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Abstract

Estimating the color of a scene illuminant often plays a
central role in computational color constancy. While this
problem has received significant attention, the methods that
exist do not maximally leverage spatial dependencies be-
tween pixels. Indeed, most methods treat the observed color
(or its spatial derivative) at each pixel independently of
its neighbors. We propose an alternative approach to illu-
minant estimation—one that employs an explicit statistical
model to capture the spatial dependencies between pixels
induced by the surfaces they observe. The parameters of
this model are estimated from a training set of natural im-
ages captured under canonical illumination, and for a new
image, an appropriate transform is found such that the cor-
rected image best fits our model.

1. Introduction
Color is useful for characterizing objects only if we have

a representation that is unaffected by changes in scene illu-
mination. As the spectral content of an illuminant changes,
so does the spectral radiance emitted by surfaces in a scene,
and so do the spectral observations collected by a tri-
chromatic sensor. For color to be of practical value, we
require the ability to compute color descriptors that are in-
variant to these changes.
As a first step, we often consider the case in which

the spectrum of the illumination is uniform across a scene.
Here, the task is to compute a mapping from an input color
image y(n) to an illuminant-invariant representation x(n).
What makes the task difficult is that we do not know the
input illuminant a priori.
The task of computing invariant color representations

has received significant attention under a variety of titles,
including color constancy, illuminant estimation, chromatic
adaptation, and white balance. Many methods exist, and
almost all of them leverage the assumed independence of
each pixel. According to this paradigm, spatial information
is discarded, and each pixel in a natural image is modeled as
an independent draw. The well-known grey world hypoth-
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Figure 1. Color distributions under changing illumination. Im-
ages (a,b) were generated synthetically from a hyper-spectral re-
flectance image[12], standard color filters and two different illumi-
nant spectra. Above are scatter plots for the red and green values of
(c,d) individual pixels; and (e,f) 8×8 image patches projected onto
a particular spatial basis vector. Black lines in (c-f) correspond to
the illuminant direction. The distribution of individual pixels does
not disambiguate between dominant colors in the image and the
color of the illuminant.

esis is a good example; it simply states that the expected
reflectance in an image is achromatic [14]. A wide vari-
ety of more sophisticated techniques take this approach as
well. Methods based on the dichromatic model [10], gamut
mapping [8, 11], color by correlation [9], Bayesian infer-
ence [1], neural networks [3], and the grey edge hypothe-



sis [18] are distinct in terms of the computational techniques
they employ, but they all discard spatial information and ef-
fectively treat images as “bags of pixels.”
Bag-of-pixels methods depend on the statistical distribu-

tions of individual pixels and ignore their spatial contexts.
Such distributions convey only meager illuminant informa-
tion, however, because the expected behavior of the mod-
els is counterbalanced by the strong dependencies between
nearby pixels. This is demonstrated in Figure 1(c,d), for
example, where it is clearly difficult to infer the illuminant
direction with high precision.
In this paper, we break from the bag-of-pixels paradigm

by building an explicit statistical model of the spatial depen-
dencies between nearby image points. These image depen-
dencies echo those of the spatially-varying reflectance[17]
of an observed scene, and we show that they can be ex-
ploited to distinguish the illuminant from the natural vari-
ability of the scene (Figure 1(e,f)).
We describe an efficient method for inferring scene il-

lumination by examining the statistics of natural color im-
ages in the spatio-spectral sense. These statistics are learned
from images collected under a known illuminant. Then,
given an input image captured under a unknown illuminant,
we can map it to its invariant (canonical) representation by
fitting it to the learned model. Our results suggest that ex-
ploiting spatial information in this way can significantly im-
prove our ability to achieve chromatic adaptation.
The rest of this paper is organized as follows. We be-

gin with a brief review of a standard color image formation
model in Section 2. A statistical model for a single color im-
age patch is introduced in Section 3, and the optimal correc-
tive transform for the illuminant is found via model-fitting
in Section 4. The proposed model is empirically verified
using available training data in Section 5.

2. Background: Image Formation
We assume a Lambertian model where x : R × Z2 →

[0, 1] is the diffuse reflectivity of a surface corresponding
to the image pixel location n ∈ Z2 as a function of the
electromagneticwavelength λ ∈ R in the visible range. The
tri-stimulus value recorded by a color imaging device is

y(n) =

∫

f(λ)"(λ)x(λ, n) dλ, (1)

where y(n) = [y{1}(n), y{2}(n), y{3}(n)]T is the tri-
stimulus (e.g. RGB) value at pixel location n cor-
responding to the color matching functions f(λ) =
[f{1}(λ), f{2}(λ), f{3}(λ)]T , f{1}, f{2}, f{3} : R →
[0, 1], and " : R → R is the spectrum of the illuminant.
Our task is to map a color image y(n) taken under an

unknown illuminant to an illuminant-invariant representa-

tion x(n)1. In general, this computational chromatic adap-
tation problem is ill-posed. To make it tractable, we make
the standard assumption that the mapping from y to x is
algebraic/linear; and furthermore, that it is a diagonal trans-
form (in RGB or some other linear color space[7]). This as-
sumption effectively imposes joint restrictions on the color
matching functions, the scene reflectivities, and the illumi-
nant spectra[5, 19]. Under this assumption of (generalized)
diagonal transforms, we can write:

y(n) = Lx(n), (2)

where L = diag(!), ! ∈ R3, x(n) =
[x{1}(n) x{2}(n) x{3}(n)]T ∈ [0, 1]3, and f is im-
plicit in the algebraic constraints imposed.

3. Spatio-Spectral Analysis
Studies in photometry have established that the dif-

fuse reflectivity for real-world materials as a function of
λ are typically smooth and can be taken to live in a
low-dimensional linear subspace[15]. That is, x(λ, n) =
∑T−1

t=0 φt(λ)ct(n), where φt : R → R is the basis and
ct(n) ∈ R are the corresponding coefficients that describes
the reflectivity at location n. Empirically, we observe
that the baseband reflectance φ0 is constant across all λ
(φ0(λ) = φ0) and the spatial variance along this dimen-
sion(i.e., the variance in c0(n)) is disproportionately larger
than that along the rest.
The color image y can be written as a sum of the baseline

and residual images:

y(n) =ylum(n) + ychr(n)

ylum(n) =

∫

f(λ)"(λ)φ0c0(n) dλ = !φ0c0(n)

ychr(n) =
T−1
∑

t=1

∫

f(λ)"(λ)φtct(n) dλ. (3)

Here, the baseline “luminance” image contains the majority
of energy in y and is proportional to the illuminant color
! ∈ R3; we see from Figure 2 that ylum marks the inter-
object boundaries and intra-object textures. The residual
“chrominance” image describes the “deviation” from the
baseline intensity image, capturing the “color” variations in
reflectance. Also, unlike the luminance image, it is largely
void of high spatial frequency content.
Existing literature in signal processing provides addi-

tional evidence that ychr is generally a low-pass signal. For
instance, Gunturk et al. [13] have shown that the Pearson
product-moment correlation coefficient is typically above
1For convenience, we refer to x(n) as the reflectance image and to

! as the illuminant color. In practice these may be, respectively, the im-
age under a canonical illuminant and the entries of a diagonal “relighting
transform”. These interpretations are mathematically equivalent.



Figure 2. Decomposition of (left column) a color image y into
(middle column) luminance ylum and (right column) chrominance
ychr components. Log-magnitude of the Fourier coefficients in
(bottom row) correspond to the images in (top row), respectively.
Owing to the edge and texture information that comprise lumi-
nance image, luminance dominates chrominance in the high-pass
components of y.

0.9 for high-pass components of y{1}, y{2}, and y{3}—
suggesting that ylum dominates high-pass components of y.
Figure 2 also illustrates Fourier support of a typical color
image taken under a canonical illuminant, clearly confirm-
ing the band-limitedness of ychr. These observations are
consistent with the contrast sensitivity function of human
vision[14] (but see [16]) as well as the notion that the scene
reflectivity x(λ, n) is spatially coherent, with a high con-
centration of energy at low spatial frequencies.
All of this suggests that decomposing images by spa-

tial frequency can aid in illuminant estimation. High-pass
coefficients of an image y will be dominated by contribu-
tions from the luminance image ylum, and the contribution
of ychr (and thus the scene chrominance xlum) will be lim-
ited. Since the luminance image ylum provides direct infor-
mation about the illuminant color (equation (3)), so too will
the high-pass image coefficients. This is demonstrated in
Figure 1(e,f), which shows the color of 8× 8 image patches
projected onto a high-pass spatial basis function.
In subsequent sections, we develop a method to exploit

the ‘extra information’ available in (high-pass coefficients
of) spatial image patches.

3.1. Statistical Model
We seek to develop a statistical model for a

√
K ×

√
K

patch where X{1}, X{2} and X{3} ∈ RK are cropped
from x{1}(n), x{2}(n) and x{3}(n) respectively. Rather
than using a general model for patches of size

√
K×

√
K×

3, we employ a spatial decorrelating basis and represent
such patches using a mutually independent collection of K
three-vectors in terms of this basis. We use the discrete co-
sine transform(DCT) here, but the discrete wavelet trans-
form(DWT), steerable pyramids, curvelets, etc. are other
common transform domains that could also be used. This
gives us a set of basis vectors {Dk}k=0...(K−1) ∈ RK

where without loss of generality, D0 can be taken to cor-

k = 1

k = 9

k = 59

Figure 3. Eigen-vectors of the covariance matrices Λk . The pat-
tern in each patch corresponds to a basis vector used for spatial
decorrelation (in this case a DCT filter) and the colors represent
the eigen-vectors of the corresponding Λk . The right-most col-
umn contains the most significant eigen-vectors that are found to
be achromatic.

respond to the lowest frequency component or DC.
By using this decorrelating basis, modeling the distri-

bution of color image patches X reduces to modeling the
distribution of three-vectors D

T
k X ∈ R3, ∀k, where Dk

computes the response of each ofX{1}, X{2} andX{3} to
Dk such that

D
T
k X =





DT
k
DT

k
DT

k









X{1}

X{2}

X{3}



 =





DT
k X{1}

DT
k X{2}

DT
k X{3}



 . (4)

The DC component for natural images is known to have
near uniform distributions[4]. The remaining components
are modeled as Gaussian. Formally,

D
T
0 X

i.i.d.∼ U(νmin × νmax)

D
T
k X

i.i.d.∼ N (0,Λk), k > 0, (5)

whereΛk = E[DT
k XXT Dk], and [νmin, νmax] is the range

of the DC coefficients. The probability of the entire re-
flectance image patch is then given by

P (X) ∝
∏

k>0

1

det(Λk)1/2
exp

(

−1

2
(DT

k X)T
Λ

−1
k D

T
k X

)

.

(6)
We can gain further insight from looking at the sam-

ple covariance matrices {Λk} computed from a set of nat-
ural images taken under a single (canonical) illuminant.
The eigenvectors of Λk represent directions in tri-stimulus
space, and Figure 3 visualizes these directions for three
choices of k. For all K > 0 we find that the most signif-
icant eigenvector is achromatic, and that the corresponding
eigenvalue is significantly larger than the other two. This
is consistent with the scatter plots in Figure 1, where the
distributions have a highly eccentric elliptical shape that is
aligned with the illuminant direction.



4. Estimation Algorithm
In the previous section, a statistical model for a single

color patch was proposed. The parameters of this model
can be learned, for example, from a training set of natural
images with a canonical illumination. In this section, we
develop a method for color constancy that breaks an image
into a “bag of patches” and then attempts to fit these patches
to such a learned model.
Let diag(w), w = [1/"{1} 1/"{2} 1/"{3}] represent the

diagonal transform that maps the observed image to the
reflectance image (or image under a canonical illumina-
tion). Dividing the observed image into a set of overlapping
patches {Yj}, we wish to find the set of patches {X̂j(w)}
that best fit the learned model from the previous section (in
terms of log-likelihood) such that ∀j, X̂j is related to Yj as

X̂j(w) =

[

w{1}Y
{1}

j

T
w{2}Y

{2}
j

T
w{3}Y

{3}
j

T
]T

. (7)

We choose to estimatew by model-fitting as follows:

w = arg max
w′

∑

j

log P
(

X̂j (w′)
)

. (8)

It is clear that (8) always admits the solution w = 0. We
therefore add the constraint that wT w = 3 (so that w =
[1 1 1]T when Y is taken under canonical illumination).
This constrained optimization problem admits a closed

form solution. To see this, let the eigen-vectors
and eigen-values for Λk be given by {Vkh =

[V{1}
kh V{2}

kh V{3}
kh ]}h={1,2,3} and {σ2

kh}h={1,2,3} respec-
tively. Then equation (8) simplifies as

w = argmin
w′

∑

j,k>0,h

1

2σ2
kh

(

w′{1}V{1}
kh DT

k Y
{1}

j

+w′{2}V{2}
kh DT

k Y
{2}

j + w′{3}V{3}
kh DT

k Y
{3}

j

)2

= argmin
w′

∑

j,k>0,h

1

2σ2
kh

w′T ajkhaT
jkhw′

= argmin
w′

w′T Aw′, (9)

subject towT w = 3, where

ajkh =
[

V{1}
kh DT

k Y
{1}

j V{2}
kh DT

k Y
{2}

j V{3}
kh DT

k Y
{3}

j

]T

A =
∑

j,k>0,h

ajkhaT
jkh

2σ2
kh

. (10)

The solution can now be found by an eigen-decomposition
of A. Note that the equivalue contours of w′T Aw′ are
ellipsoids of increasing size whose axes are given by the
eigen-vectors ofA. Therefore, the point where the smallest

√
3e

w
T

w = 3

e

Figure 4. The concentric ellipses correspond to the equivalue con-
tours of w′T Aw′. The optimal point on the sphere wT w = 3

therefore lies on the major axis of these ellipses.

ellipsoid touches the wT w = 3 sphere is along the major
axis, i.e. the eigen-vector e of A that corresponds to the
minimum eigen-value. The solution to (8) is then given by√

3e. This is illustrated in Figure 4.

5. Experimental Results
In this section, we evaluate the performance of the pro-

posed method on a database collected specifically for color
constancy research[6]. While this database suffers from
a variety of non-idealities—JPEG artifacts, demosaicking,
non-linear effects such as gamma correction, etc.— it is fre-
quently used in the literature to measure the performance
and therefore provides a useful benchmark[6, 18]. The
database contains a large number of images captured in dif-
ferent lighting conditions. Every image has a small grey
sphere in the bottom right corner that provides the “ground
truth”. Since the sphere is known to be perfectly grey, its
mean color (or rather, the mean color of the 5% brightest
pixels to account for the sphere being partially in shadow)
is taken to be the color of the illuminant.
Training was done on all overlapping patches in a set of

100 images that are color corrected based on the sphere, i.e.
for each image the illuminant was estimated from the sphere
and then every pixel was diagonally transformed by the in-
verse of the illuminant. The patch size was chosen to be
8 × 8 and the DCT was used for spatial decorrelation. For
“relighting” images, we chose to apply diagonal transforms
directly in RGB color space, and it is important to keep in
mind that the results would likely improve (for all methods
we consider) by first “sharpening” the color matching func-
tions (e.g. [5, 7]).
The performance of the estimation algorithm was evalu-

ated on 20 images from the same database. These images
were chosen a-priori such that they did not represent any of
the scenes used in training, and also such that the spherewas
approximately in the same light as the rest of the scene. The
proposed algorithm was compared with the Grey-World[2]
and Grey-Edge[18] methods. An implementation provided



(a)
10.4◦ 3.3◦ 0.98◦

(b)
3.1◦ 8.1◦ 1.5◦

(c)
4.1◦ 5.5◦ 1.2◦

(d)
0.55◦ 0.48◦ 1.7◦

Un-processed Image Grey World Grey Edge Proposed Method
Figure 5. A selection of images from the test set corrected by different methods with the corresponding angular errors.

# Grey-World[2] Grey-Edge[18] Proposed
1 7.4◦ 5.9◦

2.5◦

2 4.1◦ 5.5◦
1.2◦

3 10.4◦ 3.3◦
0.98

◦

4 3.1◦ 8.1◦
1.5◦

5 11.3◦ 1.8◦
0.31

◦

6 4.3◦ 1.8◦
0.90

◦

7 2.2◦ 4.2◦
1.4◦

8 4.4◦ 1.9◦
1.2◦

9 3.3◦ 1.7◦
1.1◦

10 2.6◦ 0.91◦
0.42

◦

11 4.4◦ 1.9◦
1.7◦

12 2.5◦ 3.6◦ 2.6◦

13 2.4◦
2.1◦ 2.6◦

14 4.6◦
0.80

◦ 1.4◦

15 14.7◦
6.8◦ 7.7◦

16 7.2◦
2.2◦ 3.1◦

17 13.7◦
0.96

◦ 1.9◦

18 6.9◦
3.1◦ 4.3◦

19 0.55◦
0.48

◦ 1.7◦

20 3.9◦
0.08

◦ 2.2◦

Mean 5.7◦ 2.9◦
2.0◦

Table 1. Angular errors for different color constancy algorithms.

by the authors of [18] was used for both these methods,
and for Grey-Edge the parameters that were described in
[18] to perform best were chosen (i.e. second-order edges,
a Minkowski norm of 7 and a smoothing standard devia-

tion of 5). For all algorithms, the right portion of the image
was masked out so that the sphere would not be included in
the estimation process. The angular deviation of the sphere
color in the corrected image from [1 1 1]T was chosen as
the error metric.

Table 1 shows the angular errors for each of the three
algorithms for all images . The proposed method does bet-
ter than Grey-World in 17 and better than Grey-Edge in 12
of the 20 images. Some of the actual color corrected im-
ages are shown in Figure 5. In Figure 5(a-c), the proposed
method outperforms both Grey-World and Grey-Edge. In
the first case, we see that since the image has green as a very
dominant color, Grey-World performs poorly and infers the
illuminant to be green. For images (b) and (c), there are
many edges (e.g. the roof in (c)) with the same color distri-
bution across them, and this causes the Grey-Edge method
to perform poorly. In both cases, the proposed method ben-
efits from spatial correlations and cues from complex image
features. In Figure 5(d), bothGrey-World andGrey-Edge do
better than the proposed method. This is because most of
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Figure 6. This box-plot summarizes the performance of three in-
dividual spatial components (Dk), showing the median and quan-
tiles of angular errors across the test set. These are also compared
to the Grey World(GW) and Grey Edge(GE) algorithms, and the
proposed method that combines cues from all spatial components.
The proposed method performs best—having the lowest average
error as well as the smallest variance.

the objects in the scene are truly achromatic (i.e. their true
color is grey/white/black) and therefore the image closely
satisfies the underlying hypothesis for those algorithms.
Finally, the performance of each individual spatial sub-

band component was evaluated. That is, we observed how
well the proposed method performed when estimating w
using the statistics of eachDkY j alone, for every k. Figure
6 shows a box-plot summarizing the angular errors across
the test set for three representative values of k and compares
them with the Grey-World and Grey-Edge algorithm as well
as the proposed method which combines all components.
Each single component outperforms Grey-World and some
are comparable to Grey-Edge. The proposedmethod, which
uses a statistical model to weight and combine cues from all
components, performs best.

6. Conclusion and Future Work
In this paper, we presented a novel solution to the com-

putational chromatic adaptation task through an explicit sta-
tistical modeling of the spatial dependencies between pix-
els. Local image features are modeled using a combina-
tion of spatially decorrelating transforms and an evalua-
tion of the spectral correlation in this transform domain.
The experimental verifications suggest that this joint spatio-
spectral modeling strategy is effective.
The ideas explored in this paper underscores the benefits

to exploiting spatio-spectral statistics for color constancy.
We expect further improvements from a model based on
heavy-tailed probability distribution functions for the trans-
form coefficients. Also, many bag-of-pixel approaches to
color constancy can be adapted to use bags of patches in-
stead, especially Bayesian methods [1] that fit naturally into
our statistical framework. Examining spatially-varying illu-

mination is also within the scope of our future work.
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