

Verifiable Random Functions

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Micali, Silvio, Michael Rabin, and Salil Vadhan. 1999. Verifiable
random functions. In Proceedings of the 40th Annual Symposium
on the Foundations of Computer Science (FOCS `99), 120-130.
New York: IEEE Computer Society Press.

Published Version doi:10.1109/SFFCS.1999.814584

Accessed February 17, 2015 6:28:09 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:5028196

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28930886?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/5028196&title=Verifiable+Random+Functions
http://dx.doi.org/10.1109/SFFCS.1999.814584
http://nrs.harvard.edu/urn-3:HUL.InstRepos:5028196
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Verifiable Random Functions

Silvio Micali� Michael Rabiny Salil Vadhanz
Abstract

We efficiently combine unpredictability and verifiability by
extending the Goldreich–Goldwasser–Micali construction
of pseudorandom functionsfs from a secret seeds, so that
knowledge ofs not only enables one to evaluatefs at any
point x, but also to provide anNP-proof that the valuefs(x) is indeed correct without compromising the unpre-
dictability offs at any other point for which no such a proof
was provided.

1 Introduction

PSEUDORANDOM ORACLES. Goldreich, Goldwasser, and
Micali [GGM86] show how to simulate a random ora-
cle from a-bit strings tob-bit strings by means of a con-
struction using aseed, that is, a secret and short random
string. They show that, if pseudorandom generators exist
[BM84, Yao82], then there exists a polynomial-time algo-
rithm F (�; �) such that, lettings denote the seed, the func-
tion fs def= F (s; �) : f0; 1ga ! f0; 1gb passes all effi-
cient statistical tests for oracles. That is, to an observer
with sufficiently limited computational resources, accessing
a random oracle fromf0; 1ga to f0; 1gb is provably indis-
tinguishable from accessing (as an oracle)fs, even if al-
gorithmF is publicly known (provided thats is still kept
secret).

THE PROBLEM OF CONSTRUCTING VERIFIABLE PSEUDO-
RANDOM FUNCTIONS. By its very definition, a pseudoran-
dom oracle à la [GGM86] is notverifiable: without knowl-
edge of the seed (or any other additional information), upon
receiving the valuez of a pseudorandom oraclefs at pointx, one cannot distinguish it from an independently selected� Laboratory for Computer Science, MIT, Cambridge, MA 02139.y Department of Applied Science, Harvard University, Cambridge, MA
02138. Work supported in part by NSF Contract CCR-9877138.zMIT Laboratory for Computer Science. 545 Technology Square.
Cambridge, MA 02139. E-mail:salil@theory.lcs.mit.edu .
URL: http://theory.lcs.mit.edu/˜salil . Supported by a
DOD/NDSEG fellowship and partially by DARPA grant DABT63-96-C-
0018.

random string of the proper length. The possibility thus ex-
ists that, if it so suits him, the party knowing the seeds may
declare that the value of his pseudorandom oracle at some
pointx is other thanfs(x) without fear of being detected. It
is for this reason that we refer to these objects as “pseudo-
random oracles” rather than using the standard terminology
“pseudorandom functions” — the valuesfs(x) come “out
of the blue,” as if from an oracle, and the receiver must sim-
ply trust that they are computed correctly from the seeds.

Therefore, though quite large, the applicability of pseu-
dorandom oracles is limited: for instance, to settings in
which (1) the “seed owner”, and thus the one evaluating
the pseudorandom oracle, is totally trusted; or (2) it is to
the seed-owner’s advantage to evaluate his pseudorandom
oracle correctly; or (3) there is absolutely nothing for the
seed-owner to gain from being dishonest.

One efficient way of enabling anyone to verify thatfs(x)
really is the value of pseudorandom oraclefs at pointx
clearly consists of publicizing the seeds. However, this
will also destroy the unpredictability offs: anyone could
easily compute the value offs at any point.

We instead wish to provide a new type of pseudoran-
dom oracle. Informally, we want one in which the owner
of the seeds can, as usual, evaluatefs at any point, but
also prove (with anNP proof1) that the so obtained values
are indeed correct without compromising the unpredictabil-
ity of the value offs at any pointx for which no proof
of correctness forfs(x) is given. That is, given an inputx, the seed-owner should be able to produce in polynomial
time the valuev = fs(x) together with a stringproof x ef-
ficiently proving thatv is correct. The scheme should have
the property that auniquevaluev is provable as the value
of fs(x). We call such a mathematical object averifiable
(pseudo-)random function, VRF for brevity.

A WEAKER SOLUTION: PSEUDORANDOM ORACLES+
ZERO-KNOWLEDGE PROOFS. If interaction were allowed,
VRFs could be constructed from GGM pseudorandom or-
acles via zero-knowledge proofs [GMR89] and a commit-
ment scheme. Indeed, as suggested in a signature scheme
of Bellare and Goldwasser [BG89], the owner of the seed1Strictly speaking, we actually allow “MA proofs”, since their verifi-
cation may be probabilistic.

s to a pseudorandom oraclefs can publish a commitmentc
to s. Whenever he wishes to prove thatv is the value of his
oracle at a pointx to a verifierV , he proves in zero knowl-
edge toV thatv = fs(x) and thatc is a commitment tos.
Such a statement is provable in zero knowledge because all
NP statements are provable in zero knowledge [GMW91].
The trouble with such an approach is that it requires inter-
action. A very efficient incarnation of this idea is given by
Naor and Reingold [NR97], but it still suffers from the need
for interaction.

Such interaction could be removed by using noninter-
active zero-knowledge proofs (NIZK) [BFM88, BDMP91],
as done by Bellare and Goldwasser [BG89]. This ap-
proach however suffers from another drawback: noninterac-
tive zero-knowledge proofs presuppose that the prover and
verifier share a bit-string that isguaranteedto be random.
So the question is who is to select this shared random stringR. Each of the possibilities has a deficiency that we wish to
avoid in defining VRFs:

1. The seed owner selectsR: If the seed owner selects the
shared random string improperly, the soundness of the
NIZK proof system is no longer guaranteed, so there
may be many valuesv that are “provable” asfs(x).

2. The verifier selectsR: If the verifier selects the shared
random string improperly, the zero-knowledge prop-
erty of the NIZK proof system is no longer guaranteed.
Thus, by provingfs(x) = v with respect to such an
improperly chosenR, the prover may leak knowledge
about the seeds andfs will “lose” its pseudorandom-
ness.

3. The seed owner and verifier jointly selectR by a “coin-
flipping” protocol.: This requires interaction, which
we wish to avoid.

4. A trusted third party selectsR: We do not want to as-
sume the existence of such a trusted third party.

OUR SOLUTION. We propose a notion of VRF’s which
needsneither interaction nor sharing a guaranteed ran-
dom string. Rather, we only require that the owner of the
functionf publish a public keyPK , which can be viewed
as a commitment to the functionf . (Indeed, something
must bind the owner to the function in order for “proving
the statementf(x) = v” to make sense.) The crucial way
in which our notion differs from what the NIZK-based ap-
proach discussed above achieves is:

For any public keyPK , even an improperly chosen one, a
unique valuev is provable as the value off(x).

Thus, we may safely have the owner of the function unilat-
erally select and publish the public key. The most obvious
scenario in which this applies is when the public key can be
published once and for all, in a location where it cannot be

changed. But VRFs may also be useful in settings where
the public key is provided “on the fly” to prove that vari-
ous function values (given previously or at the same time)
are indeed consistent with one single VRF. In case the VRF
outputs strings longer than the public key, it may even be
useful to provide the public key on the fly to prove that
a singlevalue is consistent with some VRF, as this would
limit the owner to relatively few choices.

In addition to introducing this notion, we provide an ex-
plicit VRF construction, based on a variant of the RSA as-
sumption. Informally stated, we prove:

Main Theorem: Assume that the RSA function with
large prime exponents cannot be inverted in polyno-
mial time. Then, there exists a VRF fromf0; 1g� intof0; 1g.

OVERVIEW OF THE CONSTRUCTION. We motivate our
construction by first discussing the relationship between
VRFs and secure signature schemes. In a signature scheme
that is existentially unforgeable against a chosen message
attack [GMR88], the signature of a messagex, denotedSIG(x), is a value that is unpredictable (even given sig-
natures of chosen other messages), but verifiable (given the
proper public key). However, such schemes do not directly
give rise to VRFs by settingf(x) to beSIG(x), for two
reasons:

1. There may be many valid signatures for a given stringx (violating the unique provability requirement).
2. SIG(x) is only unpredictable, not necessarily pseudo-

random.

We begin by discussing the first deficiency, as it is the
more serious one. Even though the definition does not guar-
antee the uniqueness of signatures, one might hope that ex-
isting signature schemes happen to have this property. How-
ever, most known secure signature schemes are eitherprob-
abilistic or history dependent.Either property violates the
the unique provability requirement: if we definef(x) to beSIG(x), there may be a multiplicity of signatures ofx and
thus a multiplicity off(x) values, all duly provable. One
can transform a probabilistic signature scheme, such as the
scheme in [GMR88], into a deterministic one if the signer
uses a GGM pseudorandom oracle to replace the random-
ness used. Even so, this does not yield a VRF because one
cannot be certain that the signer used the proper GGM ora-
cle when producingSIG(x), and hence unique provability
is NOT guaranteed.

More generally, it is not enough that the specified signing
algorithm produces a unique signature for every message.
Rather, it should be the case that the verification algorithm
accepts a unique (or at most one) signature for every mes-
sage (given any fixed, but even improperly chosen, public

key). A signature scheme that satisfies this latter property
can be thought of as averifiable unpredictable function; that
is, a verifiable unpredictable function is defined analogously
to a verifiable pseudorandom function except the pseudo-
randomness requirement is replaced with unpredictability.

So the two questions that remain are (1) do verifiable un-
predictable functions imply verifiable pseudorandom func-
tions?, and (2) can we construct verifiable unpredictable
functions? The natural approach to answering the first ques-
tion is to use the hardcore bit construction of Goldreich and
Levin [GL89], which is a general tool for converting un-
predictability to pseudorandomness. That is, we replace
the verifiable unpredictable functionf(x) with f 0(x) =hf(x); ri, wherer is a randomly chosen binary string of the
same length asf(x) andh�; �i denotes mod-2 inner product.
Note that for this construction to preserve verifiability,r
should be placed in the public key (the proof thatf 0(x) = b
is a stringv such thathr; vi = b together with a proof thatf(x) = v). Unfortunately, it has been shown by Naor and
Reingold [NR98] that using a public Goldreich–Levin vec-
tor r does not work in general for converting unpredictable
functions into pseudorandom functions.2 The way we get
around this obstacle is by noting that, a publicr can be
used if we restrict to functions whose input length is log-
arithmically related to the security. Then, we remove this
restriction on the input length via a tree-based construction
which converts any VRF with a fixed input length into one
whose domain isf0; 1g�.

Thus, we are left with the task of finding a veri-
fiable unpredictable function. Our construction builds
upon an RSA-based unpredictable number generator of
Shamir [Sha83], adapted to secure signature schemes by
[GMY83, DN94, CD96, GHR99, CS99]. Shamir shows that
seeingr1=ei mod m for different exponentsei1 ; : : : ; eik
does does not help one predictr1=eik+1 mod m as long as
all of thesek + 1 exponents are relatively prime to each
other and to�(m). This suggests constructing a verifiable
unpredictable function by placingm andr in the public key,
and definingf(i) to bev = r1=ei mod m. This can be ver-
ified simply by checking thatvei = r mod m; the solutionv 2 Z�m to this equation will be unique as long asei is
guaranteed to be relatively prime to�(m). Thus, we obtain
all the desired properties as long as we can efficiently index
into a set of suchei’s which are guaranteed to be all rela-
tively prime to each other and to�(m). We accomplish this
by restricting to exponents which are distinct primes larger
thanm, and we index into such a set by using the prime se-
quence generator of Cachin, Micali, and Stadler [CMS99].
This turns out to yield a verifiable unpredictable function
whose input length is logarithmically related to the secu-2Interestingly, they show that using aprivater does in fact work. This
is the only known application of the Goldreich–Levin hardcore bit where
keeping the vector private is necessary.

rity. This restriction on input length is of no concern, be-
cause we increase the input length after converting it into a
VRF using the tree-based construction mentioned above.

2 Preliminaries3
If A(�) is a probabilistic algorithm, then for any inputx, the notation “A(x)” refers to the probability space that

assigns to the string� the probability thatA, on inputx,
outputs�. If S is a probability space, then “x R S” de-
notes the algorithm which assigns tox an element randomly
selected according toS, and “x1; : : : ; xn R S” denotes
the algorithm that respectively assigns to,x1; : : : ; xn, n ele-
ments randomly and independently selected according toS.
If F is a finite set, then the notation “x R F ” denotes the
algorithm that choosesx uniformly from F . If p(�; �; � � �)
is a predicate, the notationPROB[x R S; y1; : : : ; yn R A(x); � � � : p(x; y1; : : : ; yn; � � �)] denotes the probability
that p(x; y1; : : : ; yn; � � �) will be true after the ordered ex-
ecution of the algorithmsx R S; y1; : : : ; yn R A(x); � � �.
3 The Notion of a VRF

3.1 An Informal Exposition

VRF GENERATION. To be a VRF, a functionf must pos-
sess both

1. a compact,implicit representation, which does not en-
able one to evaluatef efficiently, and

2. a compact,explicit representation, which enables any-
one to evaluatef efficiently.

The first representation can be viewed asf ’s public key,PKf , and the second as its correspondingsecret key, SKf .
Of course,SKf will be hard to compute fromPKf . Ac-
cordingly, to formalize our notion of a VRF we make use of
a probabilisticgeneratingalgorithmG outputting a public
key with its matching secret key from a sequence of coin
tosses.

VRF COMPUTATION AND VERIFICATION. Knowledge ofSKf enables one both to evaluatef and to prove the cor-
rectness of such evaluations. We actually envisage thatf(x)
is always computed together with,proof x, a string “prov-
ing its correctness”, by running an efficient algorithmF on
inputsx andSKf . The functionf proper is thus evalu-
ated by runningF , so as to obtain a function value and its
proof, and then “stripping out” the proof. The correctness ofproof x is instead verified by running an efficient algorithmV on inputsPKf , x, f(x), andproof x. For convenience,3Verbatim from [BDMP91] and [GMR88].

we denote the two components ofF (SK ; x) byF1(SK ; x)
andF2(SK ; x) (corresponding to thef(x) andproof x, re-
spectively).

Because a proof of correctness forf(x) is only checked
againstf ’s public key, we require that it is impossible to find
a public key (even a “fake” one) of a VRF for which one can
“prove” the correctness of two different VRF outputs for the
same VRF input.

VRF PSEUDORANDOMNESS. Our VRFs are unpredictable
in a very strong sense, that suitably generalizes to our con-
text the original notion of [GGM86]. Informally, VRFs pass
all efficient statistical tests for functionsat those values for
which no proof of correctness was provided. In essence,
an efficient statistical test for verifiable functions is an ef-
ficient algorithmT that is given the public key of one of
our functionsf , and then “experiments withf ” by asking
and receiving both the function value and its corresponding
proof of correctness at any input of its choice. After this
experimentation phase,T outputs a stringx in the domain
of f , theexam, which is supposed to be different from any
input on which it has already queried the function. At this
point,T is provided with a valuev that, with equal proba-
bility, consists of either (a)f evaluated at the exam or (b)
a random value inf ’s range. ThenT enters a “judgement
phase,” in which it attempts to guess whether (a) or (b) is the
case (after obtaining additional function values and proofs
at points of its choice other thanx). We say that our VRFs
pass statistical testT if the probability ofT guessing cor-
rectly is not substantially better than1=2.

We find it convenient to think ofT as comprising two
components:TE andTJ . TE is the experimental compo-
nent that queriesf and computes the exam, whileTJ the
judging component that, given the exam andv, tries to dis-
tinguishes whetherv is the value off at the exam or a ran-
dom value. To enable coordination betweenTE andTJ , we
let TE pass on toTJ not only the exam, but also any piece
of “state” information that it may deem useful.

3.2 A Formal Definition

Definition (VRFs): LetG, F , andV be polynomial-time
algorithms, where� G (thefunction generator) is probabilistic; receives as

input a unary string (thesecurity parameterk); and
outputs two binary strings (thepublic keyPK andse-
cret keySK) ;� F = (F1; F2) (the function evaluator) is determinis-
tic; receives as input two binary strings (SK and an
input x to the VRF); and outputs two binary strings
(thevalueF1(SK ; x) of the VRF onx and the corre-
spondingproof = F2(SK ; x)); and

� V (the function verifier) is probabilistic; receives as
input four binary strings (PK , x, v, andproof); and
outputs eitherYES orNO.

Let a:N ! N [f�g andb; s:N ! N be any three func-
tions such thata(k); b(k); s(k) are all computable in time
poly(k) anda(k) andb(k) are both bounded by a polyno-
mial in k (except whena takes on the value�). We say that(G;F; V) is averifiable pseudorandom function (VRF)with
input lengtha(k),4 output lengthb(k), andsecuritys(k) if
the following properties hold:

1. The following conditions hold with probability1 �2�
(k) over(PK ;SK) R G(1 k):
(a) (Domain-Range Correctness):

for all x 2 f0; 1ga(k), F1(SK ; x) 2 f0; 1gb(k).
(b) (Complete Provability): for allx 2 f0; 1ga(k), if(v; proof) = F (SK ; x),PROB[(V (PK ; x ; v ; proof) = YES] > 1�2�
(k)

(this probability is over the coin tosses ofV).

2. (Unique Provability): For everyPK , x, v1, v2, proof 1,
andproof 2 such thatv1 6= v2, the following holds for
eitheri = 1 or i = 2:PROB[V (PK ; x ; vi ; proof i) = YES] < 2�
(k)
(this probability over the coin tosses ofV).

3. (Residual Pseudorandomness): LetT = (TE ; TJ) be
any pair of algorithms such thatTE(�; �) andTJ(�; �; �)
run for a total of at mosts(k) steps when their first
input is1k. Then the probability thatT succeeds in the
following experiment is at most1=2 + 1=s(k):

(a) RunG(1k) to obtain(PK ;SK).
(b) RunTF (SK ;�)E (1k;PK) to obtain(x; state).
(c) Chooser R f0; 1g.

i. if r = 0, let v = F1(SK ; x).
ii. if r = 1, choosev R f0; 1gb(k).

(d) RunTF (SK ;�)J (1k; v; state) to obtainguess .

(e) T = (TE ; TJ) succeedsif x 2 f0; 1ga(k),guess = r, andx was not asked as a query toF (SK ; �) by eitherTE or TJ .

If (PK ;SK) R G(1 k), we shall refer tof(�) =F1(SK ; �) as anindividual VRF. If a(k) = � for all k, we
say that the VRF hasunrestricted input length.4Whena(k) takes the value�, it means that the VRF is defined for
inputs of all lengths. Specifically, ifa(k) = �, thenf0; 1ga(k) is to be
interpreted as the set of all binary strings, as usual.

Remarks.
1. Note the adversaryT = (TE ; TJ) is givenF (SK ; �) as

an oracle, and thus gets answers that include function
values and proofs of their correctness.

2. A VRF with input lengtha(k) and output lengthb(k)
can and securitys(k) can be converted into one with
input lengtha0(k) = a(k)�dlog2 `(k)e, output lengthb0(k) = b(k) � `(k), and securitys0(k) = s(k)=`(k).
Simply definef 0(x) = f(x�u1)�f(x�u2)� � � � f(x�u`(k)), whereu1; : : : ; u`(k) are the first̀ (k) strings of
lengthdlog2 `(k)e. (A factor of ` is lost in the secu-
rity because it takes̀queries tof to simulate a single
query tof 0, and because a factor of` is lost in the ad-
versary’s success probability in the “hybrid argument”
based security reduction.)

Hence, to construct a VRF it is sufficient to fixb = 1
(i.e., to construct a “verifiable pseudorandom predi-
cate”), and vice versa. In this case, residual unpre-
dictability can be so simplified:

30. (Residual Pseudorandomness for Predicates): LetT (�; �) be any algorithm that runs in times(k)
when its first input is1k. Then the probability
thatT succeeds in the following experiment is at
most1=2 + 1=s(k):
(a) RunG(1k) to obtain(PK ;SK).
(b) RunTF (SK ;�)(1k;PK) to obtain(x; guess).
(c) T succeedsif x 2 f0; 1ga(k), guess =F1(SK ; x), andx was not asked as a query

toF (SK ; �) byT .

The reasons the “judgement” componentTJ can
be eliminated for predicates are: (a) there are
only two possible values forv, so all the oracle
queries thatTF (SK ;�)J (1k; v; state) would make
in casev = 0 or v = 1 can be asked before
actually receivingv. (b) distinguishing a pred-
icate f(x) from a random bit with probability1=2+1=s(k) is equivalent to guessingf(x) with
the same probability (cf., [Yao82]).

In order to construct a VRF, we will first construct a ver-
ifiable unpredictable function, which can also be thought of
as a signature scheme in which a unique (or at most one)
signature is accepted by the verification algorithm for every
message and public key.

Definition (VUFs): A verifiable unpredictable function
(VUF) (or unique signature scheme5) (G;F; V) with input
lengtha(k), output lengthb(k), and securitys(k) is defined
in the same way as a VRF, except that the Residual Pseudo-
randomness requirement is replaced with the following:5The terminology “unique signature scheme” was suggested tous by
Moni Naor and Omer Reingold.

3. (Residual Unpredictability) LetT (�; �) be any algorithm
that runs in times(k) when its first input is1k. Then
the probability thatT succeeds in the following exper-
iment is at most1=s(k):

1. RunG(1k) to obtain(PK ;SK).
2. RunTF (SK ;�)(1k;PK) to obtain(x; guess).
3. T succeedsif x 2 f0; 1ga(k), guess =F1(SK ; x), andx was not asked as a query toF (SK ; �) by T .

4 Formal statement of results

First, we exhibit general techniques for converting VUFs
to VRFs and increasing the input length for VRFs.

Proposition 1 (from VUF to VRF) If there is a VUF with
input lengtha(k), output lengthb(k), and securitys(k),
then, for anya0(k) � a(k), there is a VRF with input
lengtha0(k), output lengthb(k) = 1, and securitys0(k) =s(k)1=3=(poly(k) � 2a0(k)).
Proposition 2 (increasing the input length) If there is a
VRF with input lengtha(k), output length 1, and se-
curity s(k), then there is a VRF with unrestricted input
length, output lengthb(k) = 1, and security at leastminfs(k)1=5; 2a(k)=5g=poly(k).

These two propositions reduce the problem of construct-
ing VRFs to constructing VUFs. We do the latter based on
a variant of the RSA assumption. We denote byPRIMESk
the set of thek-bit primes, and byRSAk the set of com-
posite integers that are the product of two primes of lengthb(k � 1)=2c. (For k large,RSAk contains the hardestk-
bit inputs to any known factoring algorithm.) We make the
following assumption on the hardness of RSA, where the
exponents are primes (1-bit) bigger than the modulus. For
any functions(k) computable in time poly(k):
The RSA0 s(k)-Hardness Assumption: Let A be any
probabilistic algorithm which runs in times(k) when its
first input is1k. Then the probability thatA succeeds in the
following experiment is at most1=s(k):

1. Selectm R RSAk;x R Z�m; p R PRIMESk+1:
2. Lety R A(1k;m; x; p).
3. A succeedsif yp = x (mod m).

Given the state-of-the-art in computational number theory,
it seems reasonable to takes(k) = 2k� for a small constant� > 0, though we will be able to construct VRFs as long ass(k) = k!(1).

Proposition 3 (RSA-based VUFs)Let a(k) � poly(k)
and s(k) be any functions (both computable in time
poly(k)). Under theRSA0 s(k)-Hardness Assumption,
there is a VUF with input lengtha(k), output lengthb(k) =1, and securitys0(k) = s(k)= �2a(k) � poly(k)�.

Putting all the above together, we conclude:

Theorem 4 Under theRSA0 s(k)-Hardness Assumption,
there is a VRF with unrestricted input length, output lengthb(k) = 1, and securitys(k)1=35=poly(k). In particular, ifs(k) = k!(1) (i.e.,RSA0 cannot be inverted in polynomial
time), then the VRF also has securityk!(1).

To deduce Theorem 4 we apply the above Propositions
with a(k) = a0(k) = (log s(k))=7. Note that this requires
knowing ana priori lower bounds(k) on the security ofRSA0. However, this drawback can be removed. That is, we
can build VRFs whoseconstructionis independent of the
hardness ofRSA0, while the security remains polynomially
related to that ofRSA0. This can be done using a standard
trick, which we describe in the full version of the paper.

5 From Unpredictability to Pseudorandom-
ness

In this section, we sketch how to prove Proposition 1,
using the Goldreich–Levin [GL89] hardcore bit to convert
verifiable unpredictable functions to verifiable pseudoran-
dom function. The construction and proof will be given in
more detail in the full version of the paper. Given a VUFf(�), the VRFf 0(�) is defined byf 0(x) = hf(x); ri, wherer is a binary vector chosen uniformly and placed in the pub-
lic key andh�; �i denotes inner product mod 2. The proof
thatf 0(x) = � consists of a valuev such thathv; ri = �
and a proof thatf(x) = v. The Domain-Range Correct-
ness, Complete Provability, and Unique Provability off 0
all follow immediately from the same properties off .

We now outline the steps in the proof of the residual
unpredictability off 0. Suppose, for sake of contradiction
that there is an adversaryT 0 running in times0 that predictsf 0(x) = hf(x); ri at an unseen value with probability at
least1=2 + 1=s0. Then,

1. T 0 can actually be used to guesshf(x); ri for a ran-
dom, prespecifiedx rather than one thatT 0 chooses
its own. This can be done at the price of reducingT 0’s
success probability to1=2+"0 for "0 = 1=(2a0 �s0), be-
cause a randomx will equal the examT 0 chooses with
probability1=2a0

. (Recall thata0 is the input length forf 0.)
2. By a Markov argument, at least an"0=2 fraction of thex’s,6 the marginal probability thatT 0 correctly guesses6Actually, the choice off and the coin tosses ofT should also be in-

cluded and fixed withx in this"0=2 probability.

a’y=f’(0)

f’(f’(y1)0) f’(f’(y1)1)

f’(z1)f’(z0)f’(y1)f’(y0)

0 a’−1

a’−1z=f’(0 1)

Figure 1. The tree constructionhf(x); ri taken just over the choice ofr is at least1=2 + �0=2.

3. The Goldreich–Levin reconstruction algorithm then
implies that for the same"0=2 fractionx’s, f(x) itself
can be computed with probability at least
(("0)2) at a
cost of increasing the running time ofT by a factor of
poly(k)=("0)2.

4. All together this gives an adversaryT running in times0 � poly(k)=("0)2 � s which guessesf(x) correctly
at an unseen point with probability at least("0=2) �
(("0)2) > 1=s, contradicting the fact thatf has se-
curity s.

6 Increasing the input length

In this section, we sketch the proof of Proposition 2,
which takes a VRF with small (but super-logarithmic) in-
put length and converts it into a VRF with unrestricted in-
put length. The construction and its analysis will be given
in more detail in the full version of the paper. Letf be
any VRF with input lengtha, output length 1, and se-
curity s. By Remark 2 after the definition of VRFs, we
can easily transformf into a VRF f 0 with input lengtha0 = a � O(log a), output lengthb0 = a0 � 1, and secu-
rity s0 = s=b0 = s=poly(k).

From this VRFf 0 which shrinks ana0-bit input by one
bit, we will construct a VRFf 00 which can take inputsx of
arbitrary lengths. We viewf 0 as defining an infinite binary
tree whose nodes are labelled by strings of lengtha0 � 1.
The root of the tree is labelled0a0�1, and the two children
of a node labelledy are labelledf 0(y0) and f 0(y1) (see
Figure 1). Now, to evaluatef 00 on a stringx, we view the
bits of x 2 f0; 1gt as defining a path of lengtht from the
root of the tree. We definef 00(x) to be the label of the node
at the last point on this path. Now, a proof for the value of

f 00 can be obtained by giving the labels of all nodes on this
path together withf 0-proofs for each label.

One small problem with the construction as described so
far is that the path corresponding to a stringx contains the
path corresponding to all prefices ofx, so having seen the
proof for f 00(x), one knows the value off 00 on all prefices
of x. To avoid this problem, we work with aprefix-free
encodingof strings, which is a mapx 7! [x] fromf0; 1g� tof0; 1g� such that there is no pairx 6= y where[x] is a prefix
of [y] and furthermore,j[x]j = O(jxj) for all x. (It is easy to
construct such a map which is efficiently computable, e.g.,[b1b2 � � � bt] = b1b1b2b2 � � � btbt01.)

So, in the actual construction,f 00(x) is computed as
follows: Let [x] = b1 � � � bt andy0 = 0a0�1, and recur-
sively computeyi = f 0(yi�1bi). f 00(x) is defined to beyt. The proof thatf 00(x) = y is a sequence(y1; : : : ; yt)
such thatyt = y together with proofs thatyi = f 0(yi�1bi).
The Domain–Range Correctness, Complete Provability, and
Unique Provability off 00 follow from the same properties off 0. The proof of Residual Pseudorandomness proceeds as
follows:

1. As long as the subtree of labels seen by the adversary
does not contain a repetition (i.e. two different nodes
in the tree that have the same label), the value off 00
at a new pointx is equal to the value off 0 at a new
pointy (namelyy = yt�1bt, where[x] = b1b2 � � � bt).
Hence, it is not be distinguishable from random.

2. The subtree of labels seen by the adversary does not
contain a repetition: This follows from the residual
pseudorandomness off 0 and the fact thatf 0 has a rea-
sonably large output lengthb0. Suppose an efficient
adversary does find a repetition with noticeable proba-
bility. Then, one can predictf 0 by randomly guessing
which of the two nodes in the subtree form the first rep-
etition, and using the label of the first node to predict
the label of the second node. Being able to predict the
value off 0 at a new point with probability noticeably
more than1=2b0 distinguishes it from a random value,
violating the residual pseudorandomness off 0.

7 A Verifiable Unpredictable Function

In this section we construct a VUF based on theRSA0
hardness assumption, proving Proposition 3. First we recall
some basic number theory.

NUMBER THEORY. We write (a; b) denote the greatest
common divisor of positive integersa andb. For a positive
integerm, Euler’s totient function, �(m), is defined as the
number of positive integers< m that are relatively prime
to m. Under multiplication modulom, the set of all such
integers form a group, denoted byZ�m. In our VRF con-

struction, we shall use the following two well-known facts
about�(m):
Fact 1: If m is the product of two distinct primesq1 andq2,

then�(m) = (q1 � 1) � (q2 � 1).
Fact 2: If (e; �(m)) = 1, then the mapx 7! xe (mod m)

is a permutation onZ�m. In particular, for any inte-
ger r, there is at most onex 2 Z�m such thatxe = r(mod m) (there will be none if(r;m) 6= 1). This x
(if it exists) is denotedr1=e and one can compute it in
polynomial time given inputsm, e, x, and�(m).

As outlined in the introduction, our VUF construc-
tion is based on the unpredictable number generator of
Shamir [Sha83]. The value off(x) will be defined asr1=px(mod m), wherem and r 2 Z�m are public andpx is a
prime 1-bit larger thanm. To define the indexingx 7! px
into a “random” set of large primes, we use a prime se-
quence generator of Cachin et al. [CMS99], which we de-
scribe first.

THE PRIME-SEQUENCE GENERATOR. Ideally, a prime-
sequence generator is a 1-1 mappingx 7! px from a-
bit strings to (k + 1)-bit primes. Based on currently
known results on the distribution of primes, such a map-
ping certainly exists, but might not be efficiently com-
putable, unless one uses some unproven assumption — such
as Cramer’s conjecture. To avoid making such assumptions,
we use a a construction of [CMS99], which probabilisti-
cally constructs such a mapping as follows: First, a2k2-
wise independent functionQ from f0; 1ga � f1; : : : ; 2k2g
to the set of(k + 1)-bit integers is randomly selected and
fixed. Then,px is defined to be the first prime amongQ(x; 1); Q(x; 2); : : : ; Q(x; 2k2). Primes are sufficiently
dense so that this sequence of independent(k+1)-bit num-
bers will contain a prime with high probability, and even
just the pairwise independence ofQ guarantees that all thepx’s will be distinct with high probability.

To implement this idea, we need a polynomial-time
primality tester PrimalityTest, e.g. one of the al-
gorithms given in [SS77, Rab80]. Such an algorithmPrimalityTest takes a a(k + 1)-bit integern and ` =`(k) � poly(k) random bits and outputs 1 with high prob-
ability if n is prime and outputs 0 with high probability ifn is composite. We assume that the error probability of this
algorithm is at most2�2k on (k + 1)-bit inputs. In order
for the final mapping to be deterministic, the random coins
of PrimalityTestwill be externally chosen and fixed and
given as input toPrimeSeq. Another technicality is that the2k2-wise mappingQ will be defined by a polynomial over
GF(2k), so a representation of this field (i.e., an irreducible
polynomial of degreek over GF(2)) must be included withQ.

Now we formally describe the prime-sequence generatorPrimeSeq. The only modification to the construction of
[CMS99] is that we force its outputs to be “truly(k + 1)-
bit” integers (i.e., without leading 0’s).

Description ofPrimeSeq(�; �; �)
Inputs:ana-bit stringx, a polynomialQ of degree at most2k2�1 over GF(2k) (together with a representation of

the field GF(2k)), and aǹ -bit stringcoins .
Output: a (k+1)-bit integerpx (a prime with overwhelm-

ing probability over the choice ofQ andcoins).
Code forPrimeSeq(x;Q; coins):

1. Forj = 1; : : : ; 2k2, letyj be the(k+1)-bit string1 � Q(x � �j), where�j denotes thej’th string inf0; 1gk�a under the lexicographic order and we
associate GF(()2k) with f0; 1gk.

2. UsePrimalityTest with random coinscoins
to test eachyj (viewed as a(k + 1)-bit integer)
for primality, and letpx be the first (probable)
prime in the sequencey1; y2; : : : ; y2k2 . Outputpx.

The main property of this generator that we will use is the
following.

Proposition 5 ([CMS99]) Let a � k=2. Then, with prob-
ability at least1 � 2�
(k) overQ andcoins selected uni-
formly, fPrimeSeq(x;Q; coins) : x 2 f0; 1gag is a set of2a distinct(k + 1)-bit primes.

THE VUF. We now decribe the VUF construction. Fixa(k), the input length, ands(k), the assumed hardness ofRSA0; we may assume thats(k) < 2pk, as known factoring
algorithms (cf., [Pom90]) can be breakRSA0 in that much
time. For notational convenience, we will usually hide the
dependence of the parametersk, writing, for example,a ors instead ofa(k) or s(k). The generation algorithmG(�)
chooses the RSA modulusm, the publicr 2 Z�m whose
roots will be the values of the function, and the random-
ization needed to fix the prime sequence (the polynomialQ
and the coin tosses forPrimalityTest).

Description ofG(�)
Inputs:a security parameter1k.
Outputs: a public keyPK = (m; r ;Q ; coins) and a secret

keySK = (PK ; �(m)), wherem 2 RSAk; r 2 Z�m;coins 2 f0; 1g`; andQ is a polynomial of degree at
most2k2� 1 over GF(2k) (together with a representa-
tion of GF(2k)).

Code forG(1k):

1. UsePrimalityTest to compute (by trial and
error) two random primesq1 and q2 (of lengthb(k � 1)=2c). Computem = q1q2 2 RSAk, and
then compute�(m) = (q1 � 1) � (q2 � 1).

2. r R Z�m, coins R f0; 1g`.
3. Choose a representation for GF(()2k) (by ran-

domly picking degreek polynomials over
GF(()2) and testing for irreducibiility) and letQ
be selected uniformly from the set of all polyno-
mials of degree at most2k2 � 1 over GF(2k).

4. Output(m; r;Q; coins) and�(m).
When givenx 2 f0; 1ga, the evaluation algorithmF

usesx to index into the prime sequence, obtaining a primepx, and outputs thepx’th root of r 2 Z�m as the value of
the VUF atx. This value is its own proof, so we do not
include a separate proof in the output. Strictly speaking,
the output should be a bit-string of a fixed lengthb(k), so
elements ofZ�m should be written with leading zeroes to
make them of length exactlyk + 1 as strings. (Recall thatm is the product of two primes of lengthb(k � 1)=2c, som < �2(k�1)=2+1�2 = 2k+1.)

DESCRIPTION OFF (�; �)
Inputs: A secret keySK = (PK ; �(m)), wherePK =(m; r ;Q ; coins) andx 2 f0; 1ga.
Output:a valuev 2 Z�m (which is its own proof).
Code forF ((m; r;Q; coins); �(m); x):

1. Computepx = PrimeSeq(x;Q; coins): (We
expectpx to be a(k + 1)-bit prime.)

2. Compute and outputv = r1=px (mod m).
(easily done due to knowledge of�(m)).

To check that the value of the VUF at pointx is v, the
main thing the verification algorithm needs to do is make
sure thatv is a px’th root of r mod m, i.e., vpx = r(mod m). However, to guarantee that this value is unique,
it also should check thatpx is in fact a prime larger thanm
and thatv 2 Z�m.

Description ofV (�; �; �)
Inputs: A public keyPK = (m; r ;Q ; coins), a pointx,

and a valuev.
Output:YES orNO.
Code forV (1k; (m; r;Q; coins); x; v):

1. Computepx = PrimeSeq(x;Q; coins):
2. Check thatpx is greater thanm and is prime

(by runningPrimalityTestusing fresh random
coin tosses, not those from the public key).

3. Check thatv 2 Z�m andvpx = r (mod m).
4. If all checks pass, outputYES. Otherwise, out-

putNO.

7.1 Correctness of the VUF construction

In this section, we prove that(G;F; V) described in the
previous section is in fact a VRF with securitys0(k) =s(k)1=7, establishing Proposition 3. The efficiency of the
algorithmsG, F , andV is apparent, so we proceed to the
other conditions.

DOMAIN –RANGE CORRECTNESS& COMPLETE PROV-
ABILITY . By Proposition 5, it is true that with probabil-
ity 1 � 2�
(k) over the generation of the keysPK =(m; r ;Q ; coins) and SK = (�(m)), that all the valuespx = PrimeSeq(x; Y; y; z) are primes of lengthk + 1.
Since�(m) < m < 2k+1, it follows that all of thesepx’s
are relatively prime with�(m), and hencer has apx’th
root modulo�(m). Given that these roots exist, it is im-
mediate thatF will successfully compute them, establish-
ing Domain–Range Correctness. Complete Provability also
follows immediately; the only reasonV would reject a cor-
rect proof is a faulty execution of the primality testing al-
gorithmPrimalityTest (which occurs with exponentially
small probability).

UNIQUE PROVABILITY. Assume that an adversary
chooses a (good-looking but illegitimate) public key(m; r;Q; coins) and consider any inputx. If px def=PrimeSeq(x;Q; coins) is not prime or is not larger thanm, then the verification algorithm will detect this and reject
with high probability. Ifpx is a prime larger thanm, thenpx must be relatively prime to�(m), sor has a uniquepx’th
root modm, and this is the only value that the verification
algorithm will accept.

RESIDUAL UNPREDICTABILITY. Suppose, for sake of con-
tradiction,(G;F; V) is not ans0(k)-secure VUF and letT
be the adversary running in times0(k) that guesses the value
of the function at an unseen point with probability at least1=s0(k).

We will use T to construct an algorithmA that con-
tradicts theRSA0 s(k)-Hardness Assumption.A will be
given a modulusm, a primep, andu 2 Z�m as input, from
which it will construct a public keyPK which it will give
to T . Thus, we first concentrate on how the public keyPK = (m; r ;Q ; coins) will be constructed.Q will be cho-
sen in such a way thatPrimeSeq(x0; Q; coins) = p for a
specifiedx0 2 f0; 1ga. This means that1�Q(x� �j0) should
equalp for somej0 2 f1; : : : ; 2k2g, while 1 � Q(x � �j)
should be composite forj < j0. We want the distribution
of Q obtained in this way (whenp is a random(k + 1)-bit
prime) to be close to its distribution in the actual scheme,
which is uniform. This is done using the following proce-
dure:

Description ofChoosePoly(�; �)

Inputs:a primep of lengthk + 1, andx0 2 f0; 1ga.

Output: a polynomialQ of degree at most2k2 � 1
over GF(2k) and a `-bit string coins (such thatPrimeSeq(x0; Q; coins) = p)

Code forChoosePoly(p; x0):
1. w1; : : : ; w2k2 R f0; 1gk
2. Letj0 be the smallestj such that1 � wj is prime

(by runningPrimalityTest on each of them).

3. Choose and fix a representation for GF(2k) (ex-
actly as done in the generation algorithmG).

4. LetQ be the unique polynomial of degree at most2k2 � 1 over GF(2k) subject to the conditionsQ(x0� �j0) = p andQ(x0��j) = wj for all j 6= j0
(where�j denotes the(k�a)-bit representation ofj, with possible leading zeroes). This step can be
implemented using standard polynomial interpo-
lation.

5. coins R f0; 1g`.
6. Output(Q; coins).

Claim 6 For every x0 2 f0; 1ga, the distribution on(Q; coins) obtained by runningChoosePoly(p; x0) for a
random primep of lengthk + 1 has statistical difference72�
(k) from the uniform distribution on(Q; coins).

It is straightforward to verify this claim using Propo-
sition 5 and the fact that the error probability ofPrimalityTest is2�2k. Of course,(Q; coins) is only part
of the public key. We now describe how the remainder of
the public key is generated. On input(m; p; u), the follow-
ing algorithmG0 will “guess” which pointx0 the adversaryT will choose as its exam; useChoosePoly to guarantee
that px0 = p; and, following [Sha83], preparer 2 Z�m
so that thepx’th root of r can be easily computed for allx 6= x0, while thepx0 ’th root of r can be used to compute
the p’th root of u. (This will all be proven in more detail
shortly.)

Description ofG0(�; �; �)
Inputs: a modulusm 2 RSAk, a primep of lengthk + 1,

andu 2 Z�m.

Output: (m; r;Q; coins) andx0 2 f0; 1ga.

Code forG0(m; p; u):
1. x0 R f0; 1ga.

2. (Q; coins) R ChoosePoly(p; x0).7Thestatistical differencebetween two random variablesX andY is
defined to bemaxS jPROB[X 2 S]� PROB[Y 2 S]j.

3. Sete = Qx 6=x0 PrimeSeq(x;Q; coins) andr =ue (mod m).
4. Output(m; r;Q; coins) andx0.

Claim 7 The distribution on ((m; r;Q; coins); x0) ob-
tained by runningG0 onm R RSAk, p R PRIMESk+1,u R Z�m has statistical difference at most2�
(k)
from the distribution obtained by runningG(1k) to select(m; r;Q; coins) and independently selectingx0 uniformly
in f0; 1ga.

Claim 7 is easily deduced from Claim 6 and the fact
that the mapu 7! ue is a permutation onZ�m as long as(e; �(m)) = 1 (which is the case, sincee is the product
of primes greater than�(m) with high probability). By
Claim 7, if T is presented with a public key generated byG0, it’s success probability will be reduced to by only an
exponentially small amount to1=s0(k) � 2�
(k). In addi-
tion, sincex0 is independent from the public key produced
by G0 (up to statistical difference2�
(k)), the event thatT
choosesx0 as its exam is also independent ofT ’s success.
Hence, additionally requiring thatT ’s success be atx0 only
decreases the success probability by a factor of1=2a. To
formalize this, we consider the following experiment.

Experiment A:

1. m R RSAk; p R PRIMESk+1; u R Z�m
2. ((m; r;Q; coins); x0) R G0(m; p; u)
3. SetPK = (m; r ;Q ; coins), SK = (PK ; �(m))
4. (x; guess) = TF (SK ;�)
5. T succeedsif x = x0, guess = F (SK ; x) (i.e.,guessp = r (mod m)), andx was not asked to the

oracleF (SK ; �).
By Claim 7 and the above discussion, it follows that the

probability thatT succeeds in Experiment A is at least"0 def=1=(2a � s0(k))� 2�
(k) > 1=s.
Now we use the analysis of Shamir [Sha83], which

shows that sincer = ue wheree = Qx0 6=x0 px0 , it is easy
to answer all ofT ’s queries forF (SK ; x0) (for x0 6= x0)
without using�(m). In addition, fromF (SK ; x0) = r1=p,
it is easy to computeu1=p. In more detail, we consider the
following algorithmA.

Description ofA(�; �; �)
Inputs:ak-bit modulusm, a primep of lengthk + 1, andu 2 Z�m.

Output: u1=p (hopefully)

Code forA(m; p; u):
1. ((m; r;Q; coins); x0) R G0(m; p; u)

2. SetPK = (m; r ;Q ; coins) ande = Qx 6=x0 px,

wherepx def= PrimeSeq(x;Q; coins).
3. SimulateT (1k;PK). Respond to an oracle

queryy as follows:
(a) If y = x0, abort with outputFAIL.

(b) If y 6= x0, respond withr1=py = uey(mod m), whereey = e=py.

4. Obtain output(x; guess) fromT .

5. If guessp 6= r (mod m), then outputFAIL.

6. If guessp = r, use the GCD algorithm to calcu-
late�; � 2 Z such that�e+ �p = 1, and outputguess�u� .

Claim 8 A(m; p; u) = u1=p (mod m) with probability
at least"0 > 1=s (over the choice ofm R RSAk, p R PRIMESk+1, u R Z�m, and the coins ofA).

We now quickly justify this claim. A straightforward
calculation shows that the responses toT ’s oracle queries
are computed correctly (wheny 6= x0). Thus, as long asT
does not ask oracle queryx0, everything proceeds exactly
as in Experiment A. Our analysis of Experiment A tells us
that with probability at least"0, T 0 does not ask queryx0
and guess = r1=px0 = r1=p. The GCD algorithm will
succeed as long as all thepx’s are distinct, and this is the
case with overwhelming probability by Proposition 5 and
Claim 6. Assumingguess = r1=p and the GCD algorithm
succeeds, it follows thatguess�u� = r�=pu�= (ue)�=pu�= u(�e+�p)=p = u1=p (mod m):

We now just need to analyze the running time ofA.A’s running time is dominated by simulating the oracle
queries ofT . For every oracle query ofT , A must com-
puteuey mod m, whereey is an integer of lengthO(2a � k)
(sincee is the product of2a � 1 primes of lengthk + 1).
This modular exponenation takes timeO(2a �k) �poly(k) =2a � poly(k). Since thereT makes at mosts0 oracle queries,
the total running time is at mosts0 � 2a � poly(k) � s, vio-
lating theRSA0 s(k)-Hardness Assumption.

Acknowledgments

We thank Oded Goldreich, Shafi Goldwasser, Shai
Halevi, Joe Kilian, and David Mazieres, Moni Naor, and
Omer Reingold for their insightful comments and sugges-
tions.

References

[BG89] Mihir Bellare and Shafi Goldwasser. New paradigms
for digital signatures and message authentication
based on non-interactive zero knowledge proofs.
In G. Brassard, editor,Advances in Cryptology—
CRYPTO ’89, volume 435 ofLecture Notes in Com-
puter Science, pages 194–211. Springer-Verlag, 1990,
20–24 August 1989.

[BDMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and
Giuseppe Persiano. Noninteractive zero-knowledge.
SIAM Journal on Computing, 20(6):1084–1118, De-
cember 1991.

[BFM88] Manuel Blum, Paul Feldman, and Silvio Micali. Non-
interactive zero-knowledge and its applications (ex-
tended abstract). InProceedings of the Twentieth
Annual ACM Symposium on Theory of Computing,
pages 103–112, Chicago, Illinois, 2–4 May 1988.

[BM84] Manuel Blum and Silvio Micali. How to gener-
ate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing,
13(4):850–864, November 1984.

[CMS99] Christian Cachin, Silvio Micali, and Markus Stadler.
Computationally private information retrieval with
polylogarithmic communication. In J. Stern, editor,
Advances in Cryptology—EUROCRYPT ’99, volume
1592 of Lecture Notes in Computer Science, pages
402–414. Springer-Verlag, 1999, 2–6 May 1999.

[CD96] Ronald Cramer and Ivan Damgård. New genera-
tion of secure and practical RSA-based signatures.
In Neal Koblitz, editor,Advances in Cryptology—
CRYPTO ’96, volume 1109 ofLecture Notes in Com-
puter Science, pages 173–185. Springer-Verlag, 18–
22 August 1996.

[CS99] Ronald Cramer and Victor Shoup. Signature schemes
based on the strong RSA assumption. Technical Re-
port 99-01, Theory of Cryptography Library, January
1999. See also revision, July 1999.

[DN94] Cynthia Dwork and Moni Naor. An efficient ex-
istentially unforgeable signature scheme and its ap-
plications. In Yvo G. Desmedt, editor,Advances
in Cryptology—CRYPTO ’94, volume 839 ofLec-
ture Notes in Computer Science, pages 234–246.
Springer-Verlag, 21–25 August 1994.

[GHR99] Rosario Gennaro, Shai Halevi, and Tal Rabin. Se-
cure hash-and-sign signatures without the random or-
acle. In J. Stern, editor,Advances in Cryptology—
EUROCRYPT ’99, volume 1592 ofLecture Notes in
Computer Science, pages 123–139. Springer-Verlag,
1999, 2–6 May 1999.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali.
How to construct random functions.Journal of the
ACM, 33(4):792–807, October 1986.

[GL89] Oded Goldreich and Leonid A. Levin. A hard-core
predicate for all one-way functions. InProceedings of

the Twenty First Annual ACM Symposium on Theory
of Computing, pages 25–32, Seattle, Washington, 15–
17 May 1989.

[GMW91] Oded Goldreich, Silvio Micali, and Avi Wigderson.
Proofs that yield nothing but their validity or all lan-
guages in NP have zero-knowledge proof systems.
Journal of the ACM, 38(3):691–729, July 1991.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rack-
off. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–
208, February 1989.

[GMR88] Shafi Goldwasser, Silvio Micali, and Ronald L.
Rivest. A digital signature scheme secure against
adaptive chosen-message attacks.SIAM Journal on
Computing, 17(2):281–308, April 1988.

[GMY83] Shafi Goldwasser, Silvio Micali, and Andy Yao.
Strong signature schemes. InProceedings of the Fif-
teenth Annual ACM Symposium on Theory of Com-
puting, pages 431–439, Boston, Massachusetts, 25–
27 April 1983.

[NR97] Moni Naor and Omer Reingold. Number-theoretic
constructions of efficient pseudo-random functions
(extended abstract). In38th Annual Symposium on
Foundations of Computer Science, pages 458–467,
Miami Beach, Florida, 20–22 October 1997. IEEE.

[NR98] Moni Naor and Omer Reingold. From unpredictabil-
ity to indistinguishability: A simple construction of
pseudorandom functions from macs (extended ab-
stract). In Hugo Krawczyk, editor,Advances in
Cryptology—CRYPTO ’98, volume 1462 ofLec-
ture Notes in Computer Science, pages 267–282.
Springer-Verlag, 23–27 August 1998.

[Pom90] Carl Pomerance. Factoring. In Carl Pomerance, edi-
tor, Cryptology and Computational Number Theory,
volume 42 ofProceedings of Symposia in Applied
Mathematics, pages 27–47. American Mathematical
Society, 1990.

[Rab80] Michael O. Rabin. Probabilistic algorithms for testing
primality. Journal of Number Theory, 12:128–138,
1980.

[Sha83] Adi Shamir. On the generation of cryptographically
strong pseudorandom sequences.ACM Transactions
on Computer Systems, 1(1):38–44, February 1983.

[SS77] R. Solovay and V. Strassen. A fast Monte-Carlo test
for primality. SIAM Journal on Computing, 6(1):84–
85, March 1977.

[Yao82] Andrew C. Yao. Theory and applications of trapdoor
functions (extended abstract). In23rd Annual Sym-
posium on Foundations of Computer Science, pages
80–91, Chicago, Illinois, 3–5 November 1982. IEEE.

