product of two primes of leng
i casen 0 or v = 1 can bb acked before  LUE — 1)/2]- (Fork: large, RSA, contains the hardest
actually receivings. (b) distinguishing a pred- bit |np.uts to any kqown factoring algorithm.) We make the
icate f(x) from a random bit with probability following assump_tlon on the hgrdness of RSA, where the
1/2+1/s(k) is equivalent to guessing(x) with exponent_s are primes (1-bit) _b|g_ger than the modulus. For
the same probability (cf., [Yao82]). any functions(k) computable in time polyk):

3 In order to (_:onstructa\_/RF, we will first construct a ver- The RSA’ s(k)-Hardness Assumption: Let A be any
ifiable unpredictable function, which can also be thought of probabilistic algorithm which runs in time(k) when its

as a signature scheme in which a unique (or at most onek; st input is1*. Then the probability that succeeds in the
signature is accepted by the verification algorithm for every following experiment is at mostt/s(k):

message and public key.

g P Y 1. Selectn & RSA;x & Z*;p & PRIMES;, ;.
Definition (VUFs): A verifiable unpredictable function 2. Lety & A(1%,m, z,p).
(VUF) (or unique signature scheme(G, F, V') with input 3. A succeed# y? = =
lengtha(k), output lengthb(k), and security (k) is defined
in the same way as a VRF, except that the Residual Pseudo6iven the state-of-the-art in computational number theory,
randomness requirement is replaced with the following: it seems reasonable to takek) = 2k’ for a small constant

5The terminology “unique signature scheme” was suggestess oy ¢ > 0, though we will be able to construct VRFs as long as
Moni Naor and Omer Reingold. s(k) = kM,

(mod m).




Proposition 3 (RSA-based VUFs)Let a(k) < poly(k)
and s(k) be any functions (both computable in time
poly(k)). Under theRSA" s(k)-Hardness Assumption,
there is a VUF with input length(k), output lengttb(k) =

1, and security’ (k) = s(k)/ (2**®) - poly(k)).

Putting all the above together, we conclude:

Theorem 4 Under theRSA' s(k)-Hardness Assumption,
there is a VRF with unrestricted input length, output length
b(k) = 1, and securitys(k)'/3> /poly(k). In particular, if
s(k) = kM (i.e., RSA’ cannot be inverted in polynomial
time), then the VRF also has securiy(!) .

Oa’fl
y=F(0 ) @ z=f0 #H?!
f(y0) fyl) f(z0) f(z1)
f(F(y1)0) fFy1)1)

To deduce Theorem 4 we apply the above Propositions

with a(k) = a'(k) = (logs(k))/7. Note that this requires
knowing ana priori lower bounds(k) on the security of

RSA’. However, this drawback can be removed. Thatis, we

can build VRFs whoseonstructionis independent of the
hardness oRSA’, while the security remains polynomially
related to that oRSA’. This can be done using a standard
trick, which we describe in the full version of the paper.

5 From Unpredictability to Pseudorandom-
ness

In this section, we sketch how to prove Proposition 1,
using the Goldreich—Levin [GL89] hardcore bit to convert
verifiable unpredictable functions to verifiable pseudoran-
dom function. The construction and proof will be given in
more detail in the full version of the paper. Given a VUF
f(), the VRFf'(.) is defined byf'(z) = (f(z),r), where
r is a binary vector chosen uniformly and placed in the pub-
lic key and(-,-) denotes inner product mod 2. The proof
that f'(z) = o consists of a value such that(v,r) = o
and a proof thaff (z) = v. The Domain-Range Correct-
ness, Complete Provability, and Unique Provability fof
all follow immediately from the same properties fof
We now outline the steps in the proof of the residual
unpredictability of f’. Suppose, for sake of contradiction
that there is an adversary running in times’ that predicts
f'(z) = (f(z),r) at an unseen value with probability at
leastl/2 + 1/s'. Then,
1. T can actually be used to gue§f(z),r) for a ran-
dom, prespecified: rather than one thdf’ chooses
its own. This can be done at the price of reducirig
success probability th/2+¢’ fore’ = 1/(2% -s"), be-
cause a randomwill equal the exan¥"’ chooses with
probability1/2a'. (Recall that' is the input length for
f)

. By a Markov argument, at least afy2 fraction of the
z’s,% the marginal probability thaf’ correctly guesses

6Actually, the choice off and the coin tosses @f should also be in-
cluded and fixed with: in thise’ /2 probability.

Figure 1. The tree construction

(f(z),r) taken just over the choice of is at least
1/24€/2.
3. The Goldreich—Levin reconstruction algorithm then
implies that for the same' /2 fractionz’s, f(z) itself
can be computed with probability at ledst(¢')?) at a
cost of increasing the running time @fby a factor of
poly(k)/(")?.
All together this gives an adversaryrunning in time
s' - poly(k)/(e')* < s which guesseg(z) correctly
at an unseen point with probability at legst/2) -
Q((¢")?) > 1/s, contradicting the fact thaf has se-
curity s.

4.

6 Increasing the input length

In this section, we sketch the proof of Proposition 2,
which takes a VRF with small (but super-logarithmic) in-
put length and converts it into a VRF with unrestricted in-
put length. The construction and its analysis will be given
in more detail in the full version of the paper. Létbe
any VRF with input lengtha, output length 1, and se-
curity s. By Remark 2 after the definition of VRFs, we
can easily transforny into a VRF f' with input length
a' = a — O(loga), output lengthy’ = «’ — 1, and secu-
rity s' = s/b' = s/poly(k).

From this VRFf’ which shrinks aru’-bit input by one
bit, we will construct a VRFf" which can take inputs of
arbitrary lengths. We vieyf’ as defining an infinite binary
tree whose nodes are labelled by strings of length 1.
The root of the tree is labelle@” —!, and the two children
of a node labelled, are labelledf’(y0) and f'(y1) (see
Figure 1). Now, to evaluat¢g” on a stringz, we view the
bits of z € {0,1}" as defining a path of lengthfrom the
root of the tree. We defing’(z) to be the label of the node
at the last point on this path. Now, a proof for the value of



f'" can be obtained by giving the labels of all nodes on this struction, we shall use the following two well-known facts
path together witty’-proofs for each label. aboutg(m):

One small problem with the construction as described so
far is that the path corresponding to a stringontains the ~ Fact 1: If mis the product of two distinct primeg andg.,
path corresponding to all prefices of so having seen the theng(m) = (1 — 1) - (g2 — 1).
proof for f'(x), one knows the value of” on all prefices
of z. To avoid this problem, we work with prefix-free
encodingof strings, which is a map — [z] from {0, 1}" to
{0,1}" such that there is no pair# y where[z] is a prefix _ _ _
of [y] and furthermorglfz]| = O(|z|) for all z. (ltis easy to (mod m) (there will bel none if(r,m) # 1). Thisa
construct such a map which is efficiently computable, e.g., (if it exists) is denoted- /¢ and one can compute it in
[D1ba - -+ be] = bibybaby - - - by 01.) polynomial time given inputs:, e, x, andg(m).

So, in the actual constructiory,(z) is computed as
follows: Let[z] = by---b; andyy = 0% =1, and recur-
sively computey; = f'(yi—1b;). f"(z) is defined to be
y¢. The proof thatf”(z) = y is a sequencéyy, ..., y;)
such thaty, = y together with proofs thag; = f'(y;—1b;).
The Domain—Range Correctness, Complete Provability, an
Unique Provability off”” follow from the same properties of
f'. The proof of Residual Pseudorandomness proceeds ag
follows:

1. As long as the subtree of labels seen by the adversaryTHE PRIME-SEQUENCE GENERATOR Ideally, a prime-
does not contain a repetition (i.e. two different nodes sequence generator is a 1-1 mapping— p, from a-
in the tree that have the same label), the valug'df  pit strings to (k + 1)-bit primes. Based on currently
at a new pointr is equal to the value of’ atanew  known results on the distribution of primes, such a map-
pointy (namelyy = y;_1b;, where[z] = bibs - - - by). ping certainly exists, but might not be efficiently com-
Hence, it is not be distinguishable from random. putable, unless one uses some unproven assumption — such
2. The subtree of labels seen by the adversary does nofS Cramer’s conjecture. To avoid making such assumptions,
contain a repetition: This follows from the residual W€ Use a a construction of [CMS99], which probabilisti-
pseudorandomness ¢f and the fact thaf’ has area-  cally constructs such a mapping as follows: Firsgka-
sonably large output lengthi. Suppose an efficient  Wise independent functiof from {0, 1} x {1,...,2k%}
adversary does find a repetition with noticeable proba- t0 the set of(k + 1)-bit integers is randomly selected and
bility. Then, one can predigt’ by randomly guessing fixed. Then,p, is defined to be the first prime among
which of the two nodes in the subtree form the first rep- @(z,1),Q(x,2),...,Q(x,2k?). Primes are sufficiently
etition, and using the label of the first node to predict dense so that this sequence of independlest1)-bit num-
the label of the second node. Being able to predict the bers will contain a prime with high probability, and even
value of f' at a new point with probability noticeably ~just the pairwise independence@fguarantees that all the
more thanl /2" distinguishes it from a random value, P-'S Will be distinct with high probability.

violating the residual pseudorandomnesg’of To implement this idea, we need a polynomial-time
primality testerPrimalityTest, e.g. one of the al-

gorithms given in [SS77, Rab80]. Such an algorithm
PrimalityTest takes a &k + 1)-bit integern and{ =
£(k) < poly(k) random bits and outputs 1 with high prob-

Fact 2: If (e, ¢(m)) = 1, thenthe mag — z¢ (mod m)
is a permutation oiZ},. In particular, for any inte-
gerr, there is at most one € Z}, such that:® = r

As outlined in the introduction, our VUF construc-
tion is based on the unpredictable number generator of
Shamir [Sha83]. The value ¢f(x) will be defined as!/?«
(mod m), wherem andr € Z, are public andp, is a
dprime 1-bit larger thamn. To define the indexing — p,

into a “random” set of large primes, we use a prime se-
uence generator of Cachin et al. [CMS99], which we de-
cribe first.

7 A Verifiable Unpredictable Function

In this section we construct a VUF based on RfgA’ ability if n is prime and outputs 0 with high probability if
hardness assumption, proving Proposition 3. First we recalln is composite. We assume that the error probability of this
some basic number theory. algorithm is at mos2~2* on (k + 1)-bit inputs. In order

for the final mapping to be deterministic, the random coins
NUMBER THEORY. We write (a,b) denote the greatest of PrimalityTest will be externally chosen and fixed and
common divisor of positive integetsandb. For a positive  given as input t®rimeSeq. Another technicality is that the
integerm, Euler’s totient functiong(m), is defined as the  2k2-wise mappingy will be defined by a polynomial over
number of positive integers m that are relatively prime  GF(2¥), so a representation of this field (i.e., an irreducible
to m. Under multiplication modulon, the set of all such  polynomial of degre& over GK2)) must be included with
integers form a group, denoted @y,,. In our VRF con- Q.



Now we formally describe the prime-sequence generator 1. UsePrimalityTest to compute (by trial and

PrimeSeq. The only modification to the construction of error) two random primeg; and g, (of length
[CMS99] is that we force its outputs to be “tru(% + 1)- [(k—1)/2]). Computen = q1q» € RSA, and
bit” integers (i.e., without leading 0's). then compute&(m) = (g1 — 1) - (g2 — 1).

2. r & 7%, coins & {0, 1}

Description ofPrimeSeq(, ) 3. Choose a representation for GR*) (by ran-
o . domly picking degreek polynomials over
Inputs:ana-bit stringz, a polynomiaty of degree at most GF(()2) and testing for irreducibiility) and leD
2k N Lover %F(Q ) (togeth_erw!th a rgpresentatlon of be selected uniformly from the set of all polyno-
the field GK2")), and ar¢-bit string coins. mials of degree at mog&? — 1 over GR2*).
Output a(k + 1)-bitintegerp, (a prime with overwhelm- 4. Output(m, r, Q, coins) andé(m).

ing probability over the choice @ andcoins).
Code forPrimeSeq(z, @, coins):
1. Forj =1,...,2k? lety; be the(k+1)-bit string

When givenz € {0,1}“, the evaluation algorithni'
usese to index into the prime sequence, obtaining a prime
10 Q(z o j), wherej denotes thg'th string in Pz, and outputs the,'th root of r € 77, as the value of

{0, 1}1@7@ under the lexicographic order and we Fhe VUF atz. This value is its own proof, so we do npt

. kA & include a separate proof in the output. Strictly speaking,

associate G)2") with {0, 1}". the output should be a bit-string of a fixed lengftk), so

2. UsePrimalityTest With random coinscoins elements ofZ?, should be written with leading zeroes to
to test eachy; (viewed as gk + 1)-bit integer)  make them of length exactly + 1 as strings. (Recall that
for primality, and letp, be the first (probable) 1 is the product of two primes of length{k — 1)/2], so
prime in the sequencg,ys, . - ., y22. Output m < (2(1@71)/2+1)2 = ok+1)

b DESCRIPTION OFF'(,-)

Inputs: A secret keySK = (PK,¢(m)), wherePK =
(m,r, Q, coins) andz € {0,1}°.

Proposition 5 ([CMS99]) Leta < k/2. Then, with prob- Output:a valuev € Z, (which is its own proof).

The main property of this generator that we will use is the
following.

ability at leastl — 2—2(%) over @ and coins selected uni- Code forF((m,r, Q, coins), p(m), z):
formly, {PrimeSeq(z, Q, coins) : z € {0,1}"} is a set of 1. Computep, = PrimeSeq(z, @, coins).  (We
2* distinct (k + 1)-bit primes. expectp, to be a(k + 1)-bit prime.)

2. Compute and output = 7'/P= (mod m).
THE VUF. We now decribe the VUF construction. Fix (easily done due to knowledge ofm)).

a(k), the input length, and(k), th\e/_assumed hardness of To check that the value of the VUF at pointis v, the
RSA'; we may assume thatk) < 2V, as known factoring  majn thing the verification algorithm needs to do is make
algorithms (cf., [Pom90]) can be bre®A" in that much  gyre thatv is a p,’th root of » mod m, i.e., vP> = r
time. For notational convenience, we will usually hide the (1,64 1;). However, to guarantee that this value is unique,
dependence of the parametérswriting, for examplea or - jt 550 should check that, is in fact a prime larger tham,

s instead ofa(k) or s(k). The generation algorithr'(-) and that € Z* .
chooses the RSA modulus, the publicr € Z?, whose "
roots will be the values of the function, and the random-

ization needed to fix the prime sequence (the polynofial Inputs: A public key PK = (m, r, Q, coins), a pointz

Description ofV/ (-, -, -)

and the coin tosses f@trimalityTest). and a value.
. Output: YES or NO.
Description ofG(:) Code forV (1%, (m,r, Q, coins), x,v):
Inputs: i ar 1. Computep, = PrimeSeq(z, (), coins).
neu s.asecur! y parameter. ) 2. Check thatp, is greater thann and is prime
Outputs a public keyPK = (m, r, Q, coins) and a secret (by runningPrimalityTest using fresh random
key SK = (PKZ’ ¢(m)), wherem € RSAy; r € Z,; coin tosses, not those from the public key).
coins € {0,1}"; and@ is a polynomial of degree at 3. Check that € Z* andv’ =r (mod m)
most2k? — 1 over GR2¥) (together with a representa- ' m N e
tion of GR(2¥)). 4. If all checks pass, outpES. Otherwise, out-

Code forG(1*): putNO.



7.1 Correctness of the VUF construction

In this section, we prove that:, F, V') described in the
previous section is in fact a VRF with securigy(k)
s(k)*/7, establishing Proposition 3. The efficiency of the
algorithmsG, F', andV is apparent, so we proceed to the
other conditions.

DOMAIN—RANGE CORRECTNESS& COMPLETE PROV-
ABILITY. By Proposition 5, it is true that with probabil-
ity 1 — 2=2(%) over the generation of the keyRBK
(m,r, @, coins) and SK = (¢(m)), that all the values

p. = PrimeSeq(z,Y,y,z) are primes of lengthk + 1.
Sincep(m) < m < 2*+1 it follows that all of thesey,’s

are relatively prime withp(m), and hence- has ap,’th

root modulog(m). Given that these roots exist, it is im-
mediate that?” will successfully compute them, establish-
ing Domain—Range Correctness. Complete Provability also
follows immediately; the only reasdn would reject a cor-
rect proof is a faulty execution of the primality testing al-
gorithmPrimalityTest (which occurs with exponentially
small probability).

UNIQUE PROVABILITY. Assume that an adversary
chooses a (good-looking but illegitimate) public key
(m,r,Q, coins) and consider any inpug. If p, =
PrimeSeq(z, @), coins) iS not prime or is not larger than
m, then the verification algorithm will detect this and reject
with high probability. Ifp, is a prime larger tham, then

p. Must be relatively prime t@(m), sor has a unique, 'th
root modm, and this is the only value that the verification
algorithm will accept.

RESIDUAL UNPREDICTABILITY. Suppose, for sake of con-
tradiction, (G, F, V') is not ans’(k)-secure VUF and IeT’

be the adversary running in tilg k) that guesses the value
of the function at an unseen point with probability at least
1/s'(k).

We will use T to construct an algorithmd that con-
tradicts theRSA’ s(k)-Hardness AssumptionA4 will be
given a modulusn, a primep, andu € Z7, as input, from
which it will construct a public key?K which it will give
to T. Thus, we first concentrate on how the public key
PK = (m,r, Q, coins) will be constructed@ will be cho-
sen in such a way th&@rimeSeq(xo, (), coins) = p for a
specifiedry € {0, 1}“. This means thato Q(z o jo) should
equalp for somej, € {1,...,2k*}, while 1 o Q(z o j)
should be composite for < j,. We want the distribution
of @ obtained in this way (whep is a random(k + 1)-bit
prime) to be close to its distribution in the actual scheme,
which is uniform. This is done using the following proce-
dure:

Description ofChoosePoly(-,-)

Inputs: a primep of lengthk + 1, andazy € {0,1}".

Output a polynomial Q of degree at mosRk? — 1
over GR2*) and a ¢-bit string coins (such that
PrimeSeq(zo, ), coins) = p)

Code forChoosePoly(p, xp):
1.
2.

Wi, ... Wz & {0,1}F

Letjo be the smallest such thatl o w; is prime
(by runningPrimalityTest on each of them).

. Choose and fix a representation for(@F (ex-
actly as done in the generation algoritidf

. Let@ be the unique polynomial of degree at most
2k? — 1 over GR2*) subject to the conditions
Q(wo0jo) = pandQ(zooj) = w; forall j # jo
(wherej denotes thék — a)-bit representation of
j, with possible leading zeroes). This step can be
implemented using standard polynomial interpo-
lation.

5. coins & {0,1}".

6. Output(@, coins).

Claim6 For everyz;, € {0,1}", the distribution on
(@, coins) obtained by runnin@hoosePoly(p, o) for a
random primep of lengthk + 1 has statistical difference
2-2k) from the uniform distribution 00Q, coins).

It is straightforward to verify this claim using Propo-
sition 5 and the fact that the error probability of
PrimalityTestis2~2*. Of course(Q), coins) is only part
of the public key. We now describe how the remainder of
the public key is generated. On inpuit, p, u), the follow-
ing algorithmG’ will “guess” which pointz, the adversary
T will choose as its exam; usghoosePoly to guarantee
that p,, = p; and, following [Sha83], prepare € Z},
so that thep,'th root of  can be easily computed for all
x # xo, while thep,'th root of  can be used to compute
the p'th root of w. (This will all be proven in more detail
shortly.)

Description ofG' (-, -, -)

Inputs: a modulusn € RSAy, a primep of lengthk + 1,
andu € Zy,.

Output (m,r, @, coins) andz, € {0,1}".
Code forG' (m, p, u):
1. o & {0,1}"

2. (Q, coins) < ChoosePoly(p, xo).

"The statistical differencébetween two random variables andY is
defined to benaxs [PROB[X € S| — PROB[Y € S]|.



3. Sete =[], PrimeSeq(z, Q, coins) andr =
u®  (mod m).

4. Output(m,r, Q, coins) andxy.

Claim 7 The distribution on((m,r,Q, coins),zy) ob-
tained by runninga’ onm ¢ RSA;, p & PRIMES;,

u & 7 has statistical difference at mosz—?(*)

from the distribution obtained by running(1*) to select
(m,r,Q), coins) and independently selecting uniformly
in {0, 1}°.

Claim 7 is easily deduced from Claim 6 and the fact
that the mapu — «° is a permutation oz}, as long as
(e,¢(m)) = 1 (which is the case, sinceis the product
of primes greater tham(m) with high probability). By
Claim 7, if T' is presented with a public key generated by
G', it's success probability will be reduced to by only an
exponentially small amount tb/s’ (k) — 2=%®*). In addi-
tion, sincex, is independent from the public key produced
by G’ (up to statistical difference—2(¥)), the event thai’
choosesy as its exam is also independentof success.
Hence, additionally requiring thdt's success be at, only
decreases the success probability by a factar/@f. To
formalize this, we consider the following experiment.

Experiment A:
1. m & RSA.; p & PRIMES,, 1; u & 7%,
2. ((m7 T, Q7 COiTLS), .750) (i G'(m,p, U)

3. SetPK = (m,r, @, coins), SK = (PK,¢(m))
4. (z, guess) = TH(SK>)
5. T succeeddsf © = wo, guess = F(SK,z) (i.e.,

guess? = r (mod m)), andz was not asked to the
oracleF'(SK,-).

By Claim 7 and the above discussion, it follows that the
probability thatl” succeeds in Experiment A is at least
1/(2¢ - 5'(k)) —279F) > 1/s.

Now we use the analysis of Shamir [Sha83], which
shows that since = u® wheree = [[,., po, itis easy
to answer all ofl"'s queries forF'(SK,z') (for #’' # )
without usingg(m). In addition, fromF(SK , zy) = r/?,
it is easy to compute!/?. In more detail, we consider the
following algorithmA.

Description ofA(, -, -)

Inputs: a k-bit modulusm, a primep of lengthk + 1, and
u € Zy,.

Output u'/? (hopefully)

Code forA(m, p,u):

1. ((m,r, Qa coins),azo) & G’(mapa u)

2. SetPK = (m,r, Q, coins) ande = HQE#zo Das
wherep, £ PrimeSeq(z, @, coins).
3. Simulate T'(1*, PK).

queryy as follows:
(a) If y = xo, abort with outpuFAIL.

(b) If y # x0, respond withrl/Pv = e
(mod m), wheree, = e/p,.

Respond to an oracle

. Obtain outputz, guess) fromT'.

5. If guess? #r (mod m), then outpuFAIL.

6. If guess? = r, use the GCD algorithm to calcu-
latea, 8 € Z such thawe + Sp = 1, and output
quess®uP.

Claim8 A(m,p,u) = u'/? (mod m) with probability
at leaste’ > 1/s (over the choice ofn & RSA;, p &
PRIMESy, 1, u ¢ Z*,, and the coins ofl).

We now quickly justify this claim. A straightforward
calculation shows that the responsedte oracle queries
are computed correctly (when# zp). Thus, as long a%
does not ask oracle quety, everything proceeds exactly
as in Experiment A. Our analysis of Experiment A tells us
that with probability at least’, 7" does not ask query,
and guess = r'/P=o = r'/?, The GCD algorithm will
succeed as long as all tipe’s are distinct, and this is the
case with overwhelming probability by Proposition 5 and
Claim 6. Assumingyuess = /7 and the GCD algorithm
succeeds, it follows that

ro/pyB

(u®)*/Puf
wlaetBp)/p — /P

guess®u®

(mod m).

We now just need to analyze the running time Af
A’s running time is dominated by simulating the oracle
gueries ofl". For every oracle query df', A must com-
puteur mod m, wheree, is an integer of lengt(2* - k)
(sincee is the product oR% — 1 primes of lengthk + 1).
This modular exponenation takes tié2® - k) - poly(k) =
2% - poly(k). Since therd” makes at most’ oracle queries,
the total running time is at most - 2¢ - poly(k) < s, vio-
lating theRSA' s(k)-Hardness Assumption. |
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