

Pseudorandom Generators without the XOR Lemma

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Sudan, Madhu, Luca Trevisan, and Salil Vadhan. 2001.
Pseudorandom generators without the XOR lemma. Journal of
Computer and System Sciences, 62 (2):236-266.

Published Version doi:10.1006/jcss.2000.1730

Accessed February 17, 2015 6:22:20 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:4728405

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Harvard University - DASH

https://core.ac.uk/display/28930878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4728405&title=Pseudorandom+Generators+without+the+XOR+Lemma
http://dx.doi.org/10.1006/jcss.2000.1730
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4728405
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Pseudorandom generators without the XOR Lemma�Madhu Sudany Lua Trevisanz Salil VadhanxMay 18, 2000AbstratImpagliazzo andWigderson [IW97℄ have reently shown that if there exists a deision problem solvablein time 2O(n) and having iruit omplexity 2
(n) (for all but �nitely many n) then P = BPP. This resultis a ulmination of a series of works showing onnetions between the existene of hard prediates andthe existene of good pseudorandom generators.The onstrution of Impagliazzo andWigderson goes through three phases of \hardness ampli�ation"(a multivariate polynomial enoding, a �rst derandomized XOR Lemma, and a seond derandomizedXOR Lemma) that are omposed with the Nisan{Wigderson [NW94℄ generator. In this paper we presenttwo di�erent approahes to proving the main result of Impagliazzo and Wigderson. In developing eahapproah, we introdue new tehniques and prove new results that ould be useful in future improvementsand/or appliations of hardness-randomness trade-o�s.Our �rst result is that when (a modi�ed version of) the Nisan-Wigderson generator onstrutionis applied with a \mildly" hard prediate, the result is a generator that produes a distribution indis-tinguishable from having large min-entropy. An extrator an then be used to produe a distributionomputationally indistinguishable from uniform. This is the �rst onstrution of a pseudorandom gen-erator that works with a mildly hard prediate without doing hardness ampli�ation.We then show that in the Impagliazzo{Wigderson onstrution only the �rst hardness-ampli�ationphase (enoding with multivariate polynomial) is neessary, sine it already gives the required average-ase hardness. We prove this result by (i) establishing a onnetion between the hardness-ampli�ationproblem and a list-deoding problem for error-orreting odes; and (ii) presenting a list-deoding algo-rithm for error-orreting odes based on multivariate polynomials that improves and simpli�es a previousone by Arora and Sudan [AS97℄.

Keywords: Pseudorandom generators, extrators, polynomial reonstrution, list deoding�Preliminary versions and abstrats of this paper appeared in ECCC [STV98℄, STOC `99 [STV99b℄, and Complexity`99 [STV99a℄.yLaboratory for Computer Siene, 545 Tehnology Square, MIT, Cambridge, MA 02141. E-mail:madhu�theory.ls.mit.edu. Researh supported in part by a Sloan Foundation Fellowship, an MIT-NEC ResearhInitiation Grant and NSF Career Award C-CR-9875511.zDepartment of Computer Siene, Columbia University, 500W 120th St., New York, NY 10027. Email:lua�s.olumbia.edu. Work done at MIT.xLaboratory for Computer Siene, 545 Tehnology Square, MIT, Cambridge, MA 02141. E-mail:salil�theory.ls.mit.edu. URL: http://theory.ls.mit.edu/~salil. Work done while supported by a DOD/NDSEGgraduate fellowship and partially by DARPA grant DABT63-96-C-0018.

1 IntrodutionThis paper ontinues the exploration of hardness versus randomness trade-o�s, that is, results showing thatrandomized algorithms an be eÆiently simulated deterministially if ertain omplexity-theoreti assump-tions are true. We present two new approahes to proving the reent result of Impagliazzo and Wigderson[IW97℄ that, if there is a deision problem omputable in time 2O(n) and having iruit omplexity 2
(n) thenP = BPP. Impagliazzo and Wigderson prove their result by presenting a \randomness-eÆient ampli�ationof hardness" based on a derandomized version of Yao's XOR Lemma. The hardness-ampli�ation proedureis then omposed with the Nisan{Wigderson (NW) generator [NW94℄ to yield the result. The hardness am-pli�ation goes through three steps: an enoding using multivariate polynomials (from [BFNW93℄), a �rstderandomized XOR Lemma (from [Imp95℄) and a seond derandomized XOR Lemma (whih is the tehnialontribution of [IW97℄).In our �rst result, we show how to onstrut a \pseudoentropy generator" starting from a prediatewith \mild" hardness. Roughly speaking, a pseudoentropy generator takes a short random seed as input andoutputs a distribution that is indistinguishable from having high min-entropy. Combining our pseudoentropygenerator with an extrator, we obtain a pseudorandom generator. Interestingly, our pseudoentropy generatoris (a modi�ation of) the NW generator itself. Along the way we make the new observation that, when builtout of a mildly hard prediate, the NW generator outputs a distribution that is indistinguishable fromhaving high Shannon entropy. The notion of a pseudoentropy generator, and the idea that a pseudoentropygenerator an be onverted into a pseudorandom generator using an extrator, are due to H�astad et al.[HILL99℄.1 Our onstrution is the �rst onstrution of a pseudorandom generator that diretly uses amildly hard prediate without hardness ampli�ation.We then revisit the hardness ampli�ation problem, as onsidered in [BFNW93, Imp95, IW97℄, and weshow that the �rst step alone (enoding with multivariate polynomials) is suÆient to amplify hardness tothe desired level, so that the derandomized XOR Lemmas are not neessary in this ontext. Our proof isbased on a list-deoding algorithm for multivariate polynomial odes and exploits a onnetion between thelist-deoding and the hardness-ampli�ation problems. The list-deoding algorithm desribed in this paperis quantitatively better than a previous one by Arora and Sudan [AS97℄, and has a simpler analysis.An overview of previous results. The works of Blum and Miali [BM84℄ and Yao [Yao82℄ formalizethe notion of a pseudorandom generator and show how to onstrut pseudorandom generators based onthe existene of one-way permutations. A pseudorandom generator meeting their de�nitions (whih weall a BMY-type PRG) is a polynomial-time algorithm that on input a randomly seleted string of lengthn� produes an output of length n that is omputationally indistinguishable from uniform by any adver-sary of poly(n) size, where � is an arbitrarily small onstant. Pseudorandom generators of this form and\pseudorandom funtions" [GGM86℄ onstruted from them have many appliations both inside and outsideryptography (see, e.g., [GGM86, Val84, RR97℄). One of the �rst appliations, observed by Yao [Yao82℄, wasto derandomization | any given polynomial-time randomized algorithm an be simulated deterministiallyusing a BMY-type PRG in time 2n� � poly(n) by trying all the seeds and taking the majority answer.In a seminal work, Nisan and Wigderson [NW94℄ explore the use of a weaker type of pseudorandomgenerator (PRG) in order to derandomize randomized algorithms. They observe that, for the purpose ofderandomization, one an onsider generators omputable in time poly(2t) (instead of poly(t)) where t isthe length of the seed, sine the derandomization proess yles through all the seeds, and this indues anoverhead fator 2t anyway. They also observe that one an restrit to generators that are good againstadversaries whose running time is bounded by a �xed polynomial, instead of every polynomial. They thenshow how to onstrut a pseudorandom generator meeting this relaxed de�nition under weaker assumptionsthan those used to build BMY-type pseudorandom generators. Furthermore, they show that, under asuÆiently strong assumption, one an build a PRG that uses seeds of logarithmi length (whih wouldbe impossible for a BMY-type PRG). Suh a generator an be used to simulate randomized algorithms inpolynomial time, and its existene implies P = BPP. The ondition under whih Nisan and Wigdersonprove the existene of a PRG with seeds of logarithmi length is the existene of a deision problem (i.e., aprediate P : f0; 1gn ! f0; 1g) solvable in time 2O(n) suh that for some positive onstant � no iruit of size1To be aurate, the term extrator omes from [NZ96℄ and postdates the work of H�astad et al. [HILL99℄.1

2�n an solve the problem on more than a fration 1=2 + 2��n of the inputs (for all but �nitely many n).This is a very strong hardness requirement, and it is of interest to obtain similar onlusions under weakerassumptions.An example of a weaker assumption is the existene of a mildly hard prediate. We say that a prediateis mildly hard if for some �xed � > 0 no iruit of size 2�n an deide the prediate on more than afration 1 � 1=poly(n) of the inputs. Nisan and Wigderson prove that mild hardness suÆes to derivea pseudorandom generator with seeds of polylogn length, whih in turn implies a quasi-polynomial timedeterministi simulation of BPP. This result is proved by using Yao's XOR Lemma [Yao82℄ (see, e.g.,[GNW95℄ for a proof) to onvert a mildly hard prediate over n inputs into one whih has input size poly(n)and is hard to ompute on a fration 1=2 + 2�
(n) of the inputs. A series of subsequent papers attaksthe problem of obtaining stronger pseudorandom generators starting from weaker and weaker assumptions.Babai et al. [BFNW93℄ show that a prediate of worst-ase iruit omplexity 2
(n) an be onverted intoa mildly hard one.2 Impagliazzo [Imp95℄ proves a derandomized XOR Lemma whih implies that a mildlyhard prediate an be onverted into one that annot be predited on more than some onstant frationof the inputs by iruits of size 2�n. Impagliazzo and Wigderson [IW97℄ prove that a prediate with thelatter hardness ondition an be transformed into one that meets the hardness requirement of [NW94℄. Theresult of [IW97℄ relies on a di�erent derandomized version of the XOR Lemma than [Imp95℄. Thus, thegeneral struture of the original onstrution of Nisan and Wigderson [NW94℄ has been preserved in mostsubsequent works, progress being ahieved by improving the single omponents. In partiular, the use of anXOR Lemma in [NW94℄ ontinues, albeit in inreasingly sophistiated forms, in [Imp95, IW97℄. Likewise, theNW generator and its original analysis have always been used in onditional derandomization results sine.3Future progress in the area will probably require a departure from this observane of the NW methodology,or at least a ertain amount of revisitation of its main parts.In this paper, we give two new ways to build pseudorandom generators with seeds of logarithmi length.Both approahes bypass the need for the XOR Lemma, and instead use tools (suh as list deoding, extrators,and pseudoentropy generators) that did not appear in the sequene of works from [NW94℄ to [IW97℄. For adiagram illustrating the steps leading up to the results of [IW97℄ and how our tehniques depart from thatframework, see Figure 1. Both of our approahes are desribed in more detail below.
Constant hardness

Worst−case hard

Mildly hard

Extremely hard

Pseudorandom Generator

[BFNW93]

[Imp95]

[IW97]

[NW94]

XOR
Lemma

XOR
Lemma

polynomial

encoding

Generator

extractor

polynomial
encoding

Pseudoentropy

+ list
decoding

(Thm 24)

(Lem 12)

Thm 11

Figure 1: A omparison of our approah with previous ones. Double arrows indiate our results.2In fat the result of [BFNW93℄ was somewhat weaker, but it is easily extendible to yield this result.3The tehniques of Andreev et al. [ACR97℄ are a rare exeption, but they yield weaker results than those of [IW97℄.2

A pseudoentropy generator. Nisan and Wigderson show that when their generator is onstruted usinga very hard-on-average prediate, then the output of the generator is indistinguishable from the uniformdistribution. It is a natural question to ask what happens if there are stronger or weaker onditions onthe prediate. In this paper we onsider the question of what happens if the prediate is only mildly hard.Spei�ally we are interested in whether exponential average-ase hardness is really neessary for diretpseudorandom generation. In this paper we �rst show that, when a mildly hard prediate is used in theNW generator, then there exists a distribution having high Shannon entropy that is indistinguishable fromthe output of the generator. Our main result is then that, for a mildly hard prediate, a modi�ed versionof the NW generator has an output indistinguishable from a distribution with high min-entropy. Suh agenerator is essentially a \pseudoentropy generator" in the sense of H�astad et al. [HILL99℄. The intuitionbehind our proof starts with a result of Impagliazzo [Imp95℄ whih says that if no small iruit an omputea prediate orretly on more than a fration 1 � Æ of the inputs, then there is some subset of the inputsof density Æ on whih the prediate is very hard on average. Due to the high hardness, the evaluation ofthe prediate in a random point of this set will be indistinguishable from a random bit. The NW generatoronstruted with a prediate P works by transforming an input seed s into a sequene of points x1; : : : ; xmfrom the domain of P ; the output of the generator is then P (x1)P (x2) � � �P (xm). For a random seed, eahof the points xi is uniformly distributed, and so we expet to typially generate Æm points from the hard set,so that the output of the generator looks like having Æm bits of randomness, that is, it is indistinguishablefrom some other distribution having (Shannon) entropy Æm. The generation of the points x1 � � �xm an bemodi�ed so that the number of points landing in the hard set is sharply onentrated around its expetedvalue Æm. The output of the modi�ed generator is then indistinguishable from having high min-entropy.When our generator is omposed with a suÆiently good \extrator" (suh as the one in [Tre99℄) then theresult is a pseudorandom generator. (An extrator is an algorithm that takes as input a string sampled froma distribution with high min-entropy, and produes as output a string that is statistially lose to uniform.See Setion 3.1 for a formal de�nition.)This is the �rst onstrution of a pseudorandom generator based on mild average-ase hardness that doesnot rely on hardness ampli�ation. It is also the �rst appliation of the notion of a pseudoentropy generatorto the onstrution of PRG in the Nisan{Wigderson sense.Remark 1 While in this paper we analyze for the �rst time the Nisan-Wigderson generator under a weakerassumption than the one originally onsidered in [NW94℄, there has also been some work exploring the e�etof stronger assumptions on the prediate. Impagliazzo and Wigderson [IW98℄ show that if the prediatehas ertain additional properties (suh as \downward self-reduibility") then one needs only a uniformhardness assumption on the prediate (rather than a iruit-omplexity assumption). Their onlusion isalso weaker, obtaining only an average-ase deterministi simulation of BPP for in�nitely many input lengths.Arvind and K�obler [AK97℄ and Klivans and van Melkebeek [KvM99℄ show that if the prediate is hard onaverage for nondeterministi iruits, then the output of the generator is indistinguishable from uniformfor nondeterministi adversaries. Therefore it is possible to derandomize lasses involving randomness andnondeterminism, suh as AM. Trevisan [Tre99℄ shows that if the prediate is hosen randomly from adistribution having ertain properties, then the output is statistially lose to uniform. This yields theonstrution of extrators that we use in our generator.The onnetion with list deoding of error-orreting odes. Our seond result deals with the\list-deoding problem" for error-orreting odes and its onnetion to ampli�ation of hardness.We start by desribing a new \list-deoding" problem for error-orreting odes. This problem di�ersfrom the standard deoding task in that (1) the deoding algorithm is allowed to output a list of nearbyodewords (rather than a unique nearest odeword) and (2) the deoding algorithm is allowed orale aessto the reeived word, and expeted to deode in time muh smaller than the length of the odeword. It isalso allowed to output impliit representations of the list of odewords, by giving programs to ompute theith oordinate of eah odeword. This impliit version of the list-deoding problem is losely related to andinspired by work in program heking and probabilisti heking of proofs.We show a simple onnetion between ampli�ation of hardness and the existene of (uniformly-onstrutible)families of odes with very eÆient list-deoders in our sense (Theorem 24). We then show that a reentresult of Arora and Sudan [AS97℄ on polynomial reonstrution leads to a family of error-orreting odes3

with very eÆient list-deoders (Lemmas 25 and 28). In partiular, this is suÆient to imply the hardnessampli�ation results of [IW97℄. Finally, we simplify the reonstrution proedure of Arora and Sudan andgive an analysis (Theorem 29) that works for a wider range of parameters and has a muh simpler proof.(In ontrast, the analysis of Arora and Sudan relies on their diÆult analysis of their \low-degree test" forthe \highly noisy" ase.)The polynomial reonstrution problem has been studied for its appliations to program heking,average-ase hardness results for the permanent, and random self-reduibility of omplete problems in highomplexity lasses [BF90, Lip89, GLR+91, FF93, GS92, FL96, CPS99℄. The appliability of polynomialreonstrution to hardness versus randomness results was demonstrated by Babai et al. [BFNW93℄. Theyshow that the existene of a polynomial reonstrution proedure implies that one an onvert a worst-asehard prediate into one whih is mildly average-ase hard by enoding it as a polynomial. In e�et, ouranalysis shows that already at this stage the polynomial funtion is very hard, hard enough to use withthe [NW94℄ pseudo-random generator. This onnetion between polynomial reonstrution and hardnessampli�ation has also been observed independently by Avi Wigderson [Wig98℄ and S. Ravi Kumar and D.Sivakumar [KS98℄.2 PreliminariesThroughout the paper, all logarithms are with respet to base 2. We write Un for the uniform distributionon f0; 1gn. Let X and Y be random variables on a disrete universe U , and let S : U ! f0; 1g be any fun-tion/algorithm. We say that S distinguishesX and Y with advantage " if jPr [S(X) = 1℄�Pr [S(Y) = 1℄ j � ".The statistial di�erene between X and Y is the maximum advantage with whih any funtion distinguishesthem, i.e. maxS�U jPr [X 2 S℄� Pr [Y 2 S℄j.Our main objets of study are pseudorandom generators:De�nition 2 A funtion G: f0; 1gd ! f0; 1gn is an (s; ") pseudorandom generator if no iruit of size s andistinguish G from Un with advantage greater than ".Our results rely on the Nisan{Wigderson onstrution of pseudorandom generators, desribed below.2.1 The Nisan{Wigderson generatorThe ombinatorial onstrution underlying the NW generator is a olletion of sets with small intersetions,alled a design.Lemma 3 (design [NW94, Tre99℄) For every `;m 2 N, there exists a family of sets S1; : : : ; Sm �f1; : : : ; dg suh that1. d = O � `2logm�,2. For all i, jSij = `, and3. For all i 6= j jSi \ Sj j � logm,Moreover, suh a family an be found deterministially in time poly(m; 2d)For onreteness, one an think of m = 2�` for some small onstant � > 0, so that d = O(`) = O(logm).Given suh a family of sets, the NW generator takes a uniformly distributed string of length d and produesm strings of length `. That is, given parameters ` and m, we take the family of sets given by Lemma 3 andde�ne NW`;m: f0; 1gd ! (f0; 1g`)m byNW`;m(x) = (xS1 ; xS2 ; : : : ; xSm);where xSi denotes the projetion of x onto the oordinates spei�ed by Si.4

The key property of this generator used in [NW94, IW97℄ is that the strings xSi behave as if they areindependent when they are used as inputs to a hard funtion. Let P : f0; 1g` ! f0; 1g be any prediate.Then the NW pseudorandom generator using P is a funtion NW-PRGP̀;m: f0; 1gd ! f0; 1gm given byNW-PRGP̀;m(x) = P (x1)P (x2) � � �P (xm); where (x1; : : : ; xm) = NW`;m(x)The main theorem of [NW94℄ is that if P is taken to be a suÆiently hard (on average) prediate,NW-PRGP̀;m is a good pseudorandom generator.Theorem 4 ([NW94℄) Suppose P : f0; 1g` ! f0; 1g is a prediate suh that no iruit of size s an om-pute P orretly on more than a fration 12 + "m of the inputs. Then, NW-PRGP̀;m is an (s � O(m2); ")pseudorandom generator.The pseudorandom generators produed by this theorem an be spetaular, as the seed length d =O(`2= logm) an be muh smaller than (even logarithmi in) the number of output bits if P is suÆientlyhard. The main drawbak is that the hypothesis is also extremely strong (in that P must be very hard onaverage), and muh work has been done to onstrut prediates that are strong enough for Theorem 4 basedon weaker assumptions [BFNW93, Imp95, IW97, IW98℄. In the next setion, we analyze the quality of thisgenerator when only a mildly hard prediate is used.3 Pseudorandom generators via pseudoentropyIn this setion, we show how to build a pseudorandom generator out of a mildly hard prediate in a di�erent(and arguably more diret) way than [IW97℄. Spei�ally, we show how to diretly build a \pseudoen-tropy generator" from a mildly hard prediate and argue that applying an extrator to its output gives apseudorandom generator.3.1 Entropy, pseudoentropy, and extratorsThe various types of entropy are measures for the amount of randomness in a probability distribution. If Xis a random variable on a disrete universe U , the (Shannon) entropy of X is de�ned to beH(X) = E� X �log 1Pr [X = �℄� :In Setion 3.2, we show that, when a mildly hard prediate is used in the Nisan{Wigderson pseudorandomgenerator, the output of the generator is indistinguishable from having high Shannon entropy. However,later we will need a striter measure of entropy. The min-entropy of X isH1(X) = min�2U �log 1Pr [X = �℄� :In Setion 3.3, we show how to modify the Nisan{Wigderson generator to obtain indistinguishability fromhigh min-entropy. The following de�nition (following [HILL99℄) formalizes the type of generator we obtain.De�nition 5 A generator G: f0; 1gd ! f0; 1gm is a (k; s; ") pseudoentropy generator if there is a distribu-tion D on f0; 1gm of min-entropy at least k suh that no iruit of size s an distinguish the output of Gfrom D with advantage greater than ".The above de�nition di�ers from that of [HILL99℄ in several ways. Most importantly, we require theoutput to be indistinguishable from having high min-entropy, whereas they only require that it be indistin-guishable from having high Shannon entropy. They later onvert the Shannon entropy to min-entropy bytaking many samples on independent seeds, but we annot a�ord the extra randomness needed to do this.Other di�erenes are that we ask for indistinguishability against iruits rather than uniform adversaries,5

that we do not require that G be omputable in polynomial time, and that we do not expliitly ask that kbe larger than d (though the notion is uninteresting otherwise).In Setion 3.4, we will show that a pseudoentropy generator an be transformed into a pseudorandomgenerator using the following type of tool:De�nition 6 ([NZ96, NT99℄) A funtion Ext: f0; 1gm�f0; 1gd ! f0; 1gn is a (k; ")-extrator if for everydistribution D on f0; 1gm of min-entropy at least k, Ext(D;Ud) has statistial di�erene at most " from Un.We will make use of the following reent onstrution of extrators:Theorem 7 ([Tre99℄) For every m, k, and " suh that k � m, there is a (k; ")-extrator Ext: f0; 1gm �f0; 1gd ! f0; 1gpk suh that d = O� log2(m=")log k �and Ext: f0; 1gm � f0; 1gd ! f0; 1gpk is omputable in time poly(m; 2d) (and an be omputed by a iruitof size poly(m; d)).3.2 Using a mildly hard prediateIntuitively, the reason the NW pseudorandom generator works is that whenever xi is a \hard instane" ofP , P (xi) is indistinguishable from a random bit. If P is very hard as in the hypothesis of Theorem 4, thenalmost all inputs are hard instanes. Thus, with high probability all the xi's will be hard instanes and thelimited dependene of the xi's guarantees that the P (xi)'s will look simultaneously random.Now suppose that P is instead only mildly hard, in the sense that no small iruit an ompute it orretlyon more than a 1� Æ fration of inputs, for some small but notieable Æ. Intuitively, this means that someÆ fration of the inputs are extremely hard for P . Thus, we'd expet that a Æ fration of the output bits ofNW-PRGP̀;m are indistinguishable from random, so that we should get some rude pseudorandomness outof the generator. In fat, this intuition about hard instanes an be made preise, as shown by the followingresult of Impagliazzo [Imp95℄.Theorem 8 (hardore sets [Imp95℄) Suppose no iruit of size s an ompute P : f0; 1g` ! f0; 1g onmore than a 1 � Æ fration of the inputs in f0; 1g`. Then, for every " > 0, there exists an "-hardore setH � f0; 1g` suh that jH j = Æ �2` and no iruit of size s0 =
("2Æ2s) an ompute P orretly on more thana 12 + " fration of the inputs in H.Using this theorem, we an prove something about the output of NW-PRGP̀;m when a mildly hardprediate P is used. Notie that if x is hosen uniformly at random, then eah omponent xi = xSi ofthe output of NW`;m(x) is uniformly distributed in f0; 1g`. Hene, the expeted number of xi's that landin H is Æm. Thus, the earlier intuition suggests that the output of NW-PRGP̀;m should have Æm bits ofpseudorandomness, and this is in fat true.Theorem 9 Suppose no iruit of size s an ompute P : f0; 1g` ! f0; 1g on more than a 1�Æ fration of theinputs in f0; 1g`. Then, for every " > 0, there is a distribution D on f0; 1gm of (Shannon) entropy at leastÆm suh that no iruit of size s0 =
("2=m2)�s�O(m2) an distinguish the output of NW-PRGP̀;m: f0; 1gd !f0; 1gm from D with advantage greater than ".Proof: Let H be a ("=Æm)-hardore set for P , as given by Theorem 8. We will show that the followingdistribution satis�es the requirements of the theorem.
6

Distribution D: Choose x uniformly from f0; 1gd. Let (x1; : : : ; xm) = NW(x). If xi 2 H , seletbi 2 f0; 1g uniformly at random; and if xi =2 H , let bi = P (xi). Output b1 � � � bm.First, we argue that the entropy of D is at least Æm. De�ne #H(x1; : : : ; xm) to be the number of xi'sthat are in H . Then for any x 2 f0; 1gd, the entropy of Djx (i.e., D onditioned on x) is #H(NW(x))). Bythe de�nition of the Nisan-Wigderson generator, eah xi is (individually) uniformly distributed and thereforelands in H with probability Æ. By linearity of expetations, the expetation of #H(NW(x)) (over uniformlyseleted x) is Æm. Thus, sine onditioning redues entropy (f., [CT91, Th. 2.6.5℄),H(D) � Ex [H(Djx)℄= Ex [#H(NW(x))℄= ÆmNow we show that D and NW-PRGP̀;m are omputationally indistinguishable. Suppose that some iruitC distinguishes the output of NW-PRGP̀;m from D with advantage greater than ". We will show that Cmust be of size at least
("2=m2) � s�O(m2). By omplementing C if neessary, we havePr �C(NW-PRGP̀;m(Ud)) = 1�� Pr [C(D) = 1℄ > ":For x 2 f0; 1g` and r 2 f0; 1g, de�ne Q(x; r) = � r if x 2 HP (x) otherwise.Now onsider \hybrids" D0; : : : ; Dm of D and NW-PRGP̀;m(Ud) de�ned as follows:Distribution Di: Choose x uniformly from f0; 1gd and hoose r1; : : : ; rm uniformly from f0; 1g. Forj = 1; : : : ;m, let pj = P (xSj) and qj = Q(xSj ; rj) (where Sj and xSj are as in the de�nition of NW`;m).Output q1 � � � qipi+1 � � � pm.Thus, D0 = NW-PRGP (Ud), and Dm = D. By the \hybrid argument" of [GM84℄ (f. [Gol95, Se. 3.2.3℄),there is an i suh that"=m < Pr [C(Di�1) = 1℄� Pr [C(Di) = 1℄= Æ � Pr [C(Di�1) = 1 j xSi 2 H ℄ + (1� Æ) Pr [C(Di�1) = 1 j xSi =2 H ℄� (Æ � Pr [C(Di) = 1 j xSi 2 H ℄ + (1� Æ) Pr [C(Di) = 1 j xSi =2 H ℄)= Æ � (Pr [C(Di�1) = 1 j xSi 2 H ℄ � Pr [C(Di) = 1 j xSi 2 H ℄) ;where the last equality is beause Di�1 and Di are idential onditioned on xSi =2 H . Expanding and usingthe fat that qi = Q(xSi ; ri) = ri when xSi 2 H , we havePrx;ri;:::;rm �C �P (xS1) � � �P (xSi�1)riQ(xSi+1 ; ri+1) � � �Q(xSm ; rm)� = 1 j xSi 2 H�� Prx;ri+1;:::;rm �C �P (xS1) � � �P (xSi�1)P (xSi)Q(xSi+1 ; ri+1) � � �Q(xSm ; rm)� = 1 j xSi 2 H� > "Æm;where x is hosen uniformly in f0; 1gd and ri; : : : ; rm are seleted uniformly in f0; 1g. Renaming ri as b andusing the standard transformation from distinguishers to preditors [Yao82℄ (f. [Gol99, Se. 3.3.3℄), we seethat Prx;b;ri+1;���;rm �C �P (xS1) � � �P (xSi�1)bQ(xSi+1 ; ri+1) � � �Q(xSm ; rm)�� b = P (xSi) j xSi 2 H� > 12 + "ÆmUsing an averaging argument we an �x ri+1; : : : ; rm, b, and all the bits of x outside Si while preserving thepredition advantage. Renaming xSi as z, we now observe that z varies uniformly over H while P (xSj) for7

j < i and Q(xSj ; rj) for j > i are now funtions Pj of z that depend on only jSi \ Sj j � logm bits of z. So,we have Prz [C (P1(z) � � �Pi�1(z)bPi+1(z) � � �Pm(z))� b = P (z)℄ > 12 + "Æm:Eah Pj an be omputed by a iruit of size O(m), sine every funtion of logm bits an be omputedby a iruit of that size (see, e.g., [Weg87, Ch. 4℄). Inorporating these iruits and b into C, we obtain airuit C 0 of size size(C) +O(m2) suh that Prz [C 0(z) = P (z)℄ > 12 + "Æm .Now, sine H is ("=Æm)-hardore for P as in Theorem 8, C 0 must have size greater than
(Æ2 � ("2=Æm)2) �s =
("2=m2) � s, and hene C must have size greater than
("2=m2) � s�O(m2).Thus, using a mildly hard prediate with the NW generator, we an obtain many bits of rude pseudo-randomness. A natural next step would be to try to \extrat" this rude pseudorandomness and obtain anoutput that is indistinguishable from the uniform distribution. Unfortunately, one annot hope to extratuniformly distributed bits from a distribution that just has high Shannon entropy. Extration is only possiblefrom distributions that have high min-entropy. In the next setion, we show how a small modi�ation to theonstrution ahieves what we need.3.3 A pseudoentropy generatorThe reason that we were only able to argue about Shannon entropy in Theorem 9 is that we ould onlysay that Æm xi's land in H on average. To obtain a result about min-entropy, we would need to guaranteethat many xi's lie in H with high probability. This would be the ase if the xi's were generated pairwiseindependently instead of via the NW generator. But we also need the speial properties of the NW generatorto make the urrent argument about indistinguishability work. We resolve this dilemma by taking the XORof the two generators to obtain a new generator with the randomness properties of eah, similar to theway Impagliazzo and Wigderson [IW97℄ take the XOR of the NW generator with a random walk on anexpander. That is, we obtain x1; : : : ; xm from a seed x using the NW generator, we obtain y1; : : : ; ympairwise independent from a seed y, and then use z1 = x1 � y1; : : : ; zm = xm � ym as the inputs to theprediate P . As we will prove shortly, this gives a generator whose output is indistinguishable from somedistribution with high min-entropy, as desired.Reall that we need a way of generating many pairwise independent strings from a short seed.Lemma 10 ([CG89℄ (see also [Gol97℄)) For any ` 2 N andm � 2`, there is a generator PI`;m: f0; 1g3` !(f0; 1g`)m suh that for y seleted uniformly at random, the random variables PI`;m(y)1, : : :, PI`;m(y)m arepairwise independent. Moreover PI`;m is omputable in time poly(`;m).Let P : f0; 1g` ! f0; 1g be any prediate, let m be any positive integer, and let d be the seed length ofNW`;m. Then our pseudoentropy generator using P is a funtion PEP̀;m: f0; 1gd+3` ! f0; 1gm given byPEP̀;m(x; y) = P (x1 � y1)P (x2 � y2) � � �P (xm � ym);where (x1; : : : ; xm) = NW`;m(x) and (y1; : : : ; ym) = PI`;m(y)The following theorem on�rms that this onstrution does in fat yield a pseudoentropy generator.Theorem 11 Suppose no iruit of size s an ompute P : f0; 1g` ! f0; 1g on more than a 1 � Æ frationof the inputs in f0; 1g`. Then, for any m � 2`, PEP̀;m: f0; 1gd+3` ! f0; 1gm is a (k; s0; ") pseudoentropygenerator, with seed length = d+ 3` = O(`2= logm)pseudoentropy = k = Æm=2adversary size = s0 =
(1=Æ2m4) � s�O(m2)adversary's maximum advantage = " = O(1=Æm)8

Moreover, PEP̀;m is omputable in time poly(m; 2`2= logm) with m orale alls to P .Proof: Let "1 = 1=Æm. Let H be a ("1=Æm)-hardore set for P , as given by Theorem 8. Like in the proofof Theorem 9, we onsider the following distribution D0.Distribution D0: Choose x uniformly from f0; 1gd and y uniformly from f0; 1g3`. Let (x1; : : : ; xm) =NW`;m(x) and (y1; : : : ; ym) = PI`;m(y). If xi � yi 2 H , selet bi 2 f0; 1g uniformly at random; and ifxi � yi =2 H , let bi = P (xi � yi). Output b1 � � � bm.By an argument as in the proof of Theorem 9, it an be shown that no iruit of size s0 =
("21=m2) �s � O(m2) =
(1=Æ2m4) � s � O(m2) an distinguish D0 from PEP̀;m with advantage greater than "1. Theonly hange needed is that y should be �xed at the same time as ri+1; : : : ; rm, b, and all the bits of x outsideSi, and z should be xSi � yi rather than just xSi .Next we argue that D0 has statistial di�erene at most 4=Æm from some distribution D with min-entropyat least Æm=2. This will omplete the proof with " = "1+4=Æm = O(1=Æm), as the advantage of any iruitin distinguishing D from PEP̀;m is at most its advantage in distinguishing D0 from PEP̀;m plus the statistialdi�erene between D and D0.For any w1; : : : ; wm 2 f0; 1g`, de�ne #H(w1; : : : ; wm) to be the number of wi's that are in H . As inthe proof of Theorem 9, eah xi � yi is (individually) uniformly distributed and therefore lands in H withprobability Æ. By linearity of expetations, the expetation of #H(NW`;m(x)�PI`;m(y)) is Æm. Now, sinefyig are pairwise independent and independent from x, it follows that fxi�yig are also pairwise independent.Thus, by Chebyshev's inequality,Prx;y �#H(NW`;m(x)� PI`;m(y)) < Æm2 � < Æm(Æm=2)2 = 4Æm:Therefore, D0 has statistial di�erene at most 4=Æm from the following distribution D:Distribution D: Choose x uniformly from f0; 1gd and y uniformly from f0; 1g3`. Let (x1; : : : ; xm) =NW`;m(x) and (y1; : : : ; ym) = PI`;m(y). If #H (x1 � y1; : : : ; xm � ym) < Æm=2, output a uniformly seletedstring from f0; 1gm. Otherwise, selet b1 � � � bm as in D0 and output b1 � � � bm. That is, if xi � yi 2 H , seletbi 2 f0; 1g uniformly at random; and if xi � yi =2 H , let bi = P (xi � yi).Now we argue that D has min-entropy at least Æm=2. Let v be any string in f0; 1gm. Then, onditionedon any x and y, the probability that D outputs v is at most 2�Æm=2, sine in all ases at least Æm=2 of the out-put bits of D are seleted uniformly and independently. Thus, Pr [D = v℄ = Ex;y [Pr [Djx;y = v℄℄ � 2�Æm=2,as desired.3.4 Extrating the randomnessNow we argue that omposing a pseudoentropy generator with an (eÆient) extrator yields a pseudorandomgenerator. The manner of omposition is illustrated in Figure 2.Lemma 12 Suppose G: f0; 1gd1 ! f0; 1gm is a (k; s; "1) pseudoentropy generator and Ext: f0; 1gm�f0; 1gd2 !f0; 1gn is a (k; "2)-extrator omputable by iruits of size t. Then G0: f0; 1gd1+d2 ! f0; 1gn de�ned byG0(u; v) = Ext(G(u); v) is a (s� t; "1 + "2) pseudorandom generator.Proof: Let D be the distribution of min-entropy k that annot be distinguished from G(Ud1). SupposeC: f0; 1gn ! f0; 1g is a iruit of size s�t that distinguishesG0(Ud1 ; Ud2) from uniform with advantage greater9

Pseudoentropy
Generator

G

Extractor

Ext

 u v

G(u)

G’(u,v)=Ext(G(u),v)

seed

outputFigure 2: Pseudoentropy Generator + Extrator) Pseudorandom Generatorthan "1+"2. By omplementing C if neessary, we have Pr [C(G0(Ud1 ; Ud2)) = 1℄�Pr [C(Un) = 1℄ > "1+"2.Let C 0: f0; 1gm � f0; 1gd2 ! f0; 1g be the iruit of size s given by C 0(x; v) = C(Ext(x; v)). ThenPr [C 0(G(Ud1); Ud2) = 1℄� Pr [C 0(D;Ud2) = 1℄ = Pr [C(G0(Ud1 ; Ud2)) = 1℄� Pr [C(Ext(D;Ud2)) = 1℄� Pr [C(G0(Ud1 ; Ud2)) = 1℄� Pr [C(Un) = 1℄� "2> "1;where the seond-to-last inequality follows from the fat that Ext(D;Ud2) and Un have statistial di�ereneat most "2. Now, by an averaging argument, the seond argument of C 0 an be �xed to some v 2 f0; 1gd2to obtain a iruit C 00(x) = C 0(x; v) of size at most s whih distinguishes G(Ud1) from D with advantagegreater than "1. This is a ontradition.Summing up, we have the following theorem:Theorem 13 There is a universal onstant > 0 suh that the following holds. Let P : f0; 1g` ! f0; 1g beany prediate suh that no iruit of size s an ompute P orretly on more than a 1 � Æ fration of theinputs, where s � 2` and Æ � s�. De�ne n = s and m = 2n2=Æ and let PEP̀;m: f0; 1gd1 ! f0; 1gm bethe (Æm=2;
(1=Æ2m4) � s�O(m2); O(1=Æm)) pseudoentropy generator of Theorem 11 and let Ext: f0; 1gm�f0; 1gd2 ! f0; 1gn be the (Æm=2; 1=Æm)-extrator of Theorem 7. Let PE-PRGP : f0; 1gd1+d2 ! f0; 1gn bede�ned by PE-PRGP (u; v) = Ext(PEP̀;m(u); v).Then, PE-PRGP is a (s0; ") pseudorandom generator withoutput length = n = sseed length = d1 + d2 = O� `2log s�adversary size = s0 = psadversary's maximum advantage = " = O(1=n2);Moreover, PE-PRGP an be evaluated in time 2O(`2= log s) with O(n2=Æ) orale alls to P .In partiular, suppose P is a prediate in E suh that no iruit of size s = 2�` an ompute P orretlyon more than a 1� Æ = 1� 1=poly(`) fration of the inputs. Then the output length is n = 2
(`), the seedlength is O(`) = O(log n), no iruit of size s0 = 2
(`) an distinguish the output from uniform, and thegenerator an be evaluated in time poly(n), so the resulting pseudorandom generator is suÆiently strongto obtain P = BPP. 10

Proof: By Theorem 11, d1 = O� `2logm + `� � O� `2log s� :By Theorem 7, d2 = O0� log2 � m1=Æm�log(Æm=2) 1A = O(log s) � O� `2log s� ;and Ext is omputable by a iruit of size t = poly(m; d2) = poly(m). By Lemma 12, no iruit of sizes0 an distinguish the output of PE-PRG from uniform with advantage greater than O(1=Æm) = O(1=n2),where s0 =
(1=Æ2m4) � s�O(m2)� t �
(s1�10)� poly(s)By hoosing suÆiently small, s0 will always be at least ps.Remark 14 As mentioned earlier, H�astad et al. [HILL99℄ introdued the notion of a pseudoentropy genera-tor and showed that the rude pseudorandomness of suh a generator an be extrated to yield a pseudoran-dom generator. Their work is in the Blum{Miali{Yao setting, in whih the generators must be omputablein time polynomial in the seed length and hene one an only hope for the output to be polynomially longerthan the seed (rather than exponentially, as we obtain). Hene throughout their onstrution they ana�ord super-linear inreases in seed length, whereas preserving the seed length up to linear fators is ruialfor obtaining pseudorandom generators good enough for P = BPP. For example, they an a�ord to userandomness-ineÆient extrators suh as 2-universal hash funtions, whereas we require extrators whihuse only a logarithmi number of truly random bits, whih have only been onstruted reently (�rst in[Zu96℄). Indeed, the term \extrator" was not even present when the work of [HILL99℄ �rst appeared andthe �rst onstrutions of randomness-eÆient extrators used their Leftover Hash Lemma as a starting point.Remark 15 The output of the pseudoentropy generator PEP̀;m onstruted in Theorem 11 is atually \nier"than stated. Spei�ally, it is indistinguishable from an oblivious bit-�xing soure | that is, a distributionon strings of length m in whih m � k bit positions are �xed and the other k bit positions vary uniformlyand independently. Suh soures were the fous of the \bit extration problem" studied in [Vaz85, BBR85,CGH+85, Fri92℄ and the term \oblivious bit-�xing soure" was introdued in [CW89℄. To see that the outputof PEP̀;m is indistinguishable from an oblivious bit-�xing soure, simply observe that the distribution D givenin the proof of Theorem 11 is suh a soure.4 Extrating from oblivious bit-�xing soures in whih all but kbits are �xed is an easier task than extrating from a general soure of min-entropy k, and already in [CW89℄there are (impliitly) extrators suÆient for our purposes.Another point about the output of PEP̀;m is that its pseudoentropy rate (i.e., the (pseudo-)min-entropydivided by its length) is at least Æ=2, where P is hard to ompute orretly on more than a 1 � Æ frationof inputs. This means that if P has \onstant average-ase hardness," it suÆes to use a good extrator foronstant entropy rate, suh as those in [Zu96, SZ99, Zu97℄.Remark 16 It is natural to ask whether similar ideas an be used to diretly onstrut BMY-type pseudo-random generators from mild hardness. Spei�ally, onsider a modi�ation of the BMY-onstrution [BM84,Yao82℄ of pseudorandom generators from strong (i.e., very hard-on-average) one-way permutations, replaingthe strong one-way permutation with a weak (i.e., mildly hard-on-average) one. In analogy with Theorem 9,one might hope that the resulting generator has output whih is indistinguishable from having high Shannonentropy. Unfortunately, this is not the ase in general, at least not to the extent one might expet.To see this, let us reall the BMY onstrution. Let f : f0; 1gn ! f0; 1gn be a one-way permutation, andlet b : f0; 1gn ! f0; 1g be a hardore prediate for f , so no polynomial-time algorithm an predit b(x) from4Atually, D is a onvex ombination of oblivious bit-�xing soures. Distribution X is said to be a onvex ombination ofdistributions X1; : : : ; Xt if there is a distribution I on f1; : : : ; tg suh that X an be realized by hoosing i 2 f1; : : : ; tg aordingto I, taking a sample x from Xi, and outputting x. It is easy to see that any extrator for oblivious bit-�xing soures alsoworks for onvex ombinations of them. 11

f(x) with inverse-polynomial advantage over the hoie of x. Then the generator Gf;b : f0; 1gn ! f0; 1gkis de�ned by Gf;b(x) = b(x)b(f(x))b(f2(x)) � � � b(fk�1(x)). It is shown in [BM84, Yao82℄ that, as long ask = nO(1), the output of Gf;b annot be distinguished from uniform by any polynomial-time algorithm.Now we show how to onstrut a weak one-way permutation F (and a prediate B so that B(x) is mildlyunpreditable from F (x)) for whih the output of GF;B is distinguishable from every distribution of highShannon entropy. To onstrut F , let f : f0; 1gn ! f0; 1gn be a strong one-way permutation with hardorebit b : f0; 1gn ! f0; 1g as above. Let t = dlog 2ne. F will be a permutation on strings of length n+ t, wherethe last t bits are viewed as an integer from 0 to 2t � 1. For x 2 f0; 1gn and i 2 f0; : : : ; 2t � 1g, we de�neF (x; i) = � (x; i+ 1 (mod 2t)) if i 2 f0; : : : ; n� 1g(f(x); i+ 1 (mod 2t)) otherwise.B(x; i) = �xi+1 if i 2 f0; : : : ; n� 1gb(x) otherwise ;where xi+1 denotes the i+1'st bit of x. It is easy to verify that no polynomial-time algorithm an invert Fon more than, say, 3=4 of the inputs and similarly B(x; i) annot be predited from F (x; i) with probabilitygreater than, say, 7=8. On the other hand, from the �rst 2t + n bits of GF;B(x; i), it is easy to predit theremaining bits with probability 1: 2t + n suessive appliations of F always pass through a sequene ofpoints of the form (y; 0); (y; 1); : : : ; (y; n�1), during whih the hardore bits ompletely reveal y. All furtherappliations of F and B are then polynomial-time omputable given y. Therefore the output of GF;B isdistinguishable from any distribution with Shannon entropy greater than 2t+n = O(n), whereas an analogywith Theorem 9 would expet indistinguishability from Shannon entropy k=8 (sine B annot be preditedwith probability more than 7=8). The mild hardness of F and B an be varied in this ounterexample byinreasing or dereasing t relative to logn.4 List deoding and ampli�ation of hardnessReall the main theorem of Nisan and Wigderson (Theorem 4) whih states that given a suÆiently hard-on-average prediate P : f0; 1g` ! f0; 1g, one an get a pseudorandom generator. To obtain suh a prediate,Impagliazzo and Wigderson [IW97℄ start from a prediate P 0 that is hard in the worst ase (i.e., no smalliruit omputes it orretly on all inputs) and use a low-degree extension of P 0 to obtain a multivariate-polynomial funtion p̂ that is mildly hard on the average (as in [BFNW93℄). They then apply two di�erentXOR lemmas to obtain funtions that grow harder; eventually obtaining as hard a funtion as required inTheorem 4. We use an alternate approah for this sequene by showing diretly that the funtion p̂ above isvery hard; as hard as required for Theorem 4. (Stritly speaking, Theorem 4 requires hard Boolean funtions.This requirement is weakened, both in the original result of [IW97℄ and impliitly in our result, by using theGoldreih-Levin [GL89℄ onstrution of hardore prediates from hard funtions.)In the proess, we disover a onnetion between ampli�ation of the hardness of funtions and eÆientdeoding of error-orreting odes. In what follows, we desribe the deoding properties that we need, whythey suÆe for ampli�ation of hardness, and how multivariate polynomials yield odes with suh deodingproperties. For the last part, we use a result of Arora and Sudan [AS97℄, whih involves a tehnially hardproof. We also provide a simpler proof of their result, with some improved parameters. (These improvementsare not needed for the hardness ampli�ation.)4.1 Notation and De�nitionsWe will be working with error-orreting odes over arbitrary alphabets. A word or vetor over a q-aryalphabet is simply an element of [q℄n. It will often be more onvenient to think of suh a vetor as a funtionmapping [n℄ to [q℄. We will swith between these two representations frequently.De�nition 17 For positive integers n; k; q with n � k, an (n; k)q ode C is an injetive map from [q℄k to[q℄n. Elements of the domain of C are referred to as messages, and elements of the image are referred to asodewords. 12

For odes to be of use to us, we will need that the odewords are suÆiently \far" from eah other. Sowe de�ne the Hamming distane between two vetors x; y 2 [q℄n to be the number of oordinates i suh thatx(i) 6= y(i). (Notie we are already using the funtional notation!) The relative Hamming distane, denoted�(x; y), is Pri2[n℄[x(i) 6= y(i)℄.In the odes that we onstrut and use, we will expet that any two odewords are far from eah other.But we won't impose suh a restrition expliitly. We will rather impose a restrition that the odewordsallow for reovery, even after many errors have ourred.De�nition 18 An (n; k)q ode C is ("; l) list-deodable if for every word r 2 [q℄n, there exist at most lodewords 2 C suh that �(r;) � 1� ("+ 1q). (In other words, at most l odewords agree with any word rin a ("+ 1q)-fration of the oordinates.) r is referred to as the reeived word.Remark 19 Note that the parameter " is expeted to be between 0 and 1�1=q, with a smaller " indiatinga better ode (for any �xed hoie of the other parameters). Note that even at " = 0, the fration of errorsallowed is only 1� 1=q. This is an information-theoreti upper limit on the fration of errors one an orret(for any meaningful notion of orretion) in a q-ary ode, sine a random word agrees with any (or evenmost) odewords in approximately a fration 1=q of the oordinates. Below, we will initially disuss odesin whih q is large and " �p1=q and then use onatenation to obtain q = 2 while " remains lose to 0.Of ourse, to make these odes useful, we will have some omputational requirements. We will need anin�nite family of odes, one for every k, apable of enoding k letters of the alphabet into some n letters.These odes should be uniformly onstrutible, eÆiently enodable,and eÆiently list-deodable. We willformalize all these notions in the next de�nition. Two of these aspets, uniform onstrutibility and eÆientenodability are de�ned along standard lines. However the third aspet, list-deodability, will not be de�nedalong standard lines. We outline the non-standard aspets �rst:� First, we will not expet the list-deoding algorithm to return one odeword, but rather a list of up to lodewords suh that all nearby odewords are inluded in the list. This is natural given our de�nitionof ("; l) list-deodable odes.� Next, we will expet the list-deoding algorithm to work in time polynomial in log k and 1=". Thisis impossible in a onventional model of omputation, sine it takes time at least n � k to even readthe reeived word. However (and this is where the funtional view of words beomes important) wewill allow the input and output of the list-deoding algorithm to be spei�ed impliitly. Thus we willassume we have orale aess to the reeived word r (the input). We will also output the odewordsimpliitly, by programs that ompute the funtion represented by the odeword. These programs willbe allowed to make orale alls to the reeived word r. Thus both our deoding algorithm and theiroutput programs are best thought of as orale-mahines. We will use the notation MO(x) to denotethe omputation of an orale-mahine M on input x with aess to an orale O. When asking foreÆient list-deoding, we will expet that the deoding algorithm, as well as its output programs areall eÆient.� Finally, we will allow our deoding algorithms, as well as their output programs, to be randomized.Below we de�ne what it means for randomized algorithms to approximately ompute funtions, andto solve searh problems.De�nition 20 A randomized proedure A is said to ompute a funtion f :X ! Y at a point x 2 X ifPr [A(x) = f(x)℄ � 3=4, where the probability is taken over the internal oin tosses of A. We say that A hasagreement � 2 [0; 1℄ with f if A omputes f on an � fration of the inputs in X. We say that A omputesf if it has agreement 1 with f . A randomized proedure A is said to solve a searh problem S, if on input x,Pr [A(x) 2 S(x)℄ � 3=4.Remark 21 Often we want the suess probability of randomized proedures to be higher than the 3/4required in the above de�nition. Although for arbitrary searh problems, there are no generi tehniques toredue error, it will always be possible to do so in the ases we are interested. For example, in list deoding,13

where S(x) is the set of lists whih inlude all nearby odewords, we an amplify by running the list-deodingalgorithm several times and outputting the union of the lists. Similarly, for omputing funtions, a majorityvote of several runs an be used. In both ases, the suess probability an be inreased to 1 � with anO(log(1=)) slowdown in eÆieny. As a onsequene, in a nonuniform model of omputation (e.g. iruits)we an set = 1=jX j and then �x the oin tosses of A to obtain a deterministi proedure solving the sameproblem with only a O(log jX j) slowdown in eÆieny (as in [Adl78℄).We are now ready to de�ne odes that are \nie" for our purpose. These odes are parameterizd bytwo parameters: an integer k that ounts (roughly) the length of the message to be enoded; and a positivereal number " that is related to the fration of error from whih we expet to be able to reover usinglist-deoding. Spei�ally, we expet that a fration 1� ("+ 1q) of errors should be eÆiently list-deodable,in a q-ary ode.De�nition 22 A family of odes C = fCk;"g is nie if there exist funtions n; q; l : Z� R ! Z and a pair ofalgorithms (Enode;Deode) satisfying the following onditions:1. For every k; ", Ck;" : [q℄k ! [q℄n is an ("; l)-list-deodable ode, where n = n(k; ") � poly(k; 1="),q = q(k; ") � poly(k; 1=") and l = l(k; ") � poly(log k; 1=").2. Enode(x; k; ") runs in time poly(n) and returns Ck;"(x), where n = n(k; ").3. Deoder(k; ") (i.e. with orale aess to a word r 2 [q℄n) runs in time poly(log k; 1=") and outputs alist of orale mahines M1; : : : ;Ml s.t. for every message x 2 [q℄k satisfying �(r; Ck;"(x)) � 1�("+ 1q),there exists j 2 [l℄ suh thatMrj omputes x. Deode as well as the Mj's are allowed to be randomized.The running time of Mj is bounded by poly(log k; 1=").A family of odes is binary if q(k; ") = 2.Remark 23 Note that the ondition l = l(k; ") = poly(log k; 1="), expliitly spei�ed in Condition 1, is alsoimpliitly enfored by Condition 3 above, sine the list-deoding algorithm has to be able to enumerate lmahines in time poly(log k; 1="). Thus one ould safely drop this part of Condition 1 without hanging thede�nition.4.2 Nie binary odes suÆe for ampli�ation of hardnessWe �rst show that nie binary odes suÆe to obtain funtions that are as hard as required for Theorem 4,given any prediate that is hard in the worst-ase.Theorem 24 Let C be a nie family of binary odes. Then there exists a onstant suh that the followingis true. Let P : f0; 1g` ! f0; 1g be a funtion suh that no iruit of size s omputes P . Given " > 0,de�ne P 0 : f0; 1g`0 ! f0; 1g by P 0 = C2`;"(P).5 Then no iruit of size s0 = ("=`) � s omputes the prediateC2`;"(P) orretly on more than a 12 + " fration of the inputs.In partiular, taking " = 1=s and assuming ` < s for a suÆiently small onstant (e.g., = 1=4),P 0 has the following parameters: input length = `0 = O (`)adversary size = s0 = psadversary's maximum advantage = " = 1=s;Moreover, P 0 an be evaluated in time 2O(`) with aess to the entire truth table of P .5Here we are again viewing messages and odewords as funtions. Sine the odes are binary, the funtions are Boolean.
14

Proof: Let k = 2`. Assume for ontradition that B is a iruit of size s0 = ("=`) � s that omputesC2`;"(P) orretly on more than a 12 +" fration of the inputs. Then, the deoding algorithm DeodeB(k; ")outputs a list of programs M1; : : : ;Ml suh that for some j, MBj omputes P orretly. Sine the runningtimes of the algorithms Mj are bounded by a polynomial in log k and 1=", we an express MBj as a ir-uit (with some random inputs) of size at most (`=")0 for some onstant 0. This iruit will involve someorale alls to B. Throwing in the iruit for B in plae of all the orale alls inreases the size of theiruit to at most (`=")0 � s0.6 By Remark 21, we an get rid of the randomness at the ost of inreasing theiruit size by a fator of O(`0) = O(`) to (`=")0+1 �s0. Setting = 0+1, we get the desired ontradition.We prove the existene of nie families of binary odes in two steps. First we show that multivariatepolynomials lead to a nie family of odes over a growing alphabet. Then we use that to onstrut a niefamily of binary odes.Lemma 25 A nie family of odes with q(k; ") = poly(log k; 1="), n(k; ") = poly(k), and l(k; ") = O(1=")exists.Remark 26 The proof will show that the alphabet size q(k; ") is at least 1=". This property will be usedlater.Proof: The enoding sheme will interpret the message as the values of a multivariate polynomial on aspei�ed subset of points. The enoding will be the evaluation of the polynomial at all inputs. Below, wespeify the hoie of the parameters: m, the number of variables, F , the �eld and H , where Hm is the subsetof points where the polynomial is spei�ed by the message.Given k; ", we pik a �eld F of ardinality (log k)2="3 for a onstant to be determined later; and asubset H � F of ardinality (log k)=" and set m = (log k)=(log jH j). We let q = jF j and assoiate the set[q℄ with F . Let b : [k℄ ! Hm be any injetive map. To enode a string x 2 F k, we �nd a polynomialp̂ : Fm ! F of degree at most jH j � 1 in eah of the m variables satisfying p̂(b(i)) = P (i) for every i 2 [k℄.(Suh a funtion does exist and an be found easily. The funtion may be made unique by foring p̂(z) = 0for all z 2 Hm n image(b).) Letting n = jF jm and assoiating [n℄ with Fm, the enoding of x is simply thepolynomial funtion p̂ : [n℄! F . Note that, with these settings,logn = m � log jF j = (log k) � (log jF j)log jH j = O(log k);sine log jF j = O(log jH j). Thus n = poly(k), as laimed.The uniform onstrutibility and eÆient enoding properties are standard. The deoding problemredues to a \polynomial reonstrution" problem: Given orale aess to a funtion f : Fm ! F , (impliitly)�nd a list of all total degree d polynomials that agree with f on at least an "+ 1jF j fration of the plaes. Aroraand Sudan [AS97℄ give an eÆient solution to this problem. In Theorem 29, we give a simpler algorithmand analysis with improved parameters. In partiular, the theorem gives a solution to this problem provided"+ 1=jF j � pd=jF j, for some hoie of the onstant . We need only verify that this ondition is satis�edfor the hoie of parameters above. With our hoie of parameters,djF j < m � jH jjF j � (log k) � (log k)="(log k)2="3 = "22 ;so the required ondition is met. The algorithm of Theorem 29 runs in time poly(m; d; log jF j; 1=") =poly(log k; 1="), and produes a list of at most l = O(1=") odewords.6For simpliity, we have bounded the number of orale alls by the running time, whih in turn we have made a polynomialof unspei�ed degree in log k and 1=". Clearly, to obtain quantitatively better results, one should optimize and ompute thenumber of orale alls to the reeived word in the deoding proedure, as this is the only part of the running time whih a�etsthe iruit size multipliatively. 15

To onvert the odes onstruted above into binary odes, we \onatenate" them with the Hadamardode. For a string z 2 f0; 1gk, the Hadamard enoding of z is a 2k-bit string Had(z) whose positions areindexed by strings w 2 f0; 1gk. The w-th oordinate of the enoding Had(z) is hw; zi =Ptj=1 wjzj(mod 2),where zj ; wj 2 f0; 1g are the oordinates of w and z. Though the Hadamard ode is ineÆient with respetto the length of odewords, it does have good list-deoding properties. Spei�ally, we use the followingwell-known bound (f., [GRS98, Thm. 18℄).Lemma 27 For every k, Had : f0; 1gk ! f0; 1g2k is a ("; 1=(4"2)) list-deodable ode for all " > 0.Goldreih and Levin [GL89℄ have given an eÆient list-deoding algorithm for the Hadamard ode, whihruns in time poly(k; 1="). However, for us, even brute-fore exhaustive searh running in time poly(2k) willsuÆe. By \onatenating" the odes of Lemma 25 with the Hadamard ode and appropriately ombiningthe list-deoding algorithms, we obtain the following.Lemma 28 There exists a nie family of binary odes with parameters n = poly(k=") and l = poly(1=")Proof: Let C be the ode as given by Lemma 25. We obtain a nie family of binary odes C0 as follows.Given k and ", �rst set Æ = "3=4 and let (n; q; l) be the parameters of the ode Ck;Æ. (In partiular,q > 1=Æ). Let t = dlog2 qe, and let b : [q℄! f0; 1gt be any injetive map; for z 2 [q℄, we will write Had(z) asshorthand for Had(b(z)). To enode a string x 2 f0; 1gk, we �rst enode it using Ck;Æ to get y = Ck;Æ(x) 2 [q℄n.Then we enode eah oordinate of y as a 2t-bit string using the Hadamard ode. Thus the onatenatedenoding enodes a k-bit vetor x as a vetorHad(y(1))Had(y(2)) � � �Had(y(n)); where y = Ck;Æ(x) 2 [q℄n.Clearly, the enoding is of length n0 = n � 2t � n � (2q) = poly(k; 1=") bits. It is also lear that the enodingfor the onatenated ode an be omputed eÆiently.We now desribe its deoding. The deoding proeeds using the usual paradigm for the deoding ofonatenated odes. We �rst deode eah symbol of the \inner" ode, i.e., the Hadamard ode; and thendeode the \outer ode"; in eah ase we use the respetive deoding algorithm. The details that need tobe veri�ed are: (1) We need to speify the deoding algorithm for the Hadamard ode. (2) We have toimplement the deoding paradigm with input/outputs being impliit. (3) While deoding the inner-ode,we don't get unique answers but rather a list of odewords. We need a list-deoding version of the deodingproedure.Given k; ", and an orale for the reeived word r : [n℄�[2t℄! f0; 1g, we implement orales r01; r02; : : : ; r01="2 :[n℄ ! [q℄ as follows. Given i 2 [n℄, we onsider the orale rji : [2t℄ ! f0; 1g given by rji(j) = r(i; j). We�nd a list of all elements z 2 [q℄ suh that Had(z) has agreement at least 1=2+ "=2 with rji. By Lemma 27,this list has at most 1="2 elements. The orale r0m, on query i, outputs the m'th element of this list (aftersorting them using some anonial order, suh as the lexiographi order). We then invoke the list deodingalgorithm for Ck;Æ 1="2 times, one for eah r0m, and take the union of the lists obtained. Thus, the resultinglist is of length at most l � (1="2) = poly(1=").To analyze the orretness of our deoding algorithm, onsider a message x suh that C0k;"(x) has 12 + "agreement with r. Let y = Ck;Æ(x). An appliation of Markov's inequality yields that for at least "=2 frationof the indies i 2 [n℄, rji has at least 1=2+"=2 agreement with Had(y(i), and therefore rji = r0m(i) for some j.Sine there are only 1="2 hoies for m, it follows by averaging that there exists a m0 suh that r0m0(i) = rjifor at least a fration ("=2) � "2 = "3=2 of the indies i 2 [n℄. Sine 1=q + Æ � 2Æ = "3=2, the list-deodingalgorithm for Ck;Æ will produe a list of up to l = poly(1=") orales whih inludes x.Comparison with [IW97℄. Theorem 24 and Lemma 28 provide suÆient hardness ampli�ation to im-mediately apply the Nisan{Wigderson onstrution (Theorem 4) and obtain the main result of Impagliazzoand Wigderson [IW97℄. Spei�ally, if P is a prediate in E whih annot be omputed by iruits of sizes = 2�`, then P 0 given in Theorem 24 will also be in E, and iruits of size s0 = 2
(`0) will not be able16

to ompute P 0 with advantage more than " = 2�
(`0). Plugging suh a prediate P 0 into Theorem 4 givesa pseudorandom generator whose seed length is logarithmi in its output length and seurity, and heneimplies P = BPP.In addition, our onstrution provides hardness ampli�ation for other settings of parameters that im-proves over the hardness ampli�ation of [IW97℄. Spei�ally, the input length of P 0 is only a onstant fatormore than that of P (i.e., `0 = O(`)), regardless of the seurity s. In ontrast, hardness ampli�ation of[IW97℄ produes a prediate with input length �(`2= log s), whih is O(`) only if s = 2
(`). Note, however,that our onstrution does not remove the �(`2= log s) overhead in seed length inurred when subsequentlyapplying Theorem 4 to obtain a pseudorandom generator. Obtaining a onstrution of pseudorandom gener-ators from hard prediates whih inreases seed length by only a onstant fator for all values of the seuritys is still an open problem.7 Our result demonstrates that it suÆes to solve this problem for very hard-on-average prediates. A solution would have signi�ant impliations for the onstrution of extrators, via theonnetion between extrators and pseudorandom generators reently established by Trevisan [Tre99℄.The derandomized XOR lemma of Impagliazzo and Wigderson does have an important advantage overour hardness ampli�ation tehnique when one starts with a mildly hard prediate rather than a worst-asehard prediate. Spei�ally, if P : f0; 1g` ! f0; 1g annot be omputed by small iruits on more than a1� Æ fration of inputs, they obtain a hard-on-average prediate P 0 that is omputable in time poly(`; 1=Æ)with orale aess to P . Our onstrution, on the other hand, does not take advantage of this mild hardness.Instead, we do a \global" enoding of P , just as if P were worst-ase hard, to obtain a hard-on-averageprediate P 0 omputable in time poly(2`) with orale aess to P . It would be interesting to see if mildhardness ould be ampli�ed \loally" as in [IW97℄ using tehniques based on error-orreting odes.4.3 List deoding of multivariate polynomialsReall that we wish to solve the following problem:Given: An orale f :Fm ! F and parameters d 2 N and " 2 R.Goal: Reonstrut (an impliit representation for) every polynomial of total degree at most d that has "-agreement with the funtion f . Spei�ally, onstrut randomized orale mahines M1; : : : ;Ml suh that forevery polynomial p:Fm ! F of degree d that has (relative) agreement " with f , there exists j 2 [l℄ suhthat Mfj omputes p.We will be interested in the running time of the \reonstrution proedure", i.e., the time taken to gen-erate the mahines M1; : : : ;Ml, as well as the running times of the mahines M1; : : : ;Ml.Theorem 29 There exists a onstant suh that the reonstrution problem above an be solved in timepoly(m; d; log jF j; 1="), provided " > pd=jF j. Furthermore, the reonstrution algorithm produes a list ofat most l = O(1=") orale mahines, eah with running time at most poly(m; d; log jF j; 1=").Remark 30 1. This theorem is a strengthening of a theorem due to [AS97℄. In partiular, the lowerbound on " here is smaller than that of [AS97℄, who obtain an unspei�ed polynomial in d and 1=jF j.Furthermore, our proof is simpler and in partiular does not require \low-degree testing."2. The bound of
(pd=jF j) is within a onstant fator of the bound for the univariate ase. The onstant above is not optimized in this paper. But our methods an push it down to any onstant greaterthan p2 (assuming d=jF j is suÆiently small). For the univariate ase, this onstant is 1 [GS99℄. Noinherent reason is known for the gap.Before proving Theorem 29, we reall that polynomials are suÆiently list-deodable from a ombinatorialstandpoint (i.e., eÆieny onsiderations aside).Theorem 31 (f., [GRS98, Thm. 17℄) For any f : Fm ! F and " � p2d=jF j, the number of totaldegree d polynomials that have (relative) agreement at least " with f is less than 2=".7We note that this problem has reently been solved by Impagliazzo, Shaltiel, and Wigderson [ISW00℄ (though their pseu-dorandom generators have slightly suboptimal output length).17

Now we proeed with the proof of Theorem 29. Fix an orale f :Fm ! F and a degree d polynomialp:Fm ! F with " agreement with f . We observe that it suÆes to reonstrut a (randomized) orale mahineM suh that Mf has suÆiently high agreement with p. This is due to the existene of \self-orretors" ofpolynomials [BF90, Lip89, GLR+91, GS92℄. Spei�ally, we use the following theorem:Theorem 32 ([GLR+91℄) There exists a randomized orale mahine Corr taking as parameters integers dand m and a �eld F suh that on aess to a randomized orale M :Fm ! F with agreement 1516 with somedegree d polynomial p, CorrM omputes p in time poly(d;m) provided jF j � 2(d+ 1).As in the algorithms of [BF90, Lip89, GLR+91℄, we use the properties of \lines" in the m-dimensionalspae Fm, de�ned below.De�nition 33 The line through x; y 2 Fm, denoted lx;y, is the parameterized set of points flx;y(t)def=(1 �t)x + ty j t 2 Fg. Given a funtion f :Fm ! F , f restrited to the line lx;y is the funtion f jlx;y :F ! Fgiven by f jlx;y(t) = f(lx;y(t)).Notie that if f is a polynomial of total degree d, then f jlx;y (t) is a univariate polynomial of degreeat most d. Our strategy, to reonstrut the value of p at a random point x, is to look at a random linegoing through x. On this line, p turns into a univariate polynomial. Furthermore, the random line throughthe randomly hosen point x is a \pairwise independent" olletion of points from Fm. Thus p and fwill have agreement lose to " on this line as well. Thus the goal of �nding p(x) \redues" to the goal ofreonstruting p restrited to this line, i.e., a univariate reonstrution problem, a problem that has beenaddressed in [ALRS99, Sud97, GS99℄. In partiular, we use the following theorem.Theorem 34 ([Sud97℄) Given a sequene of n distint pairs f(ti; vi)gni=1, ti; vi 2 F and integer parametersd; k, a list of all polynomials g1; : : : ; gl of degree at most d satisfying jfi 2 f1; : : : ; ngjgj(ti) = vigj � k, anbe reonstruted in time poly(n; log jF j) provided k > p2dn.Using the above theorem and the idea of restriting one's attention to random lines, it easy to designan algorithm that, on input x, enumerates a small list of values that inludes p(x) (for most x). However,we need to �gure out whih one of these values is p(x). More spei�ally, we need to \ollate" these valuesand assign them to a small olletion of orale mahines so one of them onsistently outputs p(x). To do so,the orale mahine needs some additional information about the polynomial p. (Note that so far, the onlyinformation about p that is known is that it is a low-degree polynomial with "-agreement with f | but theremay be many, at least
(1="), suh polynomials.) We will show that it suÆes to know the value of p at asingle (random) point z. Let p(z) = a; we design an orale mahine Mz;a whih now tries to reonstrut thepolynomial p. The mahine takes as parameters a positive real number ", integers d and m, and a �eld F .� Mz;a(x):1. (Expliitly) �nd a list of distint (univariate) polynomials g1; : : : ; gl suh that this list inludes allpolynomials of degree at most d that have agreement at least "=2 with f jlz;x and does not inludeany polynomial with agreement less than "=4.2. If there exists a unique index i 2 f1; : : : ; lg suh that gi(0) = a, then output gi(1), else outputanything.Remark 35 1. Step 1 above an be omputed in time polynomial in 1=", log jF j, m, and d as follows: IfF is small enough, then we let t1; : : : ; tn be all the elements of F and invoke Theorem 34 on the setf(ti; f(lz;x(ti)))gni=1 with k = "n=2. (Note that k > p2dn as long as " > 2p2pd=jF j, whih is true byhypothesis.) If F is too large to do this, then set n = poly(d=") and pik t1; : : : ; tn distint points atrandom from F and then invoke Theorem 34 on the set f(ti; f(lz;x(ti)))gni=1 with k = "n=4. Sine thereare at most 4=" polynomials with agreement at least "=2 with f jlz;x (by Theorem 31), the hoie of nguarantees that with high probability, all of these polynomials agree with f jlz;x on at least "n=4 of theti's. As the hoie of n also guarantees that k = ("n=4) > p2dn, Theorem 34 yields a list ontainingall polynomials with agreement at least "=2. Now, we wish to disard all polynomials with agreement18

less than "=4 | this an be aomplished by omparing eah polynomial g obtained with f jlz;x on arandom sample of poly(1=") points from F and disarding it if it has agreement smaller than "=3 onthis sample.2. By Theorem 31, the number of polynomials output in Step 1 above is at most 8=".To shed some light on the steps above, onsider the ations of the mahine Mz;a=p(z): We expet thatpjlz;x is one of the gi's returned in Step 1 above. In Step 2 we try to �nd out whih gi to use by hekingto see if there is a unique one whih has gi(0) = a (reall that pjlz;x(0) = p(z) = a), and if so we use thispolynomial to output p(x) = pjlz;x(1) = gi(1). This intuition is made preise in Setion 4.4. We now �nishthe desription of the reonstrution proedure.� Reonstrution algorithmRepeat the following O(log(1=")) times:1. Pik z 2 Fm at random.2. Pik y 2 Fm at random.3. Find a list of univariate polynomials h1; : : : ; hl inluding all polynomials of degree at most dwith agreement at least "=2 with f jlz;y .84. For every polynomial hj , inlude the orale mahine CorrMz;hj(0) in the output list.4.4 Analysis of the polynomial reonstrution proedureNow we show that the reonstrution algorithm runs in time poly(md" log jF j) and outputs a list of oralemahines that inludes one for every polynomial p that has " agreement with f . Theorem 29 followsimmediately.The laim about the running time is easily veri�ed. To analyze the orretness, it suÆes to show thatin any iteration of Steps 1{4 in Reonstrution Algorithm, an orale mahine omputing p is part ofthe output with, say, onstant probability for any �xed polynomial p of degree d that has " agreement withf . We show this in two parts. First we argue that for most hoies of z, Mz;p(z) is an orale mahine thatomputes p on 15=16 of all inputs (and thus CorrMz;p(z) omputes p everywhere). Then we show that formost pairs (z; y), there exists j s.t. the polynomial hj reonstruted in Step 3 satis�es hj(0) = p(z).Lemma 36 There exists a onstant s.t. for every d, F , " satisfying 1 � " � pd=jF j, it is the ase thatPrx �Mz;p(z)(x) = p(x)� � 15=16;with probability at least 1=2 over the random hoie of z 2 Fm,Proof: We �rst argue that when both x and z are piked at random, ertain bad events are unlikely tohappen. The next two laims desribe these bad events and upper bound their probability.Claim 37 If " � 256=jF j, then Prx;z �6 9i 2 [l℄ s.t. gi = pjlz;x� � 1=64:Proof: For the polynomial pjlz;x not to be inluded in the output list it has to be the ase that p and fdo not have "=2 agreement on the line lz;x. But the line is a pairwise independent olletion of jF j points inFm. The quantity of interest then is the probability that a random variable with expetation " attains anaverage of at most "=2 on jF j samples. Using Chebyhev's inequality, this probability may be bounded by4"jF j � 164 .8This is done as in Remark 35, though here we do not are if the list ontains extra polynomials with low agreement.19

Claim 38 If " � maxn4p2d=jF j; 512d=jF jo, thenPrx;z �9j 2 [l℄ s.t. gj 6= pjlz;x and pjlz;x(0) = gj(0)� � ldjF j � 1=64:Proof: For onveniene in this argument, assume that Mz;p(z) �nds all polynomials of agreement at least"=4 with f jlz;x rather than just a subset, as that is learly the worst ase for the laim.The lemma would be obvious if the event in onsideration had been onsidering a randomly hosen pointon the line lz;x, rather than the point lz;x(0). For any gi 6= pjlz;x), the probability gi(t) = pjlz;x(t) is atmost d=jF j for a randomly hosen t 2 F , so the probability that there exists an i suh that gi 6= pjlz;x andgi(t) = pjlz;x(t) is at most l � d=jF j.The only ompliation is that seemingly t is not being hosen at random, but rather set to a �xed valuet = 0. However, this does not really hange the analysis. The polynomials g1; : : : ; gl; pjlz;x are only funtionsof f , p, and the set L = flz;x(t)jt 2 Fg, rather than on the spei� parameterization of the line. So one ouldreally think of L being piked �rst, and then the points x and z being hosen later to be two random pointsin L. As argued above, the probability (over z 2 L) that any of the polynomials g1; : : : ; gl agree with pjlz;xat the point lz;x(0) = z is at most ld=jjF j. Sine "=4 � p2d=jF j, Theorem 31 gives l < 8=" = jF j=(128d)and the laim follows.Disounting for the two possible bad events onsidered in Claims 37 and 38, we �nd that with probabilityat least 1�1=32, there exists a polynomial gi returned in Step 1 ofMz;p(z) suh that gi = pjlz;x ; furthermore,this is the unique polynomial suh that gi(0) = pjlz;x(0) = p(z). Thus the output is gi(1) = pjlz;x(1) = p(x).Thus with probability at least 31=32, we �nd that for a random pair (z; x), Mz;p(z) omputes p(x). Anappliation of Markov's inequality now yields the desired result.Lemma 39 With probability at least 1� 1=64, one of the polynomials reonstruted in any one exeution ofStep 3 of Reonstrution Algorithm is pjlz;y ; and thus one of the orale mahines reated in Step 4 isCorrMz;p(z) , provided " > 256=jF j.Proof: As in Claim 37 we argue that p and f have at least "=2 agreement on the line lz;y and thenpjlz;y is one of the polynomials output in this step. Thus one of the orale mahines reated is CorrMz;a fora = pjlz;y(0) = p(z).Proof of Theorem 29: Fix any degree d polynomial p with " agreement with f . Combining Lemmas 36and 39 we �nd that with probability 31=64, one of the orale mahines output by the reonstrution algorithmis CorrMz;p(z) ; and z is suh that Mz;p(z) omputes p(x) for at least 15=16 fration of x's in Fm; and thus (byTheorem 32) CorrMz;p(z) omputes p on every input.By Theorem 31, there are only O(1=") polynomials having at least " agreement with f . Thus, repeatingthe loop O(log 1") times ensures that every suh polynomial p is inluded in the output with high probability.The list an be trimmed to size O(1=") by disarding all polynomials having agreement less than "=2 withf (whih an be identi�ed via sampling).AknowledgmentsWe thank Oded Goldreih, Venkatesan Guruswami, Peter Bro Miltersen, Amnon Ta-Shma, and Avi Wigder-son for larifying disussions and pointing us to some related work. We also thank the anonymous refereesfor numerous helpful suggestions. 20

Referenes[Adl78℄ Leonard Adleman. Two theorems on random polynomial time. In 19th Annual Symposiumon Foundations of Computer Siene, pages 75{83, Ann Arbor, Mihigan, 16{18 Otober 1978.IEEE.[ACR97℄ Alexander Andreev, Andrea Clementi, and Jos�e Rolim. Worst-ase hardness suÆes for deran-domization: a new method for hardness-randomness trade-o�s. In Proeedings of ICALP'97,pages 177{187. LNC 1256S, Springer-Verlag, 1997.[ALRS99℄ Sigal Ar, Rihard J. Lipton, Ronitt Rubinfeld, and Madhu Sudan. Reonstruting algebraifuntions from mixed data. SIAM Journal on Computing, 28(2):487{510, 1999.[AS97℄ Sanjeev Arora and Madhu Sudan. Improved low degree testing and its appliations. In Proeed-ings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pages 485{495, ElPaso, Texas, 4{6 May 1997.[AK97℄ V. Arvind and J. K�obler. On resoure-bounded measure and pseudorandomness. In Proeedingsof the 17th Conferene on Foundations of Software Tehnology and Theoretial Computer Siene,pages 235{249. LNCS 1346, Springer-Verlag, 1997.[BFNW93℄ L�aszl�o Babai, Lane Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential timesimulations unless EXPTIME has publishable proofs. Computational Complexity, 3(4):307{318,1993.[BF90℄ Donald Beaver and Joan Feigenbaum. Hiding instanes in multiorale queries. In 7th AnnualSymposium on Theoretial Aspets of Computer Siene, volume 415 of Leture Notes in Com-puter Siene, pages 37{48, Rouen, Frane, 22{24 February 1990. Springer.[BBR85℄ Charles H. Bennett, Gilles Brassard, and Jean-Mar Robert. How to redue your enemy'sinformation (extended abstrat). In Hugh C. Williams, editor, Advanes in Cryptology|CRYPTO '85, volume 218 of Leture Notes in Computer Siene, pages 468{476. Springer-Verlag,1986, 18{22 August 1985.[BM84℄ Manuel Blum and Silvio Miali. How to generate ryptographially strong sequenes of pseudo-random bits. SIAM Journal on Computing, 13(4):850{864, November 1984.[CPS99℄ Jin-Yi Cai, A. Pavan, and D. Sivakumar. On the hardness of the permanent. In 16th InternationalSymposium on Theoretial Aspets of Computer Siene, Leture Notes in Computer Siene,pages 90{99, Trier, Germany, Marh 4{6 1999. Springer-Verlag.[CG89℄ Benny Chor and Oded Goldreih. On the power of two-point based sampling. Journal ofComplexity, 5(1):96{106, Marh 1989.[CGH+85℄ Benny Chor, Oded Goldreih, Johan H�astad, Joel Friedman, Steven Rudih, and Roman Smolen-sky. The bit extration problem or t-resilient funtions (preliminary version). In 26th AnnualSymposium on Foundations of Computer Siene, pages 396{407, Portland, Oregon, 21{23 O-tober 1985. IEEE.[CW89℄ Aviad Cohen and Avi Wigderson. Dispersers, deterministi ampli�ation, and weak randomsoures (extended abstrat). In 30th Annual Symposium on Foundations of Computer Siene,pages 14{19, Researh Triangle Park, North Carolina, 30 Otober{1 November 1989. IEEE.[CT91℄ Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series inTeleommuniations. John Wiley & Sons, In., 2nd edition, 1991.[FL96℄ Uriel Feige and Carsten Lund. On the hardness of omputing the permanent of random matries.Computational Complexity, 6(2):101{132, 1996.21

[FF93℄ Joan Feigenbaum and Lane Fortnow. Random-self-reduibility of omplete sets. SIAM Journalon Computing, 22(5):994{1005, Otober 1993.[Fri92℄ Joel Friedman. On the bit extration problem. In 33rd Annual Symposium on Foundations ofComputer Siene, pages 314{319, Pittsburgh, Pennsylvania, 24{27 Otober 1992. IEEE.[GLR+91℄ Peter Gemmell, Rihard Lipton, Ronitt Rubinfeld, Madhu Sudan, and Avi Wigderson. Self-testing/orreting for polynomials and for approximate funtions. In Proeedings of the TwentyThird Annual ACM Symposium on Theory of Computing, pages 32{42, New Orleans, Louisiana,6{8 May 1991.[GS92℄ Peter Gemmell and Madhu Sudan. Highly resilient orretors for polynomials. InformationProessing Letters, 43(4):169{174, 28 September 1992.[Gol95℄ Oded Goldreih. Foundations of Cryptography (Fragments of a Book). Weizmann In-stitute of Siene, 1995. Available, along with revised version 1/98, from http://www.wisdom.weizmann.a.il/~oded.[Gol97℄ Oded Goldreih. A omputational perspetive on sampling (survey). Available from http://www.wisdom.weizmann.a.il/~oded/, May 1997.[Gol99℄ Oded Goldreih. Modern Cryptography, Probabilisti Proofs, and Pseudorandomness. Number 17in Algorithms and Combinatoris. Springer-Verlag, 1999.[GGM86℄ Oded Goldreih, Sha� Goldwasser, and Silvio Miali. How to onstrut random funtions. Jour-nal of the ACM, 33(4):792{807, Otober 1986.[GL89℄ Oded Goldreih and Leonid A. Levin. A hard-ore prediate for all one-way funtions. InProeedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages 25{32, Seattle, Washington, 15{17 May 1989.[GNW95℄ Oded Goldreih, Noam Nisan, and Avi Wigderson. On Yao's XOR lemma. Tehnial Re-port TR95{050, Eletroni Colloquium on Computational Complexity, Marh 1995. http://www.e.uni-trier.de/e.[GRS98℄ Oded Goldreih, Ronitt Rubinfeld, and Madhu Sudan. Learning polynomials with queries |the highly noisy ase. Tehnial Report TR98-060, Eletroni Colloquium on ComputationalComplexity, 1998.[GM84℄ Sha� Goldwasser and Silvio Miali. Probabilisti enryption. Journal of Computer and SystemSienes, 28(2):270{299, April 1984.[GS99℄ Venkatesan Guruswami and Madhu Sudan. Improved deoding of Reed-Solomon and algebrai-geometry odes. IEEE Trans. Inform. Theory, 45(6):1757{1767, 1999.[HILL99℄ Johan H�astad, Russell Impagliazzo, Leonid A. Levin, and Mihael Luby. A pseudorandomgenerator from any one-way funtion. SIAM J. Comput., 28(4):1364{1396 (eletroni), 1999.[Imp95℄ Russell Impagliazzo. Hard-ore distributions for somewhat hard problems. In 36th AnnualSymposium on Foundations of Computer Siene, pages 538{545, Milwaukee, Wisonsin, 23{25Otober 1995. IEEE.[ISW00℄ Russell Impagliazzo, Ronen Shaltiel, and Avi Wigderson. Extrators and pseudorandom gener-ators with optimal seed length. In Proeedings of the Thirty-Seond Annual ACM Symposiumon the Theory of Computing, Portland, Oregon, 21{23 May 2000.[IW97℄ Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential iruits: Deran-domizing the XOR lemma. In Proeedings of the Twenty-Ninth Annual ACM Symposium onTheory of Computing, pages 220{229, El Paso, Texas, 4{6 May 1997.22

[IW98℄ Russell Impagliazzo and Avi Wigderson. Randomness vs. time: De-randomization under auniform assumption. In 36th Annual Symposium on Foundations of Computer Siene, PaloAlto, CA, November 8{11 1998. IEEE.[KvM99℄ Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofsunless the polynomial-time hierarhy ollapses. In Proeedings of the Thirty-First Annual ACMSymposium on the Theory of Computing, pages 659{667, Atlanta, Georgia, 1{4 May 1999.[KS98℄ S. Ravi Kumar and D. Sivakumar. Personal ommuniation, Otober 1998.[Lip89℄ Rihard Lipton. New diretions in testing. In Proeedings of DIMACS Workshop on DistributedComputing and Cryptography, 1989.[NT99℄ Noam Nisan and Amnon Ta-Shma. Extrating randomness: A survey and new onstrutions.Journal of Computer and System Sienes, 58(1):148{173, 1999.[NW94℄ Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and SystemSienes, 49(2):149{167, Otober 1994.[NZ96℄ Noam Nisan and David Zukerman. Randomness is linear in spae. Journal of Computer andSystem Sienes, 52(1):43{52, February 1996.[RR97℄ Alexander A. Razborov and Steven Rudih. Natural proofs. Journal of Computer and SystemSienes, 55(1):24{35, August 1997.[SZ99℄ Aravind Srinivasan and David Zukerman. Computing with very weak random soures. SIAMJ. Comput., 28(4):1433{1459 (eletroni), 1999.[Sud97℄ Madhu Sudan. Deoding of Reed Solomon odes beyond the error-orretion bound. Journal ofComplexity, 13(1):180{193, Marh 1997.[STV98℄ Madhu Sudan, Lua Trevisan, and Salil Vadhan. Pseudorandom generators without the XORlemma. Tehnial Report TR98-074, Eletroni Colloquium on Computational Complexity, De-ember 1998. http://www.e.uni-trier.de/e.[STV99a℄ Madhu Sudan, Lua Trevisan, and Salil Vadhan. Pseudorandom generators without the XORlemma [abstrat℄. In Proeedings of the Fourteenth Annual IEEE Conferene on ComputationalComplexity, page 4, Atlanta, GA, May 1999.[STV99b℄ Madhu Sudan, Lua Trevisan, and Salil Vadhan. Pseudorandom generators without the XORlemma [extended abstrat℄. In Proeedings of the Thirty-First Annual ACM Symposium on theTheory of Computing, pages 537{546, Atlanta, Georgia, 1{4 May 1999.[Tre99℄ Lua Trevisan. Construtions of near-optimal extrators using pseudo-random generators. InProeedings of the Thirty-First Annual ACM Symposium on the Theory of Computing, pages141{148, Atlanta, Georgia, 1{4 May 1999.[Val84℄ Leslie G. Valiant. A theory of the learnable. Communiations of the ACM, 27(11):1134{1142,1984.[Vaz85℄ Umesh V. Vazirani. Towards a strong ommuniation omplexity theory or generating quasi-random sequenes from two ommuniating slightly-random soures (extended abstrat). InProeedings of the Seventeenth Annual ACM Symposium on Theory of Computing, pages 366{378, Providene, Rhode Island, 6{8 May 1985.[Weg87℄ Ingo Wegener. The Complexity of Boolean Funtions. Wiley, 1987.[Wig98℄ Avi Wigderson. Personal ommuniation, Otober 1998.23

[Yao82℄ Andrew C. Yao. Theory and appliations of trapdoor funtions (extended abstrat). In 23rdAnnual Symposium on Foundations of Computer Siene, pages 80{91, Chiago, Illinois, 3{5November 1982. IEEE.[Zu96℄ David Zukerman. Simulating BPP using a general weak random soure. Algorithmia,16(4/5):367{391, Otober/November 1996.[Zu97℄ David Zukerman. Randomness-optimal oblivious sampling. Random Strutures & Algorithms,11(4):345{367, 1997.

24

