

Many-to-one Trapdoor Functions and Their Relation to Public-Key
Cryptosystems

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Bellare, Mihi, Shai Halevi, Amit Sahai, and Salil Vadhan. 1998.
Many-to-one trapdoor functions and their relation to public-key
cryptosystems. In Advances in Cryptology--Proceedings of
CRYPTO '98, 18th Annual International Conference, Santa
Barbara, California,August 23-27, 1998, ed. Hugo Krawczyk,
Berlin: Springer.H. Krawczyk, editor, 283-299. Advances in
Cryptology - CRYPTO `98, Lecture Notes in Computer Science
1462. Berlin: Springer.

Published Version doi:10.1007/BFb0055735

Accessed February 17, 2015 6:22:00 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2958490

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28930876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/2958490&title=Many-to-one+Trapdoor+Functions+and+Their+Relation+to+Public-Key+Cryptosystems
http://dx.doi.org/10.1007/BFb0055735
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2958490
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

A preliminary version of this paper appears in Advances in Cryptology { Crypto 98 Proceedings,Lecture Notes in Computer Science Vol. ??, H. Krawczyk ed., Springer-Verlag, 1998.
Many-to-one Trapdoor Functionsand their Relation to Public-key CryptosystemsM. Bellare� S. Haleviy A. Sahaiz S. VadhanxJune 1998AbstractThe heart of the task of building public key cryptosystems is viewed as that of \makingtrapdoors;" in fact, public key cryptosystems and trapdoor functions are often discussed assynonymous. How accurate is this view? In this paper we endeavor to get a better understandingof the nature of \trapdoorness" and its relation to public key cryptosystems, by broadening thescope of the investigation: we look at general trapdoor functions; that is, functions that arenot necessarily injective (ie., one-to-one). Our �rst result is somewhat surprising: we show thatnon-injective trapdoor functions (with super-polynomial pre-image size) can be constructed fromany one-way function (and hence it is unlikely that they su�ce for public key encryption). Onthe other hand, we show that trapdoor functions with polynomial pre-image size are su�cientfor public key encryption. Together, these two results indicate that the pre-image size is afundamental parameter of trapdoor functions. We then turn our attention to the converse,asking what kinds of trapdoor functions can be constructed from public key cryptosystems.We take a �rst step by showing that in the random-oracle model one can construct injectivetrapdoor functions from any public key cryptosystem.Keywords: One-way functions, trapdoor functions, public key cryptosystems, relations amongstprimitives.

�Dept. of Computer Science & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,California 92093, USA. E-Mail: mihir@cs.ucsd.edu. URL: http://www-cse.ucsd.edu/users/mihir. Supported inpart by NSF CAREER Award CCR-9624439 and a 1996 Packard Foundation Fellowship in Science and Engineering.y IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY 10598, USA. E-Mail:shaih@watson.ibm.com.zMIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA. E-Mail:amits@theory.lcs.mit.edu. Supported by a DOD/NDSEG Graduate Fellowship and partially by DARPA grantDABT-96-C-0018.x MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA. E-Mail:salil@math.mit.edu. URL: http://www-math.mit.edu/~salil. Supported by a DOD/NDSEGGraduate Fellowshipand partially by DARPA grant DABT-96-C-0018. 1

Contents1 Introduction 31.1 Background . 31.2 Results . 31.3 Discussion and implications . 52 De�nitions 62.1 One-way and trapdoor function families . 62.2 Trapdoor Predicate Families . 73 From one-way functions to trapdoor functions 83.1 Proof of Theorem 3.1 . 84 From trapdoor functions to cryptosystems 104.1 Proof of Theorem 4.1 . 115 From cryptosystems to trapdoor functions 125.1 Proof of Theorem 5.2 . 14References 16A Using a PRG in the construction of Section 5 17

2

1 IntroductionA major dividing line in the realm of cryptographic primitives is that between \one-way" and\trapdoor" primitives. The former e�ectively means the primitives of private key cryptography,while the latter are typically viewed as tied to public key cryptosystems. Indeed, the understandingis that the problem of building public key cryptosystems is the problem of \making trapdoors."Is it really? It is well known that injective (ie. one-to-one) trapdoor functions su�ce for publickey cryptography [Ya, GoMi]. We ask: is the converse true as well, or can public key cryptosystemsexist under a weaker assumption? We take a closer look at the notion of a trapdoor, in particularfrom the point of view of how it relates to semantically secure encryption schemes, and discoversome curious things. Amongst these are that \trapdoor one-way functions" are not necessarilyhard to build, and their relation to public key encryption is more subtle than it might seem.1.1 BackgroundThe main notions discussed and related in this paper are one-way functions [DiHe], trapdoor(one-way) functions [DiHe], semantically secure encryption schemes [GoMi], and unapproximabletrapdoor predicates [GoMi].Roughly, a \one-way function" means a family of functions where each particular function iseasy to compute, but most are hard to invert; trapdoor functions are the same with the additionalfeature that associated to each particular function is some \trapdoor" information, possession ofwhich permits easy inversion. (See Section 2 for formal de�nitions.)In the study of one-way functions, it is well appreciated that the functions need not be injective:careful distinctions are made between \(general) one-way functions", \injective one-way functions,"and \one-way permutations." In principle, the distinction applies equally well to trapdoor one-wayfunctions. (In the non-injective case, knowledge of the trapdoor permits recovery of some pre-image of any given range point [DiHe].) However, all attention in the literature has focused oninjective trapdoor functions, perhaps out of the sense that this is what is necessary for constructingencryption schemes: the injectivity of the trapdoor function guarantees the unique decryptabilityof the encryption scheme.This paper investigates general (ie. not necessarily injective) trapdoor one-way functions andhow they relate to other primitives. Our goal is to understand exactly what kinds of trapdoor one-way functions are necessary and su�cient for building semantically secure public key encryptionschemes; in particular, is injectivity actually necessary?Among non-injective trapdoor functions, we make a further distinction based on \the amountof non-injectivity", measured by pre-image size. A (trapdoor, one-way) function is said to havepre-image size Q(k) (where k is the security parameter) if the number of pre-images of any rangepoint is at most Q(k). We show that pre-image size is a crucial parameter with regard to buildingpublic-key cryptosystems out of a trapdoor function.Rather than directly working with public-key cryptosystems, it will be more convenient towork with a more basic primitive called an unapproximable trapdoor predicate. Unapproximabletrapdoor predicates are equivalent to semantically secure public key schemes for encrypting a singlebit, and these in turn are equivalent to general semantically secure cryptosystems [GoMi].1.2 ResultsWe have three main results. They are displayed in Figure 1 together with known relations. Wenow discuss them. 3

public-key cryptosystems
semantically secure

One-way
functions

poly-bounded pre-image size

Trapdoor functions with

Trapdoor functions with

super-poly pre-image size

Injective

trivial

trivial

trapdoor functions

Unapproximable
trapdoor predicates

[GoMi]

[ImLu]

[Ya]

Theorem 3.1

Theorem 4.1

Theorem 5.2

Figure 1: Illustrating our results: Solid lines are standard implications; the dotted line is an implicationin the random oracle model.One-way functions imply trapdoor functions. Our �rst result, given in Theorem 3.1, mayseem surprising at �rst glance: we show that one-way functions imply trapdoor functions. Wepresent a general construction which, given an arbitrary one-way function, yields a trapdoor (non-injective) one-way function.Put in other words, we show that trapdoor functions are not necessarily hard to build; it isthe combination of trapdoorness with \structural" properties like injectivity that may be hard toachieve. Thus the \curtain" between one-way and trapdoor primitives is not quite as opaque as itmay seem.What does this mean for public key cryptography? Impagliazzo and Rudich [ImRu] show thatit would be very hard, or unlikely, to get a proof that one-way functions (even if injective) implypublic key cryptosystems. Hence, our result shows that it is unlikely that any known technique canbe used to construct public key encryption schemes from generic, non-injective, trapdoor functions.As one might guess given [ImRu], our construction does not preserve injectivity, so even if thestarting one-way function is injective, the resulting trapdoor one-way function is not.Trapdoor functions with poly pre-image size yield cryptosystems. In light of the above,one might still imagine that injectivity of the trapdoor functions is required to obtain public keyencryption. Still, we ask whether the injectivity condition can be relaxed somewhat. Speci�cally,the trapdoor one-way functions which we construct from one-way functions have super-polynomialpre-image size. This leads us to ask about trapdoor functions with polynomially bounded pre-imagesize.Our second result, Theorem 4.1, shows that trapdoor functions with polynomially boundedpre-image size su�ce to construct unapproximable trapdoor predicates, and hence yield public keycryptosystems. This belies the impression that injectivity of the trapdoor function is a necessaryfeature to directly build a public key cryptosystem from it, and also suggests that the super-polynomial pre-image size in the construction of Theorem 3.1 is necessary.From trapdoor predicates to trapdoor functions. We then turn to the other side of the coinand ask what kinds of trapdoor functions must necessarily exist to have a public key cryptosystem.Since unapproximable trapdoor predicates and semantically secure public key cryptosystems areequivalent [GoMi] we consider the question of whether unapproximable trapdoor predicates implyinjective trapdoor functions.In fact whether or not semantically secure public key cryptosystems imply injective trapdoor4

functions is not only an open question, but seems a hard one. (In particular, a positive answerwould imply injective trapdoor functions based on the Di�e-Hellman assumption, a long standingopen problem.) In order to get some insight and possible approaches to it, we consider it in arandom oracle model (cf. [ImRu, BeRo]). Theorem 5.2 says that here the answer is a�rmative:given an arbitrary secure public key cryptosystem, we present a function that has access to anoracle H, and prove the function is injective, trapdoor, and one-way when H is random.The construction of Theorem 5.2 is quite simple, and the natural next question is whether therandom oracle H can be replaced by some constructible cryptographic primitive. We show that thismay be di�cult, by showing that a cryptographically strong pseudorandom bit generator [BlMi, Ya],which seems like a natural choice for this construction, does not su�ce. (See Appendix A). Thenext step may be to follow the approach initiated by Canetti [Ca]: �nd an appropriate cryptographicnotion which, if satis�ed by H, would su�ce for the correctness of the construction, and then try toimplement H via a small family of functions. However, one should keep in mind that replacementof a random oracle by a suitable constructible function is not always possible [CGH]. Thus, ourlast result should be interpreted with care.1.3 Discussion and implicationsTheorems 3.1 and 4.1 indicate that pre-image size is a crucial parameter when considering thepower of trapdoor functions, particularly with respect to constructing public-key cryptosystems.The signi�cance and interpretation of Theorem 5.2, however, requires a bit more discussion.At �rst glance, it may seem that public key cryptosystems \obviously imply" injective trapdoorfunctions. After all, a public key cryptosystem permits unique decryptability; doesn't this meanthe encryption algorithm is injective? No, because, as per [GoMi], it is a probabilistic algorithm,and thus not a function. To make it a function, you must consider it a function of two arguments,the message and the coins, and then it may no longer be injective, because two coin sequencescould give rise to the same ciphertext for a given message. Moreover, it may no longer have a (full)trapdoor, since it may not be possible to recover the randomness from the ciphertext. (Public keycryptosystems in the Di�e and Hellman sense [DiHe] imply injective trapdoor one-way functionsas the authors remark, but that's because encryption there is deterministic. It is now understoodthat secure encryption must be probabilistic [GoMi].)Theorem 5.2 has several corollaries. (Caveat: All in the random oracle model). First, byapplying a transformation of [BeRo], it follows that we can construct non-malleable and chosen-ciphertext secure encryption schemes based on the Ajtai-Dwork cryptosystem [AjDw]. Second,combining Theorems 5.2 and 4.1, the existence of trapdoor functions with polynomially boundedpre-image size implies the existence of injective trapdoor functions. (With high probability overthe choice of oracle. See Remark 5.11.) Third, if the Decisional Di�e-Hellman problem is hard(this means the El Gamal [ElG] cryptosystem is semantically secure) then there exists an injectivetrapdoor function.Note that in the random oracle model, it is trivial to construct (almost) injective one-wayfunctions: a random oracle mapping, say, n bits to 3n bits, is itself an injective one-way functionexcept with probability 2�n over the choice of the oracle. However, random oracles do not directlyor naturally give rise to trapdoors [ImRu]. Thus, it is interesting to note that our constructionin Theorem 5.2 uses the oracle to \amplify" a trapdoor property: we convert the weak trapdoorproperty of a cryptosystem (in which one can only recover the message) to a strong one (in whichone can recover both the message and the randomness used).Another interpretation of Theorem 5.2 is as a demonstration that there exists a model in whichsemantically secure encryption implies injective trapdoor functions, and hence it may be hard5

to prove a separation result, in the style of [ImRu], between injective trapdoor functions andprobabilistic encryption schemes.2 De�nitionsWe present de�nitions for one-way functions, trapdoor functions, and unapproximable trapdoorpredicates.Preliminaries. If S is any probability distribution then x S denotes the operation of selectingan element uniformly at random according to S, and [S] is the support of S, namely the set of allpoints having non-zero probability under S. If S is a set we view it as imbued with the uniform dis-tribution and write x S. If A is a probabilistic algorithm or function then A(x; y; � � � ;R) denotesthe output of A on inputs x; y; : : : and coins R, while A(x; y; : : :) is the probability distributionassigning to each string the probability, over R, that it is output. For deterministic algorithms orfunctions A, we write z:=A(x; y; : : :) to mean that the output of A(x; y; : : :) is assigned to z. Thenotation Pr [E : R1 ; R2 ; : : : ; Rk] refers to the probability of event E after the random processesR1; : : : ; Rk are performed in order. If x and y are strings we write their concatenation as xky orjust xy. \Polynomial time" means time polynomial in the security parameter k, PPT stands for\probabilistic, polynomial time", and \e�cient" means computable in polynomial time or PPT.2.1 One-way and trapdoor function familiesWe �rst de�ne families of functions, then say what it means for them to be one-way or trapdoor.Families of Functions. A family of functions is a collection F = fFkgk2N where each Fk isprobability distribution over a set of functions. Each f 2 [Fk] has an associated domain Dom(f)and range Range(f). We require three properties of the family:� Can generate: The operation f Fk can be e�ciently implemented, meaning there is a PPTgeneration algorithm F -Gen that on input 1k outputs a \description" of a function f distributedaccording to Fk. This algorithm might also output some auxiliary information aux associatedto this function (this is in order to later model trapdoors).� Can sample: Dom(f) is e�ciently samplable, meaning there is a PPT algorithm F -Smp thatgiven f 2 [Fk] returns a uniformly distributed element of Dom(f).� Can evaluate: f is e�ciently computable, meaning there is a polynomial time evaluation algo-rithm F -Eval that given f 2 Fk and x 2 Dom(f) returns f(x).For an element y 2 Range(f) we denote the set of pre-images of y under f byf�1(y) = f x 2 Dom(f) : f(x) = y g :We say that F is injective if f is injective (ie. one-to-one) for every f 2 [Fk]. If in additionDom(f) = Range(f) then we say that F is a family of permutations. We measure the amountof \non-injectivity" by looking at the maximum pre-image size. Speci�cally we say that F haspre-image size bounded by Q(k) if jf�1(y)j � Q(k) for all f 2 [Fk], all y 2 Range(f) and all k 2 N.We say that F has polynomially bounded pre-image size if there is a polynomial Q(k) which boundsthe pre-image size of F .One-wayness. Let F be a family of functions as above. The inverting probability of an algorithmI(�; �) with respect to F is a function of the security parameter k, de�ned as InvProbF (I; k) def=Pr � x0 2 f�1(y) : f Fk ; x Dom(f) ; y f(x) ; x0 I(f; y) � :F is one-way if InvProbF (I; k) is negligible for any PPT algorithm I.6

Trapdoorness. A family of functions is said to be trapdoor if it is possible, while generating aninstance f , to simultaneously generate as auxiliary output \trapdoor information" tp, knowledgeof which permits inversion of f . Formally, a family of functions F is trapdoor if F -Gen outputspairs (f; tp) where f is the \description" of a function as in any family of functions and tp is auxil-iary trapdoor information. We require that there exists a probabilistic polynomial time algorithmF -Inv such that for all k, all (f; tp) 2 [F -Gen(1k)], and all points y 2 Range(f), the algorithmF -Inv(f; tp; y) outputs an element of f�1(y) with probability 1. A family of trapdoor functions issaid to be one-way if it is also a family of one-way functions.Example 2.1 [The Rabin family of trapdoor functions] The Rabin family [Rab] is a goodexample in our setting since it consists of non-injective trapdoor functions. It is captured asfollows. We set Rab = f RabN : N 2 Rab-Keys g, where Rab-Keys is the set of all numberswhich are the product of two primes. We let Dom(RabN) = Z�N and let Range(RabN) be the setof quadratic residues in Z�N . The function is de�ned by RabN (x) = x2 mod N for all x 2 Z�N . Thegenerator Rab-Gen uses its coins r to pick two primes p; q of roughly equal length, and outputs asthe description of the function instance the modulus N = pq, and as the trapdoor the primes p; qthemselves. The sampler, given N , outputs a uniformly distributed point in Z�N . The evaluationalgorithm, given N and x 2 Z�N , outputs x2 mod N . The inversion algorithm Rab-Inv, given N ,(p; q), and a quadratic-residue y mod N , computes the square roots of y modulo both p and q (whichcan be done in polynomial time [Be, AMM]) and then uses the Chinese Remainder Theorem toobtain a square root of y modulo N . Notice that the Rabin function family is not injective, asevery quadratic residue mod N has four square roots. (Traditionally, this function is used as thebasis of a public key cryptosystem by �rst modifying it to be injective.)Remark 2.2 It is well known that one can de�ne one-way functions either in terms of functionfamilies (as above), or in terms of a single function, and the two are equivalent. However, fortrapdoor functions, one must talk of families. To maintain consistency, we use the family view ofone-way functions as well.2.2 Trapdoor Predicate FamiliesWe de�ne unapproximable trapdoor predicate families [GoMi]. Recall that such a family is equiv-alent to a semantically secure public-key encryption scheme for a single bit [GoMi].A predicate in our context means a probabilistic function with domain f0; 1g, meaning a pred-icate p takes a bit b and
ips coins r to generate some output y = p(b; r). In a trapdoor predicatefamily P = fPkgk2N , each Pk is a probability distribution over a set of predicates, meaning eachp 2 [Pk] is a predicate as above. We require:� Can generate: There is a generation algorithm P -Gen which on input 1k outputs (p; tp) wherep is distributed randomly according to Pk and tp is trapdoor information associated to p. Inparticular the operation p Pk can be e�ciently implemented.� Can evaluate: There is a PPT algorithm P -Eval that given p and b 2 f0; 1g
ips coins to outputy distributed according to p(b).We say P has decryption error �(k) if there is a PPT algorithm P -Inv who, with knowledge of thetrapdoor, fails to decrypt only with this probability, namelyDecErrP (P -Inv; k) def=Pr � b0 6= b : p Pk ; b f0; 1g ; y p(b) ; b0 P -Inv(p; tp; y) � (1)7

is at most �(k). If we say nothing it is to be assumed that the decryption error is zero, butsometimes we want to discuss families with non-zero (and even large) decryption error.Unapproximability. Let P be a family of trapdoor predicates as above. The predicting advantageof an algorithm I(�; �) with respect to P is a function of the security parameter k, de�ned asPredAdvP (I; k) def=Pr � b0 = b : p Pk ; b f0; 1g ; y p(b) ; b0 I(p; y) �� 12 :We say that P is unapproximable if PredAdvP (I; k) is negligible for any PPT algorithm I.3 From one-way functions to trapdoor functionsIn this section we establish the following result:Theorem 3.1 Suppose there exists a family of one-way functions. Then there exists a family oftrapdoor, one-way functions.This is proved by taking an arbitrary family F of one-way functions and \embedding" a trapdoorto get a family G of trapdoor functions. The rest of this section is devoted to the proof.3.1 Proof of Theorem 3.1Given a family F = fFkgk2N of one-way functions we show how to construct a family G = fGkgk2Nof trapdoor one-way functions.Let us �rst sketch the idea. Given f 2 Fk we want to construct g which \mimics" f butsomehow embeds a trapdoor. The idea is that the trapdoor is a particular point � in the domain off . Function g will usually just evaluate f , except if it detects that its input contains the trapdoor;in that case it will do something trivial, making g easy to invert given knowledge of the trapdoor.(This will not happen often in normal execution because it is unlikely that a randomly chosen inputcontains the trapdoor.) But how exactly can g \detect" the trapdoor? The �rst idea would beto include � in the description of g so that it can check whether its input contains the trapdoor,but then g would no longer be one-way. So instead the description of g will include � = f(�), animage of the trapdoor under the original function f , and g will run f on a candidate trapdoor tosee whether the result matches �. (Note that we do not in fact necessarily detect the real trapdoor�; the trivial action is taken whenever some pre-image of � under f is detected. But that turnsout to be OK.)In the actual construction, g has three inputs, y; x; v, where v plays the role of the \normal"input to f ; x plays the role of the candidate trapdoor; and y is the \trivial" answer returned incase the trapdoor is detected. We now formally specify the construction and sketch a prof that itis correct.A particular function g 2 [Gk] will be described by a pair (f; �) where f 2 [Fk] and � 2Range(f). It is de�ned on inputs y; x; v byg(y; x; v) = � y if f(x) = �f(v) otherwise. (2)Here x; v 2 Dom(f), and we draw y from some samplable superset Sf of Range(f). (To be speci�c,we set Sf to the set of all strings of length at most p(k) where p(k) is a polynomial that boundsthe lengths of all strings in Range(f).) So the domain of g is Dom(g) = Sf �Dom(f)�Dom(f).We now give an intuitive explanation of why G is one-way and trapdoor. First note that forany z it is the case that (z; �; �) is a preimage of z under g, so knowing � enables one to invert8

in a trivial manner, hence G is trapdoor. For one-wayness, notice that if g(y; x; v) = z then eitherf(v) = z or f(x) = �. Thus, producing an element of g�1(z) requires inverting f at either z or �,both of which are hard by the one-wayness of F . We now proceed with a more formal proof thatG satis�es the de�nition of a family of one-way trapdoor functions.The generator G-Gen takes input 1k and lets f Fk ; � Dom(f) ; � := f(�). It outputs(g; �) where the function g is as de�ned above, and � = tp is the trapdoor.The operations of G-Gen can be performed in PPT given that F is a family of functions as perour de�nition. Notice that it is possible to sample uniformly from Dom(g) = Sf�Dom(f)�Dom(f)in PPT (as required to be a family of functions) because each of the three constituent sets has thisproperty. (It is to make this true that we used Sf rather than Range(f) in the �rst component).Finally it is clear that g(y; x; v) can be evaluated in poly(k) time since this is assumed true forf . We need to check two things; that G is a trapdoor family, meaning possession of � permitsinversion, and that G retains the one-wayness of F .Claim 3.2 The family G is trapdoor.Proof: We show that knowing the trapdoor information � allows one to invert g. Formally, wede�ne the inverter as follows. Let w be any point in Range(g) where g is described by (f; �). Thenset G-Inv(g; �;w) = (w;�; �) :To see that this works, �rst notice that (w;�; �) is indeed in Dom(g) because w, being in Range(g),is also in Sf , and � is in Dom(f). Now apply Equation (2) to compute g(w;�; �): since f(�) = �we get g(w;�; �) = w. Thus, (w;�; �) is indeed a pre-image of w under g, as desired.It remains to show that G is one-way. Intuitively, this is true because producing an element ofg�1(w) requires producing either an element of f�1(w) or an element of f�1(�), both of which arehard by the one-wayness of F . The following proof formalizes this intuition.Claim 3.3 The family G is one-way.Proof: Let I be any polynomial time inverting algorithm. We want to show that s(k) = InvProbG(I; k)is a negligible function of k. Let Experiment 1 be that underlying the de�nition of InvProbG(I; k)as in Section 2.1; it is given by:g Gk ; (y; x; v) Dom(g) ; w g(y; x; v) ; (y0; x0; v0) I(g; w) :Let Pr1 [�] denote the probability under this experiment. Note that for any function g as above,if I(g; w) succeeds and produces (y0; x0; v0) such that g(y0; x0; v0) = w, then it must be that eitherf(x0) = � or f(v0) = w. Accordingly lets1(k) = Pr1 [f(x0) = �] and s2(k) = Pr1 [f(v0) = w] :Then we have s(k) � s1(k)+ s2(k), so it su�ces to prove that both s1(k) and s2(k) are negligible.Subclaim 1: s1(k) is negligible.We will construct an inverter I1 for F which succeeds with probability s1(k). Then, by the one-wayness of F , it follows that s1(k) is negligible. I1 is constructed as follows:Inverter I1(f; z) // Wants to compute f�1(z)�:=z, g:=(f; �) // Let z play the role of � for g(y; x; v) Dom(g) // Sample from the domain of g9

w := g(y; x; v) // Evaluate g(y0; x0; v0) I(g; w) // Apply the inversion algorithm for g to wOutput x0Note that the input w fed to I by I1 in the above is distributed exactly as in Experiment 1 whenwe also consider the initial choices of f Fk and z f(u) for uniformly selected u Dom(f).Thus, we know that I will produce x0 such that f(x0) = � with probability at least s1(k), andInvProbF (I1; k) = s1(k).Subclaim 2: s2(k) is negligible.Again, we want to construct an inverter I2 to invert f at a given point z. We pick � as it would bechosen by Gk, and then would like to let z play the role of w, meaning let (y0; x0; v0) I(g; z) and,assuming f(v0) = z, output v0. If we just do this, however, the input z to I as provided by I2 is notdistributed in the same way as the w of Experiment 1, because in Equation (2) we sometimes don'toutput f(v), speci�cally in the case that f(x) = �. To compensate for this, we run a \simulation"of this part of the process of generating a domain point for g, by picking x and doing the test forf(x) = �. It if succeeds we abort, else we do what we really want, namely apply I to z.Inverter I2(f; z) // Wants to compute f�1(z)� Dom(f) // Sample from the domain of f�:=f(�), g:=(f; �)x Dom(f)If f(x) = � then abort // If you got a pre-image of � then quitElse(y0; x0; v0) I(g; z)Output v0For the analysis, �rst note that in Experiment 1,s2(k) = Pr1 � f(v0) = w � � Pr1 � f(v0) = w & f(x) 6= � �+ Pr1 [f(x) = �] :The �rst term on the right equals InvProbF (I2; k), which is negligible by the one-wayness of F .The second term on the right is also negligible, since otherwise one can invert F by the followingsimple algorithm I3: given f; z, it picks x at random from the domain of f and returns x.Remark 3.4 One can verify that the trapdoor functions g produced in the above construction areregular (ie. the size of g�1(y) is the same for all y 2 Range(g)) if the original one-way functions fare regular. Thus, adding regularity as a requirement is not likely to su�ce for making public-keycryptosystems.4 From trapdoor functions to cryptosystemsTheorem 3.1 coupled with [ImRu] says that it is unlikely that general trapdoor functions willyield semantically secure public-key cryptosystems. However, in our construction of Section 3.1the resulting trapdoor function was \very non-injective" in the sense that the pre-image size wasexponential in the security parameter. So, we next ask, what is the power of trapdoor functionfamilies with polynomially bounded pre-image size? We show a positive result:10

Theorem 4.1 If there exist trapdoor one-way function families with polynomially bounded pre-image size, then there exists a family of unapproximable trapdoor predicates with exponentiallysmall decryption error.Theorem 4.1 extends the well-known result of [Ya, GoMi] that injective trapdoor functions yieldsemantically secure public-key cryptosystems, by showing that the injectivity requirement can berelaxed. Coupled with [ImRu] this also implies that it is unlikely that the analogue of Theorem 3.1can be shown for trapdoor functions with polynomially bounded pre-image sizes.4.1 Proof of Theorem 4.1Let F = fFkgk2N be a family of trapdoor one-way functions with pre-image size bounded by apolynomial Q. The construction is in two steps. We �rst build an unapproximable family oftrapdoor predicates P with decryption error 1=2�1=poly(k), and then reduce the decryption errorby repetition to get the family claimed in the theorem.The �rst step uses the Goldreich-Levin inner-product construction [GoLe]. This constructionsays that if f is a one-way function, one can securely encrypt a bit b via the triple (f(x); r; �) where� = b � (x � r) with r a random string, x 2 Dom(f), and � denoting the inner-product mod 2.Now, if f is an injective trapdoor function, then with the trapdoor information, one can recover bfrom f(x), r, and � by �nding x and computing b = � � (x� r). If instead f has polynomial-sizepre-images, the \correct" x will only be recovered with an inverse polynomial probability. However,we will show that the rest of the time, the success probability is exactly 50%. This gives a noticeable(12 + 1poly(k)) bias towards the right value of b. Now, this slight bias needs to be ampli�ed, whichis done by repeating the construction many times in parallel and having the decryptor take themajority of its guesses to the bit in the di�erent coordinates. A full description and proof follow.We may assume wlog that there is a polynomial l(k) such that Range(f) � f0; 1gl(k) for allf 2 [Fk] and all k 2 N. We now describe how to use the Goldreich-Levin inner-product construction[GoLe] to build P = fPkgk2N . We associate to any f 2 [Fk] a predicate p de�ned as follows:Predicate p(b) // Takes input a bit bx Dom(f) // Choose x at random from the domain of fr f0; 1gl(k) // Choose a random l(k)-bit string� := b� (x� r) // XOR b with the GL bitOutput (f(x); r; �)Here � denotes XOR (ie. addition mod 2) and � denotes the inner-product mod 2. The generatoralgorithm for P will choose (f; tp) F -Gen(1k) and then output (p; tp) with p de�ned as above.Notice that p is computable in PPT if f is.The inversion algorithm P -Inv is given p, the trapdoor tp, and a triple (y; r; �). It �rst runsthe inversion algorithm F -Inv of F on inputs f; tp; y to obtain x0, and then outputs the bit b0 =� � (x0 � r). It is clear that the inversion algorithm is not always successful, but in the next claimwe prove that it is successful appreciably more often than random guessing.Claim 4.2 P is an unapproximable trapdoor predicate family, with decryption error at most(1=2) � 1=[2Q(k)].Proof: We know that F is one-way. Thus, the inner product is a hardcore bit for F [GoLe]. Thisimplies that P is unapproximable. It is left to show that the decryption error of P is as claimed,namely that DecErrP (P -Inv; k) (as de�ned in Equation (1)) is at most (1=2) � 1=[2Q(k)].11

Fix f; tp; b, let x; r be chosen at random as by p(b), let y = f(x), let � = b � (x � r), let x0 F -Inv(f; tp; y), and let b0 = � � (x0 � r). Notice that if x0 = x then b0 = b, but if x0 6= x thenthe random choice of r guarantees that b0 = b with probability at most 1=2. (Because F -Inv, whogenerates x0, gets no information about r.) The chance that x = x0 is at least 1=Q(k) (becauseF -Inv gets no information about x other than that f(x) = y) soDecErrP (P -Inv; k) � �1� 1Q(k)� � 12as desired.Now, we can iterate the construction q(k) def= �(kQ(k)2) times independently and decrypt via amajority vote to reduce the decryption error to e�k. In more detail, our �nal predicate familyP q = fP qk gk2N is like this. An instance pq 2 [P qk] is still described by a function f 2 [Fk] andde�ned as pq(b) = p(b)k � � � kp(b), meaning it consists of q(k) repetitions of the original algorithm pon independent coins. The inversion algorithm P q-Inv is given the trapdoor tp and a sequence oftriples (y1; r1; �1)k � � � k(yq(k); rq(k); �q(k)) :For i = 1; : : : ; q(k) it lets b0i = P -Inv(p; tp; (yi; ri; �i)). It outputs b0 which is 1 if the majority of thevalues b01; : : : ; b0q(k) are 1, and 0 otherwise. Cherno� bounds show that DecErrP q(P q-Inv; k) � e�k.Furthermore standard \hybrid"arguments [GoMi, Ya] show that P q inherits the unapproximabilityof P . This concludes the proof of Theorem 4.1.Remark 4.3 Notice that Theorem 4.1 holds even if the family F only satis�es a very weak trapdoorproperty | namely, that F -Inv produces an element of f�1(y) with probability at least 1=p(k) forsome polynomial p. Essentially the same proof will show that P -Inv can guess b correctly withprobability at least 1=2 + 1=[2Q(k)p(k)].5 From cryptosystems to trapdoor functionsIn this section we investigate the relation between semantically secure public key cryptosystemsand injective trapdoor functions. It is known that the existence of unapproximable trapdoor pred-icates is equivalent to the existence of semantically secure public-key encryption [GoMi]. It is alsoknown that injective trapdoor one-way functions can be used to construct unapproximable trapdoorpredicates [Ya] (see also [GoLe]). In this section, we ask whether the converse is true:Question 5.1 Can unapproximable trapdoor predicates be used to construct injective trapdoorone-way functions?Note the importance of the injectiveness condition in Question 5.1. We already know that non-injective trapdoor functions can be constructed from trapdoor predicates (whether the latter areinjective or not) because trapdoor predicates imply one-way functions [ImLu] which in turn implytrapdoor functions by Theorem 3.1.We suggest a construction which requires an additional \random looking" function G and provethat the scheme is secure whenG is implemented as a random oracle (to which the adversary also hasaccess). Hence, IF it is possible to implement using one-way functions a functionG with \su�cientlystrong randomness properties" to maintain the security of this scheme, then Question 5.1 wouldhave a positive answer (as one-way functions can be constructed from unapproximable trapdoorpredicates [ImLu]). 12

The key di�erence between trapdoor functions and trapdoor predicates is that predicates areprobabilistic, in that their evaluation is a probabilistic process. Hence, our construction is essentiallya de-randomization process.Suppose we have a family P of unapproximable trapdoor predicates, and we want to constructa family F of injective one-way trapdoor functions from P . A �rst approach would be to take aninstance p of P and construct an instance f of F asf(b1b2 � � � bkkr1k � � � krk) = p(b1; r1)k � � � kp(bk; rk);where k is the security parameter. Standard direct product arguments [Ya] imply that F con-structed in this manner is one-way. However, F may fail to be trapdoor; the trapdoor informationassociated with p only allows one to recover b1; : : : ; bk, but not r1; : : : ; rk.Our approach to �xing this construction is to instead have r1; : : : ; rk determined by applyingsome \random-looking" function G to b1; : : : ; bk:f(b1b2 � � � bk) = p(b1; r1)k � � � kp(bk; rk); where r1k � � � krk = G(b1 � � � bk):Since G must be length-increasing, an obvious choice for G is a pseudo-random generator. Asomewhat circular intuitive argument can be made for the security of this construction: If one doesnot know b1; : : : ; bk, then r1; : : : ; rk \look random," and if r1; : : : ; rk \look random," then it shouldbe hard to recover b1; : : : ; bk by the unapproximability of P . In Appendix A, we show that thisargument is in fact false, in that there is a choice of an unapproximable trapdoor predicate P anda pseudorandom generator G for which the resulting scheme is insecure.However, it is still possible that there are choices of functions G that make the above secure.Below we show that the scheme is secure when G is implemented as a truly random function, ie.a random oracle (to which the adversary also has access). Intuitively, having access to the oracledoes not help the adversary recover b1 � � � bk for the following reason: the values of the oracle areirrelevant except at b1 � � � bk, as they are just random strings that have nothing to do with b1 � � � bkor f(b1 � � � bk). The adversary's behavior is independent of the value of the oracle at b1 � � � bk unlessthe adversary queries the oracle at b1 � � � bk. On the other hand, if the adversary queries the oracleat b1 � � � bk, it must already \know" b1 � � � bk. Speci�cally, if the adversary queries the oracle atb1 � � � bk with non-negligible probability then it can invert f with non-negligible probability withoutmaking the oracle call, by outputting the query. We now proceed with a more formal descriptionof the random oracle model and our result.The random oracle model. In any cryptographic scheme which operates in the random oraclemodel, all parties are given (in addition to their usual resources) the ability to make oracle queries[BeRo]. It is postulated that all oracle queries, independent of the party which makes them, areanswered by a single function, denoted O, which is uniformly selected among all possible functions(where the set of possible functions is determined by the security parameter).The de�nitions of families of functions and predicates are adapted to the random oracle modelin a straightforward manner: We associate some �xed polynomial Q with each family of functionsor predicates, such that on security parameter k all the algorithms in the above de�nitions aregiven oracle access to a function O : f0; 1g� ! f0; 1gQ(k). The probabilities in these de�nitionsare then taken over the randomness of these algorithms and also over the choice of O uniformly atrandom among all such functions.Theorem 5.2 If there exists a family of unapproximable trapdoor predicates, then there exists afamily of injective trapdoor one-way functions in the random oracle model.Remark 5.3 Theorem 5.2 still holds even if the hypothesis is weakened to only require the ex-istence of a family of unapproximable trapdoor predicates in the random oracle model. To see13

that this hypothesis is weaker, note that a family of unapproximable trapdoor predicates (in thestandard, non-oracle model) remains unapproximable in the random oracle model, as the oracleonly provides randomness which the adversary can generate on its own. To prove the result withthe weaker assumption, we modify the construction below by dividing the random oracle into twoindependent parts. One part is used for any oracle calls the predicate generation and evaluationalgorithms make and the other part is used as the oracle O below.See Sections 1.2 and 1.3 for a discussion of the interpretation of such a result. We now proceed tothe proof.5.1 Proof of Theorem 5.2Let P = fPkgk2N be a family of unapproximable trapdoor predicates. Let q(k) be a polynomialupper bound on the number of random bits used by any p 2 Pk. When used with security parameterk, we view the oracle as a function O : f0; 1g� ! f0; 1gkq(k).We de�ne a family F = fFkgk2N of trapdoor functions in the random oracle model as follows:We associate to any p 2 [Pk] the function f de�ned on input b1 : : : bk 2 f0; 1gk byf(b1 � � � bk) = p(b1; r1)k � � � kp(bk; rk);where r1k � � � krk = O(b1 � � � bk); ri 2 f0; 1gq(k) :The generator F -Gen takes input 1k, runs (p; tp) P -Gen(1k) and outputs (f; tp) where f is asde�ned above. It is clear that f can be evaluated in polynomial time using the evaluator P -Evalfor p.Notice that f can be inverted given the trapdoor information. Given f; tp, and y1k � � � kyk =f(b1 : : : bk), inverter F -Inv computes bi = P -Inv(p; tp; yi) for i = 1; : : : ; k, and outputs b1 : : : bk.Furthermore, f is injective because P has zero decryption error: in this inversion process, P -Invcorrectly returns bi, so we correctly recover the full input. It remains to show that F is one-way.Claim 5.4 F is one-way.We prove this claim by describing several probabilistic experiments, modifying the role of the oraclewith each experiment. The �rst arises from the de�nition of a family of one-way functions in therandom oracle model. Let A be any PPT, let k be any positive integer, and let q = q(k).Experiment 5.5(1) Choose a random oracle O : f0; 1g� ! f0; 1gkq(k).(2) Choose p Pk(3) Select b1; : : : ; bk uniformly and independently from f0; 1g.(4) Let r1k � � � krk = O(b1 � � � bk), where jrij = q(k) for each i.(5) Let x = p(b1; r1)k � � � kp(bk; rk).(6) Compute z AO(1k; p; x).We need to prove the following:Claim 5.6 For every PPT A, the probability that z = b1 � � � bk in Experiment 5.5 is a negligiblefunction of k.To prove Claim 5.6, we �rst analyze what happens when the ri's are chosen independently of theoracle, as in the following experiment: Let A be any PPT, let k be any positive integer, and letq = q(k). 14

Experiment 5.7(1){(3) As in Experiment 5.5.(4) Select r1; : : : ; rk uniformly and independently from f0; 1gq .(5){(6) As in Experiment 5.5.Claim 5.8 For every PPT A, the probability that z = b1 � � � bk in Experiment 5.7 is a negligiblefunction of k.Claim 5.8 follows from standard direct product arguments [Ya, GNW]. Speci�cally, Claim 5.8 is aspecial case of the uniform complexity version of the Concatenation Lemma in [GNW, Lemma 10].Claim 5.9 For every PPT A, the probability that O is queried at point b1 � � � bk during the exe-cution of AO(1k; p; x) in Step 6 of Experiment 5.7 is a negligible function of k.Proof: Suppose that the probability that O is queried at point b1 � � � bk was greater that 1=s(k) forin�nitely many k, where s is a polynomial. Then we could obtain a PPT A0 that violates Claim 5.8as follows. Let t(k) be a polynomial bound on the running time of A. A0 does the following oninput (1k; p; x):(1) Select i uniformly from f1; : : : ; t(k)g.(2) Simulate A on input (1k; p; x), with the following changes:(1) Replace the oracle responses with strings randomly selected on-line, with the conditionthat multiple queries at the same point give the same answer.(2) Halt the simulation at the i'th oracle query and let w be this query.(3) Output w.Then A0, when used in Experiment 5.7, outputs b1 � � � bk with probability greater that 1=(s(k)t(k))for in�nitely many k, which contradicts Claim 5.8.In order to deduce Claim 5.6 from Claims 5.8 and 5.9, we give an equivalent reformulation ofExperiment 5.5: Let A be any PPT, let k be any positive integer, and let q = q(k).Experiment 5.10(1){(3) As in Experiment 5.5.(4) Select r1; : : : ; rk uniformly and independently from f0; 1gq .(5) Let x = p(b1; r1)k � � � kp(bk; rk).(6) Modify O at location b1 � � � bk to have value r1k � � � krk.(7) Compute z AO(1k; p; x).We now argue that Experiment 5.10 is equivalent to Experiment 5.5. In Experiment 5.5, r1; : : : ; rkare uniformly and independently distributed in f0; 1gq and after Step 5 of Experiment 5.5 the onlyinformation about the oracle that has been used is that r1k � � � krk = O(b1 � � � bk). Thus, the �naldistribution on all random variables are identical in the two experiments and it su�ces to proveClaim 5.6 for Experiment 5.10 rather than Experiment 5.5.Proof: Let E be the event that z = b1 � � � bk in Experiment 5.10. Let F be the event that O isqueried at point b1 � � � bk during the execution of AO(p; x) in Step 7 of Experiment 5.10. To showthat E occurs with negligible probability, it su�ces to argue that both F and E ^ F occur withnegligible probability. 15

First we show that F occurs with negligible probability. Notice that whether or not AO queries O atb1 � � � bk in Experiment 5.10 will not change if Step 6 is removed. This is because its behavior cannotbe a�ected by the change in O(b1 � � � bk) until it has already queried that position of the oracle. IfStep 6 is removed from Experiment 5.10, we obtain Experiment 5.7. Hence, the probability of Fis negligible by Claim 5.9.Similarly, the probability that [z = b1 � � � bk and AO never queries the oracle at b1 � � � bk] will notchange if Step 6 is removed. Thus, the probability of E \ F is bounded above by the probabilitythat z = b1 � � � bk in Experiment 5.7, which is negligible by Claim 5.8.Remark 5.11 If the family of unapproximable trapdoor predicates we start with has negligibledecryption error, then the family of trapdoor functions we construct will in general also havenegligible decryption error and may fail to be injective with some small probability.By �rst reducing the decryption error of the predicate family to exp(�
(k3)) as in the proof ofTheorem 4.1 and then using the oracle to derandomize the inversion algorithm, one can producean injective family that has zero decryption error with probability 1� 2�k (where the probabilityis just taken over the choice of the oracle).AcknowledgmentsThe starting point of this research was a question posed to us by Sha� Goldwasser, namely whethertrapdoor permutations could be built from the assumptions underlying the Ajtai-Dwork cryptosys-tem.Thanks to Oded Goldreich, Sha� Goldwasser, and the members of the Crypto 98 programcommittee for their comments on the paper.References[AjDw] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case / average-case equivalence.Proceedings of the 29th Annual Symposium on the Theory of Computing, ACM, 1997.[AMM] Adleman, Manders and Miller. On taking roots in �nite �elds. Proceedings of the 18thSymposium on Foundations of Computer Science, IEEE, 1977.[BHSV] M. Bellare, S. Halevi, A. Sahai, and S. Vadhan. Many-to-one trapdoor functions and theirrelation to public-key cryptosystems. Advances in Cryptology { Crypto 98 Proceedings, LectureNotes in Computer Science Vol. ??, H. Krawczyk ed., Springer-Verlag, 1998.[BeRo] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing e�-cient protocols. Proceedings of the First Annual Conference on Computer and CommunicationsSecurity , ACM, 1993.[Be] E. Berlekamp. Factoring polynomials over large �nite �elds. Mathematics of Computation,Vol. 24, 1970, pp. 713{735.[BlMi] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-randombits, SIAM Journal on Computing , Vol. 13, No. 4, 850-864, November 1984.[Ca] R. Canetti. Towards realizing random oracles: Hash functions that hide all partial information.Advances in Cryptology { Crypto 97 Proceedings, Lecture Notes in Computer Science Vol. 1294,B. Kaliski ed., Springer-Verlag, 1997. 16

[CGH] R. Canetti, O. Goldreich and S. Halevi. The random oracle model, revisited. Proceedingsof the 30th Annual Symposium on the Theory of Computing, ACM, 1998.[DiHe] W. Diffie and M. Hellman.New directions in cryptography. IEEETrans. Info. Theory, Vol. IT-22, No. 6, November 1976, pp. 644{654.[DDN] D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. Proceedings of the 23rdAnnual Symposium on the Theory of Computing, ACM, 1991.[ElG] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.IEEE Trans. Inform. Theory, Vol. 31, 1985, pp. 469{472.[GoLe] O. Goldreich and L. Levin. A hard predicate for all one-way functions. Proceedings of the21st Annual Symposium on the Theory of Computing, ACM, 1989.[GoMi] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and SystemSciences, Vol. 28, April 1984, pp. 270{299.[GNW] O. Goldreich, N. Nisan, and A. Wigderson. On Yao's XOR Lemma. Electronic Colloquiumon Computational Complexity, TR95-050. March 1995. http://www.eccc.uni-trier.de/eccc/[HILL] J. H�astad, R. Impagliazzo, L. Levin and M. Luby. Construction of a pseudo-random gen-erator from any one-way function. Manuscript. Earlier versions in STOC 89 and STOC 90.[ImLu] R. Impagliazzo and M. Luby. One-way Functions are Essential for Complexity-Based Cryp-tography. Proceedings of the 30th Symposium on Foundations of Computer Science, IEEE, 1989.[ImRu] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations.Proceedings of the 21st Annual Symposium on the Theory of Computing, ACM, 1989.[NaYu] M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen CiphertextAttacks. Proceedings of the 22nd Annual Symposium on the Theory of Computing, ACM, 1990.[Rab] M. Rabin. Digitalized Signatures and Public Key Functions as Intractable as Factoring.MIT/LCS/TR-212, 1979.[Ya] A. Yao. Theory and applications of trapdoor functions. Proceedings of the 23rd Symposium onFoundations of Computer Science, IEEE, 1982.A Using a PRG in the construction of Section 5Below we show that implementing the oracle of the construction of Section 5 by a pseudorandomgenerator may result in a function family which is not one-way. Oded Goldreich has suggested asimpler counterexample that works with a slight generalization of our construction from Section 5,which we describe at the end. We start by recalling the de�nition of a pseudorandom generator.De�nition A.1 [Pseudorandom number generators, [BlMi, Ya]] Let G be a (deterministic)polynomial time algorithm which given a seed x 2 f0; 1gk outputs a string of length l(k) > k, forany k 2 N. We say G is a pseudorandom number generator if for every PPT algorithm A, thefunction of k given by���Pr hA(G(x)) = 1 : x f0; 1gk i� Pr hA(y) = 1 : y f0; 1gl(k) i���is negligible.
17

Below we show that (if there exist pseudorandom number generators and unapproximable trapdoorpredicate families, then) there exists a pseudorandom number generator G0 and an unapproximabletrapdoor predicate family P 0 for which applying the construction of Section 5 (with G0 replacingthe random oracle) results in a function family which is not one-way.In the construction below, let P = fPkgk2N be any unapproximable trapdoor predicate familyand let q0(k) be a polynomial upper bound on the number of random bits used by p 2 [Pk]. Belowwe often use the shorthand q = q0(k) + 1. Also, let G be any pseudorandom generator with lengthfunction l(k) = 2kq. We start by modifying P and G to get a new trapdoor family P 0 and a newpseudorandom generator G0.The modified generator. The new generator takes as input a 2k bit seed s0 = b1 � � � b2k, andwill output a string of length 2kq, as follows:(1) Let s = (b1�b2)k(b3�b4)k � � � k(b2k�1�b2k). This is a k bit string which will be viewed as a seedfor G.(2) Compute G(s) and divide this 2kq bit string into 2k blocks each of length q, namely G(s) =r1kr2k � � � kr2k.(3) Denoting the j-th bit of ri by ri;j, setr0i = � bi+1ri;2 � � � ri;q if i is oddri if i is evenNamely, replace the �rst bits of r1; r3; : : : ; r2k�1 with the bits b2; b4; : : : ; b2k respectively.(4) Output r01kr02k � � � kr02k.Claim A.2 If G is a pseudorandom generator, then so is G0.Proof: The intuition is that the bits b2; b4; : : : ; b2k are independent of the string G(s). A formalproof can be given that if there was a way to break G0 then there would be a way to break G.Details omitted.The modified predicate family. Next we de�ne a modi�ed predicate family P 0 = fP 0kgk2N . Weassociate to any p 2 [Pk] a predicate p0 2 [P 0k] which takes input b 2 f0; 1g and coins s1ks, wheres1 is a bit and jsj = q0(k), and is de�ned byp0(b; s1ks) = (s1 � b)kp(b; s) :The distribution on P 0k is that given by selecting p Pk and setting p0 to the above. The generatorP 0-Gen on input 1k outputs (p0; tp) where (p; tp) P -Gen(1k). The inversion algorithm P 0-Inv isgiven p0; tp; c0ky where c0 is a bit. It lets b0 P -Inv(p; tp; y) and outputs b0. Thus P 0 has the samedecryption error as P .Claim A.3 If P is an unapproximable trapdoor predicate family, then so is P 0.Proof: The intuition is that s1 � b is independent of both b and p(b; s). A formal proof can begiven that the ability to predict P 0 implies the ability to predict P . Details omitted.The construction fails. Now apply the construction of Section 5 to P 0 using G0 as the random-izing function. The resulting function family F = fFkgk2N associates to any p0 2 [P 0k] a functionf 2 [Fk] de�ned like this: for any b1; : : : ; b2k 2 f0; 1g setf(b1b2 � � � b2k) = p0(b1; r01)kp0(b2; r02)k � � � kp0(b2k; r02k) ;where r01kr02 � � � kr02k = G0(b1b2 � � � b2k). The distribution on Fk is that given by selecting p0 P 0kand outputting f as de�ned above. 18

Claim A.4 F is not one-way.Proof: We show that there exists an inversion algorithm I which given p and w = Fp(b1 � � � b2k),recovers b1 � � � b2k with probability one. Letting r01kr02 � � � kr02k = G0(b1b2 � � � b2k), recall that byde�nition we have f(b1 � � � b2k) = p0(b1; r01)kp0(b2; r02)k � � � p0(b2k; r02k)= (b1 � r01;1) k p(b1; r01;2 � � � r01;q)k(b2 � r02;1) k p(b2; r02;2 � � � r02;q)k...(b2k � r02k;1)k p(b2k; r02k;2 � � � r02k;q)and therefore the �rst bit of the i'th block in p0(b1 � � � b2k) is always bi � r0i;1. However, by theconstruction of G0 we know that for odd i we have r0i;1 = bi+1. Hence, for odd i, the �rst bit in thei'th block is simply bi � bi+1.Denote now s = (b1 � b2)k(b3 � b4)k � � � k(b2k�1 � b2k). Then s can be recovered from p0(b1 � � � b2k)simply by concatenating the �rst bits of all the odd blocks. We can now compute G(s), and chopit up as before as G(s) = r1kr2k � � � kr2k. Again by construction of G0 we know that for all i,r0i;2 � � � r0i;q = ri;2 � � � ri;q. Finally, for all i we can evaluate both p(0; r0i;2 � � � r0i;q) and p(1; r0i;2 � � � r0i;q)and compare them to the value of p(bi; r0i;2 � � � r0i;q) which we know, thus recovering bi.An alternative counterexample. Our construction from Section 5 can be viewed directly interms of a semantically secure encryption scheme [GoMi] as follows: Let fEeg be a semantically se-cure encryption scheme, where e varies over the possible public encryption keys. We write Ee(m; r)for the encryption of message m using randomness r. Then we can de�ne a family F = ffeg oftrapdoor functions in the random oracle model as follows:fe(m) = Ee(m;O(m)):The construction we present in Section 5 is the special case when the encryption scheme isconstructed from a trapdoor predicate family via the Goldwasser-Micali construction [GoMi]:Ep(b1 � � � bk; r1k � � � krk) = p(b1; r1)k � � � kp(bk; rk)By a proof similar to the one in Section 5, one can show that even for an arbitrary secureencryption scheme fEeg, ffeg is a family of one-way, injective trapdoor functions in the randomoracle model. However, a simpler construction than the one above can be used to show that F isnot necessarily one-way when the random oracle is replaced with a pseudorandom generator. Thisconstruction is due to Oded Goldreich. Let fEeg be a secure encryption scheme as above and letG be a pseudorandom generator. Then de�neE0e(m; r) = �m if G(m) = rEe(m; r) otherwisefE0eg is still a semantically secure encryption scheme, as G(m) will equal r with exponentiallysmall probability. However, ff 0eg constructed as above using fE0eg and G will not be one-way:f 0e(m) = E0e(m;G(m)) = m:19

