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Error Reduction for Extractors

Ran Raz

Abstract

We present a general method to reduce the error of any

Omer Reingold

Salil Vadhan

1 Introduction

Roughly speaking, an extractor is a function which ex-

extractor. Our method works particularly well in the case tracts (almost) truly random bits from a weak random

that the original extractor extracts up to a constant frac-

tion of the source min-entropy and achieves a polynomi-

ally small error. In that case, we are able to reduce the
error to (almost) any, using onlyO(log(1/¢)) additional

truly random bits (while keeping the other parameters of Many
the original extractor more or less the same). In other cases

(e.g. when the original extractor extracts all the min-entropy

or achieves only a constant error) our method is not optimal .

but it is still quite efficient and leads to improved construc-
tions of extractors.

Using our method, we are able to improve almost all

source, using a small number of additional random bits as
a catalyst. More formally, a random variable (or a distribu-
tion) X on {0,1}" is said to havemin-entropyk if for all

z € {0,1}", Pr[X = 2] < 2%, k is a measure of how
“bits of randomness” the source contains. A function

ExT:{0,1}" x {0,1}* — {0,1}™

is called a(k,e)-extractor if for every distribution X
on {0,1}™ of min-entropy &, the induced distribution
EXT(X,Uy) on {0,1}™ has statistical difference at most
¢ from uniform (whereUj, is the uniform distribution on

known extractors in the case where the error required is {0,1}%).

relatively small (e.g. less than polynomially small error).
In particular, we apply our method to the new extractors

In other words, KT “extracts”m (almost) truly random
bits from a source witlt bits of hidden randomness, using

of [Tre99, RRV99] to get improved constructions in almost d additional random bits as a catalyst. The random variable

all cases. Specifically, we obtain extractors that work for
sources of any min-entropy on strings of lengtlwhich:

(a) extract anyl/n" fraction of the min-entropy using
O(logn + log(1/¢)) truly random bits (for anyy > 0),

(b) extract any constant fraction of the min-entropy using
O(log® n + log(1/¢)) truly random bits, and (c) extract all
the min-entropy using(log® n + logn - log(1/¢)) truly
random bits.
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X is usually referred to as theource The d additional
random bits are sometimes called #gexdof the extractor.
The statistical difference, between KT(X,U,) and the
uniform distribution, is also called tregror of the extractor.

Extractors were first defined in [NZ96]. A large body
of work has focused on giving explicit constructions of ex-
tractors, as such constructions have a wide variety of ap-
plications. The goal is to explicitly construct extractors
which minimized, while m is as close td as possible.
Non-explicit constructions of extractors are able to extract
all of the source min-entropy (i.en k), using only
d = O(logn + log(1/e)) additional random bits. It can
be proved that this number of additional random bits is op-
timal [NZ96, RT97].

Current explicit constructions, however, fail to achieve
this optimal bound, though there has been steady progress
towards this goal. Hence, constructing explicit extractors
that achieve the optimal bourtl= O(logn + log(1/¢))
for all settings parameters is still a major open problem. For
more details about some previous work on extractors and
their applications see the survey in [NT99].

Early works on extractors concentrated mainly on the
case of relatively large errar. From a theoretical point



of view, however, the case of small error seems to be as in-The method is general, and can be applied to any extractor.
teresting. In applications, the low-error case is particularly We can apply it to all previous constructions of extractors
interesting when one wants to apply a sequential processand get improved results, except in the few cases where op-
where an extractor is applied a large number of times. Intimal results were already achieved [Zuc97, GW94, SZ798].
such cases, if the error is not small enough it may accumu-In particular, applying our new method to the extractors
late and destroy the entire process. One example for such af [Tre99, RRV99] directly gives the following results (in

situation is the recent paper [RR99], where extractors with
exponentially small error are used (and indeed our work im-
plies an improvement of the results in [RR99]).

In this paper, we concentrate on the dependency of the

seed lengthd on the errore. Our main goal is to con-
struct efficient extractors for relatively small Ideally,

e should add tad only an additive term ofD(log(1/¢)).
Such a dependency was previously obtained only in cer-

tain cases, when there are restrictions on the relationship

between the min-entropy and the lengt of the string
coming from the source. Specifically, Zuckerman [Zuc97]
has constructed extractors which U8dogn + log(1/¢))
truly random bits wherk is at least a constant fraction of
n. Extractors using@ (k + logn + log(1/¢)) truly random
bits were constructed by Srinivasan and Zuckerman [SZ98]
and Goldreich and Wigderson [GW94], but this bound is
good only when the min-entropy s relatively small. Fi-
nally, extractors usin@((n — k) + log(1/¢)) truly random
bits were constructed by Goldreich and Wigderson[GW94],
but this bound is good only when the min-entrdpig very
close ton.

In contrast to these previous results, the extractors con-

structed in this paper perform well for sourcesanfy min-
entropy, while maintaining an optimal dependence on the
errore. For sources of any min-entropy, Ta-Shma [NT99]
has previously constructed extractors usiagolylogn -
log(1/¢)) truly random bits (with the degree of tipelylog
later improved in [RRV99]), but here we aim to obtain a
constanimultiple oflog(1/¢).

1.1 Main Results

Our main result is an efficient method to reduce the error
of an extractor fronz to anye’ < e without damaging its

all the followinga: > 0 is an arbitrary small constant):

1. Extracting m = k'~ random bits:
In this case we achieve

a=o

This is obtained by using the result of [Tre99] with
polynomially small error and further reducing the error
to € using our new method. The best previous results
wered = O(log?(n/¢)/logk) andd = O(log®n -
log(1/¢e)/logk), proved in [Tre99, RRV99].

log®n
k

+ 10g(1/5)> .

log

. Extracting m = (1 — «) - k random bits:
In this case we achieve

d = O(log® n + log(1/e)).

This is obtained by using the equivalent result
in [RRV99] with polynomially small error and fur-
ther reducing the error te using our new method.
The best previous results wefe= O(log?(n/<)) and

d = O(log®n - log(1/¢)), proved in [RRV99].

3. Extracting all £ random bits (i.e.m = k):

In this case we achieve
d = O((log® n + log(1/¢)) - log k).

This is obtained by iterative application of the previ-
ous resultO(log k) times (as in [WZ95]). The best
previous results weré = O(log®(n/¢) - log k) and

d = O(log®n - log(1/¢) - log k), proved in [RRV99].

Strong Extractors. The original definition of extrac-
tors [NZ96] is somewhat stronger than the definition given

other parameters by much. The exact statement of the resulgpoye (which is due to [NT99]). Suchstrongextractor (as

is given in Section 2. Roughly speaking, given an arbitrary
extractor EXT that extractsn bits with errore, we construct

a new extractor KT’ that extractS1 — «) - m bits with
errore’, (wherea > 0 is any constant). The number of
truly random bits (i.e. the length of the seed) for the new
extractor XT' is the same as the one fokE plus

e O(log(1/¢")) bits, if the original erroe is polynomi-
ally small (e.ge = 1/m), or

e O(log(1/e")+log m-polyloglog m) bits, if the original
errore is constant.

named by Zuckerman [Zuc97])»& has the property that
for every sourceX with sufficient min-entropy, almost ev-
ery seed- is “good” (i.e. ExXT(X,r) is close to uniform).
Formally, a function

ExT:{0,1}" x {0,1}¢ — {0,1}™

is called astrong (k, €)-extractorif for every distribution
X on {0,1}" of min-entropyk, the induced distribution
(Uq, EXT(X,Uy)) on {0,1}?+t™ has statistical difference
at moste from uniform (where the two occurrences@f
represent the same variable).



Though for most applications of extractors “standard” error in an extractor. Roughly speaking, the lemma shows
extractors are sufficing, constructing strong extractors isthat the main source of error in extractors is a small set of
still of interest (see, e.g., [Zuc97]). In fact, many of the bad seeds for each value .of This analysis may be inter-
constructions of extractors actually gisgongextractors. esting in its own right.

In Section 6, we show that our method of reducing the er-  As mentioned above, our construction uses two previous
ror in extractors also applies to strong extractors: If the constructions, the one of [Zuc97] and the one of [GW94].
original extractor KT is a strong extractor, then the new The common feature of both of these constructions is that
extractor T’ is also strong. Since the constructions they both achieve optimal dependency on the errdfiore

in [Tre99, RRV99] can be shown to give strong extrac- intuition for the proof of the main lemma are given in Sec-
tors, it follows that our concrete constructions of extrac- tion 3.

tors (obtained by applying our new method to the extractors

of [Tre99, RRV99]) also give strong extractors. 2 Formal Statement of Results

1.2 Techniques and Other Results In this section, we give the exact statements of our results
about reducing the error. We first give simplified statements
Our main lemma shows how to reduce the error from  Of our results with parameters restricted to what we feel to

to O(¢2). The exact statement of the lemma is given in Sec- be the most interesting ranges, and later we state the results

tion 2. Roughly speaking, given an extractoxiEthat ex-  in their full generality.
tractsm bits with errore, we construct a new extractoxg’
that extract{1 — «) - m bits with errorO(¢?). The num- Reducing the Error.  Ouir first theorem reduces the error

ber of truly random bits for ET' is the same as the one for of an extractor froml/m (wherem is the output length
ExT plus O(log(m/e)) additional random bits (more pre- of the extractor) to an (almost) arbitraey > 0 using
cisely, the number of additional random bitpidy(1/«) - O(log(1/¢)) additional truly random bits.

log(m/<)). Our main result (i.e. reducingto ') is then ob-
tained by iterative application of the main lemma (with dif-
ferent parameteks) O(loglog(1/e") —loglog(1/¢)) times.

Theorem1l Let « > 0 be an arbitrary constant.
Suppose that there is an explicitk, 1/m)-extractor

The most interesting part of this paper is probably the E,XT: {0, 13" x {9} 1}3(10;n){0’ l}m.' Then,_ f_orlevlery
proof of the main lemma, as it uses several techniques thaf > eXp(_n/,(log n)n )Ltihere IS an i),(p“(?'(k €
(as far as we know) were not used before. In short, the con-eXtraCtOrEXT 0,13 x {0,137 = {0, 1}, with
struction given in the proof is the following: The original K = k4 O(log(1/€")

(k,e)-extractor ExT:{0,1}" x {0,1}¢ — {0,1}™ is ap- ,

; ; ; - m = (1-a) m
pliedtwiceto the stringr coming from the source. The two , ,
applications of KT on z are done with two different (but d" = d+O(log(1/<")
not independent as random variables) seedse {0,1}7. Our second theorem deals with the case that the initial
We denote the outputs by € {0,1}™ andy’ € {0,1}™, error is a constant instead of an inverse polynomial. It re-
respectively, and we prove that the distribution(9fy’) € duces the error to/m using an almost-logarithmic number
{0,1}*™ is of statistical differenc€(¢) from some distri-  of truly random bits, so that Theorem 1 can then be applied.

bution with min-entropyx m. We then apply tdy, y') the .
extractor constructed by Zuckerman in [Zuc97], with error Theorem2 Let1l > ¢ > 0 anda > 0 be arbitrary con-
e2. stants. Suppose that there is an explidit ¢)-extractor
Thus, the proof uses composition of extractors. Com- EXT:{0, 1}" x {0, 1} — {0,1}™. Then, there is an
position of extractors was used before (e.g. to extract more€Xplicit (k', 1/m)-extractor Ex7':{0,1}" x {0,1}% —
randomness and to deal with smaller min-entropy), but not{0,1}™ , with
as a technigue to reduce the error. Even more !nterestlng is K = k+O(logm)
the way we generate the two seedandr’. The first seed
r is truly random. The second seed however, is not in-
dependent of. It is generated by applying toanother ex- d = d+ O(logm - polyloglogm)
tractor, constructed by GOldI’QICh and Wigderson [GW94]. 10f course, it is meaningless to speak of an individual estraoeing
In other words, our construction uses two levels of extrac- “explicit"” but we state our theorems in terms of individuadtractors for
tors. EXT is applied on the source, but the seed faiTls readability. The theorems actually refer tdamily of (k, )-extractors
. . . n d mo
also recycled (using a different extractor). Ext:{0,1}" x {0,1} — {0,1}™, indexed by a the parameters £,
. . m, d, ande (with restrictions on their relative values), where suchraify
In c_’rder to prove that this construction works, we prove a is calledexplicit if ExT(z,y) can be evaluated in timgoly(n, d) given
technical lemma (Lemma 17) that analyzes the source of thez, y, n, k, m, d, ande as input.

m' = (1—-a)-m




As mentioned earlier, both of our theorems are based onGeneralizations. By allowing parameters to vary more
a construction which reduces the error fremo O(e?). The freely in the proofs of Theorems 1 and 2, we can obtain
quality of this basic construction is given by the following results for reducing any initial errarto (almost) any final
lemma. errore’ < e while preserving the output length up to any
1 — « factor. These generalized theorems are given below.

Lemma 3 Let the parametersa and ¢ satisfy 1 > .
a > 2 Y/Clog" ) ande > exp (_a210g*nn)_ Let Theorem 5 (Thm. 1, generalized)Let ExT:{0,1}" x

ExT:{0,1}" x {0,1}¢ — {0,1}™ be a(k,e)-extractor. 10,1} — {0,1}™ be a(k,e)-extractor, withe < 1/m.

Then, there exists gk',e')-extractor ExT’: {0, 1}" x Then, for anyl > a > n~'/®l8"" and any
(0,13 = {0, 1}, with g > exp(-n-(a/log*n)?Ue ™) there exists a
(k',e")-extractor EXT':{0,1}" x {0,1}* — {0,1}™,
k' = k+0(og(1/e)) with
r_ 2
s = 06) K o= k+O(log(1/e)
m = (1-a)m m = (1-a)-m
log(m/e) B
"o log(1/¢'
d d+O< peanl B g - d+0<0g512/s)>7

and such thaExT’ is computable in timgoly(n, d') with

) and such thaExT’ is computable in timeol "), mak-
two oracle queries t&XT. p eoly(n,d’)

ing O(log(1/¢")/log(1/¢e)) oracle queries t&EXT.

In the above lemma, and throughout the paper, we useTheorem 6 (Thm. 2, generalized)Let 3 > 0 be any con-
the notatiorexp() as shorthand fa®(). We note thatthe  gtant. LetExT: {0,1}" x {0,1}¢ — {0,1}™ be a(k,¢)-

hidden constant in th@(?) can be made arbitrarily close  eytractor, withe > 1/m. Then, for anyl > o >
to 1 at the price of increasing the other hidden constants. ,,~1/(3log"n) andanyl — 8 > & > ¢’ > 1/m, there exists

a (k',&')-extractor ExT': {0, 1} x {0,1}¢ — {0,1}™,

Improved Extractors. By applying Theorem 1 to the ex- with
tractors of [Tre99, RRV99], we optaln the following im- K = k+0(log(1/e))
proved constructions of extractors:
m' = (1—-a)-m
Theorem 4 For everyn, k, m, ande such thatm < k < d — d+0 (10gm, [loglog(1/e") — 10?;10g(1/€)]3> ,
n ande > exp (—n/(log" n)?Uoe" ™), there are explicit a?

(k, e)-extractorsExT: {0,1}" x {0,1}¢ — {0,1}™ with _ o _
and such thaExT’ is computable in tim@oly(n,d") with

2 ! i
1L d=0 (m?(gk/% n log(l/s)), or O(log(1/€")/log(1/e)) oracle queries tEXT.
3 Overview of the Construction
2. d = O(log(1/7) - (log” n+log(1/e))), wherel + =
k/(m—1)andl/m <~ <1/2. In order to motivate our construction, we first discuss the
possible sources of error in extractors. Considék.a&)-
In particular, using the first extractor with = k!~ for extractor ExT1:{0,1}" x {0,1}¢ — {0, 1} and source\
any constanty > 0, we haved = O((log®n)/(logk) + of min-entropyk’ > k such that KT(X, Uy) has statistical
log(1/¢)). Using the first extractor witk /m constant, we  differences from the uniform distribution. This means that
can extract any constant fraction of the min-entropy using some strings if0, 1}" receive noticeably more probability
d = O(log® n+log(1/¢)). And, using the second extractor mass under ET (X, U,) than they should; call these strings
with £ = m, we can extract all of the source min-entropy “heavy.” Where can this error come from? Intuitively, we
usingd = O((logk) - (log® n + log(1/¢))) truly random must be in one of the following two situations:
bits. Actually, using a technique from [RRV99], the output

length in this last case can be increasedito= k + d — 1. The error comes from the source: Some of the
2log(1/e) — O(1) while only increasingl by a constant z’s coming from X are “bad,” in the sense that
factor. This “entropy loss” o2 log(1/¢) + O(1) is optimal ExT(z,Uy) is a heavy output with probability much

up to an additive constant [RT97]. more thare.



2. The error comes from the seeds: For mostroughly error arbitrarily, one can now recurse. But the constant fac-
ane fraction of ther's coming fromU, are “bad,” in tor in seed length at each stage is too costly to obtain our

the sense that)& (x, r) is one of the heavy outputs. desired result.
In order to improve upon this, we observe that it is not
The first possibility is easily dealt with by requirirg, necessary that; andr, be independent; we only need that

the min-entropy ofX, to be slightly higher thark. Intu- one of the two will hitG,, with probabilityl — O(¢?). One
itively, there can be at mog* badz’s, for otherwise the  can generate a pair, ;) satisfying this property using
uniform distribution on those’s would result in a source  d + O(log(1/¢)) truly random bits; for example, let be
of min-entropyk which is at distance much more than  obtained by taking a random walk on a constructive ex-
from uniform. So, if we requireX’ to be of min-entropy  pander graph starting at, or letr, be obtained by apply-
k' = k +t, a badz will occur with probability at mosg—*. ing the Goldreich-Wigderson extractoritp.? This modi-
So, we need only deal with the second case, where the erfication allows us to obtain err@p(s?) at anadditive cost
ror comes from bad seeds, rather than bad outputs from thef O(log(1/¢)) truly random bits (assuming, for simplicity
source. The second case says that if we throw away the badhate < 1/m). Now if we recurse, these additive terms turn
r’s for eachz, then heavy strings will occur with very low  out to be a geometric series, and the total cost to reduce the
probability. In other words, the output will be very close error toe’ is O(log(1/¢")) truly random bits.
to a distribution with very high min-entropy (e.g2 — 1). There is only one small difficulty left: Zuckerman'’s ex-
More precisely, we will show that for every souréé of tractor is only optimal when extracting a constant fraction of
min-entropyk + ¢ and everyz coming from.X, we can the min-entropy. If we lose a constant fraction of the min-

define a set, C {0,1}? of “good” r’s such that7, is of entropy at each stage of recursion, the final extractor will

densityl —O(e) and ExT (X, G x ) is at distance at mo8t extract much less randomness than the original extractor.
from having min-entropyn — 1 (where &X7(X,Gx) de- However, Zuckerman’s extractor can extract more than a
notes the distribution obtained by samplingccordingto  constant fraction of the min-entropy at a slight cost. Specif-
X, choosing- uniformly in G, and outputting KT (x, r)). ically, to extract a fractiol — « of the min-entropy, the

How does this help? It turns out that it is relatively easy number of truly random bits used increases b (1/«)
to extract randomness from distributions of very high min- factor. With appropriate choices aef during the recur-
entropy, like min-entropyrn — 1 over {0,1}™; Goldreich sion (ending with a constant), we can ensure that the
and Wigderson [GW94] give “optimal” extractors for this final extractor extracts a constant fraction of the random-
setting. So our task is reduced to obtaining a see@,jn  ness extracted by the original extractor, while using only
with probability better thait—e. One waytodothisistotry  O(log(1/¢")) additional truly random bits.
two independent seeds. Namely, considerE{0, 1}" x

{0,1}?¢ — {0,1}", defined by 4 The Basic Step — Squaring the Error
! = -

EXT (@, (ry, 72)) = BXT(2, 1) EXT (2, 72). As described in Section 3, the basic step of our construc-

This accomplishes what we want — at least one of the tion is a general method for reducing the error of extractors

> . : .
r's will land in G, with probability at leastl — O(?) frome to O(e?). The properties of this transformation are

and hence one can argue that the outputof'Hs at dié- given in Lemma 3. In this section we formalize the de-
tanceO(c?) from min-entropym — 1. But the output is scription (given in Section 3) of this basic step and prove

now of length2m, so the result does not have min-entropy L_emma 3: In Section 5, we show how recursive applica-
very close to its length, and we cannot use the Goldreich—t'on_s of_th|s step can further reduce the error to an (almost)
Wigderson extractor. However, the min-entropy of the out- arbitrarily small value.

put is still a constant fraction of its length, and fortunately,

Zuckerman [Zuc97] has constructed nearly optimal extrac-
tors for this setting. Thus, we consider the function

4.1 Tools

To prove Lemma 3 we use two previous constructions

EXT" (x, (r1,72,73)) = ZUCK(EXT (&, 1) EXT(x,73),73), of extractors. One construction was given by Zucker-
man in [Zuc97] and the other was given by Goldreich and

where ZUck is the extractor of Zuckerman. xg" thus Wigderson in [GW94]. We apply both constructions in the
gives an output that is at distan€&z?) from uniform, us- setting of parameters where their seed-length is optimal: the
ing 2d + O(logm/e) = O(d) truly random bits (where  extractor of [Zuc97] is used for sources of constant entropy

O(log m/s) is the seed Iength for Zuckerman's extractor). 2These two methods are essentially equivalent, as the Gaidre

So, we have roughly squared the error at the price of in- igderson extractor roughly amounts to taking a random wallen ex-
creasing the seed length by a constant factor. To reduce th@ander from its input.




rate (i.e. of min-entrop¥ = 2(n)) whereas the extractor of Moreover,EXT"*¢ is computable in tim@oly(n,ci) with
[GW94] is used for sources of very high min-entropy (i.e. two oracle queries td&XT.

of min-entropyk = n — O(log(1/¢))). We now give the

formal statement of the constructions used in this paper:  Proofof Lemma 10: Lett = 2log(1/¢) and assume wlog

i thatt is an integer. Let
Theorem 7 ([Zuc97]) Fix any constand > 0. For any pa-

rametersn, k, e, anda satisfyingk > on, m < (1 — a)k, . d+t d d
1>« Z nfl/(Zlog*n)’ andE Z exp (_a210g*n.n)’ GW: {071} X {071} _){071}
there deX'StS an fxpl_mmk,s)—extractorZUCK: {0,137 x be the(d, ¢)-extractor guaranteed by Theorem 9. Define
{0,137 = {0,1}™, with d = d+t+ d. Note that indeed = d + O(log(1/e
g
Q=0 log(m/e) (since by Theorem 9] = O(log(1/¢))). Finally for any
B a? ' z € {0,1}",r € {0,1}4*+* ands € {0, 1}¢ defin¢
Remark 8 In fact, the seed of this extractor is slightly
log(m/e
shorter: Theorem 7 holds faf = O (Jigi(/_)l)). Nev- EXT % (z, (r, 5)) def (EXT(z,r) EXT(z, GW(r, 5)).
ertheless, we replace the temaf log(a ) with o to sim-
plify the exposition. It is clear that &T"**¢ is indeed computable in time

pOlyN(n,J) with two oracle queries to ¥r. Seté = 7¢?
Theorem 9 ([GW94]) Foranye > 0and0 <k <nthere 44k — k + ¢. Fix any sourceX of n-bit strings with min-

exists an explicitk, €)-extractorGW: {0, 1}" x {0, 1}¢ — entropyk. Let R be uniformly distributed 00, 1}9+* and

{0,1}" with let.S be uniformly distributed 040, 1}3. We will prove that
d=0(n—k+log(1/e)). the induced distribution €r"**“(X, (R, S)) is of statisti-
cal difference at most from a source that has min-entropy
m—1. To do so we first identify the seB, of “heavy” output
strings (those whose probability mass undeTEX, U,)
is at least twice their probability mass under the uniform
distribution). We then show that the probability that both
EXT(X, R) and EXT(X, GW(R, S)) are inB, is at most.

Let ExT be any(k, ¢)-extractor with output length.. DeflneB R € {0,1}™ | PrEXT(X, Us) = z] >
To prove Lemma 3, one has to show how to construct from 2 (m=1}. Forany integef and amlf sefl C {0,1}" define
ExT a comparable extracton&’ that has erro@(e2). The () tobe the(densny oftin {0, 1}" (i.e. the cardinality of
main part of our construction is a method of usingt&o A divided by2).
transform a sourc& of n-bit strings that has min-entropy
roughly k to another sourc& of O(m)-bit strings that is
O(g?) close to having min-entropy roughiy. In other
words, we use ET to obtain a source that is close to hav-
ing a constant entropy-rate. Lemma 3 is then obtained by
applying the extractor of [Zuc97] (that works well for such
sources) ort”. An overview of this method was given in

Section 3 and we now formalize its properties: p(B) < Pr[EXT(X,Uy) € B — Pr[U,, € B] < &
Lemma 10 Let ExT:{0,1}" x {0,1}¢ — {0,1}™
be a (k,e)-extractor.  Then, there exists a function
ExT"¢: {0,1}" x {0,1}¢ — {0,1}*™ such that for any
distribution X with min-entropyk the induced distribution
EXT"** (X, U;) is of statistical difference at mostfrom a

Furthermore, GW(U,,,Uy) is uniformly distributed on
{0,1}*3

4.2 Extracting a Source of Constant Entropy-
Rate

Claim 11 p(B) <e

Proof: By the definition of B we have that

Pr[EXT(X,Uq) € B] > 2p(B). However, it is clear

thatPr[U,, € B] = p(B). Since KT is a (k, ¢)-extractor
andX has min-entropy: > k we can conclude:

O

For everyz € {0,1}", the setB induces a set3,, of
“bad” seeds for:

source that has min-entropy — O(1), where def{ € {0, 1} | ExT(z, ) € B}.
k= k+O0(og(1/e)) . .
= — 02 We show that for almost alt’s there is only &e-fraction
£ = (%) of bad seeds.
d = d+ O(log(1/e)).

4The expression £T(z, r) is a slight abuse of notation singés longer
S3This property is not explicit in [GW94] but it immediately lfows than the seed length of&. We assume thatr ignores theseé extra bits
from the construction of their extractor. of r.




Claim 12 Pryx [p(Bx) > 26] <27t =¢?

Proof: Define X' to be the random variabl& condi-
tioned on the evenp(Bx) > 2¢. Suppose the claim
is false andPry [p(Bx) >2¢] > 27%. This implies
that X’ has min-entropyk (recall thatk = k + ¢).
Therefore (since ET is a (k,e)-extractor) we have that
Pr[EXT(X',Uq) € B] — Pr[U,, € B] < . On the other
hand, by definitionPr [EXT(X',Uy) € B] > 2¢ whereas
Pr Uy, € B] = p(B) < e. This forms a contradiction and
completes the proof of the claim.O

We define the set of bad output strings of ¢ (with

respect toX) to be B “ B xB (the set of strings in

{0,1}™ x {0,1}™ such that both of their parts are B).

For everyz € {0,1}", this induces a set of bad seeds for | & ~ pe a random variable which

x: B, def B, x B,. We now show that: (1) The probabil-
ity mass under ET"*¢ (X, (R, S)) of any individual string
(u,v) € B'is at mos2—(m~1), (2) The probability mass
under &XT"*** (X, (R, S)) of B' is at mos€. This will com-
plete the proof of the lemma.

Claim 13 For any(u,v) ¢ B’,
Pr [EXT"*(X, (R, S)) = (u,v)] <271,

Proof: If (u,v) ¢ B' then eitherw ¢ B orv ¢ B. Since
both R and GWR, S) are uniformly distributed (though
not independent) we get by the definition®that:

1. If u ¢ B, thenPr [EXT"*¢(X, (R, S)) = (u,v)] <
Pr[EXT(X,R) = u] < 27 (m=1).

2. If v ¢ B, thenPr [EXT"*(X, (R, S)) = (u,v)]
Pr[EXT(X,GW(R,S)) = v] <2~ (m~1),

IN

a

Claim 14 For everyz € {0,1}", if p(B,) < 2¢ then
Pr[(R,GW(R,S)) € B, ] < 62

Proof: Pr[(R,GW(R,S))€B!] = Pr[ReB,] -
Pr[GW(R,S) € B, | R € B,]. Therefore,  if
Pr[Re€B,] = p(B,) < 6¢? we are done. Assume
that p(B,) > 6e%. In this case, the distribution oR
conditioned on the evenR € B, still has min-entropy
at leastd + t — log(1/(6¢*)) > d. Therefore, by
the definition of GW the distribution of GWR,S)
conditioned on the evenR € B, is ¢ — close to
uniform. We can conclude that j(B,) > 6¢? then
Pr[GW(R,S) € B, | R € B,] < p(B,) + ¢ < 3¢ which
completes the proof of the claim.O

Claim 15 Pr [EXT™*(X, (R,S)) € B'] <&

Proof: By the definition ofB’ and from Claims 12 and 14
we get that

Pr [ExT™*(X, (R, S)) € B']
Pr[(R,GW(R,S)) € BYy]

< Pr(p(Bx) > 2] + Pr[(R,GW(R,9)) € B | p(Bx) < 2]
< 246’ =¢
O

Define

GE {2 € {0,1)™ | Pr[ExT™(X, (R, 5)) = 2] <27}

(by definition, G contains almost all2m-bit strings).
is identically
distributed to EKT"*¢(X,(R,S)) in the event that
ExT"¢(X, (R,S)) ¢ B' and uniformly distributed over
G in the event KT"*¢(X,(R,S)) € B'. By Claim 13
and the definition of7, C has min-entropyn — 1. By
Claim 15, &XT"*“(X, (R, S)) is &-close toC. This com-
pletes the proof of Lemma 10.0

Remark 16 We prove that Lemma 10 holds with= 7&2.
However, the lemma also holds fér= (1 + v)&? where
~v > 0 is an arbitrarily small constant. Showing this re-
quires two changes in the definition BKT"%¢¢ (for an ap-
propriate constant,): (1) Sett = ¢, log(1/e) (2) Take
GW to be a(d,e/c,)-extractor. Repeating the original
proof (with the required adjustments), it can now be shown
that ExT"*“(X, (R, S)) is sufficiently close to having min-
entropym — c.,.

In Section 3, we discussed the possible sources of error

in extractors. Lemma 17 below (which is implicit in the
proof of Lemma 10) formalizes that discussion.

Lemma 17 Let ExT:{0,1}" x {0,1}¢ — {0,1}" be a
(k,e)-extractor, wheres < 1/4. Let X be any source of
min-entropyk + t. Then there exist se{$, } (0,13~ such
that

1. Foreveryz, G, C {0,1}%is of densityl — O(e).

2. ExT(X,Gy) is at distance at mos2—t from hav-
ing min-entropym — O(1) (whereExT(X,Gx) de-
notes the distribution obtained by samplingccord-
ing to X, choosing- uniformly inG,, and outputting
EXT(z,7)).

Remark 18 The assumption that < 1/4 simplifies the
proof and for any constarn® > 0 it can be relaxed te <
1— 3. However, whea is a constant, claiming that there is
only anO(e) fraction of “bad” seeds is not very interesting.



Proof sketch: Consider the set8, in the proof of
def

Lemma 10. For every such thap(B, ) < 2, defineG, =
{0,1}4\ B,. Otherwise, defin&, %' {0,1}¢. By the as-
sumption that < 1/4, we have that for every € {0,1}™,
Pr[EXT(X,Gx) = 2] < 2Pr[EXT(X,Uq) = 2]. From
the definition of the setB, and Claim 12, it follows that

the sets{G; },¢{o0,1}~ Satisfy the conditions of Lemma 17.
O

4.3 Using Zuckerman’s Extractors

Lemma 10 gives us a simple way to use any extractor
EXT with output lengthr in order to produce a®(m)-bit
stringy that isO(¢?) close to having min-entropy roughly
m. Lemma 3 can now be easily obtained by applying the
extractor of Theorem 7 opto extract(l — «) - m bits that
areO(e?)-close to uniform. However, using this extractor
imposes some limitations ananda (i.e. on the error and

{0,1}™ such that for every: € {0,1}", r € {0,1}% and
r' € {0,1}¢

ExT'(x, (r,1")) ' ZUCK(ExT (2, 7), 1)

It is clear that KT’ is computable in timgoly(n, d’) with
two oracle queries to Er (given the properties of &rret
and Zuck). It remains to show that &' is a (k',&’)-
extractor. LetX be any source with min-entropgy. By
the properties of ET"*** we have that ET"*(X, U;) is
é-close to a source that has min-entropy- c. Therefore,
since Zuck is a((m —c), e?)-extractor, &1’ (X, (U;,U;))
isé + €2 = ¢'-close to the uniform distribution. O

Remark 19 Following Remark 16, we note that Lemma 3
holds withe’ = (1 + v)e? wherey > 0 is an arbitrarily
small constant (at the price of increasing the other hidden
constants of the lemma).

the number of bits that can be extracted). These limitations5 Using Recursion to Reduce the Error
are stated in Theorem 7 and are carried on to Lemma 3 and

to Theorems 1, 4 and 5. As discussed in Section 7, an im-

In this section we show how recursive applications of our

proved construction of extractors for the case of constanthasic step (i.e. of Lemma 3) can reduce the error of any ex-

entropy-rate (or even improved mergers [NT99]) may also
improve our construction.

Proof of Lemma 3: Let the parametera ande satisfy
1> a > 2p~Y/2lg"n) gnde > exp (—alog* ”n) Let
ExT:{0,1}"x{0,1}% — {0,1}™ be a(k, ¢)-extractor. We
will define a(k', ¢')-extractor E1':{0,1}" x {0,1}¢ —
{0, 1}’"', with the properties stated by the lemma.

If = O(1/m) then extractors with output-lengih
and seed-length(1/«a + log(n/c)) were already given in
[SZ98, GW94]. Therefore we can assume that ~ym, for
an arbitrarily small constant. Let

ExT7: {0,1}" x {0,1}? - {0,1}>™

be the function guaranteed to exist by Lemma 10 such
that for any distributionX with min-entropyk the induced
distribution ExT"***(X, U;) is of statistical difference at
mosté from a source that has min-entropy — c¢. De-
finem' = (1 — a/2)(m — ¢) (which indeed implies that
m’ > (1 — «) - m for a sufficiently small choice of). Let

Zuck: {0,1}>™ x {0,1}* — {0,1}™

be the((m — ¢),e?)-extractor guaranteed to exist by The-
orem 7 (sincel > «/2 > n 1/(2lg"n) ande? >
exp (—a?log" ™ . n)).

Definek’ = k (which indeed implies that’ = & +
O(log(1/¢))), e = & + &2 (which indeed implies that' =
O(e?)) andd’ = d + d (which indeed implies that' = d +
0 (%ﬂ)) Finally, define &T': {0,1}" x {0,1}¢ —

tractor to an almost arbitrarily small The only limitation

on ¢ is the one imposed by the extractors of [Zuc97] (see
Theorem 7). We prove the quality of our reduction in the
two special cases we consider the most interesting: (1) Re-
ducing the error fronl /m to an (almost) arbitrarily small

e > 0. (2) Reducing a constant error to erdgtm. In the

first case the reduction is optimal in that the seed of the ex-
tractor increases by onty(log(1/¢)) additional bits. In the
second case the increase in the seed-length is slightly super-
logarithmic. The quality of these reductions is formalized
in Theorems 1 and 2 which we prove in this section. The
proof of the more general versions (i.e. Theorems 5 and 6)
is more or less the same. However, we chose to prove the
special cases for the sake of readability.

Reducing error 1/m to smaller error €. Starting with a
(k,1/m)-extractor, &XT, one can obtain &', €)-extractor
ExT’ by O(loglog(1/¢)) applications of Lemma 3. How-
ever, in each one of these applications the new extractor has
an output-length which is shorter by somefraction than
that of the old extractor. It turns out that one cannot keep
o/ constant in all these applications without either paying
too much in the the seed-length or loosing too much in
the output-length. We therefore use in our proof different
a;'s for the different applications (in earlier applications

is larger and we can therefore afford a smatlgmwithout
paying too much in the seed length).

Proof of Theorem 1: Let ExT:{0,1}" x {0,1}¢ —
{0,1}™ be an explicit(k, 1/m)-extractor. We define a se-
quence of(k;, e;)-extractors{ ExT;: {0,1}" x {0,1}% —



{0,1}™i}t_, where &1, = ExT, &; = &'

O(loglog(l/s) loglog(m)) (such thate; =

) t =
¢') and

ExT; = EXT’ satisfies the requirements of the theorem.

EXT;41 is obtained from KT; by applying Lemma 3 with
Q= ﬁ for some constantthat will be determined
within the proof.

By Lemma 3, we can set;;; = O(¢?). As long as
g; < 1/m (which always holds since the sequereg} is

decreasing), we can set= ¢ i as stated above. Equiva-
lently,e;_; = c."” " = (¢/)097’ In order for Lemma 3
to apply, we need to verify that_; > exp(—a; 1°f "

Le.log(1/z1)/ (a2 ™) = O(n).

o )—2log*n
c-(j+1)?

_ . i+ I)O(log* n)
1 1/&" - 2log" n | (.] i
og(1/e") - a (—1.91

log(1/e') - a 218" " . (log* n)Olog" ) 1)
O(n). 2)
Inequality (2) follows from our requirement that >
exp (—n/(log* n)@Uee" ™) Inequality (1) is obtained by
a case analysis on the value pf Whenj < (log*n)?,
then(j 4+ 1)9008" ™) = (log* n)©Uo" ») and whenj >
(log* n)?, (j +1)©Ug" ) /1.9 is bounded above by a con-
stant independent of.
By Lemma3k;+1 = k; + O(log(1/e;)). Therefore,

ko +0 (Z 1og<1/s@v>>
yo)

=0

-77,),

2log n

log(1/et—j) - o~

= ((1.9)7 -log(1/¢")) - <

ININ

Kk =

= k+0 <log 1/¢")

= k+0 (log(1/¢").

By Lemma 3/m;y; = (1—a;)m; > m; —a;m. Therefore,
for some choice of the constant

! def

m = mz >
i 1
> (1—a)m

def
It remains to bound’ < d;. Since

o (15ini)
log(1/e") (t —i +1)2
ot—i

dip1 =

= d@'-I-O(

).

a?

we get that
t
J = do_l_log(l/s ‘ Z ]-l-l
7j=0
— 440 <10g(12/€))
«

Finally, since the depth of the recursiori$log log(1/¢"))
and computing ET,,; only requires two queries toXg;
and an additionapoly(n, d;+;) time we can deduce that
ExT1’ is indeed computable ipoly(n,d’) time. O

Reducing a constant error to error 1/m. Starting with

a (k,e)-extractor for some constamt one can obtain a
(k,1/m)-extractor, &T', by O(log log m) applications of
Lemma 3. Therefore, the proof of Theorem 2 can be ob-
tained in a very similar way to the proof of Theorem 1.
However, in this case there is no gain in taking different val-
uesq;'s for the different applications of Lemma 3. The rea-
son is that the seed length will now grow By{log m/a?)

at each application of Lemmar8gardless of the current er-
ror. Therefore, there is no way to balanegwith thee;’s

as done in the proof of Theorem 1.

Proof of Theorem 2:  Let ExT:{0,1}" x {0,1}¢ —
{0,1}™ be an explicit(k, ¢)-extractor for some constant
e. We define a sequence of explidik;, ;)-extractors
{ExT;:{0,1}" x {0, 134 — {0,1}™}t_, where BT =
EXT, e; = 5(()1 ) = O(loglogm) (such that, = 1/m)
and ExT; = ExT’ sat|sf|es the requirements of the theorem.
EXTHl is obtained from ET; by applying Lemma 3 with
a _

Astnoted in Remark 19, Lemma 3 holds with =
(1 4+ v)e wherey > 0 is an arbitrary constant. Therefore,
by settingy to be small enough we can indeed obtain the

relations; = 551'9)1 as desired. Itis now easy to verify that:

t
ke = ko+O (Z log(l/si)> =k + O(logm)
i=0
me > (l—td) m=(1—-a)-m
t
log(m/e)
= d+O(logm -t*)
= d+ O(log m - polyloglogm)
Finally, it is easy to verify that ET' is indeed computable

in poly(n,d') time. O
6 Strong Extractors

As mentioned in the Introduction, all the results of this
paper can be extended $strong extractors. Specifically,



each of our transformations of an extractoxTEwith er- (where R is distributed on{0, 1}52 and C is distributed

ror  to an extractor KT’ with errore’ have the property  on {0, 1}>™) with the following property: For any value

that if EXT is a strong extractor then so iXE. Thisis 7 ¢ {0,1}4 the distribution ofC' conditioned on the event
significant because many of the known constructions of ex- R = # has min-entropyn — O(1). Moreover,EXT ¢ is

tractors actually give strong extractors. In particular, since computable in timepoly (n, d) with two oracle queries to

the constructions in [Tre99, RRV99] can be shown to give ExrT.

strong extractors, our concrete constructions of extractors

(Theorem 4) also give strong extractors. Proof sketch: The proof of Lemma 21 is very similar to
Our method of reducing the error in extractors consists the proof of Lemma 10 (in some sense even simpler). The

of recursive applications of the basic step: a transformationmain difference between the two proofs is in the definition

of an extractor ET with errore to an extractor ET’ with

of the setsB, B,, B’ andB!,. We therefore focus on these

errorO(e?). Therefore, to show that this method applies to changes.

strong extractors, it is sufficient that the basic step applies

Define ExT"*¢ as in the proof of Lemma 10. Fix any

in this case. We now state an analogous to Lemma 3 for thesourceX of n-bit strings with min-entropy. Let R be uni-

case of strong extractors:

Lemma 20 Let the parametersxy and e satisfy 1 >
a > 2n7Y/Cle"m) ande > exp (—a?l°® "n). Let
ExT:{0,1}" x {0,1} — {0,1}™ be astrong (k,¢)-
extractor. Then, there exists strong (k',¢’)-extractor
ExT’:{0,1}" x {0,1}% — {0,1}™, with

K = k+0(og(1/e))

e = 0E%

m = (1-a)-m

¢ - avo(HEm)

and such thaExT’ is computable in tim@oly(rn, d') with
two oracle queries t&XxT.

Recall that reducing the error fromto O(£?) is done in
two stages: (1) Using ¥r to transform a sourc& of n-
bit strings that has min-entropy rougt#yo another source
Y of O(m)-bit strings that isO(¢?)-close to having min-
entropy roughlym. (2) Applying the extractor of Zuck-
erman [Zuc97] onY” to obtain(1 — «) - m bits that are

O(g?)-close to uniform. Since the Zuckerman’s extractor
is in itself a strong extractor it is sufficient to show that the

formly distributed on{0, 1}4*¢ and letS be uniformly dis-
tributed on{0, 1}¢. We will prove that the induced distribu-
tion (R, S), EXT"¢(X, (R, S))) has statistical difference
at mostz from a distribution(i2, C) as in the statement of
the lemma.

B is defined as in the proof of Lemma hen we re-
place the extractoEXT with the extracggl/Efi? that is de-
fined by EXT(z,r) = (r,EXT(z,r)) (EXT is an extrac-
tor since KT is a strong extractor). Therefore, we Bt

be the set of “heavy8eed-output pairef EXT (instead of

just “heavy” output strings). More precisely, defiBe®

{(r,2) € {0,1}%™| Pr[EXT(X,r) =2z] > 2-(m=D},
For everyr € {0,1}", the seB induces a seB,,, of “bad”
seeds for:

B, ¥ {r € {0,1}¢ |(r, EXT(z,7)) € B}.

SinceEXT is an extractor we have (in exactly the same
way as in the proof of Lemma 10) the following two claims:

Claim22 p(B) <e
Claim 23 Pryx [p(Bx) > 28] <27t =¢?

We define the set of bad output strings of %€ (with

first stage works in the case of strong extractors. We nowrespect taX) to be
state the properties of the first stage for this case (in analogy

to Lemma 10):

Lemma 21 Let ExT:{0,1}" x {0,1}¢ — {0,1}" be a
strong(k, €)-extractor. Then, for

E = k4 0(log(1/e))
£ = 0(?)
d = d+ O(log(1/e)),

there exists a functiorExT"**¢: {0,1}" x {0, 1}5 —
{0, 1}2™ such that for any distributio with min-entropy
k the induced distributiofU ;, EXT"*** (X, U;)) is of sta-

tistical difference at most from a distribution (R, C)

B' ¥ {((r,5), (u,v)} | (r,u) € Band(GW(r, s),v) € B}.
For everyz € {0,1}", this induces a set of bad seeds:for
B = {(r,5) | ((r, ), EXT""*(x,(r,5))) € B'}.
By the definition ofB’ we have that
Claim 24 For any((r, s), (u,v)) ¢ B,
Pr [EXT"*(X, (r,s)) = (u,v)] <2 (™1,

In exactly the same way as in the proof of Lemma 10 we
have that



Claim 25 Pr [((R, S), ExT"*(X,(R,S))) € B'] < ¢ References

For every possible seed, define G; % {z € [GW94]
{0,1}2™ | Pr [ExT"**(X,7) = z] < 27™} (by defini-
tion, G contains almost atm-bit strings). LetR be the
random variabléR, S). Let C' be a random variable which
is identically distributed to ET"**¢ (X, R) in the event that
(R,EXT"¢(X,R)) ¢ B' and uniformly distributed over
G, in the event(R, EXT"***(X, R)) € B'. By Claim 24
and the definition o7, for any valuer € {0, 1}¢ the dis-
tribution of C' conditioned on the ever = 7 has min-
entropym — 1. By Claim 25,(R, ExT"%¢ (X, R)) isé-close
to (R, C). This completes the proof of the lemmad

[NT99]
[NZ96]

[RR99]
7 Discussion

Ideally, we would like to have a method to reduce the
error of an extractor from constant to aay using only
O(log(1/¢)) additional random bits (and without changing
any other parameters by much). This would imply that in
order to come up with optimal extractors one only has to
deal with the constant error case. Our method comes clos
to that goal, but it falls short in two points.

First, our method is only optimal when the original error
is < 1/m. Indeed, if the error i< 1/m we are able to
reduce the error to argy using onlyO(log(1/¢)) additional
random bits. However, to reduce the error from constant to [SZ98]
1/m we need)(log m-polyloglog(m)) random bits, which
is not optimal. Is there an improved method to reduce the
error from constant td /m using onlyO(logm) random
bits ?

The second problem with our construction is the entropy
loss. Since we use Zuckerman'’s extractor, we are only able
to extract(1 — «) - m bits of the source min-entropy, where
m is the number of bits extracted by the original extractor. [y zgs)
In particular, this is significant when the original extractor
extracts all of the source min-entropy. Is it possible to im-
prove the entropy loss of our construction? Our entropy loss
is the same as the one in Zuckerman’s construction. How-
ever, we use Zuckerman's extractor only as a “merger” in [zuyc97]
the sense of [NT99]. That is, we use it to combine two
(dependent) distributions, one of which contains all the ran-
domness we want to extract. Thus, we do not necessarily
need its full power as an extractor. Can one replace Zucker-
man’s extractor in our construction by a different “merger”
with a smaller entropy loss?

[RRV99]

TRT97]

[Tre99]
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