

Error Reduction for Extractors

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Raz, Ran, Omer Reingold, and Salil Vadhan. Error reduction for
extractors. In Proceedings of the 40th Annual Symposium on the
Foundations of Computer Science (FOCS 1999), October 17-19,
1999, New York, NY, ed. FOCS 1999, 191-201. Los Alamitos,
Calif: IEEE Computer Society.

Published Version doi:10.1109/SFFCS.1999.814591

Accessed February 17, 2015 6:26:51 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2894587

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28930885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/2894587&title=Error+Reduction+for+Extractors
http://dx.doi.org/10.1109/SFFCS.1999.814591
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2894587
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Error Reduction for Extractors

Ran Raz� Omer Reingoldy Salil Vadhanz
Abstract

We present a general method to reduce the error of any
extractor. Our method works particularly well in the case
that the original extractor extracts up to a constant frac-
tion of the source min-entropy and achieves a polynomi-
ally small error. In that case, we are able to reduce the
error to (almost) any", using onlyO(log(1=")) additional
truly random bits (while keeping the other parameters of
the original extractor more or less the same). In other cases
(e.g. when the original extractor extracts all the min-entropy
or achieves only a constant error) our method is not optimal
but it is still quite efficient and leads to improved construc-
tions of extractors.

Using our method, we are able to improve almost all
known extractors in the case where the error required is
relatively small (e.g. less than polynomially small error).
In particular, we apply our method to the new extractors
of [Tre99, RRV99] to get improved constructions in almost
all cases. Specifically, we obtain extractors that work for
sources of any min-entropy on strings of lengthn which:
(a) extract any1=n fraction of the min-entropy usingO(log n + log(1=")) truly random bits (for any > 0),
(b) extract any constant fraction of the min-entropy usingO(log2 n+ log(1=")) truly random bits, and (c) extract all
the min-entropy usingO(log3 n + logn � log(1=")) truly
random bits.�Department of Applied Mathematics and Computer Sci-
ence, Weizmann Institute, Rehovot, 76100 Israel. E-mail:
ranraz@wisdom.weizmann.ac.il Work supported by an
American-Israeli BSF grant 95-00238.yDepartment of Applied Mathematics and Computer Sci-
ence, Weizmann Institute, Rehovot, 76100 Israel. E-mail:
reingold@wisdom.weizmann.ac.il Research supported by
an Eshkol Fellowship of the Israeli Ministry of Science and by ESPRIT
working group RAND2.zMIT Laboratory for Computer Science. 545 Technology Square.
Cambridge, MA 02139. E-mail:salil@theory.lcs.mit.edu .
URL: http://theory.lcs.mit.edu/˜salil . Supported by a
DOD/NDSEG fellowship and partially by DARPA grant DABT63-96-C-
0018.

1 Introduction

Roughly speaking, an extractor is a function which ex-
tracts (almost) truly random bits from a weak random
source, using a small number of additional random bits as
a catalyst. More formally, a random variable (or a distribu-
tion) X on f0; 1gn is said to havemin-entropyk if for allx 2 f0; 1gn, Pr [X = x] � 2�k; k is a measure of how
many “bits of randomness” the source contains. A function

EXT: f0; 1gn � f0; 1gd ! f0; 1gm
is called a (k; ")-extractor if for every distributionX
on f0; 1gn of min-entropy k, the induced distribution
EXT(X;Ud) on f0; 1gm has statistical difference at most" from uniform (whereUd is the uniform distribution onf0; 1gd).

In other words, EXT “extracts”m (almost) truly random
bits from a source withk bits of hidden randomness, usingd additional random bits as a catalyst. The random variableX is usually referred to as thesource. The d additional
random bits are sometimes called theseedof the extractor.
The statistical difference", between EXT(X;Ud) and the
uniform distribution, is also called theerror of the extractor.

Extractors were first defined in [NZ96]. A large body
of work has focused on giving explicit constructions of ex-
tractors, as such constructions have a wide variety of ap-
plications. The goal is to explicitly construct extractors
which minimized, while m is as close tok as possible.
Non-explicit constructions of extractors are able to extract
all of the source min-entropy (i.e.m = k), using onlyd = O(log n + log(1=")) additional random bits. It can
be proved that this number of additional random bits is op-
timal [NZ96, RT97].

Current explicit constructions, however, fail to achieve
this optimal bound, though there has been steady progress
towards this goal. Hence, constructing explicit extractors
that achieve the optimal boundd = O(log n + log(1="))
for all settings parameters is still a major open problem. For
more details about some previous work on extractors and
their applications see the survey in [NT99].

Early works on extractors concentrated mainly on the
case of relatively large error". From a theoretical point

of view, however, the case of small error seems to be as in-
teresting. In applications, the low-error case is particularly
interesting when one wants to apply a sequential process,
where an extractor is applied a large number of times. In
such cases, if the error is not small enough it may accumu-
late and destroy the entire process. One example for such a
situation is the recent paper [RR99], where extractors with
exponentially small error are used (and indeed our work im-
plies an improvement of the results in [RR99]).

In this paper, we concentrate on the dependency of the
seed lengthd on the error". Our main goal is to con-
struct efficient extractors for relatively small". Ideally," should add tod only an additive term ofO(log(1=")).
Such a dependency was previously obtained only in cer-
tain cases, when there are restrictions on the relationship
between the min-entropyk and the lengthn of the string
coming from the source. Specifically, Zuckerman [Zuc97]
has constructed extractors which useO(log n + log(1="))
truly random bits whenk is at least a constant fraction ofn. Extractors usingO(k + logn + log(1=")) truly random
bits were constructed by Srinivasan and Zuckerman [SZ98]
and Goldreich and Wigderson [GW94], but this bound is
good only when the min-entropyk is relatively small. Fi-
nally, extractors usingO((n� k) + log(1=")) truly random
bits were constructed by Goldreich and Wigderson[GW94],
but this bound is good only when the min-entropyk is very
close ton.

In contrast to these previous results, the extractors con-
structed in this paper perform well for sources ofanymin-
entropy, while maintaining an optimal dependence on the
error". For sources of any min-entropy, Ta-Shma [NT99]
has previously constructed extractors usingO(polylogn �log(1=")) truly random bits (with the degree of thepolylog
later improved in [RRV99]), but here we aim to obtain a
constantmultiple of log(1=").
1.1 Main Results

Our main result is an efficient method to reduce the error
of an extractor from" to any"0 < " without damaging its
other parameters by much. The exact statement of the result
is given in Section 2. Roughly speaking, given an arbitrary
extractor EXT that extractsm bits with error", we construct
a new extractor EXT 0 that extracts(1 � �) � m bits with
error "0, (where� > 0 is any constant). The number of
truly random bits (i.e. the length of the seed) for the new
extractor EXT 0 is the same as the one for EXT plus� O(log(1="0)) bits, if the original error" is polynomi-

ally small (e.g." = 1=m), or� O(log(1="0)+logm�polyloglogm) bits, if the original
error" is constant.

The method is general, and can be applied to any extractor.
We can apply it to all previous constructions of extractors
and get improved results, except in the few cases where op-
timal results were already achieved [Zuc97, GW94, SZ98].
In particular, applying our new method to the extractors
of [Tre99, RRV99] directly gives the following results (in
all the following� > 0 is an arbitrary small constant):

1. Extracting m = k1�� random bits:
In this case we achieved = O� log2 nlog k + log(1=")� :
This is obtained by using the result of [Tre99] with
polynomially small error and further reducing the error
to " using our new method. The best previous results
wered = O(log2(n=")= log k) andd = O(log2 n �log(1=")= log k), proved in [Tre99, RRV99].

2. Extracting m = (1� �) � k random bits:
In this case we achieved = O(log2 n+ log(1=")):
This is obtained by using the equivalent result
in [RRV99] with polynomially small error and fur-
ther reducing the error to" using our new method.
The best previous results wered = O(log2(n=")) andd = O(log2 n � log(1=")), proved in [RRV99].

3. Extracting all k random bits (i.e.m = k):
In this case we achieved = O((log2 n+ log(1=")) � log k):
This is obtained by iterative application of the previ-
ous resultO(log k) times (as in [WZ95]). The best
previous results wered = O(log2(n=") � log k) andd = O(log2 n � log(1=") � log k), proved in [RRV99].

Strong Extractors. The original definition of extrac-
tors [NZ96] is somewhat stronger than the definition given
above (which is due to [NT99]). Such astrongextractor (as
named by Zuckerman [Zuc97]) EXT has the property that
for every sourceX with sufficient min-entropy, almost ev-
ery seedr is “good” (i.e. EXT(X; r) is close to uniform).
Formally, a function

EXT: f0; 1gn � f0; 1gd ! f0; 1gm
is called astrong (k; ")-extractor if for every distributionX on f0; 1gn of min-entropyk, the induced distributionhUd;EXT(X;Ud)i on f0; 1gd+m has statistical difference
at most" from uniform (where the two occurrences ofUd
represent the same variable).

Though for most applications of extractors “standard”
extractors are sufficing, constructing strong extractors is
still of interest (see, e.g., [Zuc97]). In fact, many of the
constructions of extractors actually givestrongextractors.
In Section 6, we show that our method of reducing the er-
ror in extractors also applies to strong extractors: If the
original extractor EXT is a strong extractor, then the new
extractor EXT0 is also strong. Since the constructions
in [Tre99, RRV99] can be shown to give strong extrac-
tors, it follows that our concrete constructions of extrac-
tors (obtained by applying our new method to the extractors
of [Tre99, RRV99]) also give strong extractors.

1.2 Techniques and Other Results

Our main lemma shows how to reduce the error from"
toO("2). The exact statement of the lemma is given in Sec-
tion 2. Roughly speaking, given an extractor EXT that ex-
tractsm bits with error", we construct a new extractor EXT 0
that extracts(1 � �) � m bits with errorO("2). The num-
ber of truly random bits for EXT0 is the same as the one for
EXT plusO(log(m=")) additional random bits (more pre-
cisely, the number of additional random bits ispoly(1=�) �log(m=")). Our main result (i.e. reducing" to "0) is then ob-
tained by iterative application of the main lemma (with dif-
ferent parameters�) O(log log(1="0)�log log(1=")) times.

The most interesting part of this paper is probably the
proof of the main lemma, as it uses several techniques that
(as far as we know) were not used before. In short, the con-
struction given in the proof is the following: The original(k; ")-extractor EXT: f0; 1gn � f0; 1gd ! f0; 1gm is ap-
plied twiceto the stringx coming from the source. The two
applications of EXT on x are done with two different (but
not independent as random variables) seedsr; r0 2 f0; 1gd.
We denote the outputs byy 2 f0; 1gm andy0 2 f0; 1gm,
respectively, and we prove that the distribution of(y; y0) 2f0; 1g2m is of statistical differenceO("2) from some distri-
bution with min-entropy� m. We then apply to(y; y0) the
extractor constructed by Zuckerman in [Zuc97], with error"2.

Thus, the proof uses composition of extractors. Com-
position of extractors was used before (e.g. to extract more
randomness and to deal with smaller min-entropy), but not
as a technique to reduce the error. Even more interesting is
the way we generate the two seedsr andr0. The first seedr is truly random. The second seedr0, however, is not in-
dependent ofr. It is generated by applying tor another ex-
tractor, constructed by Goldreich and Wigderson [GW94].
In other words, our construction uses two levels of extrac-
tors. EXT is applied on the source, but the seed for EXT is
also recycled (using a different extractor).

In order to prove that this construction works, we prove a
technical lemma (Lemma 17) that analyzes the source of the

error in an extractor. Roughly speaking, the lemma shows
that the main source of error in extractors is a small set of
bad seeds for each value ofx. This analysis may be inter-
esting in its own right.

As mentioned above, our construction uses two previous
constructions, the one of [Zuc97] and the one of [GW94].
The common feature of both of these constructions is that
they both achieve optimal dependency on the error". More
intuition for the proof of the main lemma are given in Sec-
tion 3.

2 Formal Statement of Results

In this section, we give the exact statements of our results
about reducing the error. We first give simplified statements
of our results with parameters restricted to what we feel to
be the most interesting ranges, and later we state the results
in their full generality.

Reducing the Error. Our first theorem reduces the error
of an extractor from1=m (wherem is the output length
of the extractor) to an (almost) arbitrary" > 0 usingO(log(1=")) additional truly random bits.

Theorem 1 Let � > 0 be an arbitrary constant.
Suppose that there is an explicit1 (k; 1=m)-extractor
EXT: f0; 1gn � f0; 1gd ! f0; 1gm. Then, for every"0 > exp(�n=(log� n)O(log� n)) there is an explicit(k0; "0)-
extractorEXT 0: f0; 1gn � f0; 1gd0 ! f0; 1gm0

, withk0 = k +O(log(1="0))m0 = (1� �) �md0 = d+O(log(1="0))
Our second theorem deals with the case that the initial

error is a constant instead of an inverse polynomial. It re-
duces the error to1=m using an almost-logarithmic number
of truly random bits, so that Theorem 1 can then be applied.

Theorem 2 Let 1 > " > 0 and� > 0 be arbitrary con-
stants. Suppose that there is an explicit(k; ")-extractor
EXT: f0; 1gn � f0; 1gd ! f0; 1gm. Then, there is an
explicit (k0; 1=m)-extractor EXT 0: f0; 1gn � f0; 1gd0 !f0; 1gm0

, withk0 = k +O(logm)m0 = (1� �) �md0 = d+O(logm � polyloglogm)
1Of course, it is meaningless to speak of an individual extractor being

“explicit,” but we state our theorems in terms of individualextractors for
readability. The theorems actually refer to afamily of (k; ")-extractors
EXT: f0; 1gn � f0; 1gd ! f0; 1gm, indexed by a the parametersn, k,m, d, and" (with restrictions on their relative values), where such a family
is calledexplicit if EXT(x; y) can be evaluated in timepoly(n; d) givenx, y, n, k, m, d, and" as input.

As mentioned earlier, both of our theorems are based on
a construction which reduces the error from" toO("2). The
quality of this basic construction is given by the following
lemma.

Lemma 3 Let the parameters� and " satisfy 1 >� � 2n�1=(2 log� n) and " � exp ���2 log� nn�. Let
EXT: f0; 1gn � f0; 1gd ! f0; 1gm be a (k; ")-extractor.
Then, there exists a(k0; "0)-extractor EXT 0: f0; 1gn �f0; 1gd0 ! f0; 1gm0

, withk0 = k +O(log(1="))"0 = O("2)m0 = (1� �) �md0 = d+O� log(m=")�2 � ;
and such thatEXT0 is computable in timepoly(n; d0) with
two oracle queries toEXT.

In the above lemma, and throughout the paper, we use
the notationexp(x) as shorthand for2O(x). We note that the
hidden constant in theO("2) can be made arbitrarily close
to 1 at the price of increasing the other hidden constants.

Improved Extractors. By applying Theorem 1 to the ex-
tractors of [Tre99, RRV99], we obtain the following im-
proved constructions of extractors:

Theorem 4 For everyn, k, m, and" such thatm � k �n and " > exp ��n=(log� n)O(log� n)�, there are explicit(k; ")-extractorsEXT: f0; 1gn � f0; 1gd ! f0; 1gm with

1. d = O � log2 nlog(k=m) + log(1=")�, or

2. d = O(log(1=) � (log2 n+log(1="))), where1+ =k=(m� 1) and1=m � < 1=2.

In particular, using the first extractor withm = k1� for
any constant > 0, we haved = O((log2 n)=(log k) +log(1=")). Using the first extractor withk=m constant, we
can extract any constant fraction of the min-entropy usingd = O(log2 n+log(1=")). And, using the second extractor
with k = m, we can extract all of the source min-entropy
usingd = O((log k) � (log2 n + log(1="))) truly random
bits. Actually, using a technique from [RRV99], the output
length in this last case can be increased tom = k + d �2 log(1=") � O(1) while only increasingd by a constant
factor. This “entropy loss” of2 log(1=") + O(1) is optimal
up to an additive constant [RT97].

Generalizations. By allowing parameters to vary more
freely in the proofs of Theorems 1 and 2, we can obtain
results for reducing any initial error" to (almost) any final
error "0 < " while preserving the output length up to any1� � factor. These generalized theorems are given below.

Theorem 5 (Thm. 1, generalized)Let EXT: f0; 1gn �f0; 1gd ! f0; 1gm be a (k; ")-extractor, with" � 1=m.
Then, for any 1 > � � n�1=(3 log� n) and any"0 > exp ��n � (�= log� n)O(log� n)�, there exists a(k0; "0)-extractor EXT 0: f0; 1gn � f0; 1gd0 ! f0; 1gm0

,
with k0 = k +O(log(1="0))m0 = (1� �) �md0 = d+O� log(1="0)�2 � ;
and such thatEXT 0 is computable in timepoly(n; d0), mak-
ingO(log(1="0)= log(1=")) oracle queries toEXT.

Theorem 6 (Thm. 2, generalized)Let � > 0 be any con-
stant. LetEXT: f0; 1gn � f0; 1gd ! f0; 1gm be a(k; ")-
extractor, with " > 1=m. Then, for any1 > � �n�1=(3 log� n) and any1� � > " > "0 � 1=m, there exists
a (k0; "0)-extractorEXT 0: f0; 1gn � f0; 1gd0 ! f0; 1gm0

,
withk0 = k +O(log(1="0))m0 = (1� �) �md0 = d+O�logm � [log log(1="0)� log log(1=")]3�2 � ;
and such thatEXT0 is computable in timepoly(n; d0) withO(log(1="0)= log(1=")) oracle queries toEXT.

3 Overview of the Construction

In order to motivate our construction, we first discuss the
possible sources of error in extractors. Consider a(k; ")-
extractor EXT: f0; 1gn � f0; 1gd ! f0; 1gm and sourceX
of min-entropyk0 � k such that EXT(X;Ud) has statistical
difference" from the uniform distribution. This means that
some strings inf0; 1gm receive noticeably more probability
mass under EXT(X;Ud) than they should; call these strings
“heavy.” Where can this error come from? Intuitively, we
must be in one of the following two situations:

1. The error comes from the source: Some of thex’s coming from X are “bad,” in the sense that
EXT(x; Ud) is a heavy output with probability much
more than".

2. The error comes from the seeds: For mostx’s, roughly
an" fraction of ther’s coming fromUd are “bad,” in
the sense that EXT(x; r) is one of the heavy outputs.

The first possibility is easily dealt with by requiringk0,
the min-entropy ofX , to be slightly higher thank. Intu-
itively, there can be at most2k badx’s, for otherwise the
uniform distribution on thosex’s would result in a source
of min-entropyk which is at distance much more than"
from uniform. So, if we requireX 0 to be of min-entropyk0 = k+ t, a badx will occur with probability at most2�t.

So, we need only deal with the second case, where the er-
ror comes from bad seeds, rather than bad outputs from the
source. The second case says that if we throw away the badr’s for eachx, then heavy strings will occur with very low
probability. In other words, the output will be very close
to a distribution with very high min-entropy (e.g.m � 1).
More precisely, we will show that for every sourceX of
min-entropyk + t and everyx coming fromX , we can
define a setGx � f0; 1gd of “good” r’s such thatGx is of
density1�O(") and EXT(X;GX) is at distance at most2�t
from having min-entropym � 1 (where EXT(X;GX) de-
notes the distribution obtained by samplingx according toX , choosingr uniformly inGx, and outputting EXT(x; r)).

How does this help? It turns out that it is relatively easy
to extract randomness from distributions of very high min-
entropy, like min-entropym � 1 overf0; 1gm; Goldreich
and Wigderson [GW94] give “optimal” extractors for this
setting. So our task is reduced to obtaining a seed inGx
with probability better than1�". One way to do this is to try
two independent seeds. Namely, consider EXT0: f0; 1gn �f0; 1g2d ! f0; 1gn, defined by

EXT0(x; (r1; r2)) = EXT(x; r1)EXT(x; r2):
This accomplishes what we want — at least one of theri’s will land in Gx with probability at least1 � O("2),
and hence one can argue that the output of EXT0 is at dis-
tanceO("2) from min-entropym � 1. But the output is
now of length2m, so the result does not have min-entropy
very close to its length, and we cannot use the Goldreich–
Wigderson extractor. However, the min-entropy of the out-
put is still a constant fraction of its length, and fortunately,
Zuckerman [Zuc97] has constructed nearly optimal extrac-
tors for this setting. Thus, we consider the function

EXT00(x; (r1; r2; r3)) = ZUCK(EXT(x; r1)EXT(x; r2); r3);
where ZUCK is the extractor of Zuckerman. EXT 00 thus
gives an output that is at distanceO("2) from uniform, us-
ing 2d + O(logm=") = O(d) truly random bits (whereO(logm=") is the seed length for Zuckerman’s extractor).
So, we have roughly squared the error at the price of in-
creasing the seed length by a constant factor. To reduce the

error arbitrarily, one can now recurse. But the constant fac-
tor in seed length at each stage is too costly to obtain our
desired result.

In order to improve upon this, we observe that it is not
necessary thatr1 andr2 be independent; we only need that
one of the two will hitGx with probability1�O("2). One
can generate a pair(r1; r2) satisfying this property usingd + O(log(1=")) truly random bits; for example, letr2 be
obtained by taking a random walk on a constructive ex-
pander graph starting atr1, or let r2 be obtained by apply-
ing the Goldreich–Wigderson extractor tor1.2 This modi-
fication allows us to obtain errorO("2) at anadditivecost
of O(log(1=")) truly random bits (assuming, for simplicity
that" < 1=m). Now if we recurse, these additive terms turn
out to be a geometric series, and the total cost to reduce the
error to"0 isO(log(1="0)) truly random bits.

There is only one small difficulty left: Zuckerman’s ex-
tractor is only optimal when extracting a constant fraction of
the min-entropy. If we lose a constant fraction of the min-
entropy at each stage of recursion, the final extractor will
extract much less randomness than the original extractor.
However, Zuckerman’s extractor can extract more than a
constant fraction of the min-entropy at a slight cost. Specif-
ically, to extract a fraction1 � � of the min-entropy, the
number of truly random bits used increases by apoly(1=�)
factor. With appropriate choices of� during the recur-
sion (ending with a constant�), we can ensure that the
final extractor extracts a constant fraction of the random-
ness extracted by the original extractor, while using onlyO(log(1="0)) additional truly random bits.

4 The Basic Step — Squaring the Error

As described in Section 3, the basic step of our construc-
tion is a general method for reducing the error of extractors
from " to O("2). The properties of this transformation are
given in Lemma 3. In this section we formalize the de-
scription (given in Section 3) of this basic step and prove
Lemma 3. In Section 5, we show how recursive applica-
tions of this step can further reduce the error to an (almost)
arbitrarily small value.

4.1 Tools

To prove Lemma 3 we use two previous constructions
of extractors. One construction was given by Zucker-
man in [Zuc97] and the other was given by Goldreich and
Wigderson in [GW94]. We apply both constructions in the
setting of parameters where their seed-length is optimal: the
extractor of [Zuc97] is used for sources of constant entropy

2These two methods are essentially equivalent, as the Goldreich–
Wigderson extractor roughly amounts to taking a random walkon an ex-
pander from its input.

rate (i.e. of min-entropyk =
(n)) whereas the extractor of
[GW94] is used for sources of very high min-entropy (i.e.
of min-entropyk = n � O(log(1="))). We now give the
formal statement of the constructions used in this paper:

Theorem 7 ([Zuc97]) Fix any constant� > 0. For any pa-
rametersn, k, ", and� satisfyingk � �n, m � (1� �)k,1 > � � n�1=(2 log� n), and " � exp ���2 log� n � n�,
there exists an explicit(k; ")-extractor ZUCK: f0; 1gn �f0; 1gd ! f0; 1gm, withd = O� log(m=")�2 � :
Remark 8 In fact, the seed of this extractor is slightly

shorter: Theorem 7 holds ford = O � log(m=")�= log(��1)�. Nev-

ertheless, we replace the term�= log(��1) with �2 to sim-
plify the exposition.

Theorem 9 ([GW94]) For any" > 0 and0 < k � n there
exists an explicit(k; ")-extractorGW: f0; 1gn�f0; 1gd !f0; 1gk with d = O (n� k + log(1=")) :
Furthermore, GW(Un; Ud) is uniformly distributed onf0; 1gk.3

4.2 Extracting a Source of Constant Entropy-
Rate

Let EXT be any(k; ")-extractor with output lengthm.
To prove Lemma 3, one has to show how to construct from
EXT a comparable extractor EXT0 that has errorO("2). The
main part of our construction is a method of using EXT to
transform a sourceX of n-bit strings that has min-entropy
roughlyk to another sourceY of O(m)-bit strings that isO("2) close to having min-entropy roughlym. In other
words, we use EXT to obtain a source that is close to hav-
ing a constant entropy-rate. Lemma 3 is then obtained by
applying the extractor of [Zuc97] (that works well for such
sources) onY . An overview of this method was given in
Section 3 and we now formalize its properties:

Lemma 10 Let EXT: f0; 1gn � f0; 1gd ! f0; 1gm
be a (k; ")-extractor. Then, there exists a function
EXTrate: f0; 1gn � f0; 1g ~d ! f0; 1g2m such that for any
distributionX with min-entropy~k the induced distribution
EXTrate(X;U ~d) is of statistical difference at most~" from a
source that has min-entropym�O(1), where~k = k +O(log(1="))~" = O("2)~d = d+O(log(1=")):

3This property is not explicit in [GW94] but it immediately follows
from the construction of their extractor.

Moreover,EXTrate is computable in timepoly(n; ~d) with
two oracle queries toEXT.

Proof of Lemma 10: Let t = 2 log(1=") and assume wlog
thatt is an integer. Let

GW: f0; 1gd+t � f0; 1gd̂ ! f0; 1gd
be the(d; ")-extractor guaranteed by Theorem 9. Define~d = d + t + d̂. Note that indeed~d = d + O(log(1="))
(since by Theorem 9,̂d = O(log(1="))). Finally for anyx 2 f0; 1gn, r 2 f0; 1gd+t ands 2 f0; 1gd̂ define4

EXTrate(x; (r; s)) def= (EXT(x; r)EXT(x;GW(r; s)):
It is clear that EXTrate is indeed computable in timepoly(n; ~d) with two oracle queries to EXT. Set ~" = 7"2

and~k = k + t. Fix any sourceX of n-bit strings with min-
entropy~k. LetR be uniformly distributed onf0; 1gd+t and
letS be uniformly distributed onf0; 1gd̂. We will prove that
the induced distribution EXTrate(X; (R;S)) is of statisti-
cal difference at most~" from a source that has min-entropym�1. To do so we first identify the set,B, of “heavy” output
strings (those whose probability mass under EXT(X;Ud)
is at least twice their probability mass under the uniform
distribution). We then show that the probability that both
EXT(X;R) and EXT(X;GW(R;S)) are inB, is at most~".

DefineB def= fz 2 f0; 1gm j Pr [EXT(X;Ud) = z] >2�(m�1)g. For any integer̀ and any setA � f0; 1g` define�(A) to be the density ofA in f0; 1g` (i.e. the cardinality ofA divided by2`).
Claim 11 �(B) < "
Proof: By the definition of B we have thatPr [EXT(X;Ud) 2 B] > 2�(B). However, it is clear
thatPr [Um 2 B] = �(B). Since EXT is a (k; ")-extractor
andX has min-entropy~k > k we can conclude:�(B) < Pr [EXT(X;Ud) 2 B]� Pr [Um 2 B] < "2

For everyx 2 f0; 1gn, the setB induces a set,Bx, of
“bad” seeds forx:

Bx def= fr 2 f0; 1gd jEXT(x; r) 2 Bg:
We show that for almost allx’s there is only a2"-fraction
of bad seeds.

4The expression EXT(x; r) is a slight abuse of notation sincer is longer
than the seed length of EXT. We assume that EXT ignores theset extra bits
of r.

Claim 12 PrX [�(BX) � 2"] < 2�t = "2
Proof: Define X 0 to be the random variableX condi-
tioned on the event�(BX) � 2". Suppose the claim
is false andPrX [�(BX) � 2"] � 2�t. This implies
that X 0 has min-entropyk (recall that ~k = k + t).
Therefore (since EXT is a (k; ")-extractor) we have thatPr [EXT(X 0; Ud) 2 B] � Pr [Um 2 B] � ". On the other
hand, by definition,Pr [EXT(X 0; Ud) 2 B] � 2" whereasPr [Um 2 B] = �(B) < ". This forms a contradiction and
completes the proof of the claim.2

We define the set of bad output strings of EXTrate (with

respect toX) to be B0 def= B � B (the set of strings inf0; 1gm � f0; 1gm such that both of their parts are inB).
For everyx 2 f0; 1gn, this induces a set of bad seeds forx: B0x def= Bx � Bx. We now show that: (1) The probabil-
ity mass under EXTrate(X; (R;S)) of any individual string(u; v) 62 B0 is at most2�(m�1). (2) The probability mass
under EXTrate(X; (R;S)) of B0 is at most~". This will com-
plete the proof of the lemma.

Claim 13 For any(u; v) 62 B0,Pr �EXTrate(X; (R;S)) = (u; v)� � 2�(m�1):
Proof: If (u; v) 62 B0 then eitheru 62 B or v 62 B. Since
bothR and GW(R;S) are uniformly distributed (though
not independent) we get by the definition ofB that:

1. If u 62 B, thenPr �EXTrate(X; (R;S)) = (u; v)� �Pr [EXT(X;R) = u] � 2�(m�1):
2. If v 62 B, thenPr �EXTrate(X; (R;S)) = (u; v)� �Pr [EXT(X;GW(R;S)) = v] � 2�(m�1):2

Claim 14 For everyx 2 f0; 1gn, if �(Bx) < 2" thenPr �(R;GW(R;S)) 2 B0x� < 6"2
Proof: Pr �(R;GW(R;S)) 2 B0x� = Pr [R 2 Bx] �Pr [GW(R;S) 2 Bx j R 2 Bx]. Therefore, ifPr [R 2 Bx] = �(Bx) < 6"2 we are done. Assume
that �(Bx) � 6"2. In this case, the distribution ofR
conditioned on the eventR 2 Bx still has min-entropy
at least d + t � log(1=(6"2)) > d. Therefore, by
the definition of GW the distribution of GW(R;S)
conditioned on the eventR 2 Bx is " � close to
uniform. We can conclude that if�(Bx) � 6"2 thenPr [GW(R;S) 2 Bx j R 2 Bx] � �(Bx) + " < 3" which
completes the proof of the claim.2
Claim 15 Pr �EXTrate(X; (R;S)) 2 B0� < ~"

Proof: By the definition ofB0 and from Claims 12 and 14
we get thatPr �EXTrate(X; (R;S)) 2 B0�= Pr �(R;GW(R;S)) 2 B0X�� Pr [�(BX) � 2"] + Pr �(R;GW(R;S)) 2 B0X j �(BX) < 2"�< "2 + 6"2 = ~"2

DefineG def= fz 2 f0; 1g2m j Pr �EXTrate(X; (R;S)) = z� < 2�mg
(by definition, G contains almost all2m-bit strings).
Let C be a random variable which is identically
distributed to EXTrate(X; (R;S)) in the event that
EXTrate(X; (R;S)) 62 B0 and uniformly distributed overG in the event EXTrate(X; (R;S)) 2 B0. By Claim 13
and the definition ofG, C has min-entropym � 1. By
Claim 15, EXTrate(X; (R;S)) is ~"-close toC. This com-
pletes the proof of Lemma 10.2
Remark 16 We prove that Lemma 10 holds with~" = 7"2.
However, the lemma also holds for~" = (1 +)"2 where > 0 is an arbitrarily small constant. Showing this re-
quires two changes in the definition ofEXTrate (for an ap-
propriate constantc): (1) Sett = c log(1=") (2) Take
GW to be a (d; "=c)-extractor. Repeating the original
proof (with the required adjustments), it can now be shown
thatEXTrate(X; (R;S)) is sufficiently close to having min-
entropym� c .

In Section 3, we discussed the possible sources of error
in extractors. Lemma 17 below (which is implicit in the
proof of Lemma 10) formalizes that discussion.

Lemma 17 Let EXT: f0; 1gn � f0; 1gd ! f0; 1gm be a(k; ")-extractor, where" < 1=4. Let X be any source of
min-entropyk+ t. Then there exist setsfGxgx2f0;1gn such
that

1. For everyx, Gx � f0; 1gd is of density1�O(").
2. EXT(X;GX) is at distance at most2�t from hav-

ing min-entropym � O(1) (whereEXT(X;GX) de-
notes the distribution obtained by samplingx accord-
ing toX , choosingr uniformly inGx, and outputting
EXT(x; r)).

Remark 18 The assumption that" < 1=4 simplifies the
proof and for any constant� > 0 it can be relaxed to" <1��. However, when" is a constant, claiming that there is
only anO(") fraction of “bad” seeds is not very interesting.

Proof sketch: Consider the setsBx in the proof of

Lemma 10. For everyx such that�(Bx) � 2", defineGx def=f0; 1gd n Bx. Otherwise, defineGx def= f0; 1gd. By the as-
sumption that" < 1=4, we have that for everyz 2 f0; 1gm,Pr [EXT(X;GX) = z] < 2Pr [EXT(X;Ud) = z]. From
the definition of the setsBx and Claim 12, it follows that
the setsfGxgx2f0;1gn satisfy the conditions of Lemma 17.2
4.3 Using Zuckerman’s Extractors

Lemma 10 gives us a simple way to use any extractor
EXT with output lengthm in order to produce anO(m)-bit
stringy that isO("2) close to having min-entropy roughlym. Lemma 3 can now be easily obtained by applying the
extractor of Theorem 7 ony to extract(1� �) �m bits that
areO("2)-close to uniform. However, using this extractor
imposes some limitations on" and� (i.e. on the error and
the number of bits that can be extracted). These limitations
are stated in Theorem 7 and are carried on to Lemma 3 and
to Theorems 1, 4 and 5. As discussed in Section 7, an im-
proved construction of extractors for the case of constant
entropy-rate (or even improved mergers [NT99]) may also
improve our construction.

Proof of Lemma 3: Let the parameters� and" satisfy1 > � � 2n�1=(2 log� n) and" � exp ���log� nn�. Let
EXT: f0; 1gn�f0; 1gd ! f0; 1gm be a(k; ")-extractor. We
will define a(k0; "0)-extractor EXT0: f0; 1gn � f0; 1gd0 !f0; 1gm0

, with the properties stated by the lemma.
If � = O(1=m) then extractors with output-lengthm

and seed-lengthO(1=� + log(n=")) were already given in
[SZ98, GW94]. Therefore we can assume that� < m, for
an arbitrarily small constant. Let

EXTrate: f0; 1gn � f0; 1g ~d ! f0; 1g2m
be the function guaranteed to exist by Lemma 10 such
that for any distributionX with min-entropy~k the induced
distribution EXTrate(X;U ~d) is of statistical difference at
most ~" from a source that has min-entropym � c. De-
fine m0 = (1 � �=2)(m � c) (which indeed implies thatm0 > (1� �) �m for a sufficiently small choice of). Let

ZUCK: f0; 1g2m � f0; 1gd̂ ! f0; 1gm0
be the((m � c); "2)-extractor guaranteed to exist by The-
orem 7 (since1 > �=2 � n�1=(2 log� n) and "2 �exp ���2 log� n � n�).

Define k0 = ~k (which indeed implies thatk0 = k +O(log(1="))), "0 = ~"+ "2 (which indeed implies that"0 =O("2)) andd0 = ~d+ d̂ (which indeed implies thatd0 = d+O � log(m=")�2 �
). Finally, define EXT 0: f0; 1gn � f0; 1gd0 !

f0; 1gm0
such that for everyx 2 f0; 1gn, r 2 f0; 1g ~d andr0 2 f0; 1gd̂

EXT 0(x; (r; r0)) def= ZUCK(EXTrate(x; r); r0)
It is clear that EXT 0 is computable in timepoly(n; d0) with
two oracle queries to EXT (given the properties of EXTrate
and ZUCK). It remains to show that EXT0 is a (k0; "0)-
extractor. LetX be any source with min-entropyk0. By
the properties of EXTrate we have that EXTrate(X;U ~d) is~"-close to a source that has min-entropym � c. Therefore,
since ZUCK is a((m�c); "2)-extractor, EXT 0(X; (U ~d; Ud̂))
is ~"+ "2 = "0-close to the uniform distribution.2
Remark 19 Following Remark 16, we note that Lemma 3
holds with"0 = (1 +)"2 where > 0 is an arbitrarily
small constant (at the price of increasing the other hidden
constants of the lemma).

5 Using Recursion to Reduce the Error

In this section we show how recursive applications of our
basic step (i.e. of Lemma 3) can reduce the error of any ex-
tractor to an almost arbitrarily small". The only limitation
on " is the one imposed by the extractors of [Zuc97] (see
Theorem 7). We prove the quality of our reduction in the
two special cases we consider the most interesting: (1) Re-
ducing the error from1=m to an (almost) arbitrarily small" > 0. (2) Reducing a constant error to error1=m. In the
first case the reduction is optimal in that the seed of the ex-
tractor increases by onlyO(log(1=")) additional bits. In the
second case the increase in the seed-length is slightly super-
logarithmic. The quality of these reductions is formalized
in Theorems 1 and 2 which we prove in this section. The
proof of the more general versions (i.e. Theorems 5 and 6)
is more or less the same. However, we chose to prove the
special cases for the sake of readability.

Reducing error 1=m to smaller error ". Starting with a(k; 1=m)-extractor, EXT, one can obtain a(k0; ")-extractor
EXT0 by O(log log(1=")) applications of Lemma 3. How-
ever, in each one of these applications the new extractor has
an output-length which is shorter by some�0-fraction than
that of the old extractor. It turns out that one cannot keep�0 constant in all these applications without either paying
too much in the the seed-length or loosing too much in
the output-length. We therefore use in our proof different�i’s for the different applications (in earlier applications"
is larger and we can therefore afford a smaller�i without
paying too much in the seed length).

Proof of Theorem 1: Let EXT: f0; 1gn � f0; 1gd !f0; 1gm be an explicit(k; 1=m)-extractor. We define a se-
quence of(ki; "i)-extractorsfEXTi: f0; 1gn � f0; 1gdi !

f0; 1gmigti=0 where EXT0 = EXT, "i = "(1:9)i0 , t =O(log log(1="0) � log log(m)) (such that"t = "0) and
EXTt = EXT0 satisfies the requirements of the theorem.
EXTi+1 is obtained from EXTi by applying Lemma 3 with�i = �c�(t�i+1)2 for some constantc that will be determined
within the proof.

By Lemma 3, we can set"i+1 = O("2i). As long as"i � 1=m (which always holds since the sequencef"ig is

decreasing), we can set"i = "(1:9)i0 as stated above. Equiva-

lently, "t�j = "(1:9)�jt = ("0)(1:9)�j
. In order for Lemma 3

to apply, we need to verify that"t�j > exp(��2 log� nt�j � n),
i.e. log(1="t�j)=(�2 log� nt�j) = O(n).log(1="t�j) � ��2 log� nt�j= �(1:9)�j � log(1="0)� � � �c � (j + 1)2��2 log� n= log(1="0) � ��2 log� n �� (j + 1)O(log� n)1:9j �� log(1="0) � ��2 log� n � (log� n)O(log� n) (1)� O(n): (2)

Inequality (2) follows from our requirement that" >exp ��n=(log� n)O(log� n)�. Inequality (1) is obtained by
a case analysis on the value ofj. When j � (log� n)2,
then (j + 1)O(log� n) = (log� n)O(log� n), and whenj >(log� n)2, (j+1)O(log� n)=1:9j is bounded above by a con-
stant independent ofn.

By Lemma 3,ki+1 = ki +O(log(1="i)). Therefore,k0 def= kt = k0 +O tXi=0 log(1="i)!= k +O log(1="0) tXi=0(1:9)�i!= k +O (log(1="0) :
By Lemma 3,mi+1 = (1��i)mi > mi��im. Therefore,
for some choice of the constantc,m0 def= mt > m0 � tXi=0 �im!= m� tXi=0 1c � (t� i+ 1)2!�m> (1� �)m
It remains to boundd0 def= dt. Sincedi+1 = di +O� log(m="i)�2i �= di +O� log(1="0)�2 (t� i+ 1)22t�i � ;

we get thatd0 = d0 + log(1="0)�2 �O0@ tXj=0 (j + 1)22j 1A= d+O� log(1="0)�2 �
Finally, since the depth of the recursion isO(log log(1="0))
and computing EXTi+1 only requires two queries to EXTi
and an additionalpoly(n; di+1) time we can deduce that
EXT0 is indeed computable inpoly(n; d0) time. 2
Reducing a constant error to error 1=m. Starting with
a (k; ")-extractor for some constant� one can obtain a(k; 1=m)-extractor, EXT 0, by O(log logm) applications of
Lemma 3. Therefore, the proof of Theorem 2 can be ob-
tained in a very similar way to the proof of Theorem 1.
However, in this case there is no gain in taking different val-
ues�i’s for the different applications of Lemma 3. The rea-
son is that the seed length will now grow byO(logm=�2)
at each application of Lemma 3regardless of the current er-
ror. Therefore, there is no way to balance�i with the"i’s
as done in the proof of Theorem 1.

Proof of Theorem 2: Let EXT: f0; 1gn � f0; 1gd !f0; 1gm be an explicit(k; �)-extractor for some constant". We define a sequence of explicit(ki; "i)-extractorsfEXTi: f0; 1gn� f0; 1gdi ! f0; 1gmigti=0 where EXT0 =
EXT, "i = "(1:9)i0 , t = O(log logm) (such that"t = 1=m)
and EXTt = EXT0 satisfies the requirements of the theorem.
EXTi+1 is obtained from EXTi by applying Lemma 3 with�0 = �t .

As noted in Remark 19, Lemma 3 holds with"0 =(1 +)" where > 0 is an arbitrary constant. Therefore,
by setting to be small enough we can indeed obtain the

relation"i = "(1:9)i0 as desired. It is now easy to verify that:kt = k0 +O tXi=0 log(1="i)! = k +O(logm)mt > (1� t�0) �m = (1� �) �mdt = d0 +O tXi=0 log(m="i)(�0)2 != d+O(logm � t3)= d+O(logm � polyloglogm)
Finally, it is easy to verify that EXT0 is indeed computable
in poly(n; d0) time. 2
6 Strong Extractors

As mentioned in the Introduction, all the results of this
paper can be extended tostrong extractors. Specifically,

each of our transformations of an extractor EXT with er-
ror " to an extractor EXT0 with error "0 have the property
that if EXT is a strong extractor then so is EXT 0. This is
significant because many of the known constructions of ex-
tractors actually give strong extractors. In particular, since
the constructions in [Tre99, RRV99] can be shown to give
strong extractors, our concrete constructions of extractors
(Theorem 4) also give strong extractors.

Our method of reducing the error in extractors consists
of recursive applications of the basic step: a transformation
of an extractor EXT with error" to an extractor EXT 0 with
errorO("2). Therefore, to show that this method applies to
strong extractors, it is sufficient that the basic step applies
in this case. We now state an analogous to Lemma 3 for the
case of strong extractors:

Lemma 20 Let the parameters� and " satisfy 1 >� � 2n�1=(2 log� n) and " � exp ���2 log� nn�. Let
EXT: f0; 1gn � f0; 1gd ! f0; 1gm be a strong (k; ")-
extractor. Then, there exists astrong (k0; "0)-extractor
EXT0: f0; 1gn � f0; 1gd0 ! f0; 1gm0

, withk0 = k +O(log(1="))"0 = O("2)m0 = (1� �) �md0 = d+O� log(m=")�2 � ;
and such thatEXT0 is computable in timepoly(n; d0) with
two oracle queries toEXT.

Recall that reducing the error from" toO("2) is done in
two stages: (1) Using EXT to transform a sourceX of n-
bit strings that has min-entropy roughlyk to another sourceY of O(m)-bit strings that isO("2)-close to having min-
entropy roughlym. (2) Applying the extractor of Zuck-
erman [Zuc97] onY to obtain(1 � �) � m bits that areO("2)-close to uniform. Since the Zuckerman’s extractor
is in itself a strong extractor it is sufficient to show that the
first stage works in the case of strong extractors. We now
state the properties of the first stage for this case (in analogy
to Lemma 10):

Lemma 21 Let EXT: f0; 1gn � f0; 1gd ! f0; 1gm be a
strong(k; ")-extractor. Then, for~k = k +O(log(1="))~" = O("2)~d = d+O(log(1="));
there exists a functionEXTrate: f0; 1gn � f0; 1g ~d !f0; 1g2m such that for any distributionX with min-entropy~k the induced distributionhU ~d;EXTrate(X;U ~d)i is of sta-
tistical difference at most~" from a distribution h ~R;Ci

(where ~R is distributed onf0; 1g ~d and C is distributed
on f0; 1g2m) with the following property: For any value~r 2 f0; 1g ~d the distribution ofC conditioned on the event~R = ~r has min-entropym � O(1). Moreover,EXTrate is
computable in timepoly(n; ~d) with two oracle queries to
EXT.

Proof sketch: The proof of Lemma 21 is very similar to
the proof of Lemma 10 (in some sense even simpler). The
main difference between the two proofs is in the definition
of the setsB, Bx, B0 andB0x. We therefore focus on these
changes.

Define EXTrate as in the proof of Lemma 10. Fix any
sourceX of n-bit strings with min-entropy~k. LetR be uni-
formly distributed onf0; 1gd+t and letS be uniformly dis-
tributed onf0; 1gd̂. We will prove that the induced distribu-
tion h(R;S);EXTrate(X; (R;S))i has statistical difference
at most~" from a distributionh ~R;Ci as in the statement of
the lemma.

B is defined as in the proof of Lemma 10when we re-
place the extractorEXT with the extractorgEXT that is de-
fined by gEXT(x; r) = hr;EXT(x; r)i (gEXT is an extrac-
tor since EXT is a strong extractor). Therefore, we letB
be the set of “heavy”seed-output pairsof EXT (instead of

just “heavy” output strings). More precisely, defineB def=fhr; zi 2 f0; 1gd+mj Pr [EXT(X; r) = z] > 2�(m�1)g.
For everyx 2 f0; 1gn, the setB induces a set,Bx, of “bad”
seeds forx:

Bx def= fr 2 f0; 1gd jhr;EXT(x; r)i 2 Bg:
SincegEXT is an extractor we have (in exactly the same

way as in the proof of Lemma 10) the following two claims:

Claim 22 �(B) < "
Claim 23 PrX [�(BX) � 2"] < 2�t = "2

We define the set of bad output strings of EXTrate (with
respect toX) to be

B0 def= fh(r; s); (u; v)i j hr; ui 2 B andhGW(r; s); vi 2 Bg:
For everyx 2 f0; 1gn, this induces a set of bad seeds forx:

B0x def= f(r; s) j h(r; s);EXTrate(x; (r; s))i 2 B0g:
By the definition ofB0 we have that

Claim 24 For anyh(r; s); (u; v)i =2 B0,Pr �EXTrate(X; (r; s)) = (u; v)� � 2�(m�1):
In exactly the same way as in the proof of Lemma 10 we
have that

Claim 25 Pr �h(R;S);EXTrate(X; (R;S))i 2 B0� < ~"
For every possible seed~r, define G~r def= fz 2f0; 1g2m j Pr �EXTrate(X; ~r) = z� < 2�mg (by defini-

tion, G~r contains almost all2m-bit strings). Let ~R be the
random variable(R;S). LetC be a random variable which
is identically distributed to EXTrate(X; ~R) in the event thath ~R;EXTrate(X; ~R)i 62 B0 and uniformly distributed overG ~R in the eventh ~R;EXTrate(X; ~R)i 2 B0. By Claim 24

and the definition ofG~r, for any value~r 2 f0; 1g ~d the dis-
tribution of C conditioned on the event~R = ~r has min-
entropym�1. By Claim 25,h ~R;EXTrate(X; ~R)i is ~"-close
to h ~R;Ci. This completes the proof of the lemma.2
7 Discussion

Ideally, we would like to have a method to reduce the
error of an extractor from constant to any", using onlyO(log(1=")) additional random bits (and without changing
any other parameters by much). This would imply that in
order to come up with optimal extractors one only has to
deal with the constant error case. Our method comes close
to that goal, but it falls short in two points.

First, our method is only optimal when the original error
is � 1=m. Indeed, if the error is� 1=m we are able to
reduce the error to any", using onlyO(log(1=")) additional
random bits. However, to reduce the error from constant to1=mwe needO(logm�polyloglog(m)) random bits, which
is not optimal. Is there an improved method to reduce the
error from constant to1=m using onlyO(logm) random
bits ?

The second problem with our construction is the entropy
loss. Since we use Zuckerman’s extractor, we are only able
to extract(1��) �m bits of the source min-entropy, wherem is the number of bits extracted by the original extractor.
In particular, this is significant when the original extractor
extracts all of the source min-entropy. Is it possible to im-
prove the entropy loss of our construction? Our entropy loss
is the same as the one in Zuckerman’s construction. How-
ever, we use Zuckerman’s extractor only as a “merger” in
the sense of [NT99]. That is, we use it to combine two
(dependent) distributions, one of which contains all the ran-
domness we want to extract. Thus, we do not necessarily
need its full power as an extractor. Can one replace Zucker-
man’s extractor in our construction by a different “merger”
with a smaller entropy loss?

Acknowledgments

We thank Oded Goldreich and the anonymous reviewers
for their comments.

References

[GW94] Oded Goldreich and Avi Wigderson. Tiny fami-
lies of functions with random properties: A quality-
size trade-off for hashing. Electronic Collo-
quium on Computational Complexity, Technical Re-
port TR94-002, 1994. Revised December 1996.
http://www.eccc.uni-trier.de/eccc .

[NT99] Noam Nisan and Amnon Ta-Shma. Extracting random-
ness: A survey and new constructions.Journal of Com-
puter and System Sciences, 58(1):148–173, 1999.

[NZ96] Noam Nisan and David Zuckerman. Randomness is lin-
ear in space.Journal of Computer and System Sciences,
52(1):43–52, February 1996.

[RR99] Ran Raz and Omer Reingold. On recycling the random-
ness of the states in space bounded computation. InPro-
ceedings of the Thirty-First Annual ACM Symposium on
the Theory of Computing, Atlanta, GA, May 1999.

[RRV99] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting
all the randomness and reducing the error in Trevisan’s
extractors. InProceedings of the Thirty-First Annual
ACM Symposium on the Theory of Computing, Atlanta,
GA, 1999.

[RT97] Jaikumar Radhakrishnan and Amnon Ta-Shma. Tight
bounds for depth-two superconcentrators. In38th An-
nual Symposium on Foundations of Computer Science,
pages 585–594, Miami Beach, Florida, 20–22 October
1997. IEEE.

[SZ98] Aravind Srinivasan and David Zuckerman. Computing
with very weak random sources. To appear inSIAM
Journal on Computing, 1998. Preliminary version in
FOCS ‘94.

[Tre99] Luca Trevisan. Construction of extractors using pseudo-
random generators. InProceedings of the Thirty-First
Annual ACM Symposium on the Theory of Computing,
Atlanta, GA, May 1999. See also ECCC TR98-55.

[WZ95] Avi Wigderson and David Zuckerman. Expanders that
beat the eigenvalue bound: Explicit construction and
applications. Technical Report CS-TR-95-21, Univer-
sity of Texas Department of Computer Sciences, 1995.
To appear inCombinatorica.

[Zuc97] David Zuckerman. Randomness-optimal oblivi-
ous sampling. Random Structures & Algorithms,
11(4):345–367, 1997.

