

Pseudorandom Generators without the XOR Lemma

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Sudan, Madhu, Luca Trevisan, and Salil Vadhan. 2001.
Pseudorandom generators without the XOR lemma. Journal of
Computer and System Sciences, 62 (2):236-266.

Published Version doi:10.1006/jcss.2000.1730

Accessed February 17, 2015 6:22:20 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4728405

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Harvard University - DASH

https://core.ac.uk/display/28930878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4728405&title=Pseudorandom+Generators+without+the+XOR+Lemma
http://dx.doi.org/10.1006/jcss.2000.1730
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4728405
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Pseudorandom generators without the XOR Lemma�Madhu Sudany Lu
a Trevisanz Salil VadhanxMay 18, 2000Abstra
tImpagliazzo andWigderson [IW97℄ have re
ently shown that if there exists a de
ision problem solvablein time 2O(n) and having
ir
uit
omplexity 2
(n) (for all but �nitely many n) then P = BPP. This resultis a
ulmination of a series of works showing
onne
tions between the existen
e of hard predi
ates andthe existen
e of good pseudorandom generators.The
onstru
tion of Impagliazzo andWigderson goes through three phases of \hardness ampli�
ation"(a multivariate polynomial en
oding, a �rst derandomized XOR Lemma, and a se
ond derandomizedXOR Lemma) that are
omposed with the Nisan{Wigderson [NW94℄ generator. In this paper we presenttwo di�erent approa
hes to proving the main result of Impagliazzo and Wigderson. In developing ea
happroa
h, we introdu
e new te
hniques and prove new results that
ould be useful in future improvementsand/or appli
ations of hardness-randomness trade-o�s.Our �rst result is that when (a modi�ed version of) the Nisan-Wigderson generator
onstru
tionis applied with a \mildly" hard predi
ate, the result is a generator that produ
es a distribution indis-tinguishable from having large min-entropy. An extra
tor
an then be used to produ
e a distribution
omputationally indistinguishable from uniform. This is the �rst
onstru
tion of a pseudorandom gen-erator that works with a mildly hard predi
ate without doing hardness ampli�
ation.We then show that in the Impagliazzo{Wigderson
onstru
tion only the �rst hardness-ampli�
ationphase (en
oding with multivariate polynomial) is ne
essary, sin
e it already gives the required average-
ase hardness. We prove this result by (i) establishing a
onne
tion between the hardness-ampli�
ationproblem and a list-de
oding problem for error-
orre
ting
odes; and (ii) presenting a list-de
oding algo-rithm for error-
orre
ting
odes based on multivariate polynomials that improves and simpli�es a previousone by Arora and Sudan [AS97℄.

Keywords: Pseudorandom generators, extra
tors, polynomial re
onstru
tion, list de
oding�Preliminary versions and abstra
ts of this paper appeared in ECCC [STV98℄, STOC `99 [STV99b℄, and Complexity`99 [STV99a℄.yLaboratory for Computer S
ien
e, 545 Te
hnology Square, MIT, Cambridge, MA 02141. E-mail:madhu�theory.l
s.mit.edu. Resear
h supported in part by a Sloan Foundation Fellowship, an MIT-NEC Resear
hInitiation Grant and NSF Career Award C-CR-9875511.zDepartment of Computer S
ien
e, Columbia University, 500W 120th St., New York, NY 10027. Email:lu
a�
s.
olumbia.edu. Work done at MIT.xLaboratory for Computer S
ien
e, 545 Te
hnology Square, MIT, Cambridge, MA 02141. E-mail:salil�theory.l
s.mit.edu. URL: http://theory.l
s.mit.edu/~salil. Work done while supported by a DOD/NDSEGgraduate fellowship and partially by DARPA grant DABT63-96-C-0018.

1 Introdu
tionThis paper
ontinues the exploration of hardness versus randomness trade-o�s, that is, results showing thatrandomized algorithms
an be eÆ
iently simulated deterministi
ally if
ertain
omplexity-theoreti
 assump-tions are true. We present two new approa
hes to proving the re
ent result of Impagliazzo and Wigderson[IW97℄ that, if there is a de
ision problem
omputable in time 2O(n) and having
ir
uit
omplexity 2
(n) thenP = BPP. Impagliazzo and Wigderson prove their result by presenting a \randomness-eÆ
ient ampli�
ationof hardness" based on a derandomized version of Yao's XOR Lemma. The hardness-ampli�
ation pro
edureis then
omposed with the Nisan{Wigderson (NW) generator [NW94℄ to yield the result. The hardness am-pli�
ation goes through three steps: an en
oding using multivariate polynomials (from [BFNW93℄), a �rstderandomized XOR Lemma (from [Imp95℄) and a se
ond derandomized XOR Lemma (whi
h is the te
hni
al
ontribution of [IW97℄).In our �rst result, we show how to
onstru
t a \pseudoentropy generator" starting from a predi
atewith \mild" hardness. Roughly speaking, a pseudoentropy generator takes a short random seed as input andoutputs a distribution that is indistinguishable from having high min-entropy. Combining our pseudoentropygenerator with an extra
tor, we obtain a pseudorandom generator. Interestingly, our pseudoentropy generatoris (a modi�
ation of) the NW generator itself. Along the way we make the new observation that, when builtout of a mildly hard predi
ate, the NW generator outputs a distribution that is indistinguishable fromhaving high Shannon entropy. The notion of a pseudoentropy generator, and the idea that a pseudoentropygenerator
an be
onverted into a pseudorandom generator using an extra
tor, are due to H�astad et al.[HILL99℄.1 Our
onstru
tion is the �rst
onstru
tion of a pseudorandom generator that dire
tly uses amildly hard predi
ate without hardness ampli�
ation.We then revisit the hardness ampli�
ation problem, as
onsidered in [BFNW93, Imp95, IW97℄, and weshow that the �rst step alone (en
oding with multivariate polynomials) is suÆ
ient to amplify hardness tothe desired level, so that the derandomized XOR Lemmas are not ne
essary in this
ontext. Our proof isbased on a list-de
oding algorithm for multivariate polynomial
odes and exploits a
onne
tion between thelist-de
oding and the hardness-ampli�
ation problems. The list-de
oding algorithm des
ribed in this paperis quantitatively better than a previous one by Arora and Sudan [AS97℄, and has a simpler analysis.An overview of previous results. The works of Blum and Mi
ali [BM84℄ and Yao [Yao82℄ formalizethe notion of a pseudorandom generator and show how to
onstru
t pseudorandom generators based onthe existen
e of one-way permutations. A pseudorandom generator meeting their de�nitions (whi
h we
all a BMY-type PRG) is a polynomial-time algorithm that on input a randomly sele
ted string of lengthn� produ
es an output of length n that is
omputationally indistinguishable from uniform by any adver-sary of poly(n) size, where � is an arbitrarily small
onstant. Pseudorandom generators of this form and\pseudorandom fun
tions" [GGM86℄
onstru
ted from them have many appli
ations both inside and outside
ryptography (see, e.g., [GGM86, Val84, RR97℄). One of the �rst appli
ations, observed by Yao [Yao82℄, wasto derandomization | any given polynomial-time randomized algorithm
an be simulated deterministi
allyusing a BMY-type PRG in time 2n� � poly(n) by trying all the seeds and taking the majority answer.In a seminal work, Nisan and Wigderson [NW94℄ explore the use of a weaker type of pseudorandomgenerator (PRG) in order to derandomize randomized algorithms. They observe that, for the purpose ofderandomization, one
an
onsider generators
omputable in time poly(2t) (instead of poly(t)) where t isthe length of the seed, sin
e the derandomization pro
ess
y
les through all the seeds, and this indu
es anoverhead fa
tor 2t anyway. They also observe that one
an restri
t to generators that are good againstadversaries whose running time is bounded by a �xed polynomial, instead of every polynomial. They thenshow how to
onstru
t a pseudorandom generator meeting this relaxed de�nition under weaker assumptionsthan those used to build BMY-type pseudorandom generators. Furthermore, they show that, under asuÆ
iently strong assumption, one
an build a PRG that uses seeds of logarithmi
 length (whi
h wouldbe impossible for a BMY-type PRG). Su
h a generator
an be used to simulate randomized algorithms inpolynomial time, and its existen
e implies P = BPP. The
ondition under whi
h Nisan and Wigdersonprove the existen
e of a PRG with seeds of logarithmi
 length is the existen
e of a de
ision problem (i.e., apredi
ate P : f0; 1gn ! f0; 1g) solvable in time 2O(n) su
h that for some positive
onstant � no
ir
uit of size1To be a

urate, the term extra
tor
omes from [NZ96℄ and postdates the work of H�astad et al. [HILL99℄.1

2�n
an solve the problem on more than a fra
tion 1=2 + 2��n of the inputs (for all but �nitely many n).This is a very strong hardness requirement, and it is of interest to obtain similar
on
lusions under weakerassumptions.An example of a weaker assumption is the existen
e of a mildly hard predi
ate. We say that a predi
ateis mildly hard if for some �xed � > 0 no
ir
uit of size 2�n
an de
ide the predi
ate on more than afra
tion 1 � 1=poly(n) of the inputs. Nisan and Wigderson prove that mild hardness suÆ
es to derivea pseudorandom generator with seeds of polylogn length, whi
h in turn implies a quasi-polynomial timedeterministi
 simulation of BPP. This result is proved by using Yao's XOR Lemma [Yao82℄ (see, e.g.,[GNW95℄ for a proof) to
onvert a mildly hard predi
ate over n inputs into one whi
h has input size poly(n)and is hard to
ompute on a fra
tion 1=2 + 2�
(n) of the inputs. A series of subsequent papers atta
ksthe problem of obtaining stronger pseudorandom generators starting from weaker and weaker assumptions.Babai et al. [BFNW93℄ show that a predi
ate of worst-
ase
ir
uit
omplexity 2
(n)
an be
onverted intoa mildly hard one.2 Impagliazzo [Imp95℄ proves a derandomized XOR Lemma whi
h implies that a mildlyhard predi
ate
an be
onverted into one that
annot be predi
ted on more than some
onstant fra
tionof the inputs by
ir
uits of size 2�n. Impagliazzo and Wigderson [IW97℄ prove that a predi
ate with thelatter hardness
ondition
an be transformed into one that meets the hardness requirement of [NW94℄. Theresult of [IW97℄ relies on a di�erent derandomized version of the XOR Lemma than [Imp95℄. Thus, thegeneral stru
ture of the original
onstru
tion of Nisan and Wigderson [NW94℄ has been preserved in mostsubsequent works, progress being a
hieved by improving the single
omponents. In parti
ular, the use of anXOR Lemma in [NW94℄
ontinues, albeit in in
reasingly sophisti
ated forms, in [Imp95, IW97℄. Likewise, theNW generator and its original analysis have always been used in
onditional derandomization results sin
e.3Future progress in the area will probably require a departure from this observan
e of the NW methodology,or at least a
ertain amount of revisitation of its main parts.In this paper, we give two new ways to build pseudorandom generators with seeds of logarithmi
 length.Both approa
hes bypass the need for the XOR Lemma, and instead use tools (su
h as list de
oding, extra
tors,and pseudoentropy generators) that did not appear in the sequen
e of works from [NW94℄ to [IW97℄. For adiagram illustrating the steps leading up to the results of [IW97℄ and how our te
hniques depart from thatframework, see Figure 1. Both of our approa
hes are des
ribed in more detail below.
Constant hardness

Worst−case hard

Mildly hard

Extremely hard

Pseudorandom Generator

[BFNW93]

[Imp95]

[IW97]

[NW94]

XOR
Lemma

XOR
Lemma

polynomial

encoding

Generator

extractor

polynomial
encoding

Pseudoentropy

+ list
decoding

(Thm 24)

(Lem 12)

Thm 11

Figure 1: A
omparison of our approa
h with previous ones. Double arrows indi
ate our results.2In fa
t the result of [BFNW93℄ was somewhat weaker, but it is easily extendible to yield this result.3The te
hniques of Andreev et al. [ACR97℄ are a rare ex
eption, but they yield weaker results than those of [IW97℄.2

A pseudoentropy generator. Nisan and Wigderson show that when their generator is
onstru
ted usinga very hard-on-average predi
ate, then the output of the generator is indistinguishable from the uniformdistribution. It is a natural question to ask what happens if there are stronger or weaker
onditions onthe predi
ate. In this paper we
onsider the question of what happens if the predi
ate is only mildly hard.Spe
i�
ally we are interested in whether exponential average-
ase hardness is really ne
essary for dire
tpseudorandom generation. In this paper we �rst show that, when a mildly hard predi
ate is used in theNW generator, then there exists a distribution having high Shannon entropy that is indistinguishable fromthe output of the generator. Our main result is then that, for a mildly hard predi
ate, a modi�ed versionof the NW generator has an output indistinguishable from a distribution with high min-entropy. Su
h agenerator is essentially a \pseudoentropy generator" in the sense of H�astad et al. [HILL99℄. The intuitionbehind our proof starts with a result of Impagliazzo [Imp95℄ whi
h says that if no small
ir
uit
an
omputea predi
ate
orre
tly on more than a fra
tion 1 � Æ of the inputs, then there is some subset of the inputsof density Æ on whi
h the predi
ate is very hard on average. Due to the high hardness, the evaluation ofthe predi
ate in a random point of this set will be indistinguishable from a random bit. The NW generator
onstru
ted with a predi
ate P works by transforming an input seed s into a sequen
e of points x1; : : : ; xmfrom the domain of P ; the output of the generator is then P (x1)P (x2) � � �P (xm). For a random seed, ea
hof the points xi is uniformly distributed, and so we expe
t to typi
ally generate Æm points from the hard set,so that the output of the generator looks like having Æm bits of randomness, that is, it is indistinguishablefrom some other distribution having (Shannon) entropy Æm. The generation of the points x1 � � �xm
an bemodi�ed so that the number of points landing in the hard set is sharply
on
entrated around its expe
tedvalue Æm. The output of the modi�ed generator is then indistinguishable from having high min-entropy.When our generator is
omposed with a suÆ
iently good \extra
tor" (su
h as the one in [Tre99℄) then theresult is a pseudorandom generator. (An extra
tor is an algorithm that takes as input a string sampled froma distribution with high min-entropy, and produ
es as output a string that is statisti
ally
lose to uniform.See Se
tion 3.1 for a formal de�nition.)This is the �rst
onstru
tion of a pseudorandom generator based on mild average-
ase hardness that doesnot rely on hardness ampli�
ation. It is also the �rst appli
ation of the notion of a pseudoentropy generatorto the
onstru
tion of PRG in the Nisan{Wigderson sense.Remark 1 While in this paper we analyze for the �rst time the Nisan-Wigderson generator under a weakerassumption than the one originally
onsidered in [NW94℄, there has also been some work exploring the e�e
tof stronger assumptions on the predi
ate. Impagliazzo and Wigderson [IW98℄ show that if the predi
atehas
ertain additional properties (su
h as \downward self-redu
ibility") then one needs only a uniformhardness assumption on the predi
ate (rather than a
ir
uit-
omplexity assumption). Their
on
lusion isalso weaker, obtaining only an average-
ase deterministi
 simulation of BPP for in�nitely many input lengths.Arvind and K�obler [AK97℄ and Klivans and van Melkebeek [KvM99℄ show that if the predi
ate is hard onaverage for nondeterministi

ir
uits, then the output of the generator is indistinguishable from uniformfor nondeterministi
 adversaries. Therefore it is possible to derandomize
lasses involving randomness andnondeterminism, su
h as AM. Trevisan [Tre99℄ shows that if the predi
ate is
hosen randomly from adistribution having
ertain properties, then the output is statisti
ally
lose to uniform. This yields the
onstru
tion of extra
tors that we use in our generator.The
onne
tion with list de
oding of error-
orre
ting
odes. Our se
ond result deals with the\list-de
oding problem" for error-
orre
ting
odes and its
onne
tion to ampli�
ation of hardness.We start by des
ribing a new \list-de
oding" problem for error-
orre
ting
odes. This problem di�ersfrom the standard de
oding task in that (1) the de
oding algorithm is allowed to output a list of nearby
odewords (rather than a unique nearest
odeword) and (2) the de
oding algorithm is allowed ora
le a

essto the re
eived word, and expe
ted to de
ode in time mu
h smaller than the length of the
odeword. It isalso allowed to output impli
it representations of the list of
odewords, by giving programs to
ompute theith
oordinate of ea
h
odeword. This impli
it version of the list-de
oding problem is
losely related to andinspired by work in program
he
king and probabilisti

he
king of proofs.We show a simple
onne
tion between ampli�
ation of hardness and the existen
e of (uniformly-
onstru
tible)families of
odes with very eÆ
ient list-de
oders in our sense (Theorem 24). We then show that a re
entresult of Arora and Sudan [AS97℄ on polynomial re
onstru
tion leads to a family of error-
orre
ting
odes3

with very eÆ
ient list-de
oders (Lemmas 25 and 28). In parti
ular, this is suÆ
ient to imply the hardnessampli�
ation results of [IW97℄. Finally, we simplify the re
onstru
tion pro
edure of Arora and Sudan andgive an analysis (Theorem 29) that works for a wider range of parameters and has a mu
h simpler proof.(In
ontrast, the analysis of Arora and Sudan relies on their diÆ
ult analysis of their \low-degree test" forthe \highly noisy"
ase.)The polynomial re
onstru
tion problem has been studied for its appli
ations to program
he
king,average-
ase hardness results for the permanent, and random self-redu
ibility of
omplete problems in high
omplexity
lasses [BF90, Lip89, GLR+91, FF93, GS92, FL96, CPS99℄. The appli
ability of polynomialre
onstru
tion to hardness versus randomness results was demonstrated by Babai et al. [BFNW93℄. Theyshow that the existen
e of a polynomial re
onstru
tion pro
edure implies that one
an
onvert a worst-
asehard predi
ate into one whi
h is mildly average-
ase hard by en
oding it as a polynomial. In e�e
t, ouranalysis shows that already at this stage the polynomial fun
tion is very hard, hard enough to use withthe [NW94℄ pseudo-random generator. This
onne
tion between polynomial re
onstru
tion and hardnessampli�
ation has also been observed independently by Avi Wigderson [Wig98℄ and S. Ravi Kumar and D.Sivakumar [KS98℄.2 PreliminariesThroughout the paper, all logarithms are with respe
t to base 2. We write Un for the uniform distributionon f0; 1gn. Let X and Y be random variables on a dis
rete universe U , and let S : U ! f0; 1g be any fun
-tion/algorithm. We say that S distinguishesX and Y with advantage " if jPr [S(X) = 1℄�Pr [S(Y) = 1℄ j � ".The statisti
al di�eren
e between X and Y is the maximum advantage with whi
h any fun
tion distinguishesthem, i.e. maxS�U jPr [X 2 S℄� Pr [Y 2 S℄j.Our main obje
ts of study are pseudorandom generators:De�nition 2 A fun
tion G: f0; 1gd ! f0; 1gn is an (s; ") pseudorandom generator if no
ir
uit of size s
andistinguish G from Un with advantage greater than ".Our results rely on the Nisan{Wigderson
onstru
tion of pseudorandom generators, des
ribed below.2.1 The Nisan{Wigderson generatorThe
ombinatorial
onstru
tion underlying the NW generator is a
olle
tion of sets with small interse
tions,
alled a design.Lemma 3 (design [NW94, Tre99℄) For every `;m 2 N, there exists a family of sets S1; : : : ; Sm �f1; : : : ; dg su
h that1. d = O � `2logm�,2. For all i, jSij = `, and3. For all i 6= j jSi \ Sj j � logm,Moreover, su
h a family
an be found deterministi
ally in time poly(m; 2d)For
on
reteness, one
an think of m = 2�` for some small
onstant � > 0, so that d = O(`) = O(logm).Given su
h a family of sets, the NW generator takes a uniformly distributed string of length d and produ
esm strings of length `. That is, given parameters ` and m, we take the family of sets given by Lemma 3 andde�ne NW`;m: f0; 1gd ! (f0; 1g`)m byNW`;m(x) = (xS1 ; xS2 ; : : : ; xSm);where xSi denotes the proje
tion of x onto the
oordinates spe
i�ed by Si.4

The key property of this generator used in [NW94, IW97℄ is that the strings xSi behave as if they areindependent when they are used as inputs to a hard fun
tion. Let P : f0; 1g` ! f0; 1g be any predi
ate.Then the NW pseudorandom generator using P is a fun
tion NW-PRGP̀;m: f0; 1gd ! f0; 1gm given byNW-PRGP̀;m(x) = P (x1)P (x2) � � �P (xm); where (x1; : : : ; xm) = NW`;m(x)The main theorem of [NW94℄ is that if P is taken to be a suÆ
iently hard (on average) predi
ate,NW-PRGP̀;m is a good pseudorandom generator.Theorem 4 ([NW94℄) Suppose P : f0; 1g` ! f0; 1g is a predi
ate su
h that no
ir
uit of size s
an
om-pute P
orre
tly on more than a fra
tion 12 + "m of the inputs. Then, NW-PRGP̀;m is an (s � O(m2); ")pseudorandom generator.The pseudorandom generators produ
ed by this theorem
an be spe
ta
ular, as the seed length d =O(`2= logm)
an be mu
h smaller than (even logarithmi
 in) the number of output bits if P is suÆ
ientlyhard. The main drawba
k is that the hypothesis is also extremely strong (in that P must be very hard onaverage), and mu
h work has been done to
onstru
t predi
ates that are strong enough for Theorem 4 basedon weaker assumptions [BFNW93, Imp95, IW97, IW98℄. In the next se
tion, we analyze the quality of thisgenerator when only a mildly hard predi
ate is used.3 Pseudorandom generators via pseudoentropyIn this se
tion, we show how to build a pseudorandom generator out of a mildly hard predi
ate in a di�erent(and arguably more dire
t) way than [IW97℄. Spe
i�
ally, we show how to dire
tly build a \pseudoen-tropy generator" from a mildly hard predi
ate and argue that applying an extra
tor to its output gives apseudorandom generator.3.1 Entropy, pseudoentropy, and extra
torsThe various types of entropy are measures for the amount of randomness in a probability distribution. If Xis a random variable on a dis
rete universe U , the (Shannon) entropy of X is de�ned to beH(X) = E� X �log 1Pr [X = �℄� :In Se
tion 3.2, we show that, when a mildly hard predi
ate is used in the Nisan{Wigderson pseudorandomgenerator, the output of the generator is indistinguishable from having high Shannon entropy. However,later we will need a stri
ter measure of entropy. The min-entropy of X isH1(X) = min�2U �log 1Pr [X = �℄� :In Se
tion 3.3, we show how to modify the Nisan{Wigderson generator to obtain indistinguishability fromhigh min-entropy. The following de�nition (following [HILL99℄) formalizes the type of generator we obtain.De�nition 5 A generator G: f0; 1gd ! f0; 1gm is a (k; s; ") pseudoentropy generator if there is a distribu-tion D on f0; 1gm of min-entropy at least k su
h that no
ir
uit of size s
an distinguish the output of Gfrom D with advantage greater than ".The above de�nition di�ers from that of [HILL99℄ in several ways. Most importantly, we require theoutput to be indistinguishable from having high min-entropy, whereas they only require that it be indistin-guishable from having high Shannon entropy. They later
onvert the Shannon entropy to min-entropy bytaking many samples on independent seeds, but we
annot a�ord the extra randomness needed to do this.Other di�eren
es are that we ask for indistinguishability against
ir
uits rather than uniform adversaries,5

that we do not require that G be
omputable in polynomial time, and that we do not expli
itly ask that kbe larger than d (though the notion is uninteresting otherwise).In Se
tion 3.4, we will show that a pseudoentropy generator
an be transformed into a pseudorandomgenerator using the following type of tool:De�nition 6 ([NZ96, NT99℄) A fun
tion Ext: f0; 1gm�f0; 1gd ! f0; 1gn is a (k; ")-extra
tor if for everydistribution D on f0; 1gm of min-entropy at least k, Ext(D;Ud) has statisti
al di�eren
e at most " from Un.We will make use of the following re
ent
onstru
tion of extra
tors:Theorem 7 ([Tre99℄) For every m, k, and " su
h that k � m, there is a (k; ")-extra
tor Ext: f0; 1gm �f0; 1gd ! f0; 1gpk su
h that d = O� log2(m=")log k �and Ext: f0; 1gm � f0; 1gd ! f0; 1gpk is
omputable in time poly(m; 2d) (and
an be
omputed by a
ir
uitof size poly(m; d)).3.2 Using a mildly hard predi
ateIntuitively, the reason the NW pseudorandom generator works is that whenever xi is a \hard instan
e" ofP , P (xi) is indistinguishable from a random bit. If P is very hard as in the hypothesis of Theorem 4, thenalmost all inputs are hard instan
es. Thus, with high probability all the xi's will be hard instan
es and thelimited dependen
e of the xi's guarantees that the P (xi)'s will look simultaneously random.Now suppose that P is instead only mildly hard, in the sense that no small
ir
uit
an
ompute it
orre
tlyon more than a 1� Æ fra
tion of inputs, for some small but noti
eable Æ. Intuitively, this means that someÆ fra
tion of the inputs are extremely hard for P . Thus, we'd expe
t that a Æ fra
tion of the output bits ofNW-PRGP̀;m are indistinguishable from random, so that we should get some
rude pseudorandomness outof the generator. In fa
t, this intuition about hard instan
es
an be made pre
ise, as shown by the followingresult of Impagliazzo [Imp95℄.Theorem 8 (hard
ore sets [Imp95℄) Suppose no
ir
uit of size s
an
ompute P : f0; 1g` ! f0; 1g onmore than a 1 � Æ fra
tion of the inputs in f0; 1g`. Then, for every " > 0, there exists an "-hard
ore setH � f0; 1g` su
h that jH j = Æ �2` and no
ir
uit of size s0 =
("2Æ2s)
an
ompute P
orre
tly on more thana 12 + " fra
tion of the inputs in H.Using this theorem, we
an prove something about the output of NW-PRGP̀;m when a mildly hardpredi
ate P is used. Noti
e that if x is
hosen uniformly at random, then ea
h
omponent xi = xSi ofthe output of NW`;m(x) is uniformly distributed in f0; 1g`. Hen
e, the expe
ted number of xi's that landin H is Æm. Thus, the earlier intuition suggests that the output of NW-PRGP̀;m should have Æm bits ofpseudorandomness, and this is in fa
t true.Theorem 9 Suppose no
ir
uit of size s
an
ompute P : f0; 1g` ! f0; 1g on more than a 1�Æ fra
tion of theinputs in f0; 1g`. Then, for every " > 0, there is a distribution D on f0; 1gm of (Shannon) entropy at leastÆm su
h that no
ir
uit of size s0 =
("2=m2)�s�O(m2)
an distinguish the output of NW-PRGP̀;m: f0; 1gd !f0; 1gm from D with advantage greater than ".Proof: Let H be a ("=Æm)-hard
ore set for P , as given by Theorem 8. We will show that the followingdistribution satis�es the requirements of the theorem.
6

Distribution D: Choose x uniformly from f0; 1gd. Let (x1; : : : ; xm) = NW(x). If xi 2 H , sele
tbi 2 f0; 1g uniformly at random; and if xi =2 H , let bi = P (xi). Output b1 � � � bm.First, we argue that the entropy of D is at least Æm. De�ne #H(x1; : : : ; xm) to be the number of xi'sthat are in H . Then for any x 2 f0; 1gd, the entropy of Djx (i.e., D
onditioned on x) is #H(NW(x))). Bythe de�nition of the Nisan-Wigderson generator, ea
h xi is (individually) uniformly distributed and thereforelands in H with probability Æ. By linearity of expe
tations, the expe
tation of #H(NW(x)) (over uniformlysele
ted x) is Æm. Thus, sin
e
onditioning redu
es entropy (
f., [CT91, Th. 2.6.5℄),H(D) � Ex [H(Djx)℄= Ex [#H(NW(x))℄= ÆmNow we show that D and NW-PRGP̀;m are
omputationally indistinguishable. Suppose that some
ir
uitC distinguishes the output of NW-PRGP̀;m from D with advantage greater than ". We will show that Cmust be of size at least
("2=m2) � s�O(m2). By
omplementing C if ne
essary, we havePr �C(NW-PRGP̀;m(Ud)) = 1�� Pr [C(D) = 1℄ > ":For x 2 f0; 1g` and r 2 f0; 1g, de�ne Q(x; r) = � r if x 2 HP (x) otherwise.Now
onsider \hybrids" D0; : : : ; Dm of D and NW-PRGP̀;m(Ud) de�ned as follows:Distribution Di: Choose x uniformly from f0; 1gd and
hoose r1; : : : ; rm uniformly from f0; 1g. Forj = 1; : : : ;m, let pj = P (xSj) and qj = Q(xSj ; rj) (where Sj and xSj are as in the de�nition of NW`;m).Output q1 � � � qipi+1 � � � pm.Thus, D0 = NW-PRGP (Ud), and Dm = D. By the \hybrid argument" of [GM84℄ (
f. [Gol95, Se
. 3.2.3℄),there is an i su
h that"=m < Pr [C(Di�1) = 1℄� Pr [C(Di) = 1℄= Æ � Pr [C(Di�1) = 1 j xSi 2 H ℄ + (1� Æ) Pr [C(Di�1) = 1 j xSi =2 H ℄� (Æ � Pr [C(Di) = 1 j xSi 2 H ℄ + (1� Æ) Pr [C(Di) = 1 j xSi =2 H ℄)= Æ � (Pr [C(Di�1) = 1 j xSi 2 H ℄ � Pr [C(Di) = 1 j xSi 2 H ℄) ;where the last equality is be
ause Di�1 and Di are identi
al
onditioned on xSi =2 H . Expanding and usingthe fa
t that qi = Q(xSi ; ri) = ri when xSi 2 H , we havePrx;ri;:::;rm �C �P (xS1) � � �P (xSi�1)riQ(xSi+1 ; ri+1) � � �Q(xSm ; rm)� = 1 j xSi 2 H�� Prx;ri+1;:::;rm �C �P (xS1) � � �P (xSi�1)P (xSi)Q(xSi+1 ; ri+1) � � �Q(xSm ; rm)� = 1 j xSi 2 H� > "Æm;where x is
hosen uniformly in f0; 1gd and ri; : : : ; rm are sele
ted uniformly in f0; 1g. Renaming ri as b andusing the standard transformation from distinguishers to predi
tors [Yao82℄ (
f. [Gol99, Se
. 3.3.3℄), we seethat Prx;b;ri+1;���;rm �C �P (xS1) � � �P (xSi�1)bQ(xSi+1 ; ri+1) � � �Q(xSm ; rm)�� b = P (xSi) j xSi 2 H� > 12 + "ÆmUsing an averaging argument we
an �x ri+1; : : : ; rm, b, and all the bits of x outside Si while preserving thepredi
tion advantage. Renaming xSi as z, we now observe that z varies uniformly over H while P (xSj) for7

j < i and Q(xSj ; rj) for j > i are now fun
tions Pj of z that depend on only jSi \ Sj j � logm bits of z. So,we have Prz [C (P1(z) � � �Pi�1(z)bPi+1(z) � � �Pm(z))� b = P (z)℄ > 12 + "Æm:Ea
h Pj
an be
omputed by a
ir
uit of size O(m), sin
e every fun
tion of logm bits
an be
omputedby a
ir
uit of that size (see, e.g., [Weg87, Ch. 4℄). In
orporating these
ir
uits and b into C, we obtain a
ir
uit C 0 of size size(C) +O(m2) su
h that Prz [C 0(z) = P (z)℄ > 12 + "Æm .Now, sin
e H is ("=Æm)-hard
ore for P as in Theorem 8, C 0 must have size greater than
(Æ2 � ("2=Æm)2) �s =
("2=m2) � s, and hen
e C must have size greater than
("2=m2) � s�O(m2).Thus, using a mildly hard predi
ate with the NW generator, we
an obtain many bits of
rude pseudo-randomness. A natural next step would be to try to \extra
t" this
rude pseudorandomness and obtain anoutput that is indistinguishable from the uniform distribution. Unfortunately, one
annot hope to extra
tuniformly distributed bits from a distribution that just has high Shannon entropy. Extra
tion is only possiblefrom distributions that have high min-entropy. In the next se
tion, we show how a small modi�
ation to the
onstru
tion a
hieves what we need.3.3 A pseudoentropy generatorThe reason that we were only able to argue about Shannon entropy in Theorem 9 is that we
ould onlysay that Æm xi's land in H on average. To obtain a result about min-entropy, we would need to guaranteethat many xi's lie in H with high probability. This would be the
ase if the xi's were generated pairwiseindependently instead of via the NW generator. But we also need the spe
ial properties of the NW generatorto make the
urrent argument about indistinguishability work. We resolve this dilemma by taking the XORof the two generators to obtain a new generator with the randomness properties of ea
h, similar to theway Impagliazzo and Wigderson [IW97℄ take the XOR of the NW generator with a random walk on anexpander. That is, we obtain x1; : : : ; xm from a seed x using the NW generator, we obtain y1; : : : ; ympairwise independent from a seed y, and then use z1 = x1 � y1; : : : ; zm = xm � ym as the inputs to thepredi
ate P . As we will prove shortly, this gives a generator whose output is indistinguishable from somedistribution with high min-entropy, as desired.Re
all that we need a way of generating many pairwise independent strings from a short seed.Lemma 10 ([CG89℄ (see also [Gol97℄)) For any ` 2 N andm � 2`, there is a generator PI`;m: f0; 1g3` !(f0; 1g`)m su
h that for y sele
ted uniformly at random, the random variables PI`;m(y)1, : : :, PI`;m(y)m arepairwise independent. Moreover PI`;m is
omputable in time poly(`;m).Let P : f0; 1g` ! f0; 1g be any predi
ate, let m be any positive integer, and let d be the seed length ofNW`;m. Then our pseudoentropy generator using P is a fun
tion PEP̀;m: f0; 1gd+3` ! f0; 1gm given byPEP̀;m(x; y) = P (x1 � y1)P (x2 � y2) � � �P (xm � ym);where (x1; : : : ; xm) = NW`;m(x) and (y1; : : : ; ym) = PI`;m(y)The following theorem
on�rms that this
onstru
tion does in fa
t yield a pseudoentropy generator.Theorem 11 Suppose no
ir
uit of size s
an
ompute P : f0; 1g` ! f0; 1g on more than a 1 � Æ fra
tionof the inputs in f0; 1g`. Then, for any m � 2`, PEP̀;m: f0; 1gd+3` ! f0; 1gm is a (k; s0; ") pseudoentropygenerator, with seed length = d+ 3` = O(`2= logm)pseudoentropy = k = Æm=2adversary size = s0 =
(1=Æ2m4) � s�O(m2)adversary's maximum advantage = " = O(1=Æm)8

Moreover, PEP̀;m is
omputable in time poly(m; 2`2= logm) with m ora
le
alls to P .Proof: Let "1 = 1=Æm. Let H be a ("1=Æm)-hard
ore set for P , as given by Theorem 8. Like in the proofof Theorem 9, we
onsider the following distribution D0.Distribution D0: Choose x uniformly from f0; 1gd and y uniformly from f0; 1g3`. Let (x1; : : : ; xm) =NW`;m(x) and (y1; : : : ; ym) = PI`;m(y). If xi � yi 2 H , sele
t bi 2 f0; 1g uniformly at random; and ifxi � yi =2 H , let bi = P (xi � yi). Output b1 � � � bm.By an argument as in the proof of Theorem 9, it
an be shown that no
ir
uit of size s0 =
("21=m2) �s � O(m2) =
(1=Æ2m4) � s � O(m2)
an distinguish D0 from PEP̀;m with advantage greater than "1. Theonly
hange needed is that y should be �xed at the same time as ri+1; : : : ; rm, b, and all the bits of x outsideSi, and z should be xSi � yi rather than just xSi .Next we argue that D0 has statisti
al di�eren
e at most 4=Æm from some distribution D with min-entropyat least Æm=2. This will
omplete the proof with " = "1+4=Æm = O(1=Æm), as the advantage of any
ir
uitin distinguishing D from PEP̀;m is at most its advantage in distinguishing D0 from PEP̀;m plus the statisti
aldi�eren
e between D and D0.For any w1; : : : ; wm 2 f0; 1g`, de�ne #H(w1; : : : ; wm) to be the number of wi's that are in H . As inthe proof of Theorem 9, ea
h xi � yi is (individually) uniformly distributed and therefore lands in H withprobability Æ. By linearity of expe
tations, the expe
tation of #H(NW`;m(x)�PI`;m(y)) is Æm. Now, sin
efyig are pairwise independent and independent from x, it follows that fxi�yig are also pairwise independent.Thus, by Chebyshev's inequality,Prx;y �#H(NW`;m(x)� PI`;m(y)) < Æm2 � < Æm(Æm=2)2 = 4Æm:Therefore, D0 has statisti
al di�eren
e at most 4=Æm from the following distribution D:Distribution D: Choose x uniformly from f0; 1gd and y uniformly from f0; 1g3`. Let (x1; : : : ; xm) =NW`;m(x) and (y1; : : : ; ym) = PI`;m(y). If #H (x1 � y1; : : : ; xm � ym) < Æm=2, output a uniformly sele
tedstring from f0; 1gm. Otherwise, sele
t b1 � � � bm as in D0 and output b1 � � � bm. That is, if xi � yi 2 H , sele
tbi 2 f0; 1g uniformly at random; and if xi � yi =2 H , let bi = P (xi � yi).Now we argue that D has min-entropy at least Æm=2. Let v be any string in f0; 1gm. Then,
onditionedon any x and y, the probability that D outputs v is at most 2�Æm=2, sin
e in all
ases at least Æm=2 of the out-put bits of D are sele
ted uniformly and independently. Thus, Pr [D = v℄ = Ex;y [Pr [Djx;y = v℄℄ � 2�Æm=2,as desired.3.4 Extra
ting the randomnessNow we argue that
omposing a pseudoentropy generator with an (eÆ
ient) extra
tor yields a pseudorandomgenerator. The manner of
omposition is illustrated in Figure 2.Lemma 12 Suppose G: f0; 1gd1 ! f0; 1gm is a (k; s; "1) pseudoentropy generator and Ext: f0; 1gm�f0; 1gd2 !f0; 1gn is a (k; "2)-extra
tor
omputable by
ir
uits of size t. Then G0: f0; 1gd1+d2 ! f0; 1gn de�ned byG0(u; v) = Ext(G(u); v) is a (s� t; "1 + "2) pseudorandom generator.Proof: Let D be the distribution of min-entropy k that
annot be distinguished from G(Ud1). SupposeC: f0; 1gn ! f0; 1g is a
ir
uit of size s�t that distinguishesG0(Ud1 ; Ud2) from uniform with advantage greater9

Pseudoentropy
Generator

G

Extractor

Ext

 u v

G(u)

G’(u,v)=Ext(G(u),v)

seed

outputFigure 2: Pseudoentropy Generator + Extra
tor) Pseudorandom Generatorthan "1+"2. By
omplementing C if ne
essary, we have Pr [C(G0(Ud1 ; Ud2)) = 1℄�Pr [C(Un) = 1℄ > "1+"2.Let C 0: f0; 1gm � f0; 1gd2 ! f0; 1g be the
ir
uit of size s given by C 0(x; v) = C(Ext(x; v)). ThenPr [C 0(G(Ud1); Ud2) = 1℄� Pr [C 0(D;Ud2) = 1℄ = Pr [C(G0(Ud1 ; Ud2)) = 1℄� Pr [C(Ext(D;Ud2)) = 1℄� Pr [C(G0(Ud1 ; Ud2)) = 1℄� Pr [C(Un) = 1℄� "2> "1;where the se
ond-to-last inequality follows from the fa
t that Ext(D;Ud2) and Un have statisti
al di�eren
eat most "2. Now, by an averaging argument, the se
ond argument of C 0
an be �xed to some v 2 f0; 1gd2to obtain a
ir
uit C 00(x) = C 0(x; v) of size at most s whi
h distinguishes G(Ud1) from D with advantagegreater than "1. This is a
ontradi
tion.Summing up, we have the following theorem:Theorem 13 There is a universal
onstant
 > 0 su
h that the following holds. Let P : f0; 1g` ! f0; 1g beany predi
ate su
h that no
ir
uit of size s
an
ompute P
orre
tly on more than a 1 � Æ fra
tion of theinputs, where s � 2` and Æ � s�
. De�ne n = s
 and m = 2n2=Æ and let PEP̀;m: f0; 1gd1 ! f0; 1gm bethe (Æm=2;
(1=Æ2m4) � s�O(m2); O(1=Æm)) pseudoentropy generator of Theorem 11 and let Ext: f0; 1gm�f0; 1gd2 ! f0; 1gn be the (Æm=2; 1=Æm)-extra
tor of Theorem 7. Let PE-PRGP : f0; 1gd1+d2 ! f0; 1gn bede�ned by PE-PRGP (u; v) = Ext(PEP̀;m(u); v).Then, PE-PRGP is a (s0; ") pseudorandom generator withoutput length = n = s
seed length = d1 + d2 = O� `2log s�adversary size = s0 = psadversary's maximum advantage = " = O(1=n2);Moreover, PE-PRGP
an be evaluated in time 2O(`2= log s) with O(n2=Æ) ora
le
alls to P .In parti
ular, suppose P is a predi
ate in E su
h that no
ir
uit of size s = 2�`
an
ompute P
orre
tlyon more than a 1� Æ = 1� 1=poly(`) fra
tion of the inputs. Then the output length is n = 2
(`), the seedlength is O(`) = O(log n), no
ir
uit of size s0 = 2
(`)
an distinguish the output from uniform, and thegenerator
an be evaluated in time poly(n), so the resulting pseudorandom generator is suÆ
iently strongto obtain P = BPP. 10

Proof: By Theorem 11, d1 = O� `2logm + `� � O� `2log s� :By Theorem 7, d2 = O0� log2 � m1=Æm�log(Æm=2) 1A = O(log s) � O� `2log s� ;and Ext is
omputable by a
ir
uit of size t = poly(m; d2) = poly(m). By Lemma 12, no
ir
uit of sizes0
an distinguish the output of PE-PRG from uniform with advantage greater than O(1=Æm) = O(1=n2),where s0 =
(1=Æ2m4) � s�O(m2)� t �
(s1�10
)� poly(s
)By
hoosing
 suÆ
iently small, s0 will always be at least ps.Remark 14 As mentioned earlier, H�astad et al. [HILL99℄ introdu
ed the notion of a pseudoentropy genera-tor and showed that the
rude pseudorandomness of su
h a generator
an be extra
ted to yield a pseudoran-dom generator. Their work is in the Blum{Mi
ali{Yao setting, in whi
h the generators must be
omputablein time polynomial in the seed length and hen
e one
an only hope for the output to be polynomially longerthan the seed (rather than exponentially, as we obtain). Hen
e throughout their
onstru
tion they
ana�ord super-linear in
reases in seed length, whereas preserving the seed length up to linear fa
tors is
ru
ialfor obtaining pseudorandom generators good enough for P = BPP. For example, they
an a�ord to userandomness-ineÆ
ient extra
tors su
h as 2-universal hash fun
tions, whereas we require extra
tors whi
huse only a logarithmi
 number of truly random bits, whi
h have only been
onstru
ted re
ently (�rst in[Zu
96℄). Indeed, the term \extra
tor" was not even present when the work of [HILL99℄ �rst appeared andthe �rst
onstru
tions of randomness-eÆ
ient extra
tors used their Leftover Hash Lemma as a starting point.Remark 15 The output of the pseudoentropy generator PEP̀;m
onstru
ted in Theorem 11 is a
tually \ni
er"than stated. Spe
i�
ally, it is indistinguishable from an oblivious bit-�xing sour
e | that is, a distributionon strings of length m in whi
h m � k bit positions are �xed and the other k bit positions vary uniformlyand independently. Su
h sour
es were the fo
us of the \bit extra
tion problem" studied in [Vaz85, BBR85,CGH+85, Fri92℄ and the term \oblivious bit-�xing sour
e" was introdu
ed in [CW89℄. To see that the outputof PEP̀;m is indistinguishable from an oblivious bit-�xing sour
e, simply observe that the distribution D givenin the proof of Theorem 11 is su
h a sour
e.4 Extra
ting from oblivious bit-�xing sour
es in whi
h all but kbits are �xed is an easier task than extra
ting from a general sour
e of min-entropy k, and already in [CW89℄there are (impli
itly) extra
tors suÆ
ient for our purposes.Another point about the output of PEP̀;m is that its pseudoentropy rate (i.e., the (pseudo-)min-entropydivided by its length) is at least Æ=2, where P is hard to
ompute
orre
tly on more than a 1 � Æ fra
tionof inputs. This means that if P has \
onstant average-
ase hardness," it suÆ
es to use a good extra
tor for
onstant entropy rate, su
h as those in [Zu
96, SZ99, Zu
97℄.Remark 16 It is natural to ask whether similar ideas
an be used to dire
tly
onstru
t BMY-type pseudo-random generators from mild hardness. Spe
i�
ally,
onsider a modi�
ation of the BMY-
onstru
tion [BM84,Yao82℄ of pseudorandom generators from strong (i.e., very hard-on-average) one-way permutations, repla
ingthe strong one-way permutation with a weak (i.e., mildly hard-on-average) one. In analogy with Theorem 9,one might hope that the resulting generator has output whi
h is indistinguishable from having high Shannonentropy. Unfortunately, this is not the
ase in general, at least not to the extent one might expe
t.To see this, let us re
all the BMY
onstru
tion. Let f : f0; 1gn ! f0; 1gn be a one-way permutation, andlet b : f0; 1gn ! f0; 1g be a hard
ore predi
ate for f , so no polynomial-time algorithm
an predi
t b(x) from4A
tually, D is a
onvex
ombination of oblivious bit-�xing sour
es. Distribution X is said to be a
onvex
ombination ofdistributions X1; : : : ; Xt if there is a distribution I on f1; : : : ; tg su
h that X
an be realized by
hoosing i 2 f1; : : : ; tg a

ordingto I, taking a sample x from Xi, and outputting x. It is easy to see that any extra
tor for oblivious bit-�xing sour
es alsoworks for
onvex
ombinations of them. 11

f(x) with inverse-polynomial advantage over the
hoi
e of x. Then the generator Gf;b : f0; 1gn ! f0; 1gkis de�ned by Gf;b(x) = b(x)b(f(x))b(f2(x)) � � � b(fk�1(x)). It is shown in [BM84, Yao82℄ that, as long ask = nO(1), the output of Gf;b
annot be distinguished from uniform by any polynomial-time algorithm.Now we show how to
onstru
t a weak one-way permutation F (and a predi
ate B so that B(x) is mildlyunpredi
table from F (x)) for whi
h the output of GF;B is distinguishable from every distribution of highShannon entropy. To
onstru
t F , let f : f0; 1gn ! f0; 1gn be a strong one-way permutation with hard
orebit b : f0; 1gn ! f0; 1g as above. Let t = dlog 2ne. F will be a permutation on strings of length n+ t, wherethe last t bits are viewed as an integer from 0 to 2t � 1. For x 2 f0; 1gn and i 2 f0; : : : ; 2t � 1g, we de�neF (x; i) = � (x; i+ 1 (mod 2t)) if i 2 f0; : : : ; n� 1g(f(x); i+ 1 (mod 2t)) otherwise.B(x; i) = �xi+1 if i 2 f0; : : : ; n� 1gb(x) otherwise ;where xi+1 denotes the i+1'st bit of x. It is easy to verify that no polynomial-time algorithm
an invert Fon more than, say, 3=4 of the inputs and similarly B(x; i)
annot be predi
ted from F (x; i) with probabilitygreater than, say, 7=8. On the other hand, from the �rst 2t + n bits of GF;B(x; i), it is easy to predi
t theremaining bits with probability 1: 2t + n su

essive appli
ations of F always pass through a sequen
e ofpoints of the form (y; 0); (y; 1); : : : ; (y; n�1), during whi
h the hard
ore bits
ompletely reveal y. All furtherappli
ations of F and B are then polynomial-time
omputable given y. Therefore the output of GF;B isdistinguishable from any distribution with Shannon entropy greater than 2t+n = O(n), whereas an analogywith Theorem 9 would expe
t indistinguishability from Shannon entropy k=8 (sin
e B
annot be predi
tedwith probability more than 7=8). The mild hardness of F and B
an be varied in this
ounterexample byin
reasing or de
reasing t relative to logn.4 List de
oding and ampli�
ation of hardnessRe
all the main theorem of Nisan and Wigderson (Theorem 4) whi
h states that given a suÆ
iently hard-on-average predi
ate P : f0; 1g` ! f0; 1g, one
an get a pseudorandom generator. To obtain su
h a predi
ate,Impagliazzo and Wigderson [IW97℄ start from a predi
ate P 0 that is hard in the worst
ase (i.e., no small
ir
uit
omputes it
orre
tly on all inputs) and use a low-degree extension of P 0 to obtain a multivariate-polynomial fun
tion p̂ that is mildly hard on the average (as in [BFNW93℄). They then apply two di�erentXOR lemmas to obtain fun
tions that grow harder; eventually obtaining as hard a fun
tion as required inTheorem 4. We use an alternate approa
h for this sequen
e by showing dire
tly that the fun
tion p̂ above isvery hard; as hard as required for Theorem 4. (Stri
tly speaking, Theorem 4 requires hard Boolean fun
tions.This requirement is weakened, both in the original result of [IW97℄ and impli
itly in our result, by using theGoldrei
h-Levin [GL89℄
onstru
tion of hard
ore predi
ates from hard fun
tions.)In the pro
ess, we dis
over a
onne
tion between ampli�
ation of the hardness of fun
tions and eÆ
ientde
oding of error-
orre
ting
odes. In what follows, we des
ribe the de
oding properties that we need, whythey suÆ
e for ampli�
ation of hardness, and how multivariate polynomials yield
odes with su
h de
odingproperties. For the last part, we use a result of Arora and Sudan [AS97℄, whi
h involves a te
hni
ally hardproof. We also provide a simpler proof of their result, with some improved parameters. (These improvementsare not needed for the hardness ampli�
ation.)4.1 Notation and De�nitionsWe will be working with error-
orre
ting
odes over arbitrary alphabets. A word or ve
tor over a q-aryalphabet is simply an element of [q℄n. It will often be more
onvenient to think of su
h a ve
tor as a fun
tionmapping [n℄ to [q℄. We will swit
h between these two representations frequently.De�nition 17 For positive integers n; k; q with n � k, an (n; k)q
ode C is an inje
tive map from [q℄k to[q℄n. Elements of the domain of C are referred to as messages, and elements of the image are referred to as
odewords. 12

For
odes to be of use to us, we will need that the
odewords are suÆ
iently \far" from ea
h other. Sowe de�ne the Hamming distan
e between two ve
tors x; y 2 [q℄n to be the number of
oordinates i su
h thatx(i) 6= y(i). (Noti
e we are already using the fun
tional notation!) The relative Hamming distan
e, denoted�(x; y), is Pri2[n℄[x(i) 6= y(i)℄.In the
odes that we
onstru
t and use, we will expe
t that any two
odewords are far from ea
h other.But we won't impose su
h a restri
tion expli
itly. We will rather impose a restri
tion that the
odewordsallow for re
overy, even after many errors have o

urred.De�nition 18 An (n; k)q
ode C is ("; l) list-de
odable if for every word r 2 [q℄n, there exist at most l
odewords
 2 C su
h that �(r;
) � 1� ("+ 1q). (In other words, at most l
odewords agree with any word rin a ("+ 1q)-fra
tion of the
oordinates.) r is referred to as the re
eived word.Remark 19 Note that the parameter " is expe
ted to be between 0 and 1�1=q, with a smaller " indi
atinga better
ode (for any �xed
hoi
e of the other parameters). Note that even at " = 0, the fra
tion of errorsallowed is only 1� 1=q. This is an information-theoreti
 upper limit on the fra
tion of errors one
an
orre
t(for any meaningful notion of
orre
tion) in a q-ary
ode, sin
e a random word agrees with any (or evenmost)
odewords in approximately a fra
tion 1=q of the
oordinates. Below, we will initially dis
uss
odesin whi
h q is large and " �p1=q and then use
on
atenation to obtain q = 2 while " remains
lose to 0.Of
ourse, to make these
odes useful, we will have some
omputational requirements. We will need anin�nite family of
odes, one for every k,
apable of en
oding k letters of the alphabet into some n letters.These
odes should be uniformly
onstru
tible, eÆ
iently en
odable,and eÆ
iently list-de
odable. We willformalize all these notions in the next de�nition. Two of these aspe
ts, uniform
onstru
tibility and eÆ
ienten
odability are de�ned along standard lines. However the third aspe
t, list-de
odability, will not be de�nedalong standard lines. We outline the non-standard aspe
ts �rst:� First, we will not expe
t the list-de
oding algorithm to return one
odeword, but rather a list of up to l
odewords su
h that all nearby
odewords are in
luded in the list. This is natural given our de�nitionof ("; l) list-de
odable
odes.� Next, we will expe
t the list-de
oding algorithm to work in time polynomial in log k and 1=". Thisis impossible in a
onventional model of
omputation, sin
e it takes time at least n � k to even readthe re
eived word. However (and this is where the fun
tional view of words be
omes important) wewill allow the input and output of the list-de
oding algorithm to be spe
i�ed impli
itly. Thus we willassume we have ora
le a

ess to the re
eived word r (the input). We will also output the
odewordsimpli
itly, by programs that
ompute the fun
tion represented by the
odeword. These programs willbe allowed to make ora
le
alls to the re
eived word r. Thus both our de
oding algorithm and theiroutput programs are best thought of as ora
le-ma
hines. We will use the notation MO(x) to denotethe
omputation of an ora
le-ma
hine M on input x with a

ess to an ora
le O. When asking foreÆ
ient list-de
oding, we will expe
t that the de
oding algorithm, as well as its output programs areall eÆ
ient.� Finally, we will allow our de
oding algorithms, as well as their output programs, to be randomized.Below we de�ne what it means for randomized algorithms to approximately
ompute fun
tions, andto solve sear
h problems.De�nition 20 A randomized pro
edure A is said to
ompute a fun
tion f :X ! Y at a point x 2 X ifPr [A(x) = f(x)℄ � 3=4, where the probability is taken over the internal
oin tosses of A. We say that A hasagreement � 2 [0; 1℄ with f if A
omputes f on an � fra
tion of the inputs in X. We say that A
omputesf if it has agreement 1 with f . A randomized pro
edure A is said to solve a sear
h problem S, if on input x,Pr [A(x) 2 S(x)℄ � 3=4.Remark 21 Often we want the su

ess probability of randomized pro
edures to be higher than the 3/4required in the above de�nition. Although for arbitrary sear
h problems, there are no generi
 te
hniques toredu
e error, it will always be possible to do so in the
ases we are interested. For example, in list de
oding,13

where S(x) is the set of lists whi
h in
lude all nearby
odewords, we
an amplify by running the list-de
odingalgorithm several times and outputting the union of the lists. Similarly, for
omputing fun
tions, a majorityvote of several runs
an be used. In both
ases, the su

ess probability
an be in
reased to 1 �
 with anO(log(1=
)) slowdown in eÆ
ien
y. As a
onsequen
e, in a nonuniform model of
omputation (e.g.
ir
uits)we
an set
 = 1=jX j and then �x the
oin tosses of A to obtain a deterministi
 pro
edure solving the sameproblem with only a O(log jX j) slowdown in eÆ
ien
y (as in [Adl78℄).We are now ready to de�ne
odes that are \ni
e" for our purpose. These
odes are parameterizd bytwo parameters: an integer k that
ounts (roughly) the length of the message to be en
oded; and a positivereal number " that is related to the fra
tion of error from whi
h we expe
t to be able to re
over usinglist-de
oding. Spe
i�
ally, we expe
t that a fra
tion 1� ("+ 1q) of errors should be eÆ
iently list-de
odable,in a q-ary
ode.De�nition 22 A family of
odes C = fCk;"g is ni
e if there exist fun
tions n; q; l : Z� R ! Z and a pair ofalgorithms (En
ode;De
ode) satisfying the following
onditions:1. For every k; ", Ck;" : [q℄k ! [q℄n is an ("; l)-list-de
odable
ode, where n = n(k; ") � poly(k; 1="),q = q(k; ") � poly(k; 1=") and l = l(k; ") � poly(log k; 1=").2. En
ode(x; k; ") runs in time poly(n) and returns Ck;"(x), where n = n(k; ").3. De
oder(k; ") (i.e. with ora
le a

ess to a word r 2 [q℄n) runs in time poly(log k; 1=") and outputs alist of ora
le ma
hines M1; : : : ;Ml s.t. for every message x 2 [q℄k satisfying �(r; Ck;"(x)) � 1�("+ 1q),there exists j 2 [l℄ su
h thatMrj
omputes x. De
ode as well as the Mj's are allowed to be randomized.The running time of Mj is bounded by poly(log k; 1=").A family of
odes is binary if q(k; ") = 2.Remark 23 Note that the
ondition l = l(k; ") = poly(log k; 1="), expli
itly spe
i�ed in Condition 1, is alsoimpli
itly enfor
ed by Condition 3 above, sin
e the list-de
oding algorithm has to be able to enumerate lma
hines in time poly(log k; 1="). Thus one
ould safely drop this part of Condition 1 without
hanging thede�nition.4.2 Ni
e binary
odes suÆ
e for ampli�
ation of hardnessWe �rst show that ni
e binary
odes suÆ
e to obtain fun
tions that are as hard as required for Theorem 4,given any predi
ate that is hard in the worst-
ase.Theorem 24 Let C be a ni
e family of binary
odes. Then there exists a
onstant
 su
h that the followingis true. Let P : f0; 1g` ! f0; 1g be a fun
tion su
h that no
ir
uit of size s
omputes P . Given " > 0,de�ne P 0 : f0; 1g`0 ! f0; 1g by P 0 = C2`;"(P).5 Then no
ir
uit of size s0 = ("=`)
 � s
omputes the predi
ateC2`;"(P)
orre
tly on more than a 12 + " fra
tion of the inputs.In parti
ular, taking " = 1=s
 and assuming ` < s
 for a suÆ
iently small
onstant
 (e.g.,
 = 1=4
),P 0 has the following parameters: input length = `0 = O (`)adversary size = s0 = psadversary's maximum advantage = " = 1=s
;Moreover, P 0
an be evaluated in time 2O(`) with a

ess to the entire truth table of P .5Here we are again viewing messages and
odewords as fun
tions. Sin
e the
odes are binary, the fun
tions are Boolean.
14

Proof: Let k = 2`. Assume for
ontradi
tion that B is a
ir
uit of size s0 = ("=`)
 � s that
omputesC2`;"(P)
orre
tly on more than a 12 +" fra
tion of the inputs. Then, the de
oding algorithm De
odeB(k; ")outputs a list of programs M1; : : : ;Ml su
h that for some j, MBj
omputes P
orre
tly. Sin
e the runningtimes of the algorithms Mj are bounded by a polynomial in log k and 1=", we
an express MBj as a
ir-
uit (with some random inputs) of size at most (`=")
0 for some
onstant
0. This
ir
uit will involve someora
le
alls to B. Throwing in the
ir
uit for B in pla
e of all the ora
le
alls in
reases the size of the
ir
uit to at most (`=")
0 � s0.6 By Remark 21, we
an get rid of the randomness at the
ost of in
reasing the
ir
uit size by a fa
tor of O(`0) = O(`) to (`=")
0+1 �s0. Setting
 =
0+1, we get the desired
ontradi
tion.We prove the existen
e of ni
e families of binary
odes in two steps. First we show that multivariatepolynomials lead to a ni
e family of
odes over a growing alphabet. Then we use that to
onstru
t a ni
efamily of binary
odes.Lemma 25 A ni
e family of
odes with q(k; ") = poly(log k; 1="), n(k; ") = poly(k), and l(k; ") = O(1=")exists.Remark 26 The proof will show that the alphabet size q(k; ") is at least 1=". This property will be usedlater.Proof: The en
oding s
heme will interpret the message as the values of a multivariate polynomial on aspe
i�ed subset of points. The en
oding will be the evaluation of the polynomial at all inputs. Below, wespe
ify the
hoi
e of the parameters: m, the number of variables, F , the �eld and H , where Hm is the subsetof points where the polynomial is spe
i�ed by the message.Given k; ", we pi
k a �eld F of
ardinality (
 log k)2="3 for a
onstant
 to be determined later; and asubset H � F of
ardinality (log k)=" and set m = (log k)=(log jH j). We let q = jF j and asso
iate the set[q℄ with F . Let b : [k℄ ! Hm be any inje
tive map. To en
ode a string x 2 F k, we �nd a polynomialp̂ : Fm ! F of degree at most jH j � 1 in ea
h of the m variables satisfying p̂(b(i)) = P (i) for every i 2 [k℄.(Su
h a fun
tion does exist and
an be found easily. The fun
tion may be made unique by for
ing p̂(z) = 0for all z 2 Hm n image(b).) Letting n = jF jm and asso
iating [n℄ with Fm, the en
oding of x is simply thepolynomial fun
tion p̂ : [n℄! F . Note that, with these settings,logn = m � log jF j = (log k) � (log jF j)log jH j = O(log k);sin
e log jF j = O(log jH j). Thus n = poly(k), as
laimed.The uniform
onstru
tibility and eÆ
ient en
oding properties are standard. The de
oding problemredu
es to a \polynomial re
onstru
tion" problem: Given ora
le a

ess to a fun
tion f : Fm ! F , (impli
itly)�nd a list of all total degree d polynomials that agree with f on at least an "+ 1jF j fra
tion of the pla
es. Aroraand Sudan [AS97℄ give an eÆ
ient solution to this problem. In Theorem 29, we give a simpler algorithmand analysis with improved parameters. In parti
ular, the theorem gives a solution to this problem provided"+ 1=jF j �
pd=jF j, for some
hoi
e of the
onstant
. We need only verify that this
ondition is satis�edfor the
hoi
e of parameters above. With our
hoi
e of parameters,djF j < m � jH jjF j � (log k) � (log k)="(
 log k)2="3 = "2
2 ;so the required
ondition is met. The algorithm of Theorem 29 runs in time poly(m; d; log jF j; 1=") =poly(log k; 1="), and produ
es a list of at most l = O(1=")
odewords.6For simpli
ity, we have bounded the number of ora
le
alls by the running time, whi
h in turn we have made a polynomialof unspe
i�ed degree in log k and 1=". Clearly, to obtain quantitatively better results, one should optimize and
ompute thenumber of ora
le
alls to the re
eived word in the de
oding pro
edure, as this is the only part of the running time whi
h a�e
tsthe
ir
uit size multipli
atively. 15

To
onvert the
odes
onstru
ted above into binary
odes, we \
on
atenate" them with the Hadamard
ode. For a string z 2 f0; 1gk, the Hadamard en
oding of z is a 2k-bit string Had(z) whose positions areindexed by strings w 2 f0; 1gk. The w-th
oordinate of the en
oding Had(z) is hw; zi =Ptj=1 wjzj(mod 2),where zj ; wj 2 f0; 1g are the
oordinates of w and z. Though the Hadamard
ode is ineÆ
ient with respe
tto the length of
odewords, it does have good list-de
oding properties. Spe
i�
ally, we use the followingwell-known bound (
f., [GRS98, Thm. 18℄).Lemma 27 For every k, Had : f0; 1gk ! f0; 1g2k is a ("; 1=(4"2)) list-de
odable
ode for all " > 0.Goldrei
h and Levin [GL89℄ have given an eÆ
ient list-de
oding algorithm for the Hadamard
ode, whi
hruns in time poly(k; 1="). However, for us, even brute-for
e exhaustive sear
h running in time poly(2k) willsuÆ
e. By \
on
atenating" the
odes of Lemma 25 with the Hadamard
ode and appropriately
ombiningthe list-de
oding algorithms, we obtain the following.Lemma 28 There exists a ni
e family of binary
odes with parameters n = poly(k=") and l = poly(1=")Proof: Let C be the
ode as given by Lemma 25. We obtain a ni
e family of binary
odes C0 as follows.Given k and ", �rst set Æ = "3=4 and let (n; q; l) be the parameters of the
ode Ck;Æ. (In parti
ular,q > 1=Æ). Let t = dlog2 qe, and let b : [q℄! f0; 1gt be any inje
tive map; for z 2 [q℄, we will write Had(z) asshorthand for Had(b(z)). To en
ode a string x 2 f0; 1gk, we �rst en
ode it using Ck;Æ to get y = Ck;Æ(x) 2 [q℄n.Then we en
ode ea
h
oordinate of y as a 2t-bit string using the Hadamard
ode. Thus the
on
atenateden
oding en
odes a k-bit ve
tor x as a ve
torHad(y(1))Had(y(2)) � � �Had(y(n)); where y = Ck;Æ(x) 2 [q℄n.Clearly, the en
oding is of length n0 = n � 2t � n � (2q) = poly(k; 1=") bits. It is also
lear that the en
odingfor the
on
atenated
ode
an be
omputed eÆ
iently.We now des
ribe its de
oding. The de
oding pro
eeds using the usual paradigm for the de
oding of
on
atenated
odes. We �rst de
ode ea
h symbol of the \inner"
ode, i.e., the Hadamard
ode; and thende
ode the \outer
ode"; in ea
h
ase we use the respe
tive de
oding algorithm. The details that need tobe veri�ed are: (1) We need to spe
ify the de
oding algorithm for the Hadamard
ode. (2) We have toimplement the de
oding paradigm with input/outputs being impli
it. (3) While de
oding the inner-
ode,we don't get unique answers but rather a list of
odewords. We need a list-de
oding version of the de
odingpro
edure.Given k; ", and an ora
le for the re
eived word r : [n℄�[2t℄! f0; 1g, we implement ora
les r01; r02; : : : ; r01="2 :[n℄ ! [q℄ as follows. Given i 2 [n℄, we
onsider the ora
le rji : [2t℄ ! f0; 1g given by rji(j) = r(i; j). We�nd a list of all elements z 2 [q℄ su
h that Had(z) has agreement at least 1=2+ "=2 with rji. By Lemma 27,this list has at most 1="2 elements. The ora
le r0m, on query i, outputs the m'th element of this list (aftersorting them using some
anoni
al order, su
h as the lexi
ographi
 order). We then invoke the list de
odingalgorithm for Ck;Æ 1="2 times, on
e for ea
h r0m, and take the union of the lists obtained. Thus, the resultinglist is of length at most l � (1="2) = poly(1=").To analyze the
orre
tness of our de
oding algorithm,
onsider a message x su
h that C0k;"(x) has 12 + "agreement with r. Let y = Ck;Æ(x). An appli
ation of Markov's inequality yields that for at least "=2 fra
tionof the indi
es i 2 [n℄, rji has at least 1=2+"=2 agreement with Had(y(i), and therefore rji = r0m(i) for some j.Sin
e there are only 1="2
hoi
es for m, it follows by averaging that there exists a m0 su
h that r0m0(i) = rjifor at least a fra
tion ("=2) � "2 = "3=2 of the indi
es i 2 [n℄. Sin
e 1=q + Æ � 2Æ = "3=2, the list-de
odingalgorithm for Ck;Æ will produ
e a list of up to l = poly(1=") ora
les whi
h in
ludes x.Comparison with [IW97℄. Theorem 24 and Lemma 28 provide suÆ
ient hardness ampli�
ation to im-mediately apply the Nisan{Wigderson
onstru
tion (Theorem 4) and obtain the main result of Impagliazzoand Wigderson [IW97℄. Spe
i�
ally, if P is a predi
ate in E whi
h
annot be
omputed by
ir
uits of sizes = 2�`, then P 0 given in Theorem 24 will also be in E, and
ir
uits of size s0 = 2
(`0) will not be able16

to
ompute P 0 with advantage more than " = 2�
(`0). Plugging su
h a predi
ate P 0 into Theorem 4 givesa pseudorandom generator whose seed length is logarithmi
 in its output length and se
urity, and hen
eimplies P = BPP.In addition, our
onstru
tion provides hardness ampli�
ation for other settings of parameters that im-proves over the hardness ampli�
ation of [IW97℄. Spe
i�
ally, the input length of P 0 is only a
onstant fa
tormore than that of P (i.e., `0 = O(`)), regardless of the se
urity s. In
ontrast, hardness ampli�
ation of[IW97℄ produ
es a predi
ate with input length �(`2= log s), whi
h is O(`) only if s = 2
(`). Note, however,that our
onstru
tion does not remove the �(`2= log s) overhead in seed length in
urred when subsequentlyapplying Theorem 4 to obtain a pseudorandom generator. Obtaining a
onstru
tion of pseudorandom gener-ators from hard predi
ates whi
h in
reases seed length by only a
onstant fa
tor for all values of the se
uritys is still an open problem.7 Our result demonstrates that it suÆ
es to solve this problem for very hard-on-average predi
ates. A solution would have signi�
ant impli
ations for the
onstru
tion of extra
tors, via the
onne
tion between extra
tors and pseudorandom generators re
ently established by Trevisan [Tre99℄.The derandomized XOR lemma of Impagliazzo and Wigderson does have an important advantage overour hardness ampli�
ation te
hnique when one starts with a mildly hard predi
ate rather than a worst-
asehard predi
ate. Spe
i�
ally, if P : f0; 1g` ! f0; 1g
annot be
omputed by small
ir
uits on more than a1� Æ fra
tion of inputs, they obtain a hard-on-average predi
ate P 0 that is
omputable in time poly(`; 1=Æ)with ora
le a

ess to P . Our
onstru
tion, on the other hand, does not take advantage of this mild hardness.Instead, we do a \global" en
oding of P , just as if P were worst-
ase hard, to obtain a hard-on-averagepredi
ate P 0
omputable in time poly(2`) with ora
le a

ess to P . It would be interesting to see if mildhardness
ould be ampli�ed \lo
ally" as in [IW97℄ using te
hniques based on error-
orre
ting
odes.4.3 List de
oding of multivariate polynomialsRe
all that we wish to solve the following problem:Given: An ora
le f :Fm ! F and parameters d 2 N and " 2 R.Goal: Re
onstru
t (an impli
it representation for) every polynomial of total degree at most d that has "-agreement with the fun
tion f . Spe
i�
ally,
onstru
t randomized ora
le ma
hines M1; : : : ;Ml su
h that forevery polynomial p:Fm ! F of degree d that has (relative) agreement " with f , there exists j 2 [l℄ su
hthat Mfj
omputes p.We will be interested in the running time of the \re
onstru
tion pro
edure", i.e., the time taken to gen-erate the ma
hines M1; : : : ;Ml, as well as the running times of the ma
hines M1; : : : ;Ml.Theorem 29 There exists a
onstant
 su
h that the re
onstru
tion problem above
an be solved in timepoly(m; d; log jF j; 1="), provided " >
pd=jF j. Furthermore, the re
onstru
tion algorithm produ
es a list ofat most l = O(1=") ora
le ma
hines, ea
h with running time at most poly(m; d; log jF j; 1=").Remark 30 1. This theorem is a strengthening of a theorem due to [AS97℄. In parti
ular, the lowerbound on " here is smaller than that of [AS97℄, who obtain an unspe
i�ed polynomial in d and 1=jF j.Furthermore, our proof is simpler and in parti
ular does not require \low-degree testing."2. The bound of
(pd=jF j) is within a
onstant fa
tor of the bound for the univariate
ase. The
onstant
 above is not optimized in this paper. But our methods
an push it down to any
onstant greaterthan p2 (assuming d=jF j is suÆ
iently small). For the univariate
ase, this
onstant is 1 [GS99℄. Noinherent reason is known for the gap.Before proving Theorem 29, we re
all that polynomials are suÆ
iently list-de
odable from a
ombinatorialstandpoint (i.e., eÆ
ien
y
onsiderations aside).Theorem 31 (
f., [GRS98, Thm. 17℄) For any f : Fm ! F and " � p2d=jF j, the number of totaldegree d polynomials that have (relative) agreement at least " with f is less than 2=".7We note that this problem has re
ently been solved by Impagliazzo, Shaltiel, and Wigderson [ISW00℄ (though their pseu-dorandom generators have slightly suboptimal output length).17

Now we pro
eed with the proof of Theorem 29. Fix an ora
le f :Fm ! F and a degree d polynomialp:Fm ! F with " agreement with f . We observe that it suÆ
es to re
onstru
t a (randomized) ora
le ma
hineM su
h that Mf has suÆ
iently high agreement with p. This is due to the existen
e of \self-
orre
tors" ofpolynomials [BF90, Lip89, GLR+91, GS92℄. Spe
i�
ally, we use the following theorem:Theorem 32 ([GLR+91℄) There exists a randomized ora
le ma
hine Corr taking as parameters integers dand m and a �eld F su
h that on a

ess to a randomized ora
le M :Fm ! F with agreement 1516 with somedegree d polynomial p, CorrM
omputes p in time poly(d;m) provided jF j � 2(d+ 1).As in the algorithms of [BF90, Lip89, GLR+91℄, we use the properties of \lines" in the m-dimensionalspa
e Fm, de�ned below.De�nition 33 The line through x; y 2 Fm, denoted lx;y, is the parameterized set of points flx;y(t)def=(1 �t)x + ty j t 2 Fg. Given a fun
tion f :Fm ! F , f restri
ted to the line lx;y is the fun
tion f jlx;y :F ! Fgiven by f jlx;y(t) = f(lx;y(t)).Noti
e that if f is a polynomial of total degree d, then f jlx;y (t) is a univariate polynomial of degreeat most d. Our strategy, to re
onstru
t the value of p at a random point x, is to look at a random linegoing through x. On this line, p turns into a univariate polynomial. Furthermore, the random line throughthe randomly
hosen point x is a \pairwise independent"
olle
tion of points from Fm. Thus p and fwill have agreement
lose to " on this line as well. Thus the goal of �nding p(x) \redu
es" to the goal ofre
onstru
ting p restri
ted to this line, i.e., a univariate re
onstru
tion problem, a problem that has beenaddressed in [ALRS99, Sud97, GS99℄. In parti
ular, we use the following theorem.Theorem 34 ([Sud97℄) Given a sequen
e of n distin
t pairs f(ti; vi)gni=1, ti; vi 2 F and integer parametersd; k, a list of all polynomials g1; : : : ; gl of degree at most d satisfying jfi 2 f1; : : : ; ngjgj(ti) = vigj � k,
anbe re
onstru
ted in time poly(n; log jF j) provided k > p2dn.Using the above theorem and the idea of restri
ting one's attention to random lines, it easy to designan algorithm that, on input x, enumerates a small list of values that in
ludes p(x) (for most x). However,we need to �gure out whi
h one of these values is p(x). More spe
i�
ally, we need to \
ollate" these valuesand assign them to a small
olle
tion of ora
le ma
hines so one of them
onsistently outputs p(x). To do so,the ora
le ma
hine needs some additional information about the polynomial p. (Note that so far, the onlyinformation about p that is known is that it is a low-degree polynomial with "-agreement with f | but theremay be many, at least
(1="), su
h polynomials.) We will show that it suÆ
es to know the value of p at asingle (random) point z. Let p(z) = a; we design an ora
le ma
hine Mz;a whi
h now tries to re
onstru
t thepolynomial p. The ma
hine takes as parameters a positive real number ", integers d and m, and a �eld F .� Mz;a(x):1. (Expli
itly) �nd a list of distin
t (univariate) polynomials g1; : : : ; gl su
h that this list in
ludes allpolynomials of degree at most d that have agreement at least "=2 with f jlz;x and does not in
ludeany polynomial with agreement less than "=4.2. If there exists a unique index i 2 f1; : : : ; lg su
h that gi(0) = a, then output gi(1), else outputanything.Remark 35 1. Step 1 above
an be
omputed in time polynomial in 1=", log jF j, m, and d as follows: IfF is small enough, then we let t1; : : : ; tn be all the elements of F and invoke Theorem 34 on the setf(ti; f(lz;x(ti)))gni=1 with k = "n=2. (Note that k > p2dn as long as " > 2p2pd=jF j, whi
h is true byhypothesis.) If F is too large to do this, then set n = poly(d=") and pi
k t1; : : : ; tn distin
t points atrandom from F and then invoke Theorem 34 on the set f(ti; f(lz;x(ti)))gni=1 with k = "n=4. Sin
e thereare at most 4=" polynomials with agreement at least "=2 with f jlz;x (by Theorem 31), the
hoi
e of nguarantees that with high probability, all of these polynomials agree with f jlz;x on at least "n=4 of theti's. As the
hoi
e of n also guarantees that k = ("n=4) > p2dn, Theorem 34 yields a list
ontainingall polynomials with agreement at least "=2. Now, we wish to dis
ard all polynomials with agreement18

less than "=4 | this
an be a

omplished by
omparing ea
h polynomial g obtained with f jlz;x on arandom sample of poly(1=") points from F and dis
arding it if it has agreement smaller than "=3 onthis sample.2. By Theorem 31, the number of polynomials output in Step 1 above is at most 8=".To shed some light on the steps above,
onsider the a
tions of the ma
hine Mz;a=p(z): We expe
t thatpjlz;x is one of the gi's returned in Step 1 above. In Step 2 we try to �nd out whi
h gi to use by
he
kingto see if there is a unique one whi
h has gi(0) = a (re
all that pjlz;x(0) = p(z) = a), and if so we use thispolynomial to output p(x) = pjlz;x(1) = gi(1). This intuition is made pre
ise in Se
tion 4.4. We now �nishthe des
ription of the re
onstru
tion pro
edure.� Re
onstru
tion algorithmRepeat the following O(log(1=")) times:1. Pi
k z 2 Fm at random.2. Pi
k y 2 Fm at random.3. Find a list of univariate polynomials h1; : : : ; hl in
luding all polynomials of degree at most dwith agreement at least "=2 with f jlz;y .84. For every polynomial hj , in
lude the ora
le ma
hine CorrMz;hj(0) in the output list.4.4 Analysis of the polynomial re
onstru
tion pro
edureNow we show that the re
onstru
tion algorithm runs in time poly(md" log jF j) and outputs a list of ora
lema
hines that in
ludes one for every polynomial p that has " agreement with f . Theorem 29 followsimmediately.The
laim about the running time is easily veri�ed. To analyze the
orre
tness, it suÆ
es to show thatin any iteration of Steps 1{4 in Re
onstru
tion Algorithm, an ora
le ma
hine
omputing p is part ofthe output with, say,
onstant probability for any �xed polynomial p of degree d that has " agreement withf . We show this in two parts. First we argue that for most
hoi
es of z, Mz;p(z) is an ora
le ma
hine that
omputes p on 15=16 of all inputs (and thus CorrMz;p(z)
omputes p everywhere). Then we show that formost pairs (z; y), there exists j s.t. the polynomial hj re
onstru
ted in Step 3 satis�es hj(0) = p(z).Lemma 36 There exists a
onstant
 s.t. for every d, F , " satisfying 1 � " �
pd=jF j, it is the
ase thatPrx �Mz;p(z)(x) = p(x)� � 15=16;with probability at least 1=2 over the random
hoi
e of z 2 Fm,Proof: We �rst argue that when both x and z are pi
ked at random,
ertain bad events are unlikely tohappen. The next two
laims des
ribe these bad events and upper bound their probability.Claim 37 If " � 256=jF j, then Prx;z �6 9i 2 [l℄ s.t. gi = pjlz;x� � 1=64:Proof: For the polynomial pjlz;x not to be in
luded in the output list it has to be the
ase that p and fdo not have "=2 agreement on the line lz;x. But the line is a pairwise independent
olle
tion of jF j points inFm. The quantity of interest then is the probability that a random variable with expe
tation " attains anaverage of at most "=2 on jF j samples. Using Cheby
hev's inequality, this probability may be bounded by4"jF j � 164 .8This is done as in Remark 35, though here we do not
are if the list
ontains extra polynomials with low agreement.19

Claim 38 If " � maxn4p2d=jF j; 512d=jF jo, thenPrx;z �9j 2 [l℄ s.t. gj 6= pjlz;x and pjlz;x(0) = gj(0)� � ldjF j � 1=64:Proof: For
onvenien
e in this argument, assume that Mz;p(z) �nds all polynomials of agreement at least"=4 with f jlz;x rather than just a subset, as that is
learly the worst
ase for the
laim.The lemma would be obvious if the event in
onsideration had been
onsidering a randomly
hosen pointon the line lz;x, rather than the point lz;x(0). For any gi 6= pjlz;x), the probability gi(t) = pjlz;x(t) is atmost d=jF j for a randomly
hosen t 2 F , so the probability that there exists an i su
h that gi 6= pjlz;x andgi(t) = pjlz;x(t) is at most l � d=jF j.The only
ompli
ation is that seemingly t is not being
hosen at random, but rather set to a �xed valuet = 0. However, this does not really
hange the analysis. The polynomials g1; : : : ; gl; pjlz;x are only fun
tionsof f , p, and the set L = flz;x(t)jt 2 Fg, rather than on the spe
i�
 parameterization of the line. So one
ouldreally think of L being pi
ked �rst, and then the points x and z being
hosen later to be two random pointsin L. As argued above, the probability (over z 2 L) that any of the polynomials g1; : : : ; gl agree with pjlz;xat the point lz;x(0) = z is at most ld=jjF j. Sin
e "=4 � p2d=jF j, Theorem 31 gives l < 8=" = jF j=(128d)and the
laim follows.Dis
ounting for the two possible bad events
onsidered in Claims 37 and 38, we �nd that with probabilityat least 1�1=32, there exists a polynomial gi returned in Step 1 ofMz;p(z) su
h that gi = pjlz;x ; furthermore,this is the unique polynomial su
h that gi(0) = pjlz;x(0) = p(z). Thus the output is gi(1) = pjlz;x(1) = p(x).Thus with probability at least 31=32, we �nd that for a random pair (z; x), Mz;p(z)
omputes p(x). Anappli
ation of Markov's inequality now yields the desired result.Lemma 39 With probability at least 1� 1=64, one of the polynomials re
onstru
ted in any one exe
ution ofStep 3 of Re
onstru
tion Algorithm is pjlz;y ; and thus one of the ora
le ma
hines
reated in Step 4 isCorrMz;p(z) , provided " > 256=jF j.Proof: As in Claim 37 we argue that p and f have at least "=2 agreement on the line lz;y and thenpjlz;y is one of the polynomials output in this step. Thus one of the ora
le ma
hines
reated is CorrMz;a fora = pjlz;y(0) = p(z).Proof of Theorem 29: Fix any degree d polynomial p with " agreement with f . Combining Lemmas 36and 39 we �nd that with probability 31=64, one of the ora
le ma
hines output by the re
onstru
tion algorithmis CorrMz;p(z) ; and z is su
h that Mz;p(z)
omputes p(x) for at least 15=16 fra
tion of x's in Fm; and thus (byTheorem 32) CorrMz;p(z)
omputes p on every input.By Theorem 31, there are only O(1=") polynomials having at least " agreement with f . Thus, repeatingthe loop O(log 1") times ensures that every su
h polynomial p is in
luded in the output with high probability.The list
an be trimmed to size O(1=") by dis
arding all polynomials having agreement less than "=2 withf (whi
h
an be identi�ed via sampling).A
knowledgmentsWe thank Oded Goldrei
h, Venkatesan Guruswami, Peter Bro Miltersen, Amnon Ta-Shma, and Avi Wigder-son for
larifying dis
ussions and pointing us to some related work. We also thank the anonymous refereesfor numerous helpful suggestions. 20

Referen
es[Adl78℄ Leonard Adleman. Two theorems on random polynomial time. In 19th Annual Symposiumon Foundations of Computer S
ien
e, pages 75{83, Ann Arbor, Mi
higan, 16{18 O
tober 1978.IEEE.[ACR97℄ Alexander Andreev, Andrea Clementi, and Jos�e Rolim. Worst-
ase hardness suÆ
es for deran-domization: a new method for hardness-randomness trade-o�s. In Pro
eedings of ICALP'97,pages 177{187. LNC 1256S, Springer-Verlag, 1997.[ALRS99℄ Sigal Ar, Ri
hard J. Lipton, Ronitt Rubinfeld, and Madhu Sudan. Re
onstru
ting algebrai
fun
tions from mixed data. SIAM Journal on Computing, 28(2):487{510, 1999.[AS97℄ Sanjeev Arora and Madhu Sudan. Improved low degree testing and its appli
ations. In Pro
eed-ings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 485{495, ElPaso, Texas, 4{6 May 1997.[AK97℄ V. Arvind and J. K�obler. On resour
e-bounded measure and pseudorandomness. In Pro
eedingsof the 17th Conferen
e on Foundations of Software Te
hnology and Theoreti
al Computer S
ien
e,pages 235{249. LNCS 1346, Springer-Verlag, 1997.[BFNW93℄ L�aszl�o Babai, Lan
e Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential timesimulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307{318,1993.[BF90℄ Donald Beaver and Joan Feigenbaum. Hiding instan
es in multiora
le queries. In 7th AnnualSymposium on Theoreti
al Aspe
ts of Computer S
ien
e, volume 415 of Le
ture Notes in Com-puter S
ien
e, pages 37{48, Rouen, Fran
e, 22{24 February 1990. Springer.[BBR85℄ Charles H. Bennett, Gilles Brassard, and Jean-Mar
 Robert. How to redu
e your enemy'sinformation (extended abstra
t). In Hugh C. Williams, editor, Advan
es in Cryptology|CRYPTO '85, volume 218 of Le
ture Notes in Computer S
ien
e, pages 468{476. Springer-Verlag,1986, 18{22 August 1985.[BM84℄ Manuel Blum and Silvio Mi
ali. How to generate
ryptographi
ally strong sequen
es of pseudo-random bits. SIAM Journal on Computing, 13(4):850{864, November 1984.[CPS99℄ Jin-Yi Cai, A. Pavan, and D. Sivakumar. On the hardness of the permanent. In 16th InternationalSymposium on Theoreti
al Aspe
ts of Computer S
ien
e, Le
ture Notes in Computer S
ien
e,pages 90{99, Trier, Germany, Mar
h 4{6 1999. Springer-Verlag.[CG89℄ Benny Chor and Oded Goldrei
h. On the power of two-point based sampling. Journal ofComplexity, 5(1):96{106, Mar
h 1989.[CGH+85℄ Benny Chor, Oded Goldrei
h, Johan H�astad, Joel Friedman, Steven Rudi
h, and Roman Smolen-sky. The bit extra
tion problem or t-resilient fun
tions (preliminary version). In 26th AnnualSymposium on Foundations of Computer S
ien
e, pages 396{407, Portland, Oregon, 21{23 O
-tober 1985. IEEE.[CW89℄ Aviad Cohen and Avi Wigderson. Dispersers, deterministi
 ampli�
ation, and weak randomsour
es (extended abstra
t). In 30th Annual Symposium on Foundations of Computer S
ien
e,pages 14{19, Resear
h Triangle Park, North Carolina, 30 O
tober{1 November 1989. IEEE.[CT91℄ Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series inTele
ommuni
ations. John Wiley & Sons, In
., 2nd edition, 1991.[FL96℄ Uriel Feige and Carsten Lund. On the hardness of
omputing the permanent of random matri
es.Computational Complexity, 6(2):101{132, 1996.21

[FF93℄ Joan Feigenbaum and Lan
e Fortnow. Random-self-redu
ibility of
omplete sets. SIAM Journalon Computing, 22(5):994{1005, O
tober 1993.[Fri92℄ Joel Friedman. On the bit extra
tion problem. In 33rd Annual Symposium on Foundations ofComputer S
ien
e, pages 314{319, Pittsburgh, Pennsylvania, 24{27 O
tober 1992. IEEE.[GLR+91℄ Peter Gemmell, Ri
hard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-testing/
orre
ting for polynomials and for approximate fun
tions. In Pro
eedings of the TwentyThird Annual ACM Symposium on Theory of Computing, pages 32{42, New Orleans, Louisiana,6{8 May 1991.[GS92℄ Peter Gemmell and Madhu Sudan. Highly resilient
orre
tors for polynomials. InformationPro
essing Letters, 43(4):169{174, 28 September 1992.[Gol95℄ Oded Goldrei
h. Foundations of Cryptography (Fragments of a Book). Weizmann In-stitute of S
ien
e, 1995. Available, along with revised version 1/98, from http://www.wisdom.weizmann.a
.il/~oded.[Gol97℄ Oded Goldrei
h. A
omputational perspe
tive on sampling (survey). Available from http://www.wisdom.weizmann.a
.il/~oded/, May 1997.[Gol99℄ Oded Goldrei
h. Modern Cryptography, Probabilisti
 Proofs, and Pseudorandomness. Number 17in Algorithms and Combinatori
s. Springer-Verlag, 1999.[GGM86℄ Oded Goldrei
h, Sha� Goldwasser, and Silvio Mi
ali. How to
onstru
t random fun
tions. Jour-nal of the ACM, 33(4):792{807, O
tober 1986.[GL89℄ Oded Goldrei
h and Leonid A. Levin. A hard-
ore predi
ate for all one-way fun
tions. InPro
eedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages 25{32, Seattle, Washington, 15{17 May 1989.[GNW95℄ Oded Goldrei
h, Noam Nisan, and Avi Wigderson. On Yao's XOR lemma. Te
hni
al Re-port TR95{050, Ele
troni
 Colloquium on Computational Complexity, Mar
h 1995. http://www.e

.uni-trier.de/e

.[GRS98℄ Oded Goldrei
h, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with queries |the highly noisy
ase. Te
hni
al Report TR98-060, Ele
troni
 Colloquium on ComputationalComplexity, 1998.[GM84℄ Sha� Goldwasser and Silvio Mi
ali. Probabilisti
 en
ryption. Journal of Computer and SystemS
ien
es, 28(2):270{299, April 1984.[GS99℄ Venkatesan Guruswami and Madhu Sudan. Improved de
oding of Reed-Solomon and algebrai
-geometry
odes. IEEE Trans. Inform. Theory, 45(6):1757{1767, 1999.[HILL99℄ Johan H�astad, Russell Impagliazzo, Leonid A. Levin, and Mi
hael Luby. A pseudorandomgenerator from any one-way fun
tion. SIAM J. Comput., 28(4):1364{1396 (ele
troni
), 1999.[Imp95℄ Russell Impagliazzo. Hard-
ore distributions for somewhat hard problems. In 36th AnnualSymposium on Foundations of Computer S
ien
e, pages 538{545, Milwaukee, Wis
onsin, 23{25O
tober 1995. IEEE.[ISW00℄ Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Extra
tors and pseudorandom gener-ators with optimal seed length. In Pro
eedings of the Thirty-Se
ond Annual ACM Symposiumon the Theory of Computing, Portland, Oregon, 21{23 May 2000.[IW97℄ Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential
ir
uits: Deran-domizing the XOR lemma. In Pro
eedings of the Twenty-Ninth Annual ACM Symposium onTheory of Computing, pages 220{229, El Paso, Texas, 4{6 May 1997.22

[IW98℄ Russell Impagliazzo and Avi Wigderson. Randomness vs. time: De-randomization under auniform assumption. In 36th Annual Symposium on Foundations of Computer S
ien
e, PaloAlto, CA, November 8{11 1998. IEEE.[KvM99℄ Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofsunless the polynomial-time hierar
hy
ollapses. In Pro
eedings of the Thirty-First Annual ACMSymposium on the Theory of Computing, pages 659{667, Atlanta, Georgia, 1{4 May 1999.[KS98℄ S. Ravi Kumar and D. Sivakumar. Personal
ommuni
ation, O
tober 1998.[Lip89℄ Ri
hard Lipton. New dire
tions in testing. In Pro
eedings of DIMACS Workshop on DistributedComputing and Cryptography, 1989.[NT99℄ Noam Nisan and Amnon Ta-Shma. Extra
ting randomness: A survey and new
onstru
tions.Journal of Computer and System S
ien
es, 58(1):148{173, 1999.[NW94℄ Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and SystemS
ien
es, 49(2):149{167, O
tober 1994.[NZ96℄ Noam Nisan and David Zu
kerman. Randomness is linear in spa
e. Journal of Computer andSystem S
ien
es, 52(1):43{52, February 1996.[RR97℄ Alexander A. Razborov and Steven Rudi
h. Natural proofs. Journal of Computer and SystemS
ien
es, 55(1):24{35, August 1997.[SZ99℄ Aravind Srinivasan and David Zu
kerman. Computing with very weak random sour
es. SIAMJ. Comput., 28(4):1433{1459 (ele
troni
), 1999.[Sud97℄ Madhu Sudan. De
oding of Reed Solomon
odes beyond the error-
orre
tion bound. Journal ofComplexity, 13(1):180{193, Mar
h 1997.[STV98℄ Madhu Sudan, Lu
a Trevisan, and Salil Vadhan. Pseudorandom generators without the XORlemma. Te
hni
al Report TR98-074, Ele
troni
 Colloquium on Computational Complexity, De-
ember 1998. http://www.e

.uni-trier.de/e

.[STV99a℄ Madhu Sudan, Lu
a Trevisan, and Salil Vadhan. Pseudorandom generators without the XORlemma [abstra
t℄. In Pro
eedings of the Fourteenth Annual IEEE Conferen
e on ComputationalComplexity, page 4, Atlanta, GA, May 1999.[STV99b℄ Madhu Sudan, Lu
a Trevisan, and Salil Vadhan. Pseudorandom generators without the XORlemma [extended abstra
t℄. In Pro
eedings of the Thirty-First Annual ACM Symposium on theTheory of Computing, pages 537{546, Atlanta, Georgia, 1{4 May 1999.[Tre99℄ Lu
a Trevisan. Constru
tions of near-optimal extra
tors using pseudo-random generators. InPro
eedings of the Thirty-First Annual ACM Symposium on the Theory of Computing, pages141{148, Atlanta, Georgia, 1{4 May 1999.[Val84℄ Leslie G. Valiant. A theory of the learnable. Communi
ations of the ACM, 27(11):1134{1142,1984.[Vaz85℄ Umesh V. Vazirani. Towards a strong
ommuni
ation
omplexity theory or generating quasi-random sequen
es from two
ommuni
ating slightly-random sour
es (extended abstra
t). InPro
eedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pages 366{378, Providen
e, Rhode Island, 6{8 May 1985.[Weg87℄ Ingo Wegener. The Complexity of Boolean Fun
tions. Wiley, 1987.[Wig98℄ Avi Wigderson. Personal
ommuni
ation, O
tober 1998.23

[Yao82℄ Andrew C. Yao. Theory and appli
ations of trapdoor fun
tions (extended abstra
t). In 23rdAnnual Symposium on Foundations of Computer S
ien
e, pages 80{91, Chi
ago, Illinois, 3{5November 1982. IEEE.[Zu
96℄ David Zu
kerman. Simulating BPP using a general weak random sour
e. Algorithmi
a,16(4/5):367{391, O
tober/November 1996.[Zu
97℄ David Zu
kerman. Randomness-optimal oblivious sampling. Random Stru
tures & Algorithms,11(4):345{367, 1997.

24

