

Principals in Programming Languages: A Syntactic Proof
Technique

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Zdancewic, Steve, Dan Grossman, and Greg Morrisett. Principals
in programming languages: A syntactic proof technique. In ICFP
'99: Proceedings of the ACM SIGPLAN International Conference
on Functional Programming (ICFP '99), Paris, France, September
27-29, 1999, ed. ICFP 1999, 197-207. ACM SIGPLAN Notices
34, no. 9. New York, N.Y.: Association for Computing
Machinery.

Published Version http://doi.acm.org/10.1145/317636.317799

Accessed February 17, 2015 5:00:40 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2920217

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH

https://core.ac.uk/display/28930677?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/2920217&title=Principals+in+Programming+Languages%3A+A+Syntactic+Proof+Technique
http://doi.acm.org/10.1145/317636.317799
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2920217
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Principals in Programming Languages: A Syntactic Proof Technique

Steve Zdancewic Dan Grossman Greg Morrisett ∗

Department of Computer Science
Cornell University

Abstract

Programs are often structured around the idea that different
pieces of code comprise distinct principals, each with a view
of its environment. Typical examples include the modules
of a large program, a host and its clients, or a collection of
interactive agents.

In this paper, we formalize this notion of principal in
the programming language itself. The result is a language
in which intuitive statements such as, “the client must call
open to obtain a file handle,” can be phrased and proven
formally.

We add principals to variants of the simply-typed λ-
calculus and show how we can track the code corresponding
to each principal throughout evaluation. This multiagent
calculus yields syntactic proofs of some type abstraction
properties that traditionally require semantic arguments.

1 Introduction

Programmers often have a notion of principal in mind when
designing the structure of a program. Examples of such
principals include modules of a large system, a host and
its clients, and, in the extreme, individual functions. Di-
viding code into such agents is useful for composing pro-
grams. Moreover, with the increasing use of extensible sys-
tems, such as web browsers, databases [6], and operating
systems [7, 3, 2], this notion of principal becomes critical
for reasoning about potentially untrusted agents interfacing
with host-provided code.

In this paper, we incorporate the idea of principal into
variants of the simply-typed λ-calculus. Doing so allows
us to formalize statements about agent interaction, for in-
stance, a client must call open to obtain a file handle. As
a motivating example, we consider the problem of type ab-
straction in extensible systems.

∗This material is based on work supported in part by the AFOSR
grant F49620-97-1-0013, ARPA/RADC grant F30602-1-0317, and Na-
tional Science Foundation Graduate Fellowships. Any opinions, find-
ings, and conclusions or recommendations expressed in this publica-
tion are those of the authors and do not reflect the views of these
agencies.

(* File handle implemented as int *)
abstype fh
open : string → fh
read : fh → char

Figure 1: Abstract interface for file handles

Consider a host-provided interface for an abstract type
of file handles, fh, and operations to create and use them
(Figure 1). The principals in this scenario are the host im-
plementation of the interface and its clients. Each principal’s
“view of the world” corresponds to its knowledge regarding
fh. In particular, the host knows that fh = int, while clients
do not.

The conventional wisdom is that the use of abstract
datatypes in a type-safe language prevents agents from di-
rectly accessing host data. Instead, a client may only ma-
nipulate such data via a host-provided interface. To for-
malize this wisdom, it is necessary to prove theorems that
say, “agent code cannot violate type abstractions provided
by the host.” For instance, a client should not be able to
treat an object of type fh as though it were an integer, even
though the host implements it that way.

How do we prove such properties? One way of phrasing
the result is to say that the agent behaves parametrically
with respect to the type fh. Using this observation, we can
encode the agent program in a language like Girard’s Sys-
tem F [5], the polymorphic λ-calculus [18] (see Figure 2).
Here, the type fh is held abstract by encoding the agent as
a polymorphic function. We can then appeal to Reynolds’
parametricity results [19] to conclude that the agent respects
the host’s interface.

Λfh.λhost : {open : string → fh, read : fh → char}.
agent code

Figure 2: Polymorphic λ-calculus agent encoding

Unfortunately, these representation independence results
are proven using semantic arguments based on a model of
the language (see Mitchell’s work [11], for example). We
are unaware of any similar results for languages including
multiple features of modern languages, such as references,

recursive types, objects, threads, and control operators.
Our calculus circumvents this problem by syntactically

distinguishing between agents with different type informa-
tion. We do this by “coloring” host code and client code
with different colors and tracking how these colors inter-
mingle during evaluation. By using different semantics for
each principal, we force the client to respect the abstract
types provided by the host. This separation of principals
provides hooks that enable us to prove some type abstrac-
tion properties syntactically.

To see why these new mechanisms are useful, consider
the evaluation of our agent code when “linked” against a
host implementation. As Figure 3 shows, linking is encoded
as application. In one step of the standard operational se-
mantics, the host-type is substituted throughout the agent
code. It is impossible to talk about the type fh remaining ab-
stract within the client because fh is replaced by int. After a
second step, host code is substituted throughout agent code
and all distinctions between principals are lost.

τh = {open : string → fh, read : fh → char}

(Λfh.λhost : τh.agent code) int host code
7−→ (λhost : {int/fh}τh.{int/fh}agent code) host code
7−→ {host code/host}{int/fh}agent code

Figure 3: “Linking” agent code

The next section describes a two-agent setting sufficient
for proving interesting properties about the file handle ex-
ample. It then discusses how to include more advanced lan-
guage features, such as recursive types and state. Section
3 introduces a multiagent calculus which provides for mul-
tiple agents and abstract types. We then revisit the safety
properties and language extensions of Section 2. The final
sections conclude with related work and other potential uses
for principals in programming languages.

2 The Two-agent Language

2.1 Syntax

This section describes a variant of the simply-typed λ-
calculus with two principals, an agent and a host. The lan-
guage maintains a syntactic distinction between host and
agent code throughout evaluation. The host exports one
abstract type, t, implemented as type τh.

τ ::= t | b | τ → τ ′

A ::= xa | c | λxa:τ. A | A A′ | pxHqyτ
h

Â ::= c | λxa:τ. A | pxĤqyth

H ::= xh | c | λxh:τ. H | H H ′ | pxAqyτ
a

Ĥ ::= c | λxh:τ. H

Figure 4: Two-agent Syntax

Figure 4 gives the syntax for the two-agent calculus.

Types, τ , include a base type, b, the host’s abstract type,
t, and function types. The terms of the language are agent

terms, A, agent values, Â, host terms, H , and host values,

Ĥ . The metavariable xa ranges over agent variables which
are disjoint from host variables, ranged over by xh. The
metavariable c ranges over values of base type.

It is helpful to think of terms generated by A and H as
having different colors (indicated by the subscripts a and h
respectively) that indicate to which principal each belongs.
As observed in the introduction, agent and host terms mix
during evaluation. To keep track of this intermingling, agent
terms contain embedded host terms of the form pxHqyτ

h. Intu-
itively, the brackets delimit a piece of h-colored code, where
H is exported to the agent at type τ . Dually, host terms
may contain embedded agents.

The type annotations on the embeddings keep track of
values of type t during execution. In particular, a host term
of type τh may be embedded in an agent term. If the an-
notation is t, then the agent has no information about the
form of the term inside the embedding. Thus, an embedding
with annotation t containing a host value is an agent value.

A good intuition for the semantics is to imagine two
copies of the simply-typed λ-calculus augmented with a new
type t. In the agent copy, t is abstract, while in the host
copy, we have t = τh. Because the host has more knowledge,
there is an asymmetry in the language. In the semantics,
this asymmetry manifests itself in rules in which the host
refines t to τh.

2.2 Notation

Before describing the semantics, we define some convenient
notions. Let e range over both agent and host terms, and
let ê range over both agent and host values. The color of e is
a if e is an A term; otherwise e’s color is h. Note that both
terms in a syntactically well-formed application are the same
color. Since the host and agent terms share some semantic
rules, we use polychromatic rules to range over both agent
and host terms. The intention is that all terms mentioned
in a polychromatic rule have the same color, and the rule is
short-hand for two analogous rules, one for each color.

We write {e′/x}e for the capture-avoiding substitution
of e′ for x in e. Terms are equal up to α-conversion, where
substituted variables are of the same color. We also define
substitution on types, written {τ ′/t}τ . Intuitively, we use
the substitution {τh/t}τ to produce the host’s view of τ .

We say an agent term is host-free if it contains no em-
beddings (and similarly for agent-free host terms).

2.3 Dynamic Semantics

Figure 5 describes a small-step operational semantics for the
two-agent calculus. The polychromatic rules are the same
as for the simply-typed, call-by-value λ-calculus. The other
rules handle embeddings.

Rules (A1) and (H1) allow evaluation to proceed within
embeddings. Inside embeddings, the rules for the opposite
color apply. These “context switches” ensure that terms
evaluate in the appropriate context for their color. If an
embedded value is exported to the outer principal at type b,
the outer agent can strip away the embedding and use that
value (rules (A2) and (H2)).

Rules (A3) and (H3) maintain the distinction between
agent and host code. For example, suppose the agent con-
tains a host function that is being exported at type τ ′ → τ ′′.

Polychrome Steps (P1) e e′ 7−→ e′′ e′ if e 7−→ e′′

(P2) ê e′ 7−→ ê e′′ if e′ 7−→ e′′

(P3) (λx:τ. e) ê 7−→ {ê/x}e
Agent Steps (A1) pxHqyτ

h 7−→ pxH ′qyτ
h if H 7−→ H ′

(A2) pxcqyb
h 7−→ c

(A3) pxλxh:τ. Hqyτ ′→τ ′′
h 7−→ λxa:τ ′. px{pxxaqy

τ
a/xh}Hqyτ ′′

h

Host Steps (H1) pxAqyτ
a 7−→ pxA′qyτ

a if A 7−→ A′

(H2) pxcqyb
a 7−→ c

(H3) pxλxa:τ. Aqyτ ′→τ ′′
a 7−→ λxh:{τh/t}τ ′. px{pxxhqy

τ
h/xa}Aqyτ ′′

a

(H4) pxpxĤqythqy
τh
a 7−→ Ĥ

Figure 5: Two-agent Dynamic Semantics

In this case the agent does know that the embedding con-
tains a function, so the agent can apply it to an argument of
a suitable type. If instead the function had been exported
at type t, the agent would not have been able to apply it.
The subtlety is that the host type of the function may be
more specific than the agent type, such as when τ ′ = t.

Thus, (A3) converts an embedded host function to an
agent function with argument of type τ ′. The body of the
agent function is an embedding of the host code, except
that, as the argument now comes from the agent, every oc-
currence of the original argument variable, xh, is replaced
by an embedding of the agent’s argument variable, pxxaqy

τ
a.

This embedding is exported to the host at type τ , the type
the host originally expected for the function argument. The
rule for hosts, (H3), is symmetric, except that because the
host may use t as τh, occurrences of t in the host function’s
type annotation are replaced by τh.

The final rule, (H4), allows the host to “open up” an
agent value that is really an embedded host value. This
allows the host to recover a value that has been embedded
abstractly in the agent.

The crucial point is that any attempt by the agent to
treat a value of type t as a function will lead to a stuck
configuration (no rule will apply). More generally, we ensure
that any configuration in which an abstract value appears in
an “active position” is stuck. This fact, along with the stuck
configurations of the simply-typed λ-calculus, is enough to
prove the safety properties of Section 2.6.

2.4 Static Semantics

Figure 7 describes the static semantics for the two-agent
calculus. The typing context, Γ, maps variables (of either
color) to types. The polychromatic rules are standard, as is
the introduction rule for agent functions. For host functions,
the only difference is that t is not allowed to appear in the
annotation for the argument to a function. Since the host
knows that t = τh, this does not limit expressiveness. The
convenient effect of this side condition is that types of host
terms never contain t. The presence of t would complicate
other rules such as (var) and (app), as well as the statement
of Preservation, because additional type refinement would

be necessary.
The interesting typing rules are those for embeddings.

Rule (HinA) says that an embedded host term, H , exported
to the agent at type τ (which may contain occurrences of
t) has type τ if the host is able to show that the “actual”
type of H is {τh/t}τ . In other words, the host may hide type
information from the agent by replacing some occurrences of
τh with t in the exported type. The rule for agents embedded
inside of host terms, (AinH), is dual in that the host refines
the types provided by the agent.

2.5 Examples

We now give two examples of program evaluation in the
two-agent calculus. Returning to our file handle example,
let t = fh and τh = int.

Figure 6 shows the agent obtaining a file handle through
a host interface. For simplicity, only the host’s open function
is provided to the agent. The host implementation, ho, takes
in a string and produces an integer representing a file handle.
This code is embedded inside the agent at the more abstract
type string → fh.

(λopena:string → fh. opena “myfile”)

pxλsh:string. ho(sh)qystring→fh
h

(1) (λopena:string → fh. opena “myfile ′′)

λsa:string. pxho(pxsaqy
string
a)qyfhh

(2) 7−→ λsa:string. pxho(pxsaqy
string
a)qyfhh “myfile ′′

(3) 7−→ pxho(px“myfile ′′qystring
a)qyfhh

(4) 7−→ pxho(“myfile ′′)qyfhh

(n) 7−→∗ px3qyfhh

Figure 6: Agent calling open

Step (1) uses (A3) to convert the embedded host func-
tion to an agent function. Note that the new variable, sa, is

Polychrome Rules

(var) Γ ` x : Γ(x) (const) Γ ` c : b (app)
Γ ` e : τ ′ → τ Γ ` e′ : τ ′

Γ ` e e′ : τ

Agent Rules

(HinA)
Γ ` H : {τh/t}τ
Γ ` pxHqyτ

h : τ
(Afn)

Γ[xa : τ ′] ` A : τ

Γ ` λxa:τ ′. A : τ ′ → τ

Host Rules

(AinH)
Γ ` A : τ

Γ ` pxAqyτ
a : {τh/t}τ (Hfn)

Γ[xh : τ ′] ` H : τ

Γ ` λxh:τ ′. H : τ ′ → τ
(t 6∈ τ ′)

Figure 7: Two-agent Static Semantics

embedded in the host as an agent term. Step (2) is a stan-
dard β-reduction. Step (3) is another β-reduction, passing
in the string “myfile”. Step (4) uses (H2) to extract the
string from the embedding. At this point, the host function
ho is applied to a host value. Repeated use of (A1) allows
the host function to proceed. We assume that ho returns
3 when applied to “myfile”. This result, embedded within
the agent code at type fh, is an agent value.

pxλhandleh:int. hr(handleh)qyfh→char
h px3qyfhh

(1) 7−→ λhandlea:fh. pxhr(pxhandleaqy
int
a)qychar

h px3qyfhh

(2) 7−→ pxhr(pxpx3qyfhh qyint
a)qychar

h

(3) 7−→ pxhr(3)qychar
h

(n) 7−→∗ px′A′qychar
h

7−→ ′A′

Figure 8: Agent calling read

The second example (Figure 8) illustrates the agent call-

ing the host’s read function, passing in the file handle px3qyfhh .
The host code for read is embedded in the agent and ex-
ported at the type, fh → char. (We omit the linking steps
for brevity.) The body of the host function is hr, a host term
taking an integer representing a file handle and returning an
integer read from that file.

In step (1), the agent extracts the host function via rule
(A3). The type of the argument handlea is abstract in the
agent, so the type annotation is changed to fh. The second
step is a β-reduction. At this point, evaluation continues
via (H4), which in step (3) allows the embedded host code
to extract the integer 3, held abstract by the agent, as a
regular value. The application hr(3) proceeds as usual, until
the host computes the character read from the file. At last,
since this embedded character is exported to the agent as
such, rule (A2) produces the value ′A′.

2.6 Safety Properties

In this section, we explore properties of the two-agent cal-
culus including soundness and some type abstraction theo-
rems. Sketches of the proofs are deferred as they are corol-

laries to the corresponding proofs in Section 3.5. These
properties are not intended to be as general or as “realis-
tic” as possible. Rather, they convey the flavor of some
statements that are provable using syntactic arguments.

The following lemmas establish type soundness:

Lemma 2.1 (Canonical Forms) Assuming ∅ ` ê : τ ,
if τ =

• b, then ê = c for some c.

• τ ′ → τ ′′, then ê = λx:τ ′. e′ for some x and e′.

• t, then ê = pxĤqyth for some Ĥ of type τh.

Lemma 2.2 (Preservation) If ∅ ` e : τ and e 7−→ e′

then ∅ ` e′ : τ .

Lemma 2.3 (Progress) If ∅ ` e : τ , then either e is a
value or there exists an e′ such that e 7−→ e′.

Definition 2.4 (Stuck Terms) A term e is stuck if it is
not a value and there is no e′ such that e 7−→ e′.

Theorem 2.5 (Type Soundness) If ∅ ` e : τ then there
is no stuck e′ such that e 7−→∗ e′.

Given a term, if we ignore the distinction between col-
ors, erase the embeddings, and replace t with τh, we have
a simply-typed λ-calculus term. Formally, Figure 9 defines
the erasure of a two-agent term. (All rules are polychro-
matic.) The following lemma states that erasure commutes
with evaluation.

Lemma 2.6 (Erasure) Let e be any two-agent term such
that ∅ ` e : τ . Then e 7−→∗ ê iff erase(e) 7−→∗ erase(ê).

The interesting fact is that the erasure of rule (A3) is
basically λx:τ. e 7−→ λx′:τ. {x′/x}e. The two terms are α-
equivalent.

With soundness and erasure established, we re-examine
the abstraction properties of the introduction. Since the
host is always capable of providing information to the agent,
we are particularly interested in evaluations where we as-
sume the host does not do so. Toward this end, we define
host-free to describe an agent term which has no host terms
embedded in it.

One desirable property of the file handle interface is that
the agent never breaks the type abstraction for file han-
dles. For example, if ∅ ` handle : fh, ∅ ` λf:fh. A : τ , and A

erase(x) = x
erase(c) = c

erase(λx:τ. e) = λx:{τh/t}τ . erase(e)
erase(e e′) = erase(e) erase(e′)

erase(pxeqyτ
i) = erase(e)

Figure 9: Two-agent erase translation

is host-free, then (λf:fh. A) handle never steps to a context
where handle is treated as an integer. This property is a
corollary of type soundness.

Another property is that the agent is oblivious to the
particular choice of integers used by the host to represent a
given file handle. More formally:

Theorem 2.7 (Independence of Evaluation)

If pxĤqyfhh and pxĤ ′qyfhh are well-typed, A is host-free, and
∅ ` λfa:fh. A : fh → b, then:

(λfa:fh. A) pxĤqyfhh 7−→∗ c
iff

(λfa:fh. A) pxĤ ′qyfhh 7−→∗ c

The proof strengthens the claim to a step-by-step evalu-

ation correspondence when using Ĥ and Ĥ ′:

Lemma 2.8 (Value Abstraction) Let Ĥ and Ĥ ′ be host
values of type τh. If A is host-free, [xa : fh] ` A : τ , and

{pxĤqyfhh /xa}A is not a value, then there exists a host-free
term A′ such that:

• [xa : fh] ` A′ : τ

• {pxĤqyfhh /xa}A 7−→ {pxĤqyfhh /xa}A′

• {pxĤ ′qyfhh /xa}A 7−→ {pxĤ ′qyfhh /xa}A′

The embeddings also enable us to track expressions of
the abstract type during evaluation, thus allowing us to for-
malize a third property: the agent must have called open to
obtain a file handle.

Theorem 2.9 (File handles come from open) Suppose
(λopena:string → fh. A) is well-typed and A is host-free. If
the application of (λopena:string → fh. A) to

pxλsh:string. ho(sh)qystring→fh
h steps to some term A′

containing pxĤqyfhh as a subterm, then Ĥ was derived from a

sequence of the form ho(s) 7−→∗ Ĥ.

The proof shows that (after one step) every host embed-
ding has as its inside term either an application of ho or an
intermediate result of such an application.

2.7 Extending the Language

The two-agent calculus lacks many features found in realistic
programming languages, but our embedding approach scales
to handle many additions.

It is straightforward to add standard type constructors
such as products, records, sums, etc. The static semantics

τ ::= . . . | α | µα.τ
H ::= . . . | rollµα.τ H | unrollµα.τ H

Ĥ ::= . . . | rollµα.τ Ĥ

pxrollµα.τ Âqyµα.τ
a 7−→ rollµα.{τh/t}τ pxÂqy

{µα.τ/α}τ
a

Figure 10: Adding recursive types

are standard, while the dynamic semantics, in addition to
the usual rules, also include means of propagating embed-

dings. For example, px(Â, Â′)qyτ×τ ′
a 7−→ (pxÂqyτ

a, pxÂ′qyτ ′
a).

Recursive types also pose no problems. The necessary
additions and an example host dynamic step are shown in
Figure 10. (The agent rule is similar.) Our type abstraction
results carry through even in this setting.

Adding state is more subtle. A rigorous treatment of
references appears in the companion technical report [25].
We have proven soundness, as well as stateful analogues of
the abstraction theorems presented here.

The key issue is how to facilitate the sharing of heap val-
ues between the host and agent. Our approach assigns (pos-
sibly abstract) types to heap locations and records which
agent last assigned to a location. An ensuing dereference
by the other agent produces an embedded term. All of this
extra information can be erased, so the target language of
erasure is a standard language with references. An interest-
ing technical issue is that it is unsound for the host to export
a t ref value at type τh ref. Therefore, the definition of type
substitution is modified so as not to perform substitution
under the ref constructor.

Restating the type abstraction properties to account for
the heap is somewhat trickier, since we must preclude the
possibility that the host leaks information to the agent
through a shared reference. Essentially, the notion of
host-free must be extended to account for terms reachable
through references.

With references and recursive types, we expect that our
results could be extended to handle threads in the style of
those in Reppy’s doctoral thesis [17]. Such scalability is due
to the similarity of our proofs to standard subject-reduction,
as popularized by Wright and Felleisen [24]. Namely, a
property of interest is shown to be invariant during eval-
uation. Although these syntactic techniques yield weaker
results than semantic accounts of parametricity, they are
useful in practice because we do not have to build a model
containing recursive types, references, and threads.

3 The Multiagent Language

So far, we have described a simple two principal setting in
which the host has strictly more information than the agent.
Many interesting cases can be modeled in this fashion, but
there are times when both principals wish to hide informa-
tion or there are more than two agents involved. For exam-
ple, we need a multiagent setting to prove safety properties
about nested or mutually recursive abstract datatypes.

Another natural generalization is to allow an agent to
export multiple abstract types, and, once that has been in-
troduced, agents should be able to share type information.

(types) τ ::= t | b | τ1 → τ2

(labels) `i ::= i | `i : `j

(i-terms) ei ::= xi | c | λxi:τ. ei | ei e′i
| fix fi(xi:τ).ei | pxejqy

τ
`j

(i-primvals) v̂i ::= c | λxi:τ. ei

(i-values) vi ::= v̂i | pxv̂jqy
t
`j

(t 6∈ Dom(δi))

Figure 11: Multiagent Syntax

Generalizing the language has another benefit: we can
prove theorems once for a broad class of systems. The type
abstraction properties for an instance of the system (such as
our two-agent calculus) follow as corollaries.

3.1 Syntax

Figure 11 shows the syntax for the multiagent language.
The types include a base type, b, function types, and type
variables ranged over by t, u, and s.

Rather than just two “colors” of terms, we now assume
that there are n agents, where n is fixed. In the syntax, the
metavariables i and j range over {1, . . . , n}.

The terms for agent i include variables, xi, non-recursive
functions, λxi:τ. ei, recursive functions, fix fi(xi:τ).ei,
function applications, ei e′i, and embeddings pxejqy

τ
`j

. We in-

clude both recursive and non-recursive functions to simplify
the dynamic semantics (see rule (4) in Figure 12).

An embedding containing a j-term is labeled with a list
of agents beginning with j for reasons explained in the dis-
cussion of the semantics. We use the notation `j for a non-
empty list of agents beginning with j. If `i and `j are two
such lists, then `i:`j is `i appended to `j and rev(`i) is the
list-reversal of `i.

The goal is a language in which each agent has limited
knowledge of type information. Thus, we must somehow
represent what an agent “knows” and ensure that agents
sharing information do so consistently. For example, agent i
might know that fh = int. Agent j may or may not have this
piece of information, but if j does know the realization of
fh, that knowledge must be compatible with what i knows.
(It shouldn’t be the case that j thinks fh = string.)

To capture this information, we assume that for each
agent i there is a finite partial map from type variables to
types called δi. Each δi extends naturally to a map, ∆i,
from an arbitrary type τ as follows:

∆i(b) = b

∆i(t) =

�
t t 6∈ Dom(δi)
δi(t) t ∈ Dom(δi)

∆i(τ
1 → τ 2) = ∆i(τ

1) → ∆i(τ
2)

To maintain consistency between agents, we require that
for every pair of agents, i and j, if t ∈ Dom(δi) ∩ Dom(δj),
then δi(t) = δj(t).

1 We further restrict the δi maps so that
they interact in a well-founded manner. For example, we

1We can encode multiple interfaces to an abstract datatype while
satisfying consistency by introducing extra type variables (see the
companion technical report).

do not allow δi(t) = t → t, or the more subtle δi(t) = s →
s, δj(s) = t. In general, we assume the collection of type
variables can be globally ordered such that for all i and t,
all variables in δi(t) precede t.

Given these restrictions, each ∆i determines a complete
partial order, v∆i , on types. We denote the least upper
bound of the sequence τ v∆i ∆i(τ) v∆i ∆2

i (τ) v∆i . . . by
∆̄i(τ). Thus, ∆̄i(τ) is the most concrete view of τ that agent
i is able to determine from its knowledge. For succinctness,
we write {∆} for the set {∆1, . . . , ∆n}.

The set of i-terms that are values depends on i’s available
type information. In addition to the usual notion of values,
given by i-primvals, a j-primval embedded in agent i is a
value if i cannot determine any more type information about
the value, i.e. pxv̂jqy

t
`j

is a value if t 6∈ Dom(δi).

3.2 Dynamic Semantics

Figure 12 shows the operational semantics for agent i in the
multiagent language.

Rules (1), (2), (4) and (5) establish a typical call-by-
value semantics. Rule (3) allows evaluation inside embed-
dings and distinguishes i transitions from j transitions.

Rule (6) lets agent i pull a constant, exported at base
type, out of an embedding. It corresponds to rules (A2)
and (H2) of the two-agent scenario.

As in the two-agent case where the host had more type
information than the agent, an agent can use its knowledge
to refine the type of an embedded term. Previously, the
substitution {τh/t} in rule (H3) served this purpose. Now,
∆̄i captures the type refinement information available to
agent i. Correspondingly, rule (7) allows i to refine the
type of an embedded value.

Perhaps the most subtle issue is when to allow embed-
dings to be stripped away. In the two-agent case, rule (H4)
let the host pull out its own value that had been embed-
ded abstractly inside an agent. This was safe because the
agent had strictly less information than the host. Now, how-
ever, an intermediary agent with more knowledge could con-
tribute to the evaluation of a term. If we throw away that
information by simply discarding the intermediary’s embed-
ding brackets, it becomes difficult to track the relationship
between the type of the term inside the embedding and the
annotation on the embedding.

Thus we use lists of agents as the labels on embeddings.
Intuitively, an agent “signs” the term if it participated in
the evaluation. Rule (8) says that if there are nested em-
beddings, pxpxv̂jqy

u
`j
qyτ

`k
, and the inner embedding, pxv̂jqy

u
`j

, is

a k-value (that is, u 6∈ Dom(δk)), then the two embeddings
can be collapsed into one, pxv̂jqy

τ
`j :`k

. We lose no informa-

tion about which agents have participated in the evaluation
of the term, because we append the two lists. The idea,
formalized in the next section, is that the type of the term
inside an embedding is related, via the list of agents labeling
the embedding, to the type annotation.

The most interesting rule is (9), which is really what
tracks the principals. The embedded function is lifted to
the outside. Its argument now belongs to the outer agent,
i, instead of the inside agent, j. As such, it must be given
the type that i thinks the argument should have. The body
of the function is still a j-term embedded in an i-term so
any occurrence of the new formal argument xi must be em-
bedded as an i-term inside a j-term. The corresponding
type annotation must be the type which j expects the argu-

(1)
ei

i7−→ e′′i
ei e′i

i7−→ e′′i e′i
(2)

e′i
i7−→ e′′i

vi e′i
i7−→ vi e′′i

(3)
ej

j7−→ e′j
pxejqy

τ
`j

i7−→ pxe′jqy
τ
`j

(4) fix fi(xi:τ).ei
i7−→ λxi:τ. {fix fi(xi:τ).ei/fi}ei

(5) λxi:τ. ei vi
i7−→ {vi/xi}ei

(6) pxcqyb`j

i7−→ c

(7) pxv̂jqy
τ
`j

i7−→ pxv̂jqy
∆̄i(τ)
`j

(τ 6= ∆̄i(τ))

(8) pxpxv̂jqy
u
`j
qyτ

`k

i7−→ pxv̂jqy
τ
`j :`k

(u 6∈ Dom(δk), τ = ∆̄i(τ))

(9) pxλxj :τ. ejqy
τ ′→τ ′′
`j

i7−→ λxi:τ
′. px{pxxiqy

τ
i:rev(`j)/xj}ejqy

τ ′′
`j

(xi fresh, τ ′ → τ ′′ = ∆̄i(τ
′ → τ ′′))

Figure 12: Multiagent Dynamic Semantics

(λy:int → int. y 3)pxλx:fh → fh. xqyfh→fh
a

(7)
h7−→ (λy:int → int. y 3)pxλx:fh → fh. xqyint→int

a

(9)
h7−→ (λy:int → int. y 3)(λx′:int. pxpxx′qyfhh:aqy

int
a)

(5)
h7−→ (λx′:int. pxpxx′qyfhh:aqy

int
a)3

(5)
h7−→ pxpx3qyfhh:aqy

int
a

(8)
h7−→ px3qyint

h:a:a

(6)
h7−→ 3

Figure 13: Multiagent Evaluation Example

ment to have. Hence the function body is still abstract to i
and when the function is applied, the actual argument will
be held abstract from j. The only remaining issue is the
agent list on the formal argument embeddings. Since the
“inside type” and “outside type” have reversed roles, the
agent-list must be in reverse order. Intuitively, the agents
which successively provided the function argument type to
i must undo their work in the body of the function which is
a j-term.

3.3 Example

As an example, we encode our two-agent calculus by letting
δh map fh to int and letting δa be undefined everywhere.
An evaluation which uses all of the novel rules appears in
Figure 13. The numbers in the figure are the reduction rules
used to take the step. Notice that under this simple system,
rules (7) and (9) encode what was previously “hard-wired”
into rule (H3). Similarly, rules (8) and (6) do the work of
(H4).

3.4 Static Semantics

Figure 14 shows the multiagent static semantics for agent i.
The judgment {∆}; Γ `i ei : τ should be read as, “Under
type-maps ∆1, . . . , ∆n in context Γ, agent i can show that
ei has type τ”.

All of the rules except (embed) are essentially standard.
The rules (abs) and (fix) have additional conditions that
force an agent to use the most concrete type available for
functions internal to the agent.

As alluded to previously, the issue of consistency between
agents arises during type checking. For instance, we don’t
want an agent to export an int as a function. Likewise, we
don’t want an agent, or collection of agents, to violate the
type abstractions represented by the ∆i’s. Thus we need
some way of relating the type of the expression inside the
embedding to the typing annotation on the embedding.

We establish an agent-list indexed family of relations on
types, τ .`i τ ′. Judgments of the form {∆} ` τ .`i τ ′,
showing when two types may be related by the list `i, are
given in Figure 15. These rules say that τ 0 .i1:i2:...:in τn

if there exist types τ 1, . . . , τn−1 such that agent ik is able
to show that τk−1 = τk for k ∈ {1, . . . , n}. Informally, the
agents are able to chain together their knowledge of type
information to show that τ 0 = τn.

The (embed) rule uses the .`j :i relation to ensure that
the type inside the embedding matches up with the annota-
tion on the embedding. The agent i is appended to the list
because, as the outermost agent, i is implicitly involved in
evaluation of the term.

Why is this somewhat complicated mechanism neces-
sary? To some extent, it’s not. It is clear that there must be
some way of relating the type of a term inside an embedding
to the type annotation on the embedding; otherwise, for ex-
ample, an agent could export an integer as a string. We
could have chosen to allow nested embeddings to be values,
so long as each inner embedding is a value with respect to

the enclosing agent (for example pxpx3qyti qy
s
j would be a k-value

if s 6∈ Dom(δk) and t 6∈ Dom(δj)). This allows embeddings
to “pile up” in a way that is difficult to deal with syntacti-
cally and that complicates the dynamic semantics.

Instead, we allow rule (8) to collapse two embeddings
and push the work of ensuring compatibility onto the .`i

relation. The lists contain all of the agents that have par-
ticipated in the evaluation of the inner value because incon-
sistencies might arise otherwise. Consider three agents, i, j,
and k such that δi(t) = int, δj(s) = t and δk = ∅. Then

collapsing the properly typed k-term pxpx3qytiqy
s
j to either px3qysi

or px3qysj violates the type abstraction properties since nei-
ther i nor j knows that s abstracts an int. Alternately, if

(const) {∆}; Γ `i c : b

(var) {∆}; Γ `i xi : Γ(xi)

(app)
{∆}; Γ `i ei : τ ′ → τ {∆}; Γ `i e′i : τ ′

{∆}; Γ `i ei e′i : τ

(abs)
{∆}; Γ[xi : τ ′] `i e′i : τ ∆i(τ

′) = τ ′

{∆}; Γ `i λxi:τ
′. e′i : τ ′ → τ

(xi 6∈ Dom(Γ))

(fix)
{∆}; Γ[fi : τ ′ → τ][xi : τ ′] `i e′i : τ ∆i(τ

′ → τ) = τ ′ → τ

{∆}; Γ `i fix fi(xi:τ
′).e′i : τ ′ → τ

(fi, xi 6∈ Dom(Γ))

(embed)
{∆}; Γ `j ej : τ ′ {∆} ` τ ′ .`j :i τ

{∆}; Γ `i pxejqy
τ
`j

: ∆̄i(τ)

Figure 14: Multiagent Static Semantics

(eq)
∆̄i(τ) = ∆̄i(τ

′)
{∆} ` τ .i τ ′

(trans)
{∆} ` τ ′ .`i τ ′′ {∆} ` τ ′′ .`j τ ′

{∆} ` τ .`i:`j τ ′

Figure 15: Type relations: {∆} ` τ .`i τ ′

we were to use sets of agents, instead of (ordered) lists, the
reasonable typing rules become too permissive.

3.5 Safety Properties

This section illustrates some of the standard safety theorems
of typed programming languages and then discusses abstrac-
tion properties that generalize those presented earlier. Rig-
orous proofs appear in the companion technical report [25].

We begin with type soundness:

Lemma 3.1 (Preservation)

If {∆}; ∅ `i ei : τ and ei
i7−→ e′i then {∆}; ∅ `i e′i : τ .

The interesting rules in proving preservation are (7)
through (9) since they rely crucially on the . relations.
In the Appendix, we state the relevant lemmas and present
these cases of the proof.

Lemma 3.2 (Progress) If ei is well-typed then either ei

is a value or there exists an e′i such that ei
i7−→ e′i.

The important point is that rules (6) through (9) guar-
antee that pxvjqy

τ
`j

is not stuck unless it is a value.

Theorem 3.3 (Type Safety) If {∆}; ∅ `i ei : τ then

there is no stuck e′i such that ei
i7−→∗ e′i.

The cost of including embeddings is the addition of sev-
eral dynamic rules. Worse yet, with recursion and multiple

erase(xi) = x
erase(c) = c

erase(λxi:τ. ei) = λx:Φ̄(τ). erase(ei)
erase(fix fi(xi:τ).ei) = fix f(x:Φ̄(τ)).erase(ei)

erase(ei e′i) = erase(ei) erase(e′i)
erase(pxejqy

τ
`j

) = erase(ej)

where Φ =
S

i ∆i

Figure 16: Multiagent erase translation

agents, the lists annotating embeddings might grow arbi-
trarily large. The erasure property stated below essentially
shows that these syntactic tricks are only a proof technique.

For erasure to a typed language, it is necessary to use
the combined type information of all of the agents. The
multiagent definition of erase is given in Figure 16, where Φ
is the map obtained by taking the union of the compatible
∆i maps. Informally, Φ̄(τ) is the most concrete type for τ
that can be found using all n agents’ knowledge.

The target language is the simply-typed λ-calculus aug-
mented with fix. We have the following lemma:

Lemma 3.4 (Erasure) If ei is well-typed then either

ei
i7−→∗ vi and erase(ei) 7−→∗ erase(vi), or ei and

erase(ei) both diverge.

Proof (sketch): By induction on the source derivation.
Strengthen the inductive hypothesis to show that for every
step of the source language, the erased version takes either
zero steps (rules (6) through (9)) or one step (rules (4) and
(5)). For divergence, show the contrapositive: any term
erasing to a non-diverging term is non-diverging. 2

We use arguments in the style of subject-reduction to
prove safety properties that generalize those of the two-agent
case.

Definition 3.5 (Agents(ei)) Let Agents(ei) be i and the

set of agent subscripts appearing in ei.

Definition 3.6 (j-free) Let ei be j-free if j 6∈ Agents(ei).

Definition 3.7 (Oblivious to t) A set of agents, S, is
oblivious to type t if for all i ∈ S, t 6∈ Dom(∆i) and for
all t’ 6= t, ∆i(t’) 6= t.

Theorem 3.8 (Independence of Evaluation) Let v̂j

and v̂′
j have type ∆̄j(t). If {∆}; ∅ `i λxi:t. ei : t → b and

Agents(ei) are oblivious to t then: (λxi:t. ei) pxv̂jqy
t
j 7−→∗ c

iff (λxi:t. ei) pxv̂
′
jqy

t
j 7−→∗ c.

The proof strengthens the claim to a step-by-step evalu-
ation correspondence when using v̂j and v̂′

j :

Lemma 3.9 (Value Abstraction) Let v̂j and v̂′
j have

type ∆̄j(t). Let ϕ(ei) mean Agents(ei) are oblivious to t,
ei is j-free, and {∆}; [xi : t] `i ei : τ for some τ . Then if

ϕ(ei) and {pxv̂jqy
t
j/ei} is not an i-value, then there exists a

term e′i such that:

• {pxv̂jqy
t
j/xi}ei

i7−→ {pxv̂jqy
t
j/xi}e′i

• {pxv̂′
jqy

t
j/xi}ei

i7−→ {pxv̂′
jqy

t
j/xi}e′i

• ϕ(e′i)

Proof (sketch): We show that each rule of the operational
semantics preserves property ϕ. 2

The generalization of Theorem 2.9 is the following the-
orem, in which fh plays the rôle of ho. It effectively says
that a client containing a value of abstract type t must have
obtained that value via a host-provided function.

Theorem 3.10 (Host-Provided Values) Let h be an
agent such that ∆̄h(t) = τh. Suppose {∆}; ∅ `h fh : b → τh.
Let ei be a term such that Agents(ei) are oblivious to t and
{∆}; ∅ `i λpi:b → t. ei : τ . Further suppose

(λpi:b → t. ei) pxfhqy
b→t
h

i7−→∗ e′i. If v is any value of type t

which is a subterm of e′i, then v = pxv̂hqy
t
`h

where

fh v̂′
h

h7−→∗ v̂h.

3.6 Language Extensions

The multiagent language can easily be extended to in-
clude new constructs. Products, records, and sums are
straightforward to add. To prove the soundness of the
rules which propagate embeddings, we need a type relations
lemma of the form {∆} ` τ 0 ⊗ τ 1 .`i τ 2 ⊗ τ 3 if and only if
{∆} ` τ 0 .`i τ 2 and {∆} ` τ 1 .`i τ 3. Recursive types need
a similar lemma that relates a µ-type with its unrolling.

Adding state to the multiagent calculus follows analo-
gously to its addition in the two-agent case. In fact, the
symmetry of the multiagent calculus significantly reduces
the proliferation of dynamic rules. As noted in Section 2,
type soundness does not hold if a reference can be exported
at different levels of abstraction. In the multiagent setting,
we can succinctly enforce this by extending the definition of
∆i such that ∆i(τ ref) = τ ref.

4 Future Work

4.1 Polymorphism and Existential Types

Type abstraction and polymorphism are closely related. In-
deed, the example encoding of an agent in Figure 2 used
polymorphism to achieve type abstraction. However, the
two are different. The key distinction seems to be one of
scope. Our type abstractions are globally scoped and stati-
cally known. Polymorphism allows locally scoped type ab-
stractions which can be instantiated many times at run-time.

There are several approaches to adding polymorphism
to the multiagent calculus, none of which we have fully ex-
plored. One is to simply add polymorphism, keeping the
type variables for polymorphism and agents disjoint. The
necessary additions seem straightforward.

A different avenue is to encode polymorphism using the
embeddings of the multiagent calculus. The idea is to repre-
sent the body of a polymorphic function, Λα.ei as an agent
with no information about the type variable α. When such
a function is applied to a type τ , a new agent, j, that knows
α = τ is “spawned” with the body ei embedded inside it.
The type system prevents the body of the function from
breaking the type abstraction, while the “wrapper” agent,
j, provides a way to recover the type information when the
function returns.

The typing rule for existential types is similar to that of
our embeddings, which is not surprising given that both
embeddings and existentials attempt to capture different
“views” of a value. Indeed there is a strong connection be-
tween abstract types and existentials [12] which may indi-
cate that they are a more natural extension to our language
than polymorphic types.

4.2 Beyond Type Abstraction

Type abstraction is one application of formalizing the notion
of principal. The difference between agents in this calculus is
what type-information is available to them. There are many
other dimensions along which this idea can be extended.
We can use essentially the same mechanism to formalize
foreign function calls, where each agent uses a different set
of operational rules. For example, we could give some agents
a call-by-name semantics, allowing a mixture of eager and
lazy evaluation. For less similar languages, the embeddings
express exactly where foreign data conversions and calling
conventions need to occur.

The ∆i’s capture an agent’s view of its environment.
In this paper we restricted our attention to type informa-
tion, but this too can potentially be extended. The ∆i’s
could represent arbitrary capabilities, controlling access to
resources in the environment. Suitable rules in the oper-
ational semantics would propagate which capabilities are
available. The ability to update the ∆i’s could be reflected
into the language itself, yielding a dynamic system in which
a principal could grant or revoke capabilities to other agents
at run-time.

Rule (9) essentially keeps track dynamically of which
principals are executing in which stack frame. By adding
primitives to the language to examine the lists of agents on
embeddings, we gain a form of stack inspection, which has
been studied in the context of Java security [22, 23]. We
intend to investigate the kinds of security properties that
can be expressed in such a language.

5 Related Work

Perhaps the closest work to ours is Leroy and Rouaix’s inves-
tigation into the safety properties of typed applets [9]. They
use a λ-calculus augmented with state in order to prove the-
orems similar to Theorem 2.9. They too distinguish between
the execution environment code and applet code, similar to
our use of principals, but they consider only the two-agent
case and take a less syntactic approach.

There has been much work on representation indepen-
dence and parametric polymorphism, as pioneered by Stra-
chey [20] and Reynolds [19]. Such notions have been in-
corporated into programming languages such as SML and
Haskell [10, 15] and studied extensively in Girard’s system
F [5].

Abadi, Cardelli, and Curien have taken a syntactic ap-
proach to parametricity by formalizing the logical relations
arguments used in such proofs [1]. More recently, Crary has
proposed the use of singleton types as a means of proving
parametricity results without resorting to the construction
of models [4].

Pierce and Sangiori [16] prove parametricity results for
a polymorphic pi-calculus in an operational setting. Rather
than add principals to the term language, they use exter-
nal substitutions to reason about bisimilarity of polymor-
phic processes in which there are both abstract and concrete
views of data values.

None of the above work (except Leroy and Rouaix’s)
explicitly involves the notion of principal. Our syntactic
separation of agents is similar to Nielson and Nielson’s Two-
Level λ-calculus [14]. There they are concerned with binding
time analysis, so the two principals’ code is inherently not
mixed during evaluation. A notion of principal also arises
in the study of language based security, where privileged
agents may not leak information to unprivileged ones. See,
for example, Heinze and Riecke’s work on the SLam calculus
[8] or Volpano and Smith’s work on type-based security [21].
A more syntactic approach to security is taken by Myers [13].

6 Conclusion

We have created a multiagent calculus in which the notion
of principal is made explicit in the language. This syntac-
tic distinction allows us to track agent code during evalua-
tion, giving syntactic proofs of interesting type abstraction
properties. Our hope is that these techniques will scale to
realistic, hard to model languages.

7 Acknowledgments

We thank David Walker, Stephanie Weirich, and the anony-
mous referees for their helpful comments on earlier drafts of
this paper.

References

[1] Mart́in Abadi, Luca Cardelli, and Pierre-Louis Curien. For-
mal parametric polymorphism. In Principles of Program-
ming Languages, volume 20, pages 157–167, January 1993.

[2] Godmar Back, Patrick Tullmann, Leigh Stoller, Wilson C.
Hseih, and Jay Lepreau. Java operating systems: Design and
implementation. Technical Report UUCS-98-015, University
of Utah, August 1998.

[3] Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak,
Emin Gün Sirer, Marc Fiuczynski, David Becker, Susan Eg-
gers, and Craig Chambers. Extensibility, safety and perfor-
mance in the SPIN operating system. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Princi-
ples, pages 267–283, Copper Mountain, CO, December 1995.

[4] Karl Crary. A simple proof technique for certain parametric-
ity results. In Proceedings of the 4th ACM SIGPLAN In-
ternational Conference on Functional Programming, Paris,
France, September 1999. This volume.

[5] Jean-Yves Girard, Y. Lafont, and P. Taylor. Proofs and
Types. Cambridge University Press, 1989.

[6] Michael Godfrey, Tobias Mayr, Praveen Seshadri, and
Thorsten von Eicken. Secure and portable database exten-
sibility. In Proceedings of the 1997 ACM-SIGMOD Confer-
ence on the Management of Data, pages 390–401, Seattle,
WA, June 1998.

[7] Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski,
Deyu Hu, and Thorston von Eiken. Implementing multi-
ple protection domains in Java. In 1998 USENIX Annual
Technical Conference, New Orleans, LA, June 1998.

[8] Nevin Heintze and Jon G. Riecke. The SLam calculus: pro-
gramming with secrecy and integrity. In Conference Record
of the Twenty-Fifth Annual ACM Symposium on Princi-
ples of Programming Languages, pages 365–377. ACM Press,
1998.

[9] Xavier Leroy and François Rouaix. Security properties of
typed applets. In Principles of Programming Languages,
January 1998.

[10] Robin Milner, Mads Tofte, Robert Harper, and David Mac-
Queen. The Definition of Standard ML (Revised). The MIT
Press, 1997.

[11] J.C. Mitchell. On the equivalence of data representations.
In V. Lifschitz, editor, Artificial Intelligence and Mathemat-
ical Theory of Computation: Papers in Honor of John Mc-
Carthy, pages 305–330. Academic Press, 1991.

[12] John C. Mitchell and Gordon D. Plotkin. Abstract types
have existential type. ACM Transactions on Programming
Languages and Systems, 10(3):470–502, July 1988.

[13] Andrew C. Myers. JFlow: Practical mostly-static informa-
tion flow control. In Proceedings of the 26th ACM Sympo-
sium on Principles of Programming Languages, pages 228–
241, San Antonio, TX, January 1999.

[14] Flemming Nielson and Hanne Riis Nielson. Two-Level Func-
tional Languages. Number 34 in Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, 1992.

[15] John Peterson, Kevin Hammond, Lennart Augustsson,
Brian Boutel, Warren Burton, Joseph Fasel, Andrew D. Gor-
don, John Hughes, Paul Hudak, Thomas Johnsson, Mark
Jones, Erik Meijer, Simon Peyton Jones, Alastair Reid,
and Philip Wadler. Report on the programming language
Haskell, version 1.4. http://www.haskell.org/report.

[16] Benjamin C. Pierce and Davide Sangiorgi. Behavioral equiv-
alence in the polymorphic pi-calculus. Technical Report MS-
CIS-99-10, University of Pennsylvania, April 1999.

[17] John Hamilton Reppy. Higher-order Concurrency. PhD the-
sis, Cornell University, Ithaca, NY, June 1992. TR 92-1852.

[18] John C. Reynolds. Towards a theory of type structure. In
Programming Symposium, volume 19 of Lecture Notes in
Computer Science, pages 408–425. Springer-Verlag, Paris,
France, April 1974.

[19] John C. Reynolds. Types, abstraction, and parametric poly-
morphism. In R.E.A Mason, editor, Information Processing,
pages 513–523. Elsevier Science Publishers B.V., 1983.

[20] C. Strachey. Fundamental concepts in programming lan-
guages. Unpublished Lecture Notes, Summer School in Com-
puter Programming, August 1967.

[21] Dennis Volpano and Geoffrey Smith. A type-based approach
to program security. In Proceedings of TAPSOFT ’97, Collo-
quium on Formal Approaches to Software Engineering, Lille,
France, April 1997.

[22] Dan S. Wallach and Edward W. Felten. Understanding Java
stack inspection. In Proceedings of 1998 IEEE Symposium
on Security and Privacy, Oakland, CA, May 1998.

[23] Dan Seth Wallach. A New Approach to Mobile Code Secu-
rity. PhD thesis, Princeton University, 1999.

[24] Andrew K. Wright and Mattias Felleisen. A syntactic ap-
proach to type soundness. Information and Computation,
115(1):38–94, 1994. Preliminary version in Rice TR 91-160.

[25] Steve Zdancewic and Dan Grossman. Syntax and semantics
for multiple agents and abstract types. Technical Report
99-1752, Cornell University, March 1999.

A Appendix

We present the most interesting parts of the proof of the
Preservation Lemma for the multiagent calculus. We will
use the following lemmas; the proofs are in the companion
technical report [25].

Lemma A.1 (Idempotency) For all agents i, and
(possibly empty) lists ` and `′, {∆} ` τ .`:i:i:`′ τ ′ iff
{∆} ` τ .`:i:`′ τ ′

Lemma A.2 (Reversal) If {∆} ` τ 0 .`i τ 1 then
{∆} ` τ 1 .rev(`i) τ 0

Lemma A.3 (Arrow Type) If
{∆} ` τ 0 → τ 1 .`i τ 2 → τ 3 then {∆} ` τ 0 .`i τ 2 and
{∆} ` τ 1 .`i τ 3.

Lemma A.4 (Substitution) For all agents i and j, if
{∆}; Γ[xj : τ ′] `i ei : τ and {∆}; Γ `j ej : τ ′, then
{∆}; Γ `i {ej/xj}ei : τ .

We recall the statement of Preservation: If {∆}; ∅ `i ei :

τ and ei
i7−→ e′i then {∆}; ∅ `i e′i : τ . The proof is by

induction on the derivation that ei
i7−→ e′i and is by cases

on the last rule in the derivation. For formatting reasons, we
omit the {∆} antecedents throughout. Similarly, an omitted
environment should be interpreted as ∅. Here are the cases
for the rules peculiar to our calculus:

(6) Trivial.

(7) Since ei typechecks, we must have a derivation as fol-
lows:

`j v̂j : τ 0 ` τ 0 .`j :i u

`i pxv̂jqy
u
`j

: ∆̄i(u)

Since ∆̄i(u) equals ∆̄i(∆̄i(u)), we have via the (eq)
rule that ` u .i ∆̄i(u). Thus by (trans) it follows
that ` τ 0 .`j :i:i ∆̄i(u) and we can remove the second
i by Idempotency. We can now derive:

`j v̂j : τ 0 ` τ 0 .`j :i ∆̄i(u)

`i pxv̂jqy
∆̄i(u)
`j

: ∆̄i(u)

The conclusion is the desired result.

(8) Since ei typechecks, we must have a derivation as fol-
lows:

`j v̂j : τ 0 ` τ 0 .`j :k u

`k pxv̂jqy
u
`j

: ∆̄k(u)
` ∆̄k(u) .`k:i τ

`i pxpxv̂jqy
u
`j
qyτ

`k
: ∆̄i(τ)

Furthermore, u 6∈ ∆k, so ∆̄k(u) = u. Thus by (trans)
and the premises, we have ` τ 0 .`j :k:`k:i τ . And
since `k begins with agent k, Idempotency proves that
` τ 0 .`j :`k:i τ , which yields the following derivation:

`j v̂j : τ 0 ` τ 0 .`j :`k:i τ

`i pxv̂jqy
τ
`j :`k

: ∆̄i(τ)

The conclusion is the desired result.

(9) Since ei typechecks, we must have a derivation as fol-
lows:

[xj : τ 0] `j ej : τ 3 ∆j(τ
0) = τ 0

`j λxj :τ
0. ej : τ 0 → τ 3

`j λxj :τ
0. ej : τ 0 → τ 3 ` τ 0 → τ 3 .`j :i τ 1 → τ 2

`i pxλxj :τ
0. ejqy

τ1→τ2

`j
: ∆̄i(τ

1 → τ 2)

Furthermore, ∆i(τ
1 → τ 2) = τ 1 → τ 2, so we know

from the definition of ∆i that ∆̄i(τ
1) = ∆i(τ

1) = τ 1

and similarly for τ 2. From the Arrow Type Lemma and
the right hand premise of the bottom step, we conclude
that ` τ 0 .`j :i τ 1 and ` τ 3 .`j :i τ 2. Now notice that
the reverse of `j : i is i : rev(`j) which we shall write
`′: j. So by the Reversal Lemma, ` τ 1 .`′:j τ 0. Thus
we can derive:

[xi : τ 1] `i xi : τ 1 ` τ 1 .`′:j τ 0

[xi : τ 1] `j pxxiqy
τ0

`′ : ∆̄j(τ
0)

In fact, [xi : τ 1] `j pxxiqy
τ0

`′ : τ 0 since the original deriva-
tion above provides ∆j(τ

0) = τ 0. It also provides
[xj : τ 0] `j ej : τ 3. Since xi is fresh, we may con-
clude [xi : τ 1][xj : τ 0] `j ej : τ 3. So by Substitution,

[xi : τ 1] `j {pxxiqy
τ0

`′ /xj}ej : τ3. Thus we can derive:

[xi : τ 1] `j {pxxiqy
τ0

`′ /xj}ej : τ3 ` τ 3 .`j :i τ 2

[xi : τ 1] `i px{pxxiqy
τ0

`′ /xj}ejqy
τ2

`j
: ∆̄i(τ

2)

[xi : τ 1] `i px{pxxiqy
τ0

`′ /xj}ejqy
τ2

`j
: ∆̄i(τ

2) ∆i(τ
1) = τ 1

`i λxi:τ
1. px{pxxiqy

τ0

`′ /xj}ejqy
τ2

`j
: τ 1 → ∆̄i(τ

2)

Since ∆̄i(τ
2) = τ 2, the conclusion is the desired result.

