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Unified kinetic model of dopant segregation during vapor-phase growth
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We develop a unified kinetic model for surface segregation during vapor phase growth that concisely and
quantitatively describes the observed behavior in silicon-based systems. A simple analytic function for the
segregation length is derived by treating terrace-mediated and step-edge-mediated mechanisms in parallel. The
predicted behavior of this parameter is examined through its temperature, flux, and terrace length dependence.
Six distinct temperature regimes are predicted for the segregation length that depend on the relative segregation
energies and activation barriers of the two mechanisms. The model is compared to reported behavior of Sb and
P in Si!001" and excellent agreement is obtained using realistic energies and preexponential factors. The model
accounts for the experimentally observed anomalous low-temperature segregation of Sb as a consequence of
the competition between step-edge-mediated segregation, dominant at low temperatures, and terrace-mediated
segregation, dominant at higher temperatures. The generalized treatment of segregation mechanisms in the
model makes it applicable to other segregating systems, including metals and III-V semiconductors.

DOI: 10.1103/PhysRevB.72.195419 PACS number!s": 68.35.Dv, 81.15.Aa, 68.55.Ln

I. INTRODUCTION

Recent advances in thin-film growth technology to im-
prove density, speed, or other device properties require accu-
rate control of impurities and dopants at small length scales.
Complex architectures such as delta-doping1,2 or band-gap
engineering3 for quantum well devices4–6 or spintronic
applications7,8 require sharp heterostructures in semiconduc-
tors. Similarly, innovative metal-based structures such as gi-
ant magnetoresistive9,10 or nanomagnetic devices11,12 rely on
the fabrication of abrupt interfaces. As the need for these
sharp interfaces has become increasingly important, the
problems of segregation, whereby one species of atom tends
to preferentially move to the free surface during thin-film
growth, remain a hindrance.

Growth of sharp interface structures is experimentally
challenging but possible with well-controlled physical vapor
deposition techniques such as pulsed deposition,13,14 ener-
getic techniques,15 low-temperature molecular beam epitaxy
!LT-MBE",16 and surfactant mediated approaches.17,18 Al-
though one can achieve sharp jumps in composition, often a
tradeoff must be struck between suppressed segregation and
defect accumulation19 so as to preclude the incorporation of
an arbitrary concentration-depth profile.

Despite an abundance of experimental observations, there
is no consensus on a physical mechanism underlying segre-
gation and trapping. Any successful model for segregation
must explain !1" the experimentally observed temperature
dependence at low temperatures, !2" experimentally ob-
served temperature dependence at high temperatures, and !3"
the experimentally observed deposition rate dependence.
Typically, in such segregating systems, the high-temperature
regime is characterized by local equilibrium segregation, de-
termined by the thermodynamic balance between the free
energies of the surface and subsurface states.20 In this re-
gime, the amount of segregated material decreases as the
temperature increases because more impurity is soluble in

the host material. At lower temperature, the system is con-
sidered to be in a kinetically limited segregation regime. In
this case, the segregation is determined by the kinetics of
moving impurity atoms, and the relatively low mobilities
cause them to become trapped in the growing film. As the
temperature increases, the amount of segregated material in-
creases because impurity atoms have enough mobility to
move ahead of the growing film.

In this paper, an analytic model for segregation is devel-
oped that successfully describes the fundamental physics of
the segregation phenomenon, yet is simple enough to enable
easy comparison with experimental measurements without
the need for numerical solutions or simulations. The devel-
opment is based on earlier models of liquid phase growth21,22

but with the introduction of multiple classes of exchange
mechanisms for segregation at different sites on the growth
surface. The model is developed in the context of segregation
for dilute dopants in Si!001"; however, the principles are
sufficiently general that it can be applicable to other systems
such as metallic alloys or III-V semiconductors. We demon-
strate the effectiveness of the model by reproducing, for the
first time, the measured temperature and growth rate depen-
dence for Sb and P in Si!001".

II. BACKGROUND

There is a variety of models for surface segregation dur-
ing thin film growth. For the purposes of our unified model,
we classify them into three categories based on the mecha-
nisms and approach to modeling. As these models have been
discussed extensively in the literature, a detailed discussion
of each is beyond the scope of this article.

A. Phenomenological

In this earliest class of segregation model, the overall pro-
cess of segregation is discussed without kinetic details of the
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atomic processes.23–26 Rather, these models treat the flux of
incorporated and segregated atoms at the surface in order to
derive relations between the amount of segregation and the
temperature. Given certain assumptions such as incorpora-
tion proportional to surface coverage23 or exponentially
varying diffusion near the surface,27 phenomenological for-
mulations show a transition between kinetically limited and
equilibrium segregation that agrees qualitatively with experi-
mental observations.

B. Terrace mediated

The first main modification to the phenomenological
models included the introduction of atomic exchange be-
tween different layers in the growing film.20,28 In these
works, the individual layers in the structures are treated as
flat and terrace-like with an unspecified kinetic pathway for
exchange occurring between them. Exchange between two
adjacent layers is allowed to proceed provided these are at
the free surface. Deposition at discrete time intervals halts
the exchange as a new surface layer is formed and another
layer is buried in the bulk. Later incarnations of these models
included the possibility of self-limiting behavior whereby
impurity atoms in one layer exchange with impurity atoms in
the adjacent layer, resulting in no increase of segregation.29,30

These terrace-mediated models have been shown to be
sufficient in describing much of the physical behavior in the
real systems. As with the phenomenological models, these
models predict a transition between a kinetically limited low-
temperature regime and an equilibrium regime at higher tem-
peratures. However, the explicit introduction of an exchange
mechanism enabled not only a better fit to experimental data,
particularly at higher temperatures, but also enabled an ex-
perimental measurement of the energy barriers for this pro-
cess.

C. Step-edge mediated

Two of the main shortcomings of the terrace-mediated
models are that it neglects the presence of steps and rough-
ness on the surface and it is insufficient to describe the ex-
perimentally measured behavior at low temperatures. To
overcome these issues, models were developed to address the
roughness of the surface and exchange of atoms at steps as a
low-temperature mechanism to increase segregation.31–33

Jesson et al. further demonstrated the importance of such
mechanisms through experiments and calculations of Si-Ge
growth in showing that it can be energetically favorable for
atoms to climb at step edges.34,35

Significant differences exist among the step edge models
in how segregation and incorporation are treated. Nonethe-
less, the introduction of low-temperature mechanisms en-
abled these models to improve the agreement with experi-
ment in certain temperature regimes. However, in many
cases, these models fell short in accurately predicting the
transitions between kinetically limited and equilibrium seg-
regation, or in predicting other experimental dependencies
such as growth rate or surface miscut dependence.

D. Summary of previous models

Although the individual models outlined in the above sec-
tions are not optimal for our development objectives, each
class provides important physical understanding to the seg-
regation phenomenon. Phenomenological models indicate a
transition between two segregation regimes, terrace models
describe high-temperature regimes, surface-mediated models
describe low-temperature regimes, and simulations36–38 enu-
merate kinetic pathways for segregating atoms. In develop-
ing a unified model we capitalize on the strengths of each
model class.

III. THE MODEL

A. Segregation kinematics

The complexity of any given growth surface makes a rig-
orous kinetic treatment of all possible segregation mecha-
nisms analytically untenable. Consequently we model the
surface as a periodic structure, undergoing step-flow growth,
where each period contains seven distinct structural regions,
as shown in Fig. 1. The space between steps is divided into a
step-edge region !M,S,E" of length w, and a terrace region
!R,T,P" of length L-w. The monolayer spacing in the z direc-
tion is a and the surface is considered to be screw periodic
with repeat vector r=Lx̂+aẑ. The surface is uniform in the y
direction, but for dimensional purposes, we define ao as the
lattice parameter of one conventional unit cell in the x and y
directions. For an !001" surface ao=4a. The origin of our
coordinate system is fixed on the top of the moving step edge
and we keep track of only the motion of impurity atoms.

Impurity !“B”" atoms are allowed to move between the
regions via direct interchange !“exchange”" events between
B atoms and host !“A”" atoms with the condition that they
are immobile in the bulk region. Our model is not concerned
with the detailed kinetic pathway for a given exchange event,
but rather the effective result of an impurity atom moving
from one location to another. It should be noted that this
method of simplifying the surface processes could be ex-
tended to include additional layers at the surface of the film,
if necessary.

There are several metrics available to quantify the segre-
gation behavior and the most appropriate choice depends on
the experimental conditions. For example, in one class of

FIG. 1. !Color online" Simplified view of surface layers and
exchanges. M: adatoms above step edge, R: adatoms above terrace,
S: step edge, T: terrace, E: below step edge, P: below terrace. Single
arrows denote locations of diffusive exchange, double arrows de-
note regions of convective flux. Bold lines in the figure denote no
exchanges allowed across boundary, and the small circle denotes
the origin for the coordinate system.

C. B. ARNOLD AND M. J. AZIZ PHYSICAL REVIEW B 72, 195419 !2005"

195419-2



experiments the impurity and host species are deposited con-
currently over the entire course of the experiment !codepo-
sition". In this case a relevant measure for segregation is the
Gibbsian surface excess. If there is negligible evaporation
from the free surface, the system establishes a steady-state
!positive or negative" surface excess of impurity with the
composition of the bulk region fixed at the composition of
the incident flux. If evaporation is significant, the system still
establishes a steady-state surface excess, however the com-
position of the bulk region differs from that of the incident
flux by a term proportional to the evaporation flux. By locat-
ing the Gibbsian dividing surface at the interface between the
vapor phase and the substrate surface, the Gibbsian surface
excess, !, is given by

! #
1

aoL
$

−"

0 $
0

ao $
0

L

%C!x,z" − Cbulk&dxdydz , !1"

where Cbulk is the concentration of the steady-state bulk ma-
terial and C!x ,z" is the concentration at location !x ,z" in the
surface.

We can refine this definition for our model by noting that
the surface region, the region in which the impurity atoms
are able to make exchanges, has only a finite depth, #. Be-
yond this depth the mobility is negligibly small, the compo-
sition must equal the bulk composition, and the above inte-
grand vanishes. Therefore,

! =
1
L
$

−#

0 $
0

L

C!x,z"dxdz − #Cbulk. !2"

One important consequence of Eq. !2" is that ! can exceed
one complete monolayer of impurity atoms. Such behavior
has been experimentally observed in the case of Si and
Ge,39,40 but previous models were unable to account for this
behavior.

A second class of experiments is characterized by serial
deposition, in which the impurity atoms are deposited first,
followed by subsequent deposition of host only. This type of
experiment may be associated with “delta doping” or
“surfactant-mediated” growth processes.2,41 The surface im-
purity concentration decays over time as impurity atoms be-
come trapped in the bulk or evaporate and are not replen-
ished by a deposition flux. In this case a relevant measure of
segregation is the segregation ratio r as defined by Jorke,28

r =
Areal concentration of impurity in the surface
Volume concentration of impurity in the bulk

. !3"

This parameter has the units of length and is therefore some-
times referred to as the segregation length.

From Eq. !2" we can find the 2-D areal concentration of
impurity in the surface region, 'n(, by integrating the con-
centration over all regions of the surface and dividing by the
projected area in the x-y plane,42

'n( =
1

aoL
$

−#

0 $
0

ao $
0

L

C!x,z"dxdydz . !4"

We integrate this equation over the y dimension and di-
vide by the bulk concentration to yield the equation for r,

r =
1

LCbulk$
−#

0 $
0

L

C!x,z"dxdz . !5"

The literature provides a variety of metrics to quantify the
concentration profile under serial deposition experiments.
However, these measures are related by appropriate transfor-
mations under particular conditions. For example, the parti-
tion coefficient,30 which is defined as the bulk concentration
normalized by the surface concentration, is simply the in-
verse of r multiplied by the monolayer spacing a. The profile
broadening, $, defined as the 1/e decay length of the 2-D
surface concentration vs distance grown, reduces to the seg-
regation ratio %Eq. !3"& when evaporation is negligible.28,32 In
the case where evaporation cannot be ignored, one calculates
the relationship between $ and r by solving the equation
relating surface concentration to the changing height of the
surface,

d'n(
dz

= − 'n()1
r

+
kevap

vz
* . !6"

In this equation, kevap is the evaporation rate constant, given
by % exp!−E /kBT", where % is an effective vibration fre-
quency and vz is the velocity of growth in the z direction.
The solution to the differential equation for 'n( is recognized
as an exponential with a 1/e decay length of

$ =
1

)1
r

+
kevap

vz
* . !7"

The above equation goes to the appropriate limit of $→r as
kevap goes to zero.

Although the codeposition and serial deposition experi-
ments seem fundamentally different, Eqs. !2" and !5" show
their measures of segregation are related by

r =
!

Cbulk + # . !8"

Our model is developed from the steady-state co-deposition
case described above. By finding a solution for !, one
readily uses Eq. !8" to determine r for the non-steady-state
case that describes the experimental results.43 We apply our
model to these experiments under the quasi-stationary as-
sumption that the surface concentration profile equilibrates
rapidly on the time scale of changes in ! itself.

B. Kinetics

Define C& as the concentration of B atoms in region &,
J&' as the vertical diffusive flux of B atoms from region & to
region ', D& as the lateral diffusivity of B atoms within
region &, k&,evap as the rate of evaporation from region &, v
as the speed of the moving step edge with respect to the
lattice, F as the projected deposition flux !atoms/site· s", and
f as the fraction of incident B atoms in the deposition flux.
Then in the moving reference frame centered on the step
edge at !x ,z"= !0,0", the concentration at a particular loca-
tion within each region evolves with time due to vertical
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diffusion into and out of the region, lateral diffusion within
the region, and a velocity-dependent convective flux due to
the moving coordinate system. Thus the equations of mass
balance in regions P, E, T, S, R, and M are

!CP

!t
=

1
a

%JTP!CT,CP" − JPT!CT,CP"& − v
!CP

!x
+ DP!2CP

!x2 ,

!9"

!CE

!t
=

1
a

%JSE!CS,CE" − JES!CS,CE"& − v
!CE

!x
+ DE!2CE

!x2 ,

!10"

!CT

!t
=

1
a

%JPT!CT,CP" − JTP!CT,CP" + JRT!CT,CR"

− JTR!CT,CR"& − v
!CT

!x
+ DT!2CT

!x2 , !11"

!CS

!t
=

1
a

%JES!CS,CE" − JSE!CS,CE" + JMS!CS,CM"

− JSM!CS,CM"& − v
!CS

!x
+ DS!2CS

!x2 , !12"

!CR

!t
=

1
a

%JTR!CT,CR" − JRT!CT,CR"& − v
!CR

!x
+ DR!2CR

!x2

− CRkR,evap +
fF

aao
2 , !13"

!CM

!t
=

1
a

%JSM!CS,CM" − JMS!CS,CM"& − v
!CM

!x
+ DM !2CM

!x2

− CMkM,evap +
fF

aao
2 , !14"

where all C& and J&' depend explicitly on both lateral coor-
dinate x and time t.

The above set of equations is solvable in principle with
the appropriate set of boundary conditions. However, we fur-
ther simplify the problem and gain physical insight by con-
sidering only two of the four mechanisms shown in Fig. 1.
For our purposes it is sufficient to include one step-edge
mechanism and one terrace-mediated mechanism to demon-
strate the relative importance of each mechanism class. In the
development here, we have chosen to include only the tran-
sitions !T↔P" and !S↔E"; we neglect lateral step-edge
transitions because we contend they are less important than
vertical ones. This assumption eliminates the vertical diffu-
sive fluxes in Eqs. !13" and !14" as well as the corresponding
terms in the remaining equations.

Given this simplification, we make the following asser-
tions:

!1" Lateral diffusion in layers other than the adatom layer
provides a negligible contribution to segregation and we
therefore set D&=0 for &=S,T,E,P. A rigorous treatment of
diffusion in the current formalism is beyond the scope of this

paper. One expects that diffusion can affect the actual shape
of the concentration profile within a given layer; however it
should not significantly affect the integrated amount of im-
purity in that region. The assertion breaks down in the case
where there is a large diffusivity in, e.g., layer T and a small
vertical exchange rate !T↔R" but rapid step-edge exchange
rate, leading to a “short circuit” vertical pathway at the step
edge. At high temperatures, such a short circuit mechanism
could cause a disproportionate change in the integrated im-
purity concentration for that region. The result of this asser-
tion is that the lateral diffusion terms can be removed from
Eqs. !9"–!12".44

!2" The extent of the step-edge region approaches the di-
mension of a single unit cell in the plane, w→ao. This as-
sertion basically says that the availability of step-edge-
mediated mechanisms is limited to those atoms that are
directly on the step edge. Thus we can treat regions S and E
as discrete and convert the partial spatial derivative term in
Eqs. !10" and !12" into a finite difference. In addition, the
partial time derivative becomes a full derivative. The case of
extended step-edge regions is treated in Appendix A.

!3" The total impurity content in adatom regions M and R
does not significantly contribute to the overall surface excess
or the segregation ratio. This allows us to ignore Eqs. !13"
and !14" from the set of equations !9"–!14". Essentially the
position-dependent adatom concentration in regions M and R
for x(L has no consequence other than to establish a steady-
state concentration at x=L through the balance of deposition,
evaporation, and lateral diffusion. This value, plus the kinet-
ics of lateral segregation at the moving step edge, determines
how much impurity gets incorporated at the step edge, thus
fixing the x=0 boundary of CS. This in turn sets the scale for
the concentration profiles in subsequent regions T, E, P, and
bulk. The range of validity for this assertion is discussed in
further detail in Appendix B.

From these assertions, Eqs. !9"–!14" are rewritten with
their explicit variable dependencies as

!CP!x,t"
!t

=
1
a

%JTP„CT!x,t",CP!x,t"… − JPT„CT!x,t",CP!x,t"…&

− v
!CP!x,t"

!x
, !15"

dCE!t"
dt

=
1
a

%JSE„CS!t",CE!t"… − JES„CS!t",CE!t"…&

−
v
ao

· %CE!t" − CT!L,t"& , !16"

!CT!x,t"
!t

=
1
a

%JPT„CT!x,t",CP!x,t"… − JTP„CT!x,t",CP!x,t"…&

− v
!CT!x,t"

!x
, !17"
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dCS!t"
dt

=
1
a

%JES„CS!t",CE!t"… − JSE„CS!t",CE!t"…&

−
v
ao

· %CS!t" − Cinc& , !18"

where Cinc is the concentration of B atoms that is incident on
the step edge at x=L. Equations !16" and !18" make the
implicit assumption that there is continuity in concentration
across the boundary at x=L.

The vertical diffusive fluxes, J&', in the above equations
are obtained from unimolecular rate theory.21,45 Consider the
!P→T" transition and assume the system lowers its energy
by exchanging a B atom in region P with an A atom in region
T, and likewise for E and S, respectively. The interchange
flux from P to T is then given by

JPT„CT!x,t",CP!x,t"…
= CP!z,t" · %1 − ao

2aCT!z,t"& · %a · exp)−
QTP

kBT
* .

!19"

The reverse flux has the same form, but the barrier for this
process includes the segregation energy, or the difference in
redistribution potential between the two states $)!TP;46

JTP„CT!x,t",CP!x,t"… = CT!z,t" · %1 − ao
2aCP!z,t"&

· %a · exp)−
!QTP + $)!TP"

kBT
* .

!20"

Similarly for the !S↔E" transition,

JES!CS„t",CE!t"… = CE!t" · %1 − ao
2aCS!t"& · %a · exp)−

QSE

kBT
* ,

!21"

JSE„CS!t",CE!t"…
= CS!t" · %1 − ao

2aCE!t"& · %a · exp)−
!QSE + $)!SE"

kBT
* .

!22"

In these cases, the assumption that a B atom has a lower
energy in the T state forces $)!TP to be a positive value.47

All concentrations are assumed dilute and the !1
−ao

2aC&" terms in Eqs. !19" and !20" are set equal to unity,
thereby making the diffusive fluxes linearly proportional to
the concentrations.48 In the steady state, the concentration of
incident atoms equals the concentration entering the bulk,
Cinc=Cbulk, and the dilute forms for Eqs. !19" and !20" are
substituted into Eqs. !15"–!18", to yield a final set of equa-
tions to be solved:

0 =
vd

TP

ao
%ke

TP · CT!x" − CP!x"& − v
d

dx
CP!x" , !23"

0 =
− vd

TP

ao
%ke

TP · CT!x" − CP!x"& − v
d

dx
CT!x" , !24"

0 = CS ·
vd

SEke
SE

ao
− CE · )vd

SE

ao
+

v
ao
* +

v
ao

CT!L" , !25"

0 = CS · )− vd
SEke

SE

ao
−

v
ao
* + CE · )vd

SE

ao
* +

v
ao

Cbulk, !26"

where

ke
TP!orSE" = exp)− $)!TP!orSE"

kBT
* , !27"

vd
TP!orSE" = %ao exp)− QTP!orSE"

kBT
* !28"

are the equilibrium partition coefficient and the diffusive
speed, respectively, as defined for the case of solidification.46

C. Concentration profiles

The problem has now been reduced to a set of coupled,
linear ordinary differential equations for CP!x" and CT!x".
We normalize these equations by the constant Cbulk and the
solution becomes

CP!x"
Cbulk

= − Ae−*x + ke
TPB , !29"

CT!x"
Cbulk

= Ae−*x + B , !30"

where we have substituted the in-plane decay length

* =
vd

TP

vao
!1 + ke

TP" . !31"

The constants, A and B, are determined from the boundary
conditions CT!ao"=CS and CP!ao"=CE, or

CS

Cbulk
= Ae−*ao + B , !32"

CE

Cbulk
= − Ae−*ao + ke

TPB . !33"

Finally, the solution of the simultaneous set of equations
given by !25", !26", !32", and !33" provides expressions in
closed form for A and B:

A = e*ao

ke
TP) v

vd
SE + 1* − ke

SE −
v

vd
SE

e−*!L−ao") v
vd

SE + ke
SE − ke

TP* + ke
TP)1 + ke

SE +
v

vd
SE* ;

!34"

B =

v
vd

SE !1 + e−*!L−ao"" + 1 + ke
SE

e−*!L−ao") v
vd

SE + ke
SE − ke

TP* + ke
TP)1 + ke

SE +
v

vd
SE* .

!35"
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D. Surface excess and segregation ratio

It remains to determine the Gibbsian surface excess, !,
from Eq. !2". In this formulation of the model, which ignores
the adatom regions M and R, everywhere there are two lay-
ers for the nonbulk region; hence #=2a. From Eq. !2",

!

Cbulk
=

1
L)$−a

0 $
0

ao CS

Cbulk
dxdz + $

−a

0 $
ao

L CT!x"
Cbulk

dxdz

+ $
−2a

−a $
0

ao CE

Cbulk
dxdz + $

−2a

−a $
ao

L CP!x"
Cbulk

dxdz* − 2a .

!36"

This equation is integrated to obtain

!

Cbulk
=

1
L)aoa

CS

Cbulk
+ a$

ao

L CT!x"
Cbulk

dx + aoa
CE

Cbulk

+ a$
ao

L CP!x"
Cbulk

dx* − 2a . !37"

After substituting Eqs. !29", !30", !32", and !33" and solv-
ing the integrals, the Gibbsian excess reduces to

!

Cbulk
= aB!1 + ke

TP" − 2a . !38"

Finally the segregation ratio is obtained from Eq. !8":

r = a!1 + ke
TP"B . !39"

Equations !38" and !39" represent the major result of this
model.

One of the main consequences of the model is a transition
between kinetically limited and equilibrium segregation.
When temperature is varied at constant flux and step spacing,
multiple transition temperatures correspond to the kinetic
transition for each individual segregation mechanism. The

segregation ratio exhibits not only temperature-dependent
behavior, but also velocity and miscut dependence as ob-
served experimentally.49,50 In the next section this behavior is
explored in further detail.

IV. GENERAL LIMITING BEHAVIOR AND SEGREGATION
REGIMES

Figure 2 shows some general temperature-dependent be-
havior of the segregation ratio as predicted by this model for
arbitrary input energy barriers. A transition occurs at a tem-
perature T* that separates the kinetically limited segregation
regime at lower temperatures and the equilibrium segrega-
tion regime at higher temperatures !regimes III and IV". With
the appropriate choice of energies, it is possible to introduce
a second transition temperature within the kinetically limited
regime, at which the predominant segregation mechanism
undergoes a change from terrace-mediated !T↔P" !regime
III" to step-edge-mediated !S↔E" !regime II". In order to
gain insight into the results of this model, it is useful to look
at a few physical limits. These limits include T→" and T
→0, as well as considering large differences in the energy
barriers for the two mechanisms !e.g., QSE→" or QTP→"".

A. Limit 1: T\!

In the limit that T→", the atoms rapidly surmount any
barrier to motion and the energy differences among configu-
rations become negligible; hence the system does not main-
tain any concentration gradients. In this limit the surface ex-
cess vanishes as all the impurity atoms are evenly distributed
throughout the growing film. Mathematically, from Eqs. !27"
and !28", in this limit ke

SE and ke
TP→1, and vd

SE and vd
TP

→%ao. Then substituting into Eq. !35", we find B→1. Then
by Eqs. !38" and !39", !→0 and r→2a.

B. Limit 2: T\0

In this limit, the temperature of the system is so low that
impurity atoms have no mobility during growth and all im-
purity gets trapped in the growing film. Under these condi-
tions, we would expect that there is no segregation and, cor-
respondingly, no surface excess. Here, ke

SE, ke
TP, vd

SE, vd
TP

→0 and, by Eq. !31", *→0 as well. Then by Eq. !35", B
→2, and !→0 and r→2a as expected.

C. Limit 3: QSE\!

In this limit we probe the behavior of the mid-terrace
!T↔P" mechanism alone by turning off the !S↔E" transi-
tion. The activation barrier for !S↔E" is allowed to diverge
so that vd

SE→0 and v /vd
SE→". For finite temperatures, ke

SE

and ke
TP+1 and Eq. !35" becomes

B →
1 + e−*!L−ao"

e−*!L−ao" + ke
TP . !40"

This equation is combined with Eq. !39" to yield

FIG. 2. Possible temperature-dependent behavior for the segre-
gation ratio. The solid line represents the predictions of this model
assuming energies of $)!TP, QTP=1 eV and $)!SE, QSE=0.5 eV, a
deposition rate of 1 monolayer/ second and a terrace length of 25ao.
The dashed line shows the plot of Eq. !49" representing the model
with the single !S↔E" transition. The dot-dashed line shows Eq.
!44" representing the model with the single !T↔P" transition. The
roman numerals label the segregation regimes described in the text
and summarized in Table I.
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r → a
1 + e−*!L−ao"

e−*!L−ao" + ke
TP . !41"

This result is plotted as the dot-dashed line in Fig. 2. For
this single mechanism, there exists a transition between a
kinetically limited regime and an equilibrium regime. Two
turning points are observed on this plot. The first, Ta

TP, is the
temperature above which this mechanism is activated and
segregation begins. The second location, T*

TP, is the transi-
tion temperature above which equilibrium segregation oc-
curs.

Through Eq. !41", we find that as e−*!L−ao" approaches 1;
we return to limit 2. Therefore, the temperature at which this
mechanism becomes activated is given by *=1/ !L−ao". We
recognize that for a terrace of length L, the step velocity is
given by

v = RL , !42"

where R is the net deposition rate !monolayers/second" of all
species. Then in the limit that L,ao we find

1

Ta
TP =

kB ln) %

R
*

QTP . !43"

For temperatures above Ta
TP, e−*!L−ao"+1, and the segre-

gation ratio becomes

r →
a

e−*!L−ao" + ke
TP . !44"

The transition temperature between kinetically limited
and equilibrium segregation is governed by the relationship
between e−*!L−ao" and ke

TP. In this limit,

req →
a

ke
TP for T - T*

TP, !45"

rkin → ae*!L−ao" for T ( T*
TP, !46"

where req is the segregation length in the equilibrium segre-
gation regime and rkin is the segregation length in the kineti-
cally limited regime. The transition temperature is deter-
mined by equating Eqs. !45" and !46". Applying the
definitions of * and ke

TP we find the transcendental equation,

RL$)!TP

%!L − ao"
= kBT*

TP exp)− QTP

kBT*
TP* . !47"

It should be noted that the predicted behavior for the single
!T↔P" transition given by Eq. !44" is identical to Eq. !7" in
Jorke’s treatment28 with the additional condition that the
Jorke model does not include a step-edge region !i.e., ao
→0".

D. Limit 4: QTP\!

In this limit, we turn off the mid-terrace !T↔P" transition
and enable the step edge mediated !S↔E" transition. Here
we have the similar condition as before that ke

TP and ke
SE

+1, yet because vd
TP→0, e−*!L−ao"→1. In this limit

B →
2

v
vd

SE + 1

!1 + ke
TP") v

vd
SE + ke

SE* . !48"

When we combine this equation with Eq. !39", we find the
segregation ratio

r → a

2
v

vd
SE + 1

v
vd

SE + ke
SE

. !49"

The result of Eq. !49" is nearly identical to the equation
!7.46" in Tsao’s model30 with the additional factor of 2 re-
lated to the fact that #=2a in our case. This equation is
plotted in Fig. 2 as a dashed line, and again our model pre-
dicts a transition between kinetically limited behavior and
equilibrium behavior for this single mechanism. For v /vd

SE

,1, we return to limit 2 where the mechanism has been
turned off and there is no segregation. Thus the mechanism
becomes activated as v /vd

SE→1. We use this relation to de-
termine that the temperature to activate this mechanism is
given by

1

Ta
SE =

kB ln) %a

RL
*

QSE . !50"

In the temperature regime near the transition, T*
SE, both

ke
SE and v /vd

SE are +1. Therefore, the numerator of Eq. !49"
approaches unity while the relative magnitudes of two terms
in the denominator determine whether segregation is in a
kinetically limited or equilibrium regime. Thus,

req →
a

ke
SE for T - T*

SE, !51"

rkin →
avd

SE

v
for T ( T*

SE, !52"

and the transition temperature is given by equating these two
expressions to find

T*
SE =

$)!SE + QSE

kB ln)a%

v
* . !53"

E. Temperature dependence of segregation behavior

The sample plot of the segregation ratio using arbitrary
energies !Fig. 2" for the full two-mechanism model shows
four regimes denoted I–IV. If we consider the results of the
previous limiting cases, the segregation behavior at these dif-
ferent temperatures can be understood. At the lowest tem-
peratures, there is not enough thermal energy to overcome
the activation barriers for exchange and therefore no segre-
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gation occurs. In this regime, r→2a. Once the temperature
increases beyond Ta

SE, a transition to regime II occurs as the
step-edge-mediated mechanism becomes active in its kineti-
cally limited regime. At somewhat higher temperatures !re-
gime III", the terrace mechanism at Ta

TP activates. This
mechanism dominates the overall segregation behavior pro-
vided the terrace length is larger than the lattice spacing.
Ultimately, we reach the transition to the equilibrium segre-
gation regime at T* and move into regime IV. In this regime,
the segregation behavior is dominated by the equilibrium
segregation regime of the !T↔P" transition. The reason that
the step edge region does not play an important role in the
segregation behavior in the equilibrium regime is that the
terrace region is the last place an atom can make an ex-
change before becoming trapped in the bulk. Therefore, re-
gardless of what segregation behavior occurs at the step
edge, atoms subsequently have the entire terrace length to
reequilibrate with region T. A summary of these regimes and
the governing equations are given in Table I.

It remains to find the overall transition temperature, or
temperature of maximum segregation, T*, in a similar fash-
ion as before. Near T*, ke

SE, ke
TP+1, but also, from limits 3

and 4, e−*!L−ao" and v /vd
SE are also +1. Therefore, the segre-

gation ratio is rewritten in this regime as

r =
a

e−*!L−ao") v
vd

SE + ke
SE* + ke

TP
. !54"

This equation is similar to the equation for the !T↔P" tran-
sition %limit 3, Eq. !44"& with a slight modification to the
e−*!L−ao" term. This modification accounts for the fact that the
step edge region is providing additional atomic reorganiza-
tion for the overall system. Again, the regime in which we
find ourselves depends on the relative magnitudes of the two
terms in the denominator. As before, we calculate the transi-
tion temperature by finding the temperature, T*, that satisfies
the equation

ke
TP

) v
vd

SE + ke
SE* = e−*!L−ao", !55"

where the denominator on the left side of the equation will
be dominated by either the v /vd

SE or ke
SE term depending on

whether the step-edge mechanism is in the kinetically limited
or equilibrium segregation regime.

The presence of four distinct regimes in the temperature
dependence of the segregation ratio depends on the relative
energies used in the calculation. The physical interpretation
of the energy hierarchy is written in terms of the transition
temperatures and equilibrium segregation coefficients,
namely, Ta

SE(Ta
TP, T*

SE-Ta
TP, and ke

TP(ke
SE. If the energies

are such that one or more of these conditions is no longer
valid, we either get additional regimes in the temperature
dependence or fewer regimes. Figure 3 shows representative
plots for the temperature dependence of the segregation ratio
if one assumes alternate relative energies for the system. The
energies have been chosen to catalogue the possible behavior
exhibited by the model and are listed in Table II.

In Fig. 3!a", one observes the situation when one mecha-
nism dominates the other mechanism. In this case, as the
temperature is raised, the terrace-mediated mechanism be-
comes activated well before the step-edge mechanism and
clearly dominates the resulting behavior. Although lower
atomic coordination at step edges might imply that the step-
edge mechanism should always exhibit a lower activation
energy than the terrace mechanism, unusual circumstances,
e.g., strain effects on the activation barriers, could cause such
a scenario. In addition, the dependence of segregation behav-
ior on terrace length can cause similar effects as will be
discussed later.

In Figs. 3!b"–3!e", the system is shown for cases in which,
as the temperature is raised, the step-edge mechanism be-
comes activated before the terrace-mediated processes. This
condition is the same as for Fig. 2; however, by modifying
the relative magnitude of the energies, alternative regimes

TABLE I. Approximate equations governing segregation behavior in different temperature regimes. The
transition conditions denote the relevant mathematical equation that distinguishes one regime from the pre-
vious one. The physical interpretation tells us which mechanism is active and whether it is kinetically limited
!kin" or in its equilibrium segregation !eq" regime.

Regime Segregation ratio Transition condition Physical interpretation

I 2a !S↔E" off, !T↔P" off

II avd
SE /v v /vd

SE=1 !S↔E" kin, !T→P" off

IIb a /ke
SE v /vd

SE=ke
SE !S↔E" eq, !T↔P" off

III a / +e−*!L−ao"%!v /vd
SE"+ke

SE&, *!L−ao"=1 !S↔E" kin or eq, !T↔P" kin

IIIb a /ke
TP!1−e−*!L−ao"" %!v /vd

SE"+ke
SE& /ke

TP= !1−e−*!L−ao"" !S↔E" kin or eq, !T↔P" kin

IV a /ke
TP ke

TP/%!v /vd
SE"+ke

SE&=e−*!L−ao" !S↔E" kin or eq, !S↔E" eq
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are displayed. In Figs. 3!b" and 3!c", the terrace process be-
comes activated and reaches the equilibrium segregation re-
gime of the step-edge mechanism !regime IIb". Depending
on the magnitude of ke

TP relative to the magnitude of ke
SE, the

segregation ratio will exhibit different behavior. Figure 3!b"
shows the special case when the two values are equal. In this
case, there is no additional segregation regime and the equi-
librium regime IV remains for increasing temperatures. In
Fig. 3!c", ke

TP(ke
SE, and when the terrace-mediated mecha-

nism becomes activated, it pushes the system back into a

kinetically limited regime as shown by the reemergence of
regime III. Once the temperature reaches T*

TP, the system
returns to the equilibrium regime for the terrace process and
returns to regime IV.

In Figs. 3!d" and 3!e", ke
TP-ke

SE and a new regime appears
in the segregation ratio temperature behavior. The onset of
the terrace mediated mechanism for these sample energies
leads to a kinetically limited segregation regime in which the
segregation ratio decreases with respect to increasing tem-
perature as denoted by regime IIIb. This occurs whether the
step mediate process is in an equilibrium segregation regime
%Fig. 3!d"& or a kinetically limited segregation regime %Fig.
3!e"&. Such behavior is opposite that which is expected for
kinetically limited segregation regimes due to an inversion in
the chemical potential difference between T and P. This oc-
curs due to the large concentration of B atoms that convec-
tively flow from S into T. Recall the chemical potential dif-
ference between T and P is given by

$)TP = $)!TP − kBT ln
CT

CP . !56"

When the concentration in T is sufficiently large, the sign
of $)TP will change indicating a change in the direction of
the net driving force on B atoms from T into P. We refer to
this regime as the “chemical potential inversion” regime.
Thus, when the temperature is high enough to allow the ter-
race mediated mechanism to exchange atoms, the net flux
from T into P causes the segregation ratio to decrease as
temperature is increased.

The possibility of a chemical potential inversion regime
indicates that a single measurement of the sign of the slope
in r vs !T" is insufficient to conclusively determine whether
one is in a kinetically limited or equilibrium segregation re-
gime. A more complete data set !e.g., see rate dependence
below" or additional information about the relative energies
would be needed to unambiguously make a determination.
The explicit form for the segregation ratio in this regime is
given in Table I with the appropriate transition conditions
given in Table III.

F. Deposition rate dependence

Figure 4 shows a sample plot of the deposition rate de-
pendence at a fixed temperature for the same parameters
given in Fig. 2. The labelled regimes on the plot directly
correspond to the previously discussed segregation regimes.
The connection is readily apparent in Fig. 5 for which the
temperature dependence is plotted for a variety of growth
rates. One observes that changes in the deposition rate cause
a shift in the transition and activation temperatures. Thus the
segregation regime associated with a fixed temperature !solid
vertical line in Fig. 5" changes due to the effects of growth
rate. The rate at which the transitions occur are given in
Table III with the relevant equation numbers.

At the highest deposition rates !R→"", regime I, there is
insufficient time for the atoms to segregate before becoming
buried by the moving step edge %see Eq. !42"&. This case is
equivalent to the limit T→0 and thus the segregation ratio
r→2a and it is independent of the deposition rate. As the

TABLE II. Energies used for QTP, $)!TP, QSE, and $)!SE in
generating Figs. 2 and 3 along with the temperature-dependent seg-
regation ratio regimes that are present in the plot.

Figure
QTP

!eV"
$)!TP

!eV"
QSE

!eV"
$)!SE

!eV" Regimes

2 1.0 1.0 0.5 0.5 I, II, III, IV
3!a" 1.0 1.0 1.0 1.0 I, III, IV
3!b" 1.5 0.5 0.5 0.5 I, II, IV
3!c" 1.5 1.0 0.5 0.5 I, II, IIb, III, IV
3!d" 1.5 0.4 0.5 0.5 I, II, IIb, IIIc, IV
3!e" 1.5 0.5 0.5 1.0 I, II, IIIb, IV

FIG. 3. Alternate possibilities for temperature-dependent segre-
gation behavior. Dot-dashed lines represent the model with single
!T↔P" transition, dashed line represents the model with single
!S↔E" transition. Roman numerals denote the segregation regimes
listed in Table I. Deposition rate of 1 monolayer/ second, terrace
length of 25ao, and energies given in Table II.
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deposition rate decreases, eventually we reach a transition to
regime II in which the !S↔E" transition occurs fast enough
for impurity atoms to evade the moving step edge, but the
!T↔P" transition is frozen by the motion of the step edge.
This case is equivalent to temperature regime II in which the
!S↔E" transition is activated, but the !T↔P" transition
does not have enough thermal energy to overcome the bar-
rier. The segregation ratio in this regime is given in Eq. !52"
showing a rate dependence of r.R−1.

As the deposition rate is further reduced, we enter regime
III, in which the terrace mediated transitions occur fast
enough for impurity atoms to evade the slowly moving
growth front. In this case, the segregation ratio is given in
Table I with a steeper rate dependence. Finally, at the slowest
growth rates, the system has enough time to reach the equi-
librium segregation regime and we return to the growth-rate-
independent regime IV with r→2a. A full summary of the
segregation ratio behavior as a function of growth rate is
given in Table I.

The transition deposition rates between the regimes can
be determined in a similar fashion as those for the tempera-
ture dependence. The transition between regimes I and II
occurs at the onset of the !S↔E" transition, Ra

SE. As in Eq.
!50", the condition for transition between these regimes is
given by v /vd

SE→1. The equation can be solved for Ra
SE at

fixed temperature,

Ra
SE =

%ao

L
exp)−

QSE

kBT
* . !57"

The conditions for the transitions between II-III and III-IV
given in Eqs. !43" and !55" can similarly be solved for Ra

TP

and r* and are given in Table III.
Additional flux dependence regimes corresponding to the

additional temperature regimes discussed in the previous sec-
tion are possible depending on the barrier height !see Tables
I and III". In regime IIb, the segregation is in the equilibrium
regime and therefore independent of the growth rate.

Interestingly, regime IIIb exhibits a growth rate depen-
dence in which the segregation ratio decreases as the growth
decreases !inset of Fig. 4". Again, this behavior is a result of
the chemical potential inversion which causes a driving force

TABLE III. Equations governing the temperature and deposition rate transition between segregation
regimes. For regime IV, the transition temperature and deposition rate are solutions to the transcendental
functions in the given condition. The given equation numbers refer to the relevant equations in the text. In all
cases, we have assumed L,ao. In regimes IIIb and IV, T* and r* are obtained by solving the given equation.

Regime Transition temperature Transition deposition rate Equations

I T→0 R→"

II Ta
SE=QSE / %kB ln!%a /RL"& Ra

SE= !%ao /L" exp!−QSE /kBT" !50" and !57"

IIb T*
SE= !$)!SE+QSE" / %kB ln!a% /RL"& R*

SE= !%ao /L" exp%−!$)!SE+QSE" /kBT& !53"

III Ta
TP=QTP / %kB ln!% /R"& Ra

TP=% exp!−QSE /kBT" !43"

IIIb %!v /vd
SE"+ke

SE& /ke
TP= !1−e−*!L−ao"" %!v /vd

SE"+ke
SE& /ke

TP= !1−e−*!L−ao""

IV ke
TP / %!v /vd

SE"+ke
SE&=e−*!L−ao" ke

TP / %!v /vd
SE"+ke

SE&=e−*!L−ao" !55"

FIG. 4. General deposition rate behavior for the segregation
ratio. The solid line represents the predictions of this model assum-
ing energies of $)!TP, QTP=1 eV, and $)!SE, QSE=0.5 eV, a tem-
perature of 400 K, and a terrace length of 25ao. The Roman numer-
als label the segregation regimes described in the text and
summarized in Table I. The inset depicts model predictions for the
energies given in Fig. 3!e" at a temperature of 555 K showing the
inverse deposition rate dependence of regime IIIb.

FIG. 5. Temperature dependence of segregation ratio for differ-
ent growth rates. The energies are the same as in Fig. 4. The solid
line indicates the temperature at which the data for Fig. 4 are taken.
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for atoms to bury themselves in region P rather than segre-
gate to region T. Thus, as the rate decreases, atoms have
more time to exchange and move toward region P instead of
segregating toward T.

G. Terrace length dependence

The general behavior of the segregation ratio as a function
of terrace length can be obtained from the expressions for r
given in Table I. The terrace length enters r implicitly
through the step velocity in Eq. !42". One readily observes
that the segregation ratio is independent of the terrace length
in regimes I, IIb, and IV. In regime II, the segregation ratio is
inversely proportional to the step velocity and therefore in-
versely proportional to the terrace length at constant R. This
behavior is expected because only the step-edge-mediated
mechanism is active. Thus an increase in L effectively de-
creases the number of active sites on the surface, thereby
decreasing the overall amount of segregation.

Regime III shows a more complicated dependence on L
!Fig. 6". In this case, we see that at the largest terrace
lengths, the segregation ratio varies inversely with L. As the
terrace length decreases, the segregation ratio levels off and
in fact begins to decrease. The exhibited behavior in regime
III can be understood by realizing that a change in the terrace
length will greatly affect the step-edge contribution to the
segregation behavior while having a much smaller effect on
the terrace-mediated processes. This effect is shown graphi-
cally in Fig. 7 for different terrace lengths. The purely
!T↔P" segregation does not change significantly with L,
whereas the !S↔E" segregation shifts to higher tempera-
tures as L increases. The result of this is that the temperature
range spanned by regime III does not change significantly
with terrace length as it does for the growth rate dependence
!Fig. 4".

Equations !46" and !52" give the segregation ratio for the
individual !T↔P" and !S↔E" transitions in their kinetically
limited regimes. Because * is proportional to 1 /L, the prod-
uct *!L−a0" is independent of L to first order for large L.
Thus, the !T↔P" transition is only slightly affected by
changes in the terrace length in the kinetically limited re-
gime. In contrast, the !S↔E" transition clearly shows 1/L

dependence in the kinetically limited regime. Then in regime
III where both mechanisms are active, the product of their
behavior will follow similar behavior to the !S↔E" transi-
tion for large L. Depending on T*

SE the segregation ratio will
either be independent of L or inversely dependent on L.

To deal with the case of L small !i.e., high miscut", one
needs to further analyze the expression for r in regime III.
Equation !54" can be rewritten with explicit L dependence,

r = a exp) vd
TP

a0R
*exp)−

vd
TP

RL
*) RL

vd
SE + ke

SE*−1

. !58"

For small L, the second exponential factor on the rhs no
longer approaches unity and we observe a decaying expo-
nential behavior with respect to L that dominates the behav-
ior. Therefore, the segregation ratio will decrease as L de-
creases in this regime.

V. COMPARISON TO EXPERIMENT

A. Temperature dependence

Data for the segregation ratio of Sb in Si!001" and P in
Si!001" have been obtained from the literature32,51–53 and are
shown in Figs. 8 and 9. The data for Sb demonstrate the rich
behavior that is possible in real systems, showing multiple
slopes in the kinetically limited regime. The solid line in the
plot shows a good fit of our model to the experimental data
using parameters given in Table IV. Therefore, applying our
previous analysis to the model, we may interpret the appar-
ent anomalous low temperature behavior as the presence of a
step-edge-mediated mechanism that works in parallel with a
terrace mechanism but has a lower activation barrier. This is
consistent with the picture of a step edge on a surface where
an edge atom has to break fewer bonds in comparison to a
terrace atom in order to make an exchange.35

Furthermore, our fit demonstrates that $)!TP-$)!SE.
This indicates that the Sb atoms feel less of a driving force
between two states at a step edge in comparison to atoms in
the mid-terrace, which is again consistent with the bonding
structure at a step edge. Based on the available data, we
consider $)!TP to be a lower limit because we do not have

FIG. 6. Segregation ratio as a function of the terrace length for
energies given in Fig. 4 at 1000/T=2.4.

FIG. 7. Temperature dependence of the segregation ratio for
terrace lengths. The energies are the same as in Fig. 4. The vertical
dashed line represents the temperature plotted in Fig. 6. Subplot of
terrace only %!T↔P"& and step-edge only %!S↔E"& segregation
show effects on individual mechanisms.
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sufficient data in the equilibrium segregation regime. An in-
crease in $)!TP would have the effect of increasing the slope
in regime IV !see Table I" and a shift in the transition tem-
perature toward higher temperatures, neither of which can be
determined from the data.54

The fits obtained through this unified model show signifi-
cant improvement over earlier attempts that employ single
segregation mechanisms.28,32 The dot-dashed line shows a
best fit to the data using the Jorke model !terrace only". In
this case, the model can sufficiently fit the higher tempera-
ture regimes, but insufficiently describes the data at lower
temperatures. In the case of the surface-mediated model of
Nutzel and Abstreiter !dotted line", the model is able to fit
only the low-temperature regime, but is unable to handle the
greater segregation at higher temperatures.

In order to generate the fits of our model to the experi-
mental data, we have used only four free fitting parameters
corresponding to QTP, $)!TP, QSE, and $)!SE, whereas pre-

vious unsuccessful model fits use three28 and two32 fitting
parameters. The values we obtain, 1.9, 1.03, 1.19, and
0.37 eV, respectively, are consistent with previously reported
barrier measurements and calculations for the different seg-
regation mechanisms. Because the unified model is not based
on a detailed kinetic pathway, these energy barriers should be
considered a weighted average over all possible kinetic path-
ways that enable the exchange of atoms between !S↔E" or
!T↔P". First principles calculations are possible to deter-
mine the energies independently, thereby permitting an inde-
pendent method of obtaining and interpreting these energy
values.

It is necessary to make an explicit assumption about the
surface structure in order to input a value for the terrace
length. In all cases we have assumed a fixed terrace length as
a function of time, temperature, and flux. Clearly this may
not be the case, particularly at low temperatures and high
fluxes where layer-by-layer growth is possible. In order to
accommodate a nonconstant terrace length, we can introduce
an explicit temperature and flux dependence to the terrace
length in the model %for example, L. !D /F"n !Refs. 55 and
56"&. Such a process would introduce another arbitrary fitting
parameter as additional information from experiments would
be required to determine the relevant constant. Alternatively,
experiments with detailed STM studies can be used to di-
rectly measure the terrace length.57

The fitting behavior for phosphorous shows similar re-
sults. Previous models are unable to fit the data across the
available temperature regimes. For instance, the terrace-
mediated model is able to fit the low-temperature regime, but
requires the input of nonphysical energies !0.1 eV" and at-
tempt frequencies !26.5". Similarly, the NA model is able to
fit the low-temperature data, but does not predict a transition
to equilibrium segregation and is unable to describe the high-
temperature regimes. Based on the fit from our unified
model, the onset of the terrace-mediated mechanism is much
more slight in comparison to the Sb case and rapidly pro-
ceeds into the equilibrium regime. It is interesting to note
that the activation barrier energies QTP and QSE are almost
the same as those in the Sb case whereas $)!TP and $)!SE

are quite different !Table IV".
It appears that for Si!001", the barrier heights do not vary

markedly among the segregating species. This may indicate

TABLE IV. Parameters used for generating data fits from
model

Fitting parameters
QTP

!eV"
$)!TP

!eV"
QSE

!eV"
$)!SE

!eV"

Sb in Si!001" 1.9 1.03 1.19 0.37
P in Si!001" 2.0 0.61 1.17 0.48

Fixed parameters
ao !cm" a !cm" L R % !s−1"

)monolayer
second

*
5.432/10−8 1.358/10−8 25ao 1 1/1013

FIG. 8. Fit of temperature-dependent segregation ratio for Sb in
Si!001". The symbols represent experimental data obtained from
Refs. 51–53. Fitting parameters for J model !Ref. 28" are EA
=1.78 eV, EI=1.2 eV, and %=2/1012 s−1. Fitting parameters for
NA model !Ref. 32", are Eseg=0.75 eV, $o=2 cm, and %=1.6
/1014 s−1. Fitting parameters for the current model are given in
Table IV. Dashed lines labeled S-E and T-P represent single !S↔E"
and !T↔P" transitions.

FIG. 9. Fit of temperature-dependent segregation ratio for P in
Si!001". The symbols represent experimental data obtained from
Ref. 32. Fitting parameters for J model !Ref. 28" are EA=0.1 eV,
EI=1.0 eV, and %=26.5 s−1. Fitting parameters for NA model !Ref.
32" are Eseg=0.66 eV, $o=0.8 cm, and %=1.6/1014 s−1. Fitting
parameters for the current model are given in Table IV. Dashed
lines labeled S-E only and T-P only represent the single !S↔E" and
!T↔P" transitions.
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the dominance of a particular kinetic pathway that is the
same for both segregating species. In contrast, the P has a
very different energy well depth near the surface compared
to Sb, which should be expected due to differences in both
chemistry and size.

B. Flux dependence

The flux dependence at constant T has been measured for
Sb and P in Si!001" !Ref. 32" and plotted in Figs. 10 and 11.
The solid lines in the figures represent the prediction of the
model using the temperature given in literature and assuming
the same terrace length as in Figs. 8 and 9. In both cases, the
comparison is favorable in light of the fact that we have not
introduced any additional fitting parameters to the model. All
parameters were determined from fitting the temperature de-
pendence as given in Table IV.

We believe the systematic deviation of the predicted be-
havior from the experimental data is due to the assumption in
the model calculations of a fixed terrace length for all depo-

sition fluxes. Based on the analysis of temperature depen-
dence of segregation of both P and Sb, we place the experi-
ments in the kinetically limited regime of the step-edge-
mediated process, regime II. Thus we expect that changes in
the terrace length with increasing deposition flux will affect
the segregation ratio. If we assume a scaling behavior in
which the average terrace length decreases with the nth
power of deposition flux,55 then the magnitude of the slope
of the model curves in Figs. 10 and 11 decreases and brings
the model curves more in line with the experimental mea-
surements. This is demonstrated by the dashed curves in
these figures where we have assumed the relationship L
.R−1/3 !Ref. 56". However, in the absence of any informa-
tion about the actual terrace lengths in the experimental
samples, we view this agreement as encouraging but tenta-
tive.

VI. SUMMARY

We have developed a unified kinetic model for segrega-
tion that incorporates parallel mechanisms for segregation at
the step edge and throughout the terrace. We start with a
fundamental description of mass transport, Eqs. !9"–!14",
and simplify the system using a reasonable set of assump-
tions and assertions. The result is an analytic form for the
segregation ratio given by Eqs. !39" and !35". The four ad-
justable parameters in the model represent the segregation
energies and activation barriers at the step edge and in the
terrace.

The temperature dependence of the segregation ratio ex-
hibits a transition between kinetically limited and equilib-
rium segregation regimes. Additional temperature regimes
are identified, depending on the relative magnitudes of the
four energy parameters. The model further predicts the de-
pendence of the segregation ratio on growth rate and miscut
angle.

The model readily accounts for the anomalous low-
temperature segregation behavior observed for Sb in Si!001"
as well as the more typical behavior of P in Si!001". The
energies and preexponential factors used in the successful
fits, tabulated in Table IV, are consistent with previously
reported values. We attribute the low-temperature behavior
to the onset, with increasing temperature, of a lower activa-
tion energy step-edge-mediated process that becomes over-
whelmed by terrace-mediated processes at higher tempera-
tures. The same parameters are used to calculate the growth
rate dependence of the segregation ratio without any fitting,
resulting in a good agreement with experiment. Additional
experiments or first principles calculations are possible to
determine the energies independently, thereby permitting a
reduction in the number of free fitting parameters needed to
model the experimental data.

Although the model has been ostensibly developed to de-
scribe experimental results in Si-based systems, the phenom-
enology and mechanisms are of sufficient generality that
they are applicable to other group IV and III-V semiconduc-
tors, as well as to segregating metal systems. These analytic
results can be used to gain physical insight into the segrega-
tion behavior in real systems as well as to account quantita-
tively for experimental data.

FIG. 10. Fit of deposition-flux-dependent segregation ratio for
Sb in Si!001". The symbols represent experimental data obtained
from Ref. 32. Parameters were fixed to those of Table IV. Best fit
values were obtained for 1000/T=1.69. Dashed line represents fit
using the same parameters but allowing the terrace length to vary as
the deposition rate, L.R−1/3.

FIG. 11. Fit of deposition-flux-dependent segregation ratio for P
in Si!001". The symbols represent experimental data obtained from
Ref. 32. Parameters were fixed to those of Table IV. Best fit values
were obtained for 1000/T=1.58. Dashed line represents fit using
the same parameters but allowing the terrace length to vary as the
deposition rate, L.R−1/3.

UNIFIED KINETIC MODEL OF DOPANT SEGREGATION… PHYSICAL REVIEW B 72, 195419 !2005"

195419-13



ACKNOWLEDGMENTS

The authors thank I. Berbezier for helpful conversations.
Research at Harvard was supported by NSF-DMR-0306997
and at Princeton under internal funding.

APPENDIX A: TREATMENT OF EXTENDED STEP EDGE
REGION

We recall the initial set of kinetic equations for the model
%Eqs. !9"–!14"& and note the similarity between pairs of equa-
tions for T,P and S,E before making the assumption that the
step-edge region is limited to a single atomic spacing. Then
the generalization to an extended step-edge region is readily
accomplished by noting that the steady-state equations for
regions S and E %Eqs. !25" and !26"& become identical to
those for T and P given in Eqs. !23" and !24" with the ap-
propriate changes in superscript. Under these assumptions,
the steady-state solutions for concentration are solved as be-
fore to yield

CS!x"
Cbulk

= ASe−*!x + BS, !A1"

CT!x"
Cbulk

= ATe−*x + BT, !A2"

CE!x"
Cbulk

= − ASe−*!x + ke
SEBS, !A3"

CP!x"
Cbulk

= − ATe−*x + ke
TPBT. !A4"

Equations !A2" and !A4" are identical to Eqs. !30" and !29"
from Sec. III C, with

* =
vd

TP

vao
!1 + ke

TP" , !A5"

*! =
vd

SE

vao
!1 + ke

SE" . !A6"

The unknown constants, AS, BS, AT, and BT, are solved by
applying the boundary conditions of concentration continuity
between regions,

CS!w" = CT!w" , !A7"

CT!L" = CE!0" , !A8"

CE!w" = CP!w" , !A9"

CS!0" = CBulk, !A10"

where w is the width of the step-edge region. The last bound-
ary condition arises from the fact that Cinc=CBulk. We solve
this set of simultaneous equations to find

AS =
e−*!L−w"!ke

SE − ke
TP" − !1 − ke

SEke
TP"

e−*!L−w"%ke
SE − ke

TP + e−*!w!1 + ke
TP"& + ke

TP!1 + ke
SE"

,

!A11"

BS =
!1 + e−*!L−w"−*!w"!1 + ke

TP"

e−*!L−w"%ke
SE − ke

TP + e−*!w!1 + ke
TP"& + ke

TP!1 + ke
SE"

,

!A12"

AT = e*w e−*!w!1 − ke
SEke

TP" + !ke
SE − ke

TP"

e−*!L−w"%ke
SE − ke

TP + e−*!w!1 + ke
TP"& + ke

TP!1 + ke
SE"

,

!A13"

BT =
!1 + e−*!L−w"−*!w"!1 + ke

SE"

e−*!L−w"%ke
SE − ke

TP + e−*!w!1 + ke
TP"& + ke

TP!1 + ke
SE"

.

!A14"

Then the segregation ratio can be determined from the
surface excess by Eq. !8". The surface excess is obtained
from Eq. !36",

!

Cbulk
=

a

L
%wBS!1 + ke

SE" + !L − w"BT!1 + ke
TP"& − 2a .

!A15"

However, we recognize from Eqs. !A12" and !A14",

BS = BT1 + ke
TP

1 + ke
SE , !A16"

which allows us to obtain the segregation ratio,

r = a!1 + ke
TP"BT. !A17"

This result is identical to the segregation ratio derived in Eq.
!39" with the substitution of BT for B.

APPENDIX B: TREATMENT OF ADATOM LAYERS
M AND R

In this appendix, we show that sufficient conditions for
the adatom region to not contribute significantly to the over-
all surface excess of Eq. !36" are that the system is dilute
everywhere, there are no vertical exchange events between
surface and adatom states, and impurity adatoms are ener-
getically unfavorable. Consider the time-dependent concen-
trations in the regions M and R which are described by Eqs.
!13" and !14". Given the assumption that there is no vertical
exchange between regions S and M or between T and R, J&'

is zero and we can rewrite the equations,

!CR

!t
= DR!2CR

!x2 − v
!CR

!x
− CRkR,evap +

fF

aao
2 , !B1"

!CM

!t
= DM !2CM

!x2 − v
!CM

!x
− CMkM,evap +

fF

aao
2 . !B2"

As both equations are identical except for the superscripts
denoting the region, we express the equations with the su-
perscript ad to denote the adatom region which can be either
M or R. Then the following equations represent the solutions
for either M or R depending on the spatial coordinate x. For
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00x(w, ad=M and w(x0L, ad=R. In steady state the
differential equations become

0 = Dadd2Cad

dx2 − v
dCad

dx
− Cadkad,evap +

fF

aao
2 . !B3"

This equation is readily solved to give

Cad!x" = C1
adem1

adx + C2
adem2

adx +
fF

aao
2 , !B4"

where C1
ad and C2

ad are constants of integration and

m1,2
ad =

1
2
- v

Dad ±.) v
Dad*2

+ 4
kad,evap

Dad / .

The constants of integration are found by applying the
appropriate boundary conditions of continuity in both con-
centration and flux at x=w and no step-climb flux !i.e., R
→M" across the boundary at x=0. For the fourth boundary
condition, we assume no diffusive flux at the boundary x
=L. These conditions result in the boundary equations,

CM!w" = CR!w" , !B5"

dCM

dx
!w" =

dCR

dx
!w" , !B6"

dCM

dx
!0" =

v
DM CM!0" , !B7"

dCR

dx
!L" = 0, !B8"

a discussion of which is deferred to the end of this appendix.
In order to prove the contribution of the adatom region to

the segregation length is small in comparison to that of the
other regions, we look at the equation for the individual con-
tribution from the adatom region to the segregation ratio,

rad =

a

L
$

0

L

Cad!x"dx

Cbulk
. !B9"

Without solving the integral, we can rewrite the equation
as

rad =
aCad

Cbulk
, !B10"

where Cad is the average value of Cad!x" as defined by the
mean value theorem. However, by definition of average
value, if Cad!x" is a monotonically increasing function,
Cad!0"(Cad(Cad!L".

Cad!L"=Cinc due to our assumptions and Cinc=Cbulk be-
cause we are in steady state, thus rad will always be less than
a. However, from Secs. IV A and IV B, for all temperatures,

r12a. Therefore, the contribution of the adatom region to
the overall segregation length will be small.

It remains to prove that Cad!x" is a monotonically increas-
ing function. This is done by solving the set of equations
using the boundary conditions and taking the first derivative.
Because the extent of region M is small relative to R !w
+L, see Appendix A", we include the proof for region R.
The proof for region M follows similarly. Solving Eq. !B4"
subject to the boundary conditions yields

CR!x" = C!m2
Rem2

RL+m1
Rx − m1

Rem1
RL+m2

Rx" +
fF

aao
2 , !B11"

where C is a positive constant. We take the first derivative
and simplify the equation by substituting back in for m1 and
m2 to obtain

dCR!x"
dx

= C
kR,evap

DR exp)v!L + x"
2DR *

/2 sinh)L − x

2
. v2

!DR"2 +
4kR,evap

DR * . !B12"

However, for D(", all the terms in the above equation are
greater than zero so

dCad!x"
dx

- 0, !B13"

and hence Cad!x" is a monotonically increasing function.
In defining the boundary conditions %Eqs. !B5"–!B8"& we

have assumed that there is no lateral exchange between re-
gions !R" and !S", and no step climbing mechanisms that
enable impurity atoms to remain in an adatom state without
attaching to a step edge. It is conceivable that arbitrary ex-
perimental conditions could yield either or both of these phe-
nomena. Although the kinetic barriers and mechanisms are
different, the net result of either is to change the relation
between CR!L" and Cinc. In either case, there will be a
velocity-dependent partition coefficient21 that establishes a
concentration discontinuity between !R" and !S", $CR, lead-
ing to Cinc=CR!L"−$CR.

Our proof remains valid provided rad(r. Therefore, this
condition becomes

$CR (
CR!L"!r − a"

r
. !B14"

Because r12a for all temperatures, this inequality can be
used to find that if $CR(CR!L" /2, our assertion is valid and
regions !M" and !R" may be ignored. Typically, we expect
that an impurity atom is more stable energetically in S than
in R, in which case $CR should be small enough for this
condition to hold. However, there could be systems in which
the impurity has such large repulsive interactions with the
host that the adatom state is energetically preferred to the
step-edge state. This condition could be violated in such sys-
tems.
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