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AbstractClosure conversion is a program transformation used bycompilers to separate code from data. Previous accountsof closure conversion use only untyped target languages. Re-cent studies show that translating to typed target languagesis a useful methodology for building compilers, because acompiler can use the types to implement e�cient data rep-resentations, calling conventions, and tag-free garbage col-lection. Furthermore, type-based translations facilitate se-curity and debugging through automatic type checking, aswell as correctness arguments through the method of logicalrelations.We present closure conversion as a type-directed, andtype-preserving translation for both the simply-typed andthe polymorphic �-calculus. Our translations are based ona simple \closures as objects" principle: higher-order func-tions are viewed as objects consisting of a single method(the code) and a single instance variable (the environment).In the simply-typed case, the Pierce-Turner model of ob-ject typing where objects are packages of existential typesu�ces. In the polymorphic case, more careful tracking oftype sharing is required. We exploit a variant of the Harper-Lillibridge \translucent type" formalism to characterize thetypes of polymorphic closures.1 IntroductionClosure conversion [29, 34, 5, 17, 16, 1, 39, 9] is a programtransformation that achieves a separation between code and�This research was sponsored in part by the Advanced ResearchProjects Agency CSTO under the title \The Fox Project: AdvancedLanguages for Systems Software", ARPA Order No. C533, issuedby ESC/ENS under Contract No. F19628-95-C-0050, and in partby the National Science Foundation under Grant No. CCR-9502674,and in part by the Isaac Newton Institute for Mathematical Sciences,Cambridge, England. The views and conclusions contained in thisdocument are those of the authors and should not be interpreted asrepresenting o�cial policies, either expressed or implied, of ARPAor the U.S. Government. Any opinions, �ndings, and conclusionsor recommendations expressed in this material are those of the au-thors and do not necessarily re
ect the views of the National ScienceFoundation.yThis research was performed while the �rst author was visitingthe Fox Project at Carnegie Mellon University.

data. Functions with free variables are replaced by code ab-stracted on an extra environment parameter. Free variablesin the body of the function are replaced by references to theenvironment. The abstracted code is partially applied to anexplicitly constructed environment providing the bindingsfor these variables. This partial application of the code toits environment is in fact suspended until the function is ac-tually applied to its argument; the suspended application,called a closure, is a data structure consisting of a piece ofpure code and a representation of its environment.A critical decision in closure conversion is the choiceof representation for the environment | whether to use a
at FAM-like [4], linked CAM-like [5], or hybrid representa-tion [30]. The choice of representation is in
uenced by a de-sire to minimize closure creation time, the space consumedby the environment, and the time to access a variable inthe environment [39, 30]. An important property of closureconversion is that the representation of the environment isprivate to the closure. This a�ords considerable 
exibilityin the representation of environments and is thus exploitedto good advantage by Shao and Appel [30] and Wand andSteckler [39].Previous accounts consider closure conversion as a trans-formation to untyped terms, even if the source language istyped [34, 17, 1, 39, 9]. This is adequate for compilers thatmake little or no use of types in the back end or at runtime. However, when compiling typed languages, it is oftenadvantageous to propagate type information through eachstage of the compiler, and to make use of types at link- oreven run time. For example, Leroy's representation analy-sis [18, 31] uses types to determine procedure calling conven-tions, and Ohori's record compilation [25] uses a representa-tion of types at run time to access components of a record.Compilation strategies for polymorphic languages, such asthose proposed by Morrison et al. [24] and Harper and Mor-risett [14], rely on analyzing types at run time to supportunboxed representations and non-parametric operators, in-cluding printing and structural equality. Tag-free garbagecollection [3, 37, 23] for both monomorphic and polymor-phic programming languages relies on analyzing types atrun time to determine the size and layout of objects in theheap. To support any of these implementation strategies,it is necessary to propagate type information through clo-sure conversion and into the generated code. The purposeof this paper is to demonstrate how this can be done in botha simply-typed and a polymorphic setting.We present closure conversion as an example of a type-directed and type-preserving translation. In general, such



translations transform both a term and its type, possiblyrelying on type information to guide the translation. Thuseach stage of the compiler can be viewed as a type-preservingtranslation between typed intermediate languages. Exam-ples of such translations have been given by Leroy [18],Ohori [25], Harper and Lillibridge [10], and Harper and Mor-risett [14]. In contrast to type-free compilation strategies,these translations make essential use of type informationduring translation to increase the time or space e�ciency ofprograms. In addition to the practical advantages of this ap-proach, type-directed translation also facilitates the work ofthe compiler writer. In particular, the typing properties ofthe intermediate code may be exploited to give clear, conciseproofs of compiler correctness through the method of logicalrelations [35, 6, 27, 32, 33]. Furthermore, the intermediatecode of the compiler can be mechanically typed-checked,an important debugging tool for the compiler writer. Fi-nally, checkable typed intermediate languages are a promis-ing technique for ensuring safety properties of programs ina distributed environment [8, 38].We describe closure conversion for the simply-typed �-calculus and the predicative fragment of the polymorphic�-calculus. In each case we present closure conversion intwo stages. The �rst stage, called abstract closure conver-sion, is a type-directed translation to an intermediate lan-guage with a primitive notion of closures. We describe thetranslation as a deductive system where the choice of en-vironment representations may be independently made foreach closure. We argue that various representations consid-ered in the literature (such as the FAM [4] or CAM [5]), aswell as hybrid representations [30], can all be explained inthis uniform framework. We establish the correctness of thetranslation once for all environment representations.The second stage, called closure representation, is an-other type-directed translation where closures are imple-mented in terms of generic typed �-calculus primitives. Themain idea is to represent closures as objects consisting ofa single method (the code) and a single instance variable(the environment). We show that, in the simply-typed case,Pierce and Turner's type discipline for object-oriented pro-gramming [26] may be used to characterize the types of clo-sures. In particular, we use existential type abstraction toensure the privacy of environment representation in muchthe same way that Pierce and Turner hide the representa-tion types of instance variables. In the polymorphic case,we must use a more sophisticated type discipline in orderto track critical type sharing relationships within the clo-sure. To this end, we exploit a variant of the translucenttype [11] (or manifest type [19]) formalism. Our \closures asobjects" model provides an interesting counterpoint to themore familiar \objects as closures" proposal introduced byReddy [28].We prove the correctness of both the abstract closureconversion and the closure representation stages using themethod of logical relations. The main idea is to de�ne atype-indexed family of simulation relations that establish acorrespondence between the source and target terms of thetranslation. Once a suitable system of relations has beende�ned, it is relatively straightforward to prove by inductionon the de�nition of the compilation relation that the sourceand target of the translation are related. From this, we mayconclude that a closed program and its translation evaluateto the same result. Due to lack of space, we omit the proofsof correctness here. However, full details may be found in

the companion technical report [21].Closure conversion is discussed in descriptions of variousfunctional language compilers [34, 17, 2, 1, 30]. It is sim-ilar to �-lifting [15] in that it eliminates free variables inthe bodies of �-abstractions but di�ers by making the rep-resentation of the environment explicit as a data structure.Making the environment explicit is important because it ex-poses environment construction and variable lookup to anoptimizer. Furthermore, Shao and Appel show that not allenvironment representations are \safe for space" [30], andthus choosing a good environment representation is an im-portant part of compilation. Wand and Steckler [39] haveconsider two optimizations of the basic closure conversionstrategy, called selective and lightweight closure conversion,and provide a correctness proof for each of these in an un-typed setting. Hannan [9] recasts Wand's work into a typedsetting and provides correctness proofs for one of Wand'soptimizations. Hannan's translation, like ours, is given as adeductive system, but he does not consider the importantissue of environment representation (preferring an abstractaccount instead), nor does he consider the typing propertiesof the closure-converted code. Finally, neither Wand norHannan consider closure conversion under a type-passinginterpretation of polymorphism.The remainder of this paper is organized as follows. InSection 2, we give an overview of closure conversion andthe typing issues involved for the simply-typed �-calculus.In Section 3, we provide the details of our type-preservingtransform for the simply-typed case. In Section 4, we give anoverview of closure conversion and the typing issues involvedfor the predicative fragment of the polymorphic �-calculus.The formal development of this conversion is given in Section5.2 Overview of Simply-Typed Closure Con-versionThe main ideas of closure conversion are illustrated by con-sidering the following ML program:let val x = 1val y = 2val z = 3val f = �w. x + y + win f 100end.The function f contains free variables x and y. We mayeliminate references to these variables from the body of fby abstracting an environment env and replacing x and y byreferences to the environment. In compensation, a suitableenvironment containing the bindings for x and y must bepassed to f before it is applied. This leads to the followingtranslation:let val x = 1val y = 2val z = 3val f = (�env. �w. (#x env) + (#y env) + w)fx=x, y=ygin f 100end.



References to x and y in the body of f are replaced byprojections (�eld selections) #x and #y that access the corre-sponding component of the environment. Since the code forf is closed, it may be hoisted out of the enclosing de�nitionand de�ned at the top-level. We ignore this \hoisting" phaseand instead concentrate on the process of closure conversion.In the preceding example the environment contains bind-ings only for x and y, and is thus as small as possible. Since zis in scope, it is also sensible to include z in the environmentof f, resulting in the following code:let val x = 1val y = 2val z = 3val f = (�env. �w. (#x env) + (#y env) + w)fx=x, y=y, z=zgin f 100end.In the examples above, we used a 
at FAM-like [4] rep-resentation of the environment as a record with one �eld foreach variable. Alternatively we could choose a linked CAM-like [5] representation in which each binding is a separateframe attached to the front of the remaining bindings. Thisidea leads to the following translation:let val x = 1val y = 2val z = 3val f = (�env. �w.(#x(#link(#link env))) +(#y(#link env)) + w)fz=z, link=fy=y, link=fx=xgggin f 100end.The linked representation facilitates environment sharing,but accessing a variable requires link traversals proportionalto the nesting depth of the variable in the environment. Thelinked representation also supports constant-time closurecreation, but this requires reusing the current environment.Reusing the current environment can result in unnecessarybindings in the environment (such as z above), leading tospace leaks.These simple translations fail to delay the application ofthe code to its environment under call-by-value evaluation.A natural representation of a delayed application or closureis an ordered pair (code, env) consisting of the code to-gether with its environment. Application of a closure toan argument proceeds by projecting the code part from theclosure and then applying it simultaneously to both the en-vironment and the argument according to some calling con-vention. For example,let val x = 1val y = 2val z = 3val code = �env.�w. #x(env) + #y(env) + wval env = fx=x, y=ygval f = (code, env)in (#1 f) (#2 f) 100end.

But since code has a type of the form �ve ! �1 ! �2, where�ve is the type of the environment env, the closure as a wholewould have type (�ve ! �1 ! �2)� �ve, exposing the type ofthe environment. As a result, this translation does not, ingeneral, preserve types. For example, consider the followingML source program with type int! int:let val y = 1in if true then�x. x+yelse�z. zend.Closure converting this expression and representing the clo-sures as pairs yieldslet val y = 1in if true then(�env. �x. x + #y(env), fy=yg)else(�env. �z. z, fg)end.This program fails to type-check because the then-clause ofthe conditional has type (fy:intg ! int ! int)� fy:intg,whereas the else-clause has type (fg ! int! int)� fg.If types are to be preserved by closure conversion, therepresentation of the environment must be hidden. Thismay be achieved through the use of existential types [22],whose typing rules are given in Figure 1. Brie
y, the packconstruct packages a type � with a term e, abstracting cer-tain occurrences of � in the type of e as the type variable t.The open operation extracts the contents of a package foruse within a �xed scope, holding the type component of thepackage abstract. (See Mitchell and Plotkin's article [22] forfurther discussion of existential types.)Using existentials, we may hide the type of the environ-ment by abstracting it from the type of the closure itself.Speci�cally, a closure of type �1 ! �2 is represented by apackage of the formpack �ve with (code; env) as 9tve:(tve ! �1 ! �2)� tvewith type 9tve:(tve ! �1 ! �2) � tve. Applying this to theexample of the conditional expression given above, we obtainthe translationlet val y = 1inif true thenpack fy:intg with (�env. �x. x+#y(env),fy=yg)as 9tve:(tve ! int! int)� tveelsepack fg with (�env. �z. z, fg)as 9tve:(tve ! int! int)� tveend.It is easy to see that the types of the clauses of the condi-tional agree, and that the translation has type 9tve:(tve !int! int)� tve.With closures represented as packages of existential type,applications of the form e e' are translated as follows:



�;� ` e : �[�=t]�; � ` pack � with e as 9t:� : 9t:� �;� ` e1 : 9t:�0� ] ftg; � ] fx:�0g ` e2 : ��;� ` open e1 as t with x in e2 : � (t 62 FTV (�); t 62 �)Figure 1: Typing Rules for Existentialsopen e as tve with z : (tve ! �1 ! �2)� tvein (#1 z) (#2 z) e'end.That is, the package e is opened, holding the environmentrepresentation abstract, and the code part is simultaneouslyapplied to both the environment and the argument of theapplication.3 A Formal Account of Simply-Typed Clo-sure ConversionIn this section we present the details of closure conversion forthe call-by-value, simply-typed �-calculus. We break the fulltransformation into two stages, as outlined in the introduc-tion. To simplify the presentation, we begin with a versionof abstract closure conversion that does not admit sharingof environments and then consider the general, shared envi-ronment case separately. Next, we give the representationof closures in terms of existential types as sketched in thepreceding section. Finally, we prove the correctness of thetranslations using a logical relations argument.We de�ne the syntax of the source language, �!, as fol-lows: Types � ::= b j �1 ! �2Expressions e ::= c j x j �x:�: e j e1 e2Values v ::= c j �x:�: eTypes consist of base types (b) and function types1. Expres-sions consist of constants (c) of base type, variables, abstrac-tions, and applications. We use � to denote a sequence oftype bindings of the form fx1:�1; : : : ; xn:�ng (n � 0) wherethe xi's are distinct variables. The judgement � ` e : �asserts that the expression e has type � under the type as-signment �, and is derived from the standard typing rulesof the simply-typed �-calculus. The dynamic semantics ofthe language is de�ned by judgements of the form e ,! vasserting that the closed expression e evaluates to the valuev. The judgement is de�ned by the following standard in-ference rules for call-by-value evaluation:v ,! v e1 ,! �x:�1: e e2 ,! v2 e[v2=x] ,! ve1 e2 ,! v3.1 Abstract Closure ConversionWe de�ne the target language for abstract closure conver-sion, �cl , as follows:Types � ::= b j �1 ! �2 j h�1 � : : :� �ni j code(�ve; �1; �2)Exp's e ::= c j x j e1e2 j he1; : : : ; eni j �i(e) j�xve:�ve: �x:�1: e j hhe1; e2iiValues v ::= c j �xve:�ve: �x:�1: e j hv1; : : : ; vni j hhv1; v2ii1The results of this paper easily extend to other source types in-cluding products and sums.

In the introduction we informally presented a closure as apartial application of code to an environment, with the in-tention that this application is delayed until the closure isapplied to an argument. To make this precise we intro-duce an explicit closure form, written hhe; eveii, where e isthe code of the closure and eve is its environment. Noticethat closures are distinguished from applications of func-tions to arguments, which are written in the usual way byjuxtaposition. To capture the restriction that the code partof a closure should be closed, we introduce a special codetype, code(�ve; �1; �2), consisting of closed terms of the form�xve:�ve:�x:�1:e, which abstract both an environment andan argument2.The typing rules for �cl are standard except for code andclosures, whose rules are given as follows:fxve:�ve; x:�1g ` e : �2� ` �xve:�ve:�x:�1:e : code(�ve; �1; �2)� ` e : code(�ve; �1; �2) � ` eve : �ve� ` hhe; eveii : �1 ! �2The evaluation rules governing closures are given as fol-lows: e1 ,! v1 e2 ,! v2hhe1; e2ii ,! hhv1; v2iie1 ,! hh�xve:�ve:�x:�1:e; vveii e2 ,! v2e[vve=xve; v2=x] ,! ve1 e2 ,! vWhen a closure is applied to an argument, the environmentand the argument are substituted for the corresponding vari-ables and the body of the code is evaluated.We de�ne abstract closure conversion as the type-directedtranslation from �! to �cl given in Figure 2. We formulatethe translation as a deductive system with judgements ofthe form �;x:� . e ; e0 and �;x:� . �0 ; e0ve, where �and �0 are source type assignments, � is a source type, e isa source expression, and e0 and e0ve are target expressions.The distinguished variable x is used to represent the argu-ment of the nearest enclosing �-abstraction; the variables in� include this �-abstraction's free variables.The judgement �;x:� . e ; e0 asserts that e0 is thetranslation of e under the assumption that � ] fx:�g ` e :� 0 for some � 0. The judgement �;x:� . �0 ; e0ve assertsthat e0ve is an expression that evaluates to the environmentcorresponding to �0, under the assumption that each bindingin �0 occurs in � ] fx:�g. The order of bindings in � isimportant, because this determines the translation of bothenvironments and free variables.2In practice, a multi-argument �-abstraction is used for code inthe target language. However, the polymorphic case requires a morecomplicated construct that abstracts both values (�) and types (�).For uniformity we use a curried presentation to abstract multiplearguments.



(const) �;x:� . c; c (arg) �;x:� . x; x (env) fx1:�1; : : : ; xn:�ng; x:� . xi ; �i(xve)(abs) �;x0:� 0 . �0 ; eve �0;x:� . e; e0�;x0:� 0 . �x:�:e; hh�xve:j�0j: �x:�: e0; eveii (app) �;x:� . e1 ; e01 �;x:� . e2 ; e02�;x:� . e1 e2 ; e01 e02(context) �;x:� . x1 ; e1 : : : �;x:� . xn ; en�; x:� . fx1:�1; : : : ; xn:�ng; he1; : : : ; eni (� ] fx:�g ` xi : �i)Figure 2: Simply-Typed Abstract Closure ConversionWe use the variable xve to hold the environment argu-ment of the current code body. Thus, we translate free vari-ables to projections of xve. More precisely, according torule (env), we translate a reference to the free variable xifound in the ith position of the type assignment � to the ithprojection of the variable xve. On the other hand, accordingto rule (arg), we translate a reference to the argument of thecurrent code body to the distinguished argument variable x.Under the assumptions �;x0:� 0, we translate an abstrac-tion �x:�:e to a closure according to the (abs) rule. To con-struct the environment of the closure, we choose a type as-signment �0 such that �; x0:� 0 . �0 ; eve is derivable viathe (context) rule and �0;x:� . e; e0. In e�ect, these rulesrequire that every binding in the closure's environment mustbe in scope (i.e., in � ] fx0:� 0g) and the environment is re-quired to contain bindings for all of the free variables inthe original function �x:�: e. However, �0 may also containbindings for variables that are in scope but do not occur freein the function. Consequently, there are many choices for�0, with the exact choice being in
uenced by time and spaceconsiderations.We construct the environment of a closure via the (context)rule by translating each of the variables occurring in �0(namely x1; � � � ; xn) to the target expressions e1; � � � ; en. Weplace the resulting expressions in a tuple he1; : : : ; eni, toform the environment data structure of the closure. Thisrepresentation of the environment has type h�1 � � � � � �ni,which we summarize by writing j�0j.To produce the code of the closure, we translate the bodyof the source function under the strengthened assumptions�0;x :� , producing the body of the code, e0. We then ab-stract the environment and argument, yielding the transla-tion �xve:j�0j: �x:�: e0.Using a dummy \current argument" to translate an en-tire closed program, it is easy to prove by induction on thederivation of the translation that the translation preservesthe type of a program.Theorem 1 If ; ` e:� and ;;x:b . e; e0, then ; ` e0 : � .To prove the correctness of the translation, we use a type-indexed family of logical relations relating closed source ex-pressions to closed target expressions (� ) and closed sourcevalues to closed target values (� ). The relations are de�nedby induction on source types as follows:e �� e0 i� e ,! v and e0 ,! v0 and v �� v0c �b cv ��1!�2 v0 i� for all v1 ��1 v01, v v1 ��2 v0 v01.We extend the relation to �nite source (
) and target sub-stitutions (
0), mapping variables to their respective class of

values. These relations are de�ned as follows:
 �fx1:�1;:::;xn:�ng;x:� [hv1; : : : ; vni=xve; v=x]i� 
(xi) ��i vi for 1 � i � n and 
(x) �� v.Theorem 2 Let 
 ��;x0:� 0 
0. If � ] fx0:� 0g ` e : � and�;x0:� 0 . e; e0, then 
(e) �� 
0(e0).Thus, for a closed program of base type, evaluating theprogram and its translation yields syntactically equivalentvalues.3.2 Sharing EnvironmentsSome implementations of functional programming languagesshare portions of an environment among closures in an e�ortto decrease space and closure creation time. In this sectionwe extend the treatment of abstract closure conversion toallow for shared environments. We achieve this by impos-ing additional structure on environments to allow for nestedrepresentations.The type assignments in the previous section (�) consistof a 
at sequence of variable declarations. To provide forshared environment representations, we enrich the structureof type assignments to support nested type assignments asfollows: � ::= fx:�g j h�1; : : : ;�miA nested type assignment is either a single type bindingor a sequence of nested type assignments. The environmentcorresponding to the type assignment � has target languagetype j�j, where jfx:�gj = � and jh�1; : : : ;�mij = hj�1j �: : : � j�mji. We can obtain a non-nested type assignment(�) from a nested type assignment (�) simply by droppingthe extra structure.We give the most important translation rules for closureconversion with nested environments in Figure 3; the re-maining rules may be obtained from those in Figure 2 byreplacing � with � throughout.We use the (env-tuple) rule to construct a nested envi-ronment he1; � � � ; eni corresponding to the type assignments�1; � � � ;�n, if �;x:� . �i ; ei, for 1 � i � n. We ob-tain each of the �i and ei from the (arg), (env), (subenv),and (env-tuple) rules. We use the (arg) rule to translate theargument of the nearest enclosing �-abstraction as an en-vironment, and we use the (env) rule to translate the freevariables of this abstraction as an environment. As before,we use the distinguished variables x and xve to hold thesetwo values in the translation. We use the (subenv) rule totranslate access to a type assignment nested within � to a



(arg) fx0:� 0g;x:� . fx:�g; x (env) �;x:� . �; xve (var) �;x:� . fx0:� 0g; e�;x:� . x0 ; e(subenv) �i;x:� . �; eh�1; : : : ;�ni;x:� . �; e[�i(xve)=xve] (env-tuple) �;x:� . �1 ; e1 � � � �;x:� . �n ; en�;x:� . h�1; : : : ;�ni; he1; : : : ; eniFigure 3: Simply-Typed Closure Conversion using Nested Environmentsprojection of the environment corresponding to �. Finally,we translate access to a variable within a type assignmentvia the (var) rule.As an example, consider the translationhfx1:intg; fx2:intgi; x0:int . (�x:int:x0 + x1 + x2);hh�xve:�:�x:int:�1(xve) + �1(�2(xve)) + �2(�2(xve));hx0; xveiiiwhere � is hint � hint � intii. We construct the new envi-ronment for the closure by pairing the current argument x0and the current environment xve according to the (env-tuple)rule. If we used the 
at translation given in Figure 2, thenwe would have to project the values for x1 and x2 out of thecurrent environment and place these values and the currentargument into a newly allocated tuple.Nested type assignments are su�ciently 
exible to han-dle many commonly-used environment representations. Forexample, the Categorical Abstract Machine, or CAM [5],uses a linked list to represent the environment. This is re-
ected in our framework by restricting the shape of nestedtype assignments and by restricting the (env-tuple) rule to\cons" the current argument onto the current environment,as follows:(CAM context) �c ::= fx:�g j hfx:�g;�ci(env-tuple) �c;x:� . hx:�;�ci; hx; xvei:The advantage of the CAM strategy is that the cost of theconstruction of a new environment is constant. However,in the worst case, accessing values in the environment takestime proportional to the length of the environment.In contrast, the FAM [4] uses 
at environments with nosharing. The closure conversion of Figure 2 accurately mod-els the environment strategy of the FAM if we choose a spe-ci�c strengthening strategy in the (abs) rule where only thefree variables of the function are preserved in the resultingclosure's environment. The advantage of the FAM environ-ment representation is that the cost of variable lookup isalways constant and the representation is \safe for space"[1] according to Appel's de�nition. However, constructingthe environment for a closure takes time proportional to thenumber of free variables in the function, and closures cannotshare portions of their environment.Clearly, there are a variety of other strategies for form-ing environments. For example, the shared closure strat-egy described by Appel and Shao [30] that is also safe forspace can also be formulated in our framework. However,to determine a good representation for each closure's envi-ronment requires a good deal more information includingan estimate as to how many times each variable is accessed,when garbage collection can occur, what garbage collectionalgorithm is used, etc.

3.3 Closure RepresentationThe purpose of abstract closure conversion is to choose anenvironment representation for each closure and to make theconstruction of closures explicit. By making environmentsexplicit, we expose operations that are implicit at the sourcelevel to an optimizer at the target level. In particular, anoptimizer can eliminate redundant constructions of environ-ments or redundant projections from environments.However, the process of extracting the code and environ-ment of a closure remains an implicit, atomic operation ofthe operational semantics. Hence, we cannot optimize theseclosure operations. For instance, if the same closure is re-peatedly applied in a loop, it is not possible to extract thecode and environment once, repeating only the applicationto the environment and argument within the loop.To make such optimizations possible, we choose a rep-resentation of closures in terms of generic primitives thatwould, in practice, already be present in the intermediatelanguage. Speci�cally, we consider a target language �9with existential types, de�ned by the following grammar:Types � ::= b j t j h�1 � : : :� �ni jcode(�ve; �1; �2) j 9t:�Exp's e ::= c j e1(e2; e3) j �xve:�ve:�x:�1:e jhe1; : : : ; eni j �i e jpack � with e as � jopen e1 as t with x:� in e2This language includes existential types and code types,but not function types; we show how to de�ne function typesin terms of these primitive constructs. We restrict applica-tions to the form e1(e2; e3) in order to preclude a partialapplication of code to its environment; this can be seen asa specialized use of multi-argument functions.Typing judgements for �9 are of the form �; � ` e : �where � is a list of type variables in scope and � is a typeassignment for variables in scope. We assume that the freetype variables of the types in the range of � and the free typevariables of e and � are contained in �. The typing rulesand evaluation rules of the language are standard (see [22]and Figure 1).We describe the closure representation phase in two parts.We begin by de�ning a translation from �cl to �9 types, de-noted j� j, as follows:jbj = bjh�1 � : : :� �nij = hj�1j � : : :� j�njijcode(�ve; �1; �2)j = code(j�vej; j�1j; j�2j)j�1 ! �2j = 9tve:hcode(tve; j�1j; j�2j) � tvei:We translate an arrow type to a pair consisting of code andan environment, with the environment type held abstractusing an existential quanti�er.



(closure) � . e : code(�ve; �1; �2); e0 � . eve : �ve ; e0ve� . hhe; eveii : �1 ! �2 ; pack j�vej with he0; e0vei as j�1 ! �2j(app) � . e1 : �1 ! �2 ; e01 � . e2 : �1 ; e02� . e1e2 : �2 ;open e01 as tve with x:hcode(tve; j�1j; j�2j)� tvei in (�1 x)(�2 x; e02) (x 62 Dom(�))Figure 4: Important Rules of Simply-Typed Closure RepresentationNext, we de�ne the translation of �cl terms to �9 termsin Figure 4. The judgements of the translation are of theform � . e : � ; e0, where �, e, and � are a �cl type as-signment, expression, and type respectively, and e0 is a �9expression. The interesting rules are (closure) and (app).The other rules (not shown) simply map the other �cl con-structs to their �9 counterparts. We translate a closure to apair of the code and the environment packed with the typeof the environment. We translate an application to an open,extract from a package the pair of a code and an environ-ment, and then apply the code to the environment and theargument.It is easy prove that the translation preserves the typeof a program up to the translation of the type. We do soby �rst extending the type translation to type assignments,setting jfx1:�1; : : : ; xn:�ngj = fx1:j�1j; : : : ; xn:j�njg:Theorem 3 If � ` e : � and � . e : � ; e0, then ;; j�j `e0 : j� j.Correctness of the translation is proven using logical re-lations between �cl and �9 expressions, �cl and �9 values,and �cl and �9 substitutions. The de�nition of the rela-tions and the proof of the correctness can be found in ourtechnical report [21].4 Overview of Polymorphic Closure Con-versionClosure conversion for a language with ML-style (i.e., pred-icative [13]) explicit polymorphism follows a similar patternto the simply-typed case, but with two additional compli-cations. First, we must account for free type variables aswell as free value variables in the code of an abstraction.Second, we must create closures for both value abstractions(�-terms) and type abstractions (�-terms). In this section,we give an overview of the typing di�culties encounteredwhen closure converting value abstractions; the treatmentof type abstractions is similar (see Section 5 for details).To eliminate free occurrences of type variables and or-dinary variables from the code, we abstract with respectto a type environment and a value environment, replacingfree variables by references to the appropriate environment.This process results in closed code that can be hoisted tothe top level and shared among multiple closures. The codeis partially applied to suitable representations of the typeand value environments to form a polymorphic closure. Asin the simply-typed case, we need a data structure to repre-sent the delayed partial application of the code to its type

and value environments. In addition, we must abstract boththe kind of the type environment and the type of the valueenvironment so that their representations remain private tothe closure. Without the abstraction, we run into the sametyping problems that we encountered in the simply-typedcase.As a running example, consider the expression�x:t1. (x:t1, y:t2, z:int),where t1 and t2 are free type variables and y and z are freevalue variables of type t2 and int respectively. It is easy tocheck that this expression has type t1 ! (t1 � t2� int). Toclosure convert the expression, we translate it to the partialapplicationlet val code =�tenv :: ft1::
, t2::
g.�venv : fy:#t2 tenv, z:intg.�x : (#t1 tenv).(x, #y venv, #z venv)in code ft1=t1, t2=t2g fy=y, z=zgend.The code of the closure abstracts a type environment tenvand a value environment venv. The actual type environmentft1=t1,t2=t2g is a record of kind ft1::
,t2::
g, where 
 is thekind of monotypes. The actual value environment fy=y,z=zg is a record with type fy:t2, z:intg. Note, however,that this type contains a free reference to t2, which mustbe replaced by a reference to the type environment in orderto ensure that the translated code is closed. We thereforeascribe the type fy:#t2 tenv, z:intg to the value environ-ment, noting that the projection #t2 tenv is equivalent tot2 when the actual type environment is as given earlier. Bysimilar reasoning we assign the type #t1 tenv to the argu-ment x of the �-abstraction. It is easy to check that thecode of the closure has the type �code given by the equation�code =8tenv::ft1::
, t2::
g.fy:#t2 tenv, z:intg!(#t1 tenv)!((#t1 tenv)�(#t2 tenv)�int).It follows that the entire let expression has the type of theoriginal term, namely t1 ! (t1 � t2 � int).Now let us consider the representation of the partial ap-plication of code to its type and value environments as adata structure. This data structure must be \mixed phase"in the sense that it consists of both type and value compo-nents. This suggests using a package of existential type ofthe form



e = pack ft1=t1, t2=t2g with (code, fy=y, z=zg)as 9tte::�te.�code � �ve,where code is as given earlier and�te = ft1::
, t2::
g�ve = fy:#t2 tte, z:intg.This package is well-typed according to the usual rules forexistentials.In contrast, consider what happens when we attempt togive the translation of the application of e to an argumente0 of type t1. Proceeding as in the simply-typed case, we in-troduce an open expression that extracts the code, the typeenvironment, and the value environment from the closure,and applies the code to the environments and argument.Doing so results in the following translation:open e as tte::�te with w:�code � �vein (#1 w) tte (#2 w) e0end.Unfortunately, this expression is not well-typed. The di�-culty is that e0 has type t1, whereas the expression (#1 w)tte (#2 w) has type(#t1 tte)!((#t1 tte)�(#t2 tte)�int).Since tte is abstract, the type variable t1 is not equivalentto #t1 tte. Consequently, the proposed translation of appli-cation fails to type-check.One way to get around this problem is to apply the codeto the type environment before forming the closure. Thisyieldslet val c = code ft1=t1,t2=t2gin pack ft1=t1,t2=t2g with (c, fy=y,z=zg)as 9tte::�te.�c � �veend,where the type �c is given by the equation�c = fy:#t1 tte,z:intg!(#t1 tte)!((#t1 tte)�(#t2 tte)�int).The translation of application given above will work in thiscase because the code and the value environment both usette as the type environment. But this approach dependsupon the very mechanism we are attempting to eliminate,namely partial application. The partial application of thecode to the type environment produces code that is no longerclosed. Thus, the code cannot be shared among the di�erentinstantiations of the type environment.Our solution to this issue is to constrain the code sothat it can be applied to a closure's value environment onlywhen it is also applied to the same closure's type environ-ment. This ensures that the type environment passed to thecode and the type environment used in the construction ofthe closure's value environment are the same. Fortunately,typing constraints of this form have already been addressedby research on module systems [20, 19, 11].Following Harper and Lillibridge [11], we use the notionof translucent types to express the desired constraint on thecode. In particular, when forming the closure, we coerce thecode to have the translucent type

8tenv = ft1=t1,t2=t2g::�te.fy:#t1 tenv,z:intg!(#t1 tenv)!((#t1 tenv)�(#t2 tenv)�int).This type is a super-type of the original code type �codebecause we have constrained the bound type variable tenv tobe bound to a particular type, namely the type environmentof the closure. (See Harper and Lillibridge [11] and Leroy[19] for further discussion of subtyping in this setting.) Thisconstraint ensures that this reference to the code will onlybe applied to the type environment of the closure.The constraint on tenv allows us to conclude that #t1tenv is equivalent to t1 and similarly, that #t2 tenv is equiv-alent to t2. We propagate these equivalences into the typeyielding8tenv = ft1=t1,t2=t2g::�te.fy:t1,z:intg ! t1 ! (t1�t2�int).We can now form the package containing the type envi-ronment, code, and valuepack ft1=t1,t2=t2g with (code, env)as 9tte::�te.� � �ve,where � is given via the equation� = 8tenv=tte::�te.fy:#t1 tte,z:intg!(#t1 tte)!((#t1 tte)�(#t2 tte)�int),and show that this package has type 9tte::�te:� � �ve. Notethat � is the same as �c, (the type of the partial applicationof code to the type environment), except for the additionalconstrained type abstraction of tenv. Through the use oftranslucency, we have accomplished the e�ect of partial ap-plication at the type-level without actually performing theapplication at the term-level.Opening a package e of type 9tte::�te:�� �ve to apply toan argument e0 of type t1 yields:open e as tte::�te, w:� � �vein (#1 w) tte (#2 w) e0end.The expression (#1 w) tte (#2 w) e0 has type t1 ! (t1 �t2 � int), thus the entire expression is well-formed.In summary, we use transluceny to constrain the typeof code before placing it in a closure. We use pack to rep-resent the mixed-phase data structure containing the code,type environent, and the value environment. The resultingpackage has a type of the form(9tte::�te:8t=tte::�te:�ve ! �1 ! �2)� �ve:To avoid the typing problems encountered in the simply-typed case, we need to hide the representations of the valueenvironment and the type environment. Thus, we use packagain to abstract the kind of the type environment and thetype of the value environment, resulting in the following typefor closures:9kte:9tve::
:9tte::kte:(8t=tte::kte:tve ! �1 ! �2)� tve:Careful consideration of the foregoing discussion revealsthat we only made limited use of translucency. The univer-sally quanti�ed variable tenv does not occur in the scopeof the abstraction once the equational constraint on tenv is



propagated. We use this property to provide a substantiallysimpler mechanism than the full translucent type calculus.In particular, we only need to capture the restriction thata polymorphic function must be applied to a speci�c typeargument. This may be expressed by introducing a type� ) � consisting of functions that must be applied to theconstructor � to yield a value of type �. The following tworules govern this new type constructor:� ` � :: � �; � ` e : 8t::�:��; � ` e : � ) �[�=t] �; � ` e : � ) ��;� ` e � : �The �rst rule restricts the domain of type application to thespeci�c constructor � . This corresponds to restricting thetype to 8t = �:� and propagating the equivalence t = � into�. The actual type application for � ) � is permitted onlyfor constructors equivalent to � . These two rules naturallycome from the necessity of delaying type applications forclosure conversion. Using this notation, the type translationof �1 ! �2 becomes9kte:9tve::
:9tte::kte:(tte ) tve ! �1 ! �2)� tve:The type of closures abstracts the kind of the type en-vironment and the type of the value environment, ensuringthat these may be chosen separately for each closure in thesystem. As in the simply-typed case, we have obtained an\object oriented" representation of polymorphic closures byexploiting a combination of the type systems proposed byPierce and Turner [26] for objects and by Harper and Lil-libridge [11] for modules.5 A Formal Account of Polymorphic Clo-sure ConversionIn this section, we present closure conversion for the predica-tive fragment of the second order �-calculus. This fragmentis su�cient to model Standard ML [13], and admits rela-tively simple correctness proofs based on logical relations.Our results extend to the full impredicative polymorphic �-calculus, but at the expense of a substantially more complexcorrectness argument (based on Girard's method of candi-dates [7]).We de�ne the syntax of the source language �8 as follows:Kinds � ::= 
Constructors � ::= b j t j �1 ! �2Types � ::= � j �1 ! �2 j 8t::�:�Expressions e ::= c j x j �x:�1:e j �t::�:e j e1 e2 j e �Values v ::= c j �x:�1:e j �t::�:eWe use kinds (�) to describe constructors (� ) and types(�) to describe expressions (e). There is only one kind (
)for �8;cl, but since subsequent languages have a richer kindstructure, we introduce kinds here for uniformity. Closedconstructors of kind 
 correspond to a subset of types, inparticular the types that do not include quanti�ers (themonotypes). Thus, constructors of kind 
 can be injectedinto types. We leave this injection implicit and treat � asboth a constructor and a type.A kind assignment � is a sequence that maps type vari-ables to kinds and is of the form ft1::�1; : : : ; tn::�ng, (n � 0).Typing judgements are of the form �; � ` e : � where thefree type variables of �, e, and � are contained in the do-main of �, and the free value variables of e are contained in

the domain of �. Typing judgements are derived accordingto the standard typing rules of the second-order �-calculus(see for example [13, 14]). The most interesting rules arethe introduction and elimination rules for quanti�ed types:� ] ft::�g; � ` e : ��;� ` �t::�: e : 8t::�: � (t 62 Dom(�))�; � ` e : 8t::�: ��;� ` e � : �[�=t] (FTV(� ) � Dom(�))5.1 Abstract Closure ConversionAbstract closure conversion for �8 converts both �-abstractionsand �-abstractions into abstract closures consisting of code,a type environment and a value environment. We considerhere only 
at environment representations, but note that thetreatment of nested environments given in Section 3 carriesover to the polymorphic case.We de�ne the syntax of the target language �8;cl as fol-lows:Kinds � ::= 
 j h�1 � : : :� �2iCon's � ::= b j t j �1 ! �2 j h�1 � : : :� �ni jh�1; : : : ; �ni j �i � jTypes � ::= � j �1 ! �2 j 8t::�:� j h�1 � : : :� �ni jvcode(tte::�te; �ve; �1; �2) jtcode(tte::�te; �ve; t::�; �)Exp's e ::= c j x j e1 e2 j e � j he1; : : : ; eni j �i e j�tte::�te:�xve:�ve:�x:�1:e j�tte::�te:�xve:�ve:�t::�:e j hhe1; �; e2iiWe use product kinds of the form h�1 � : : : � �ni to spec-ify the shapes of type environments in much the same waythat we use product types to specify the shapes of valueenvironments.There are two sorts of code: code corresponding to an or-dinary �-abstraction has the form �tte::�te:�xve:�ve:�x:�1:ewhile code corresponding to a type abstraction has the form�tte::�te:�xve:�ve:�t::�:e. The code in each case abstractsa type environment and a value environment. For the �-case the code also abstracts a value argument, and for the�-case the code abstracts a type argument. We introducethe types vcode and tcode to distinguish the two types ofcode from the types of closures, to ensure closure conditionson code, and to preclude partial applications of code to en-vironments. These types may be described by the followinginformal correspondences:vcode(tte::�te; �ve; �1; �2) � 8tte::�te:�ve ! �1 ! �2tcode(tte::�te; �ve; t::�; �) � 8tte::�te:�ve ! 8t::�:�:We consider code types to be polymorphic, so these typesdo not lie in the range of a polymorphic quanti�er.3Abstract closures have the form hhe1; �; e2ii, consisting ofpiece of code e1, a type environment � , and a value environ-ment e2.For the typing of �8;cl , kind assignments (�) map typevariables to kinds while type assignments (�) map valuevariables to types. The judgements of the static semanticsare as follows:� ` � :: � � is a well-formed constructor of kind �.� ` � � is a well-formed type.� ` �1 � �2 :: � �1 and �2 are equivalent constructors.� ` �1 � �2 �1 and �2 are equivalent types.�; � ` e : � e is a well-formed expression of type �.3This restriction is relaxed in the impredicative case.



The formation rules of types are standard. We have to in-troduce de�nitional equality of constructors and types toaccount for projections of constructors from product kinds.These rules consist of the equivalence rules for projectionsbelow, as well as the standard rules for equivalence and con-gruence: � ` �ih�1; : : : ; �ni � �i :: �i� ` h�1 �; : : : ; �n � i � � :: h�1 � : : :� �niThe typing rules for expressions are standard except forthe rules for codes and closures. These rules are de�ned inFigure 5. We require that code values be closed with respectto both type variables as well as value variables. This allowsus to share the code among multiple instantiations of the freetype variables and free value variables.We de�ne abstract closure conversion from �8 to �8;cl bythe deductive system given in Figures 6 and 7. The judge-ment �env; �arg . � ; �0 means that �0 is the translation of� where �env is a kind assignment corresponding to a typeenvironment and �arg is a kind assignment correspondingto a type argument (if any). This judgement also implic-itly de�nes a translation from constructors to constructors,since source-level constructors (� ) are a subset of types (�)and the translation maps constructors to constructors. Intranslated programs the type variable tte is used for typeenvironments.The judgement �env; �arg; �env; �arg . e ; e0 meanse0 is a translation of e where �env and �arg are as in thetype translation, and �env and �arg are type assignmentscorresponding to the value environment and value argumentrespectively. A type environment corresponding to �env anda value environment corresponding to �env are implementedin the target language by types of the form j�envj and j�envjrespectively, as de�ned below:jft1::�1; : : : ; tn::�ngj = h�1 � : : :� �nijfx1:�1; : : : ; xn:�ngj = h�1 � : : :� �ni:The most interesting rules are the term translations ofvalue and type abstractions. In each case, an appropri-ate type environment and value environment must be con-structed as part of the closure. Thus, assignments �0env and�0env must be chosen as subsets of the current assignments�env ]�arg and �env ]�arg respectively. These assignmentsmust be chosen so that all of the free value variables of theterm are contained in �0env and furthermore, all of the freetype variables of the term and the value environment mustbe contained in �0env.The chief technical di�culty in formulating these rulesis that we need two type assignments, �0env and �00env, to de-scribe the value environment of the closure, depending uponthe context. The type assignment �0env is constructed fromthe context �env; �arg; �env; �arg and is used to build theenvironment eve in the context in which the closure is con-structed. The type assignment �00env is obtained from �0envvia the translation �0env; ; . �0env ; �00env and correspondsto the type of the value environment in the context of theclosure itself. This ensures that the code of the closure isclosed since the type ascribed to the value environment ar-gument does not refer to free type variables in the contextwhere the closure was created.The type correctness of the translation is proved by in-duction on the derivation of the translation.

Theorem 4 If �env; �arg; �env; �arg . e ; e0 and �env ]�arg; �env]�arg ` e : �, then ftte::j�envjg]�arg ; fxve:j�0envjg]�0arg ` e0 : �0 where �env; �arg . � ; �0, �env; �arg .�env ; �0env, and �env; �arg . �arg ; �0arg.The correctness of the translation may be established us-ing an argument similar to that given for the simply-typedcase. The restriction to predicative polymorphism signi�-cantly simpli�es the proof.5.2 Closure RepresentationWe now turn to the representation of closures for the poly-morphic language.The target language for polymorphic closure representa-tion, called �8;9 , is de�ned as follows:Kinds � ::= k j 
 j h�1 � : : :� �niTypes � ::= b j t j h�1 � : : :� �ni j h�1; : : : ; �ni j �i � j8t::�:� j �1 ) �2 j �1 ! �2 j 9t::�:� j 9k:�Exp's e ::= x j c j �x:�:e j e1 e2 j �t::�:e j e � jhe1; : : : ; eni j �i e jpack � with e as �0 jopen e as t::� with x:� in e0pack � with e as � jopen e as k with x:� in e0Our translation of function types involves existential quan-ti�ers. Since function types can instantiate a polymorphictype in the source language, we need to be able to instantiatepolymorphic types with existentials in the target language.As a consequence, the target language must be impredica-tive. To simplify the language, we provide general abstrac-tions (� and �), instead of code types that abstract morethan one argument at a time.Since we shall have limited need of existential kinds, wemust introduce kind variables k into the language, with cor-responding kind contexts and judgements. A kind context Kis simply a sequence of kind variables fk1; : : : ; kng, (n � 0).The typing judgements of the language are as follows:K; � ` � :: � � has kind �.K; � ` �1 � �2 :: � �1 and �2 are equal types of kind �.K; �; � ` e : � e has type �.The formation rules, de�nitional equality rules, and typ-ing rules are standard except that values of polymorphictype 8t::�:� may be coerced to the special type �0 ) �[�0=t],where �0 is a type of kind �, as described in the Section 4.The details of the typing rules are found in the companiontechnical report [21].We de�ne the closure representation stage as a type-directed translation from �8;cl to �8;9 . We begin by de�ninga translation from source constructors and types to targettype as follows: jtj = tjbj = bjh�1; : : : ; �nij = hj�1j; : : : ; j�njij�i�j = �ij�jjh�1 � : : :� �nij = hj�1j � : : :� j�njijvcode(t::�; �ve; �1; �2)j = 8t::�:j�vej ! j�1j ! j�2jjtcode(t::�; �ve; s::�0; �2)j = 8t::�:j�vej ! 8s::�0:j�2jj�1 ! �2j = 9k:9t0::
:9t::k:h(t) t0 ! j�1j ! j�2j)� t0ij8s::�:�2j = 9k:9t0::
:9t::k:h(t) t0 ! 8s::�:j�2j) � t0i



ftte::�teg; fxve:�ve; x:�1g ` e : �2�;� ` �tte::�te:�xve:�ve:�x:�1:e : vcode(tte::�te; �ve; �1; �2)ftte::�te; t::
g; fxve:�veg ` e : ��; � ` �tte::�te:�xve:�ve:�t::
:e : tcode(tte::�te; �ve; t; �)�; � ` e1 : vcode(tte::�te; �ve; �1; �2) � ` � : �te �;� ` e2 : �ve[�=tte]�; � ` hhe1; �; e2ii : (�1 ! �2)[�=tte]�; � ` e1 : tcode(tte::�te; �ve; t; �) � ` � : �te �;� ` e2 : �ve[�=tte]�; � ` hhe1; �; e2ii : (8t::
:�2)[�=tte]Figure 5: Typing Rules for Code and Closures of �8;cl�env; �arg . b; b ft1::
; : : : ; tn::
g; �arg . ti ; �i tte�env; �arg . t; t (t 2 Dom(�arg))�env; �arg . �1 ; �01 �env; �arg . �2 ; �02�env; �arg . �1 ! �2 ; �01 ! �02 �env; �arg ] ft::
g . �; �0�env; �arg . 8t::�: �; 8t::�: �0�env; �arg . t01 ; �1 � � � �env; �arg . t0n ; �n�env; �arg . ft01::
; : : : ; t0n::
g; h�1; : : : ; �ni�env; �arg . �1 ; �01 � � � �env; �arg . �n ; �0n�env; �arg . fx1:�1; : : : ; xn:�ng; fx1:�01; : : : ; xn:�0ngFigure 6: Polymorphic Abstract Closure Conversion: Types and Type Assignments(const) �env; �arg; �env; �arg . c; c(env) �env; �arg; fx1:�1; : : : ; xn:�ng; �arg . xi ; �i xve(arg) �env; �arg; �env; �arg . x; x (x 2 Dom(�arg))(abs) �env; �arg; �env; �arg . �0env ; �te �env; �arg; �env; �arg . �0env ; eve�0env; ; . �0env ; �00env �0env; ; . �1 ; �01�0env; ;; �0env; fx:�1g . e; e0�env; �arg; �env; �arg . �x:�1:e; hh�tte::j�0envj:�xve:j�00envj:�x:�01:e0; �te; eveii(tabs) �env; �arg; �env; �arg . �0env ; �te �env; �arg; �env; �arg . �0env ; eve�0env; ; . �0env ; �00env �0env; ft::
g; �0env; ; . e; e0�env; �arg; �env; �arg . �t::
: e; hh�tte::j�0envj:�xve:j�00envj:�t::
: e0; �te; eveii(app) �env; �arg; �env; �arg . e1 ; e01 �env; �arg; �env; �arg . e2 ; e02�env; �arg; �env; �arg . e1 e2 ; e01 e02(tapp) �env; �arg; �env; �arg . e; e0 �env; �arg . � ; � 0�env; �arg; �env; �arg . e � ; e0 � 0(context) �env; �arg; �env; �arg . xi ; e0i�env; �arg; �env; �arg . fx1:�1; : : : ; xn:�ng; he01; : : : ; e0niFigure 7: Polymorphic Abstract Closure Conversion: Terms



The code types are translated to the appropriate combi-nation of target 8 and! types. The translation of a functiontype abstracts the kind of the type environment, k, and thetype of the value environment, t0. The type environment tis paired with the code by using an existential type. Sincethe type of a code is instantiated by t, only the type envi-ronment of the closure can be given to the code. The codeand the value environment are paired as in the simply-typedcase. The translation of 8 has the same structure as that ofan arrow type.The translation of expressions is summarized in Figure 8.The kind of the type environment, the type of the value en-vironment, and the type environment are packed with thepair of the code and the value environment. In the transla-tion of applications, the type environment is obtained froma closure by an open expression and the code and the valueenvironment are obtained by projections. Then the typeenvironment, the value environment, and the argument ofapplication are passed to the code.Type preservation is proved by induction on the struc-ture of the translation derivation. The typing rules for� ) �0 are essential to prove the cases for the translationsof closures.Theorem 5 If �;� . e : � ; e0, then ;; �; j�j ` e0 : j�j.The correctness of the translation can be proven usinglogical relations as in the simply typed case. However, thede�nition of the relations is more complicated because of thepresence of polymorphic types and types of the form �i(� )in the language �8;cl . The relations and the proof appearin the companion technical report [21].6 Summary and ConclusionsWe have given a type-theoretic account of closure conversionby de�ning type-directed transformations for the simply-typed and polymorphic �-calculi. The types used in thetarget languages of the translations may be characterizedin a natural way based on the \closures as objects" prin-ciple. In both the simply-typed and polymorphic cases ofclosure representation, we used Pierce-Turner-style existen-tials to hide the representations of environments. In thepolymorphic case, we took advantage of Harper-Lillibridge-style translucency to ensure that the same type environmentis used to type both the code and the value environment ofa closure.Our translations preserve types, facilitating correctnessproofs and composition with other type-based translations.Furthermore, our translations provide support for run-timetype analysis and type-based, tag-free garbage collection.We have put the ideas in this paper to practical use intwo separate compilers for ML. One compiler is being usedto study novel approaches to tag-free garbage collection.The other compiler, called TIL (Typed Intermediate Lan-guages), provides a general framework for analyzing typesat run time to support e�cient data representations, e�-cient calling conventions, and \nearly" tag-free garbage col-lection in the presence of polymorphism [36]. Propagatingtypes through closure conversion is necessary for both com-pilers so that types can be examined at run time.We have found that propagating types through closureconversion (and other compilation phases) has an additionalengineering bene�t. In particular, we can automatically ver-ify the type-integrity of each type-preserving phase in the
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