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Abstract Models of Memory Management�Greg Morrisett Matthias Felleisen Robert HarperCarnegie Mellon Rice University Carnegie Mellonjgmorris@cs.cmu.edu matthias@cs.rice.edu rwh@cs.cmu.edu
AbstractMost speci�cations of garbage collectors concentrate on thelow-level algorithmic details of how to �nd and preserve ac-cessible objects. Often, they focus on bit-level manipula-tions such as \scanning stack frames," \marking objects,"\tagging data," etc. While these details are important insome contexts, they often obscure the more fundamental as-pects of memory management: what objects are garbage andwhy?We develop a series of calculi that are just low-levelenough that we can express allocation and garbage collec-tion, yet are su�ciently abstract that we may formally provethe correctness of various memory management strategies.By making the heap of a program syntactically apparent, wecan specify memory actions as rewriting rules that allocatevalues on the heap and automatically dereference pointersto such objects when needed. This formulation permits thespeci�cation of garbage collection as a relation that removesportions of the heap without a�ecting the outcome of theevaluation.Our high-level approach allows us to specify in a compactmanner a wide variety of memory management techniques,including standard trace-based garbage collection (i.e., thefamily of copying and mark/sweep collection algorithms),generational collection, and type-based, tag-free collection.Furthermore, since the de�nition of garbage is based on thesemantics of the underlying language instead of the conser-vative approximation of inaccessibility, we are able to specifyand prove the idea that type inference can be used to collectsome objects that are accessible but never used.�This work was sponsored in part by the Advanced ResearchProjects Agency (ARPA), CSTO, under the title \The Fox Project:Advanced Development of Systems Software," ARPA Order No. 8313,issued by ESD/AVS under Contract No. F19628{91{C{0168, WrightLaboratory, Aeronautical Systems Center, Air Force Materiel Com-mand, USAF, and ARPA grant No. F33615-93-1-1330. Views andconclusions contained in this document are those of the authors andshould not be interpreted as necessarily representing o�cial policiesor endorsements, either expressed or implied, of Wright Laboratoryor the United States Government.

1 Memory SafetyAdvanced programming languages manage memory alloca-tion and deallocation automatically. Automatic memorymanagers, or garbage collectors, signi�cantly facilitate theprogramming process because programmers can rely on thelanguage implementation for the delicate tasks of �ndingand freeing unneeded objects. Indeed, the presence of agarbage collector ensures memory safety in the same waythat a type system guarantees type safety: no program writ-ten in an advanced programming language will crash dueto dangling pointer problems while allocation, access, anddeallocation are transparent. However, in contrast to typesystems, memory management strategies and particularlygarbage collectors rarely come with a compact formulationand a formal proof of soundness. Since garbage collectorswork on the machine representations of abstract values, thevery idea of providing a proof of memory safety sounds unre-alistic given the lack of simple models of memory operations.The recently developed syntactic approaches to the spec-i�cation of language semantics by Felleisen and Hieb [11]and Mason and Talcott [18, 19] are the �rst execution mod-els that are intensional enough to permit the speci�cationof memory management actions and yet are su�ciently ab-stract to permit compact proofs of important properties.Starting from the �v-S calculus of Felleisen and Hieb, wedesign compact speci�cations of a number of memory man-agement ideas and prove several correctness theorems.The basic idea underlying the development of our gar-bage collection calculi is the representation of a program'srun-time memory as a global series of syntactic declarations.The program evaluation rules allocate large objects in theglobal declaration, which represents the heap, and automat-ically dereference pointers to such objects when needed. Asa result, garbage collection can be speci�ed as any relationthat removes portions of the current heap without a�ectingthe result of a program's execution.In Section 2, we present a small functional programminglanguage, �gc, with a rewriting semantics that makes allo-cation explicit. We de�ne a semantic notion of garbage col-lection for �gc and prove that there is no optimal collectionstrategy that is computable. In Section 3, we specify the\free-variable" garbage collection rule which models trace-based collectors including mark/sweep and copying collec-tors. We prove that the free-variable rule is correct andprovide two \implementations" at the syntactic level: the�rst corresponds to a copying collector, the second to a gen-erational one.In Section 4, we formalize so-called \tag-free" collec-tion algorithms for explicitly-typed, monomorphic languagessuch as Pascal and Algol [7, 29, 8]. We show how to recover



necessary shape information about values from types duringgarbage collection. We are able to prove the correctness ofthe garbage collection algorithm by using a well known typepreservation argument.In Section 5, we justify our semantic de�nition of garbageby showing that Milner-style type inference can be used toprove that an object is semantically garbage even thoughthe object is still reachable. While previous authors havesketched this idea [3, 5, 14, 12], we are the �rst to present aformal proof of this result. The proof is obtained by castingthe well known interpretation of types as logical relationsinto our framework.Section 6 discusses related work and Section 7 closes witha summary.Due to a lack of space, most of the proofs for lemmasare omitted in this paper. However, full details may berecovered from our companion technical report [20].2 Modeling Allocation: �gcSyntax: The syntax of �gc (see Figure 1) is that of a con-ventional, higher-order, applicative programming languagebased on the �-calculus. Following the tradition of func-tional programming, a �gc program (P ) consists of somemutually recursive de�nitions (H) and an expression (e).The global de�nitions are useful for de�ning mutually recur-sive procedures, but their primary purpose here is to repre-sent the run-time heap of a program. In general, there canbe cycles in a heap, so we use letrec instead of let as thebinding form. Expressions are either variables (x), integers(i), pairs (he1; e2i), projections (�i), abstractions (�x:e), orapplications (e1 e2).Formally, the heap is a series of pairs, called bindings,consisting of variables and heap values. Heap values are asemantically signi�cant subset of expressions. The order ofthe bindings is irrelevant and each variable must be boundto at most one heap value in a heap. Hence, we treat heapsas sets and, when convenient, as �nite functions. We writeDom(H) to denote the bound variables of H, and Rng(H)to denote the heap values bound in H. We sometimes referto variables bound in the heap as locations or pointers.The language contains two binding constructs: �x:ebinds x in e and letrec H in e binds the variables in Dom(H)to the expressions Rng(H) in both the values in Rng(H)and in e. Following convention, we consider programs tobe equivalent up to a consistent �-conversion of bound vari-ables.Considering programs equivalent modulo �-conversionand the treatment of heaps as sets instead of sequences hidesmany of the complexities of memory management. In par-ticular, programs are automatically considered equivalent ifthe heap is re-arranged and locations are re-named as longas the \graph" of the program is preserved. This abstractionallows us to focus on the issues of determining what bind-ings in the heap are garbage without specifying how suchbindings are represented in a real machine.Mathematical Notation: We use X ] X 0 to denote theunion of two disjoint sets, X and X 0. We use H ] H 0 todenote the union of two heaps whose domains are disjoint.We use fe1=xge2 to denote capture-avoiding substitution ofthe expression e1 for the free variable x in the expression e2.We use X nX 0 to denote fx 2 X j x 62 X 0g.Semantics: The rewriting semantics for �gc is an adapta-tion of the standard reduction function of the �v-S calcu-

lus [11]. Roughly speaking, this kind of semantics describesan abstract machine whose states are programs and whoseinstructions are relations between programs. The desired �-nal state of this abstract machine is an answer program (A)whose body is a pointer to some value, such as an integer,in the heap.Each rewriting step of a program letrec H in e proceedsaccording to a simple algorithm. If the body of the pro-gram, e, is not a variable, it is partitioned into an evalua-tion context E (an expression with a hole [ ] in the placeof a sub-expression), which represents the control state, andan instruction expression I , which roughly corresponds toa program counter: e = E[I]. The instruction expressiondetermines the next expression e0 and any changes to theheap resulting in a new heap H 0. Putting the pieces to-gether yields the next program in the evaluation sequence:letrec H 0 in E[e0]. Each instruction determines one transi-tion rule of the abstract machine. Formally, a rule denotes arelation between programs. A set of rules denotes the unionof the respective relations.We use the following conventions: Let G be a set ofprogram relations, and let P and P 0 be programs. Then,P G7�! P 0 means P rewrites to P 0 according to oneof the rules in G and G7�! � is the reexive, transitiveclosure of G7�!.G+ r is the union of G with the rule r.A program P is irreducible with respect to G i� thereis no rule in G and no P 0 such that P G7�! P 0.P +G P 0 means that P G7�! �P 0 and P 0 is irreduciblewith respect to G.P *G means that there exists an in�nite sequence ofprograms Pi such that P G7�! P1 G7�! P2 G7�! � � �.Figure 1 de�nes the set of evaluation contexts and in-struction expressions for �gc. The de�nition of evaluationcontexts (E) reects the left-to-right, call-by-value evalua-tion order of the language. All terms to the left of the pathfrom the root to the hole are variables; the terms on theright are arbitrary. Instruction expressions (I) consist ofheap values (h), applications of (pointers to heap-allocated)procedures to (pointers to heap-allocated) values, and pro-jections of (pointers to heap-allocated) tuples.The evaluation rules for �gc reect the intentions behindour choice of instruction expressions. The transition rule al-loc models the allocation of values in the heap by bindingthe value to a new variable and using this variable in its placein the program. Note that the \]" notation carries the im-plicit requirement that the newly allocated variable x cannotbe in the domain of the heap H. The transition proj spec-i�es how a projection instruction extracts the appropriatecomponent from a pointer to a heap-allocated pair. Sim-ilarly, app is a transliteration of the conventional �-valuerule into our modi�ed setting. It binds the formal parame-ter of a heap-allocated procedure to the value of the pointergiven as the actual argument, and places the expression partof the procedure into the evaluation context. Multiple appli-cations of the same procedure require �-conversion to ensurethat the formal parameter does not conict with bindingsalready in the heap1. We use R to abbreviate the union ofthe rules alloc, proj, and app.1An alternative rule for application substitutes the actual argu-ment (y) for the formal (z) within e and performs no allocation. Thisrule is essentially equivalent to app, but the de�nition above simpli-�es the proofs of Section 5.



Programs: (variables) x; y; z 2 Var(integers) i 2 Int ::= � � � j � 2 j � 1 j 0 j 1 j 2 j � � �(expressions) e 2 Exp ::= x j i j he1; e2i j �1 e j �2 e j �x:e j e1 e2(heap values) h 2 Hval ::= i j hx1; x2i j �x:e(heaps) H 2 Heap ::= fx1 = h1; : : : ; xn = hng(programs) P 2 Prog ::= letrec H in e(answers) A 2 Ans ::= letrec H in xEvaluation Contexts and Instruction Expressions:(contexts) E 2 Ctxt ::= [ ] j hE; ei j hx;Ei j �i E j E e j x E(instructions) I 2 Instr ::= h j �i x j x yRewriting Rules(alloc) letrec H in E[h] alloc7�! letrec H ] fx = hg in E[x](proj) letrec H in E[�i x] �i7�! letrec H in E[xi] (H(x) = hx1; x2i and i = 1; 2)(app) letrec H in E[x y] app7�! letrec H ] fz = H(y)g in E[e] (H(x) = �z:e)Figure 1: The Syntax and Operational Semantics of �gcThe irreducible programs of �gc are either answers orstuck programs. The latter correspond to machine statesthat result from the misapplication of primitive programoperations or unbound variables.De�nition 2.1 (Stuck Programs) A program is stuck ifit is of one of the following forms:letrec H in E[�i x] (x 62 Dom(H) or H(x) 6= hx1; x2i)letrec H in E[x y] (x 62 Dom(H) or H(x) 6= �z:e ory 62 Dom(H))All programs either diverge or evaluate to an answer ora stuck program. Put di�erently, the evaluation processde�nes a partial function from �gc programs to irreducibleprograms [11, 30].A Semantic De�nition of Garbage Since the semantics of�gc makes the allocation of values explicit, including theimplicit pointer dereferencing in the language, we can alsode�ne what it means to garbage collect a value in the heapand then analyze some basic properties. A binding x = hin the heap of a program is garbage if removing the bindinghas no \observable" e�ect on running the program. In ourcase, we consider only integer results and non-terminationto be observable.De�nition 2.2 (Kleene Equivalence)(P1; G1) ' (P2; G2) means P1 +G1 letrec H1 in x whereH1(x) = i if and only if P2 +G2 letrec H2 in y and H2(y) =i. If G1 = G2 = R, then we simply write P1 ' P2.A binding is garbage if removing it results in a program thatis Kleene equivalent to the original program:De�nition 2.3 (Garbage) If P = letrec H ] fx =hg in e, then the binding x = h is garbage with respect to Pi� P ' letrec H in e. A collection of a program is the sameprogram with some garbage bindings removed. An optimalcollection of a program is a program with as many garbagebindings removed as possible.

Unfortunately, there can be no optimal garbage collectorbecause determining whether a binding is garbage or not isundecidable.Proposition 2.4 (Garbage Undecidable) Determiningif a binding is garbage in an arbitrary closed �gc program isundecidable.Proof (sketch): We can reduce the halting problem to anoptimal collector by taking an arbitrary program, addinga binding to the heap and modifying the program so thatif it terminates, it accesses the extra binding. An optimalcollector will collect the binding if and only if the originalprogram does not terminate. 23 Reachability-Based Garbage CollectionSince computing an optimal collection is undecidable, a gar-bage collection algorithm must conservatively approximatethe set of garbage bindings. Most garbage collectors com-pute the reachable set of bindings in a program given thevariables in use in the current instruction expression andcontrol state. All reachable bindings are preserved; the oth-ers are eliminated.Following Felleisen and Hieb [11], reachability in �gc isformalized by considering free variables. The following \free-variable" GC rule describes bindings as garbage if there areno references to these bindings in the other bindings, nor inthe currently evaluating expression:(fv) letrec H1 ]H2 in e fv7�! letrec H1 in eif Dom(H2) \ FV(letrec H1 in e) = ;The fv rule is correct in that it only removes garbage, andthus computes valid collections. The keys to the proof ofcorrectness of fv are a postponement lemma and a diamondlemma.Lemma 3.1 (Postponement) If P1 fv7�! P2 R7�! P3, thenthere exists a P 02 such that P1 R7�! P 02 fv7�! P3.Proof (sketch): By cases on the elements of R. 2



Lemma 3.2 (Diamond) If P1 fv7�! P2 and P1 R7�! P 02,then there exists a P3 such that P2 R7�! P3 and P 02 fv7�! P3.Proof (sketch): Assume P1 = letrec H1 ] H2 in E[I],P2 = letrec H1 in E[I], and P1 fv7�! P2. We can easilyshow by case analysis on the elements of R that if P1 R7�! P 02where P 02 = letrec H1 ]H2 ]H3 in E[e], for some H3 ande, then P 02 fv7�! P3 and P2 R7�! P3 where P3 = letrec H1 ]H3 in E[e]. 2With the Postponement and Diamond Lemmas in hand,it is straightforward to show that fv is a correct GC rule.Theorem 3.3 (Correctness of fv) If P fv7�! P 0, then P 0is a collection of P .Proof: Let P = letrec H1 ] H2 in e and let P 0 =letrec H1 in e such that P fv7�! P 0. We must show P evalu-ates to an integer value i� P 0 evaluates to the same integer.Suppose P 0 +R letrec H in x and H(x) = i. By induc-tion on the number of rewriting steps using the Postpone-ment Lemma, we can show that P +R letrec H ] H2 in xand clearly (H ] H2)(x) = H(x) = i. Now supposeP +R letrec H in x andH(x) = i. By induction on the num-ber of rewriting steps using the Diamond Lemma, we knowthat there exists an H 0 such that P 0 +R letrec H 0 in x andletrec H in x fv7�! letrec H 0 in x. Thus, x must be bound inH 0 and since fv only drops bindings, H 0(x) = i. 2This theorem shows that a single application of fv resultsin a Kleene equivalent program. A real implementation in-terleaves garbage collection with evaluation. The followingtheorem shows that adding fv to R preserves evaluation.Theorem 3.4 For all programs P , (P;R) ' (P;R+ fv).Proof: Clearly any evaluation under R can be simu-lated by R + fv simply by not performing any fv steps.Thus, if P +R A then P +R+fv A. Now suppose P +R+fvletrec H1 in x1 and H1(x1) = i. Then there exists a �niterewriting sequence using R+ fv as follows:P R+fv7�! P1 R+fv7�! P2 R+fv7�! � � � R+fv7�! letrec H1 in x1We can show by induction on the number of rewriting stepsin this sequence, using the Postponement Lemma, that allfv steps can be performed at the end of the evaluation se-quence. This provides us with an alternative evaluation se-quence where all the R steps are performed at the beginning:P R7�! P 01 R7�! P 02 R7�! � � � R7�! P 0n fv7�!Pn+1 fv7�! Pn+2 fv7�! � � � fv7�! letrec H1 in x1Since fv does not a�ect the expression part of a programand only removes bindings from the heap, P 0n = letrec H1 ]H2 in x for someH2. Thus, P +R letrec H1]H2 in x. SinceH1(x) = i, (H1 ]H2)(x) = i. 23.1 The Free-Variable Tracing AlgorithmThe free-variable GC rule is a speci�cation of a garbage col-lection algorithm. It assumes some mechanism for partition-ing the set of bindings into two disjoint pieces such that oneset of bindings is unreachable from the second set of bindingsand the body of the program. Real garbage collection algo-rithms need a deterministic mechanism for generating this

partitioning. It is possible to formulate an abstract versionof such a mechanism, the free-variable tracing algorithm, bylifting the ideas of mark-sweep and copying collectors to thelevel of program syntax.We adopt the terminology of copying collection in thedescription of the free-variable tracing algorithm. We usetwo heaps and a set: a \from-heap" (Hf ), a \scan-set" (S),and a \to-heap" (Ht). The from-heap is the set of bindingsin the current program and the to-heap will become theset of bindings preserved by the algorithm. The scan-setrecords the set of variables reachable from the to-heap thathave not yet been moved from the from-heap to the to-heap.The scan-set is often referred to as the \frontier."The body of the algorithm proceeds as follows: A vari-able x is removed from S such that Hf has a binding for x.If no such locations are in S, the algorithm terminates. Oth-erwise, it scans the heap value h to which x is bound in thefrom-set Hf , looking for free variables. For each y 2 FV(h),it checks to see if y has already been forwarded to the to-setHt. Only if y is not bound in Ht does it add the variable tothe scan-set S. This ensures that a variable moves at mostonce from the from-heap to the scan-set.Formulating the free-variable tracing algorithm as arewriting system is easy. It requires only one rule that re-lates triples of from-sets, scan-sets, and to-sets:hHf ] fx = hg; S ] fxg; Hti =)hHf ; S [ (FV(h) n (Dom(Ht) ] fxg)); Ht ] fx = hgiInitially the free variables of the evaluation context and in-struction expression, which correspond to the \roots" of acomputation, are placed in S. Computing the free variablesof the context represents the scanning of the \stack" of aconventional implementation while computing the free vari-ables of the instruction expression corresponds to scanningthe \registers." The initial tuple is re-written until we reacha state where no variable in the scan-set is bound in thefrom-heap. At this point, we have forwarded enough bind-ings to the to-heap. This leads to the following free-variabletracing algorithm rule:letrec H in e fva7�! letrec H 0 in e(fva) if hH;FV(e); ;i =)� hH 00; S;H 0iand Dom(H 00) \ S = ;Clearly, the algorithm always terminates since the size of thefrom-heap strictly decreases with each step. Furthermore,this new rewriting rule is a subrelation of the rule fv, whichimplies the correctness of the algorithm.Theorem 3.5 If P fva7�! P 0, then P fv7�! P 0.Proof: Let P = letrec H in e be a �gc program. The �rststep is to prove the basic invariants of the garbage collectionrewriting system: If hH;FV(e); ;i =)� hHf ; S;Hti, thenHf ] Ht = H and FV(letrec Ht in e) = S. Now let P 0 =letrec H1 in e and suppose P fva7�! P 0. Then,hH1 ]H2;FV(e); ;i =)� hH2; S;H1i:and Dom(H2) \ S = ;. By the invariants,FV(letrec H1 in e) = S, so Dom(H2)\FV(P 0) = ;. Conse-quently, P fv7�! P 0. 2If we require that a collection algorithm produce a closedprogram, then fva is \optimal" in the following weak sense:



if P is a closed program and P fva7�! P 0, then P 0 has thefewest bindings needed to keep the program closed with-out a�ecting evaluation. Assuming each step in the free-variable tracing algorithm takes time proportional to thesize (in symbols) of the heap object forwarded to the to-heap, the time cost of the algorithm is proportional to theamount of data preserved, not the total amount of data inthe original heap.3.2 Generational Garbage CollectionThe free-variable tracing algorithm examines all of thereachable bindings in the heap to determine that a set ofbindings may be removed. By carefully partitioning theheap into smaller heaps, a garbage collector can scan lessthan the whole heap and still free signi�cant amounts ofmemory. A generational partition of a program's heap is asequence of sub-heaps ordered in such a way that \older"generations never have pointers to \younger" generations.De�nition 3.6 (Generational Partition)A generational partition of a heap H is a sequence of heapsH1; H2; : : : ; Hn such that H = H1]H2]� � �]Hn and for all isuch that 1 � i < n, FV(Hi)\Dom(Hi+1]Hi+2]� � �]Hn) =;. The Hi are referred to as generations and Hi is said tobe an older generation than Hj if i < j.Given a generational partition of a program's heap, afree-variable based garbage collector can eliminate a set ofbindings in younger generations without looking at any oldergenerations.Theorem 3.7 (Generational Collection)Let H1; : : : ; Hn be a generational partition of the heapof P = letrec H in e. Suppose Hi = (H1i ] H2i ), andDom(H2i )\FV(letrec H1i ]Hi+1 ] � � � ]Hn in e) = ;. ThenP fv7�! letrec (H nH2i ) in e.Proof: We must show that Dom(H2i ) \ FV(letrec (H nH2i ) in e) = ;. Since H1; � � � ; Hn is a generational partitionofH, for all j, 1 � j < i, FV(Hj)\Dom(Hj+1]� � �]Hn) = ;.Hence, FV(H1 ] � � � ]Hi�1) \ Dom(H2i ) = ;. Now,FV(letrec H nH2i in e) \Dom(H2i )= (FV(H nH2i ) [ FV(e)) \Dom(H2i )= (FV(H1 ] � � � ]Hi�1) [ FV(H1i ] � � � ]Hn) [ FV(e))\Dom(H2i )= (FV(H1 ] � � � ]Hi�1) \ Dom(H2i ))[((FV(H1i ] � � � ]Hn) [ FV(e)) \ Dom(H2i ))= ; [ ((FV(H1i ] � � � ]Hn) [ FV(e)) \ Dom(H2i ))= FV(letrec H1i ] � � � ]Hn in e) \ Dom(H2i )= ; 2Generational collection is important for three practicalreasons: First, evaluation of closed, pure �gc programsmakes it easy to maintain generational partitions.Theorem 3.8 Let P = letrec H in e be a closed program.If H1; : : : ; Hn is a generational partition of H and P R7�!letrec H ] H 0 in e, then H1; : : : ; Hn; H 0 is a generationalpartition of H ]H 0.The second reason generational collection is importantis that, given a generational partition, we can directly usethe free-variable tracing algorithm to generate a collectionof a program. The following rule invokes the free-variable

algorithm on the program letrec H2 in e where H1; H2 is agenerational partition of the original program's heap. Theresulting heap is glued onto H1 to produce a collection ofthe program.(gen) letrec H in e gen7�! letrec H1 ]H 02 in eif letrec H2 in e fva7�! letrec H 02 in eand H1; H2 form a generational partition of HThe rule's soundness follows directly from the GenerationalCollection theorem, together with the soundness of the free-variable tracing algorithm.The third reason generational collection is important isthat empirical evidence shows that \objects tend to dieyoung" [28]. That is, recently allocated bindings are morelikely to become garbage in a small number of evaluationsteps. Thus, if we place recently allocated bindings inyounger generations, we can concentrate our collection ef-forts on these generations, ignoring older generations, andstill eliminate most of the garbage.4 Garbage Collection via Type RecoveryThe delimiters and other tokens of the abstract syntax markor \tag" heap values with enough information that we candistinguish pairs from functions, pointers from integers, etc.This allows us to navigate through the memory unambigu-ously, but placing tags on heap values and stripping them o�to perform a computation can impose a heavy overhead onthe running time and space requirements of programs [26].An alternative to tagging is the use of types to determine theshape of an object. If types are determined at compile timeand evaluation maintains enough information that the typesof reachable objects can always be recovered, then there isno need to tag values.A number of researchers have made attempts to explorethis alternative [7, 8, 3, 13, 27, 2], but none of them presentedconcise characterizations of the underlying techniques withcorrectness proofs. In this section, we present the basic ideabehind type-recovery based garbage collection. We then in-troduce �gc-mono, an explicitly typed, monomorphic vari-ant of �gc. We show how to adapt the free-variable trac-ing algorithm to recover types of objects in the heap andto use these types in the traversal of heap objects insteadof abstract syntax. The proof of correctness for this gar-bage collection algorithm is given by extending the proof ofsoundness of the type system for �gc-mono.4.1 �gc-mono�gc-mono is an explicitly typed, monomorphic variant of�gc. The set of types (� ) of �gc-mono contains the conven-tional basic types and constructed types for typing a func-tional programming language like �gc. The expressions of�gc-mono are the same as for �gc, except that each rawexpression (u) is paired with some type information (seeFigure 2). Heap values are not paired with their type, re-ecting the fact that the memory is \almost tag free." Ofcourse, some type information is recorded within heap valuesthat are functions. In a low-level model that uses closures(an explicit value environment paired with code), this cor-responds to maintaining a type environment, recording thetypes of the values in the closure's environment. The typeenvironment for a closure can be computed at compile timeand shared among multiple instances, just like the code.The evaluation contexts (E) consist of a raw context (U)and a type (� ). Raw contexts are �lled with instructions (I)



Types: (types) � 2 Type ::= int j �1 � �2 j �1 ! �2Programs: (expressions) e 2 TExp ::= (u : � )u 2 UExp ::= x j i j he1; e2i j �i e j �x:�:e j e1 e2(heap values) h 2 Hval ::= i j hx1; x2i j �x:�:e(heaps) H 2 Heap ::= fx1 = h1; : : : ; xn = hng(programs) P 2 Prog ::= letrec H in e(answers) A 2 Ans ::= letrec H in (x : � )Evaluation Contexts and Instructions:(contexts) E 2 TCtxt ::= (U : � )U 2 UCtxt ::= [ ] j hE; ei j h(x:� ); Ei j �i E j E e j (x:� ) E(instructions) I 2 Instr ::= i j h(x1:�1); (x2:�2)i j �x:�:e j �i (x:� ) j (x:�1) (y:�2)Rewriting Rules:(alloc-int) letrec H in E[i] alloc7�! letrec H ] fx = ig in E[x](alloc-pair) letrec H in E[hx1:�1; x2:�2i] alloc7�! letrec H ] fx = hx1; x2ig in E[x](alloc-fn) letrec H in E[�y:�:e] alloc7�! letrec H ] fx = �y:�:eg in E[x](proj) letrec H in E[�i (x:� )] �i7�! letrec H in E[xi] (H(x) = hx1; x2i; i = 1; 2)(app) letrec H in E[(x:�1) (y:�2)] app7�! letrec H ] fz = H(y)g in E[e] (H(x) = �z:� 0:e)Figure 2: The Syntax and Operational Semantics of �gc-monowhich are a subset of the raw expressions (u). The evalu-ation rules for �gc-mono, named RM , are variants of therules for �gc that largely ignore the type information on thesub-expressions of the program's body. Allocation of inte-gers, tuples and functions strips the type tag o� the heapvalue before placing it in the heap. Allocation of tuples alsoremoves the tags from the components of the tuple. Theremoval of type information corresponds to the passage ofa value from code to data and does not necessarily reect aruntime cost. Projection and application are essentially thesame as for �gc. Note that substitution of a result expres-sion for an instruction occurs \in place," and hence the typeof the instruction is ascribed to the expression.The notion of a stuck state is adapted in accordance withthe type structure of the language.De�nition 4.1 (�gc-mono Stuck Programs) Aprogram is stuck if it is of one of the following forms:letrec H in E[�i (x:� )] (x 62 Dom(H) orH(x) 6= hx1; x2i)letrec H in E[(x:�1) (y:�2)] (x or y 62 Dom(H) orH(x) 6= �z:�:e)The static semantics of �gc-mono consists of four judge-ments about program components. The �rst judgement,� . e, is a binary relation between a type assignment �,mapping a �nite set of variables to types, and a typed ex-pression e. Figure 3 contains the fairly conventional infer-ence rules for expressions that generate the static semantics.Typing heaps and complete programs requires three addi-tional judgements. The �rst is � . h : � which asserts thatthe heap value h has type � under the assumptions in �.The judgement is de�ned using inference rules (not shownhere) similar to the expression-level rules. The second is� . H : �0, which asserts that the variables given type � in�0 are bound to heap values in H of the appropriate type,under the assumptions in �. The judgement's de�nition via

the heap rule requires \guessing" the types of the values inthe heap and verifying these guesses simultaneously. Thethird judgement, . P , asserts the well-typing of a completeprogram.The calculus �gc-mono is type sound in that evaluationof well formed programs cannot get stuck [30]. A key to theproof of soundness is a type preservation lemma:Lemma 4.2 (Type Preservation) If . P and P RM7�! P 0,then . P 0.Theorem 4.3 (Type Soundness) If . P then either Pis an answer or else there exists some P 0 such that P RM7�! P 0and . P 0.4.2 Using Types in Garbage CollectionSpecifying a valid garbage collection rule that exploits typesis straightforward. The key property that the rule mustpreserve is type preservation. That is, if P gc7�! P 0, and P iswell typed, then P 0 must be well typed. One way to achievethis goal is to make it into a side-condition of the GC rule:(mono) letrec H1 ]H2 in e mono7�! letrec H1 in eif . letrec H1 in eTheorem 4.4 For all well formed �gc-mono programs P ,(P;RM) ' (P; RM +mono).Proof: Since mono preserves types, the type sound-ness proof trivially extends to the dynamic semantics withmono. This implies that, since P is well formed, P can-not get stuck under either system. Since bindings are onlydropped and not updated by mono, the results of evaluat-ing under either system must be the same. 2Like the free-variable rule of �gc, mono needs to be re-�ned before it can serve as the basis for an implementation.



(var) � ] fx:�g . (x : � ) (int) � . (i : int)(pair) � . (u1:�1) � . (u2:�2)� . (h(u2:�1); (u2:�2)i : �1 � �2) (proj) � . (u : �1 � �2)� . (�i (u : �1 � �2) : �i) (i = 1; 2)(fn) � ] fx:�1g . (u : �2)� . (�x:�1:(u:�2) : �1 ! �2) (app) � . (u1 : �1 ! �2) � . (u2:�1)� . ((u1 : �1 ! �2) (u2:�1) : �2)(heap) 8x 2 Dom(�0) :� ] �0 . H(x) : �0(x)� . H : �0 (prog) ; . H : � � . e. letrec H in eFigure 3: The Static Semantics of �gc-monoThe re�nement is similar to the one from fv to fva butuses the types embedded in programs to traverse heap val-ues. The basis for the collection algorithm is a function thatdetermines a minimal, with respect to set-inclusion, type as-signment � for any expression e such that � . e:MTA(x:� ) = fx:�gMTA(i:� ) = ;MTA(he1; e2i : �1 � �2) = MTA(e1) [MTA(e2)MTA(�i e : � ) = MTA(e)MTA(�x:�1:e : �1 ! �2) = MTA(e) n fx:�1gMTA(e1 e2 : � ) = MTA(e1) [MTA(e2)Lemma 4.5 If � . e, then MTA(e) . e and MTA(e) � �.If P = letrec H in e and P is closed, then MTA(e) de-termines the types of the locations in the heap H that areimmediately reachable from the expression e. A garbagecollector can use this type information together with thefollowing Tag function to traverse the reachable heap valuesbased on their types instead of their abstract syntax.Tag[int](i) = (i:int)Tag[�1 � �2](hx1; x2i) = (h(x1:�1); (x2:�2)i : �1 � �2)Tag[�1 ! �2](�x:�1:e) = ((�x:�1:e) : �1 ! �2)Tag is a curried function that takes a type and then takes aheap value of that type, and annotates that heap value withenough information to turn it back into an expression. Itis important to note that Tag pattern-matches and operatesaccording to the type argument given and not the abstractsyntax of the heap value given. MTA can be used on theresulting expression to �nd the minimal type assignment forthe heap value. This provides us with the free locationsand their types for the heap value. The following lemmasummarizes the relationship between Tag and MTA:Lemma 4.6 If ; . H : � ] fx:�g then there exists an hsuch that fx = hg � H, MTA(Tag[� ](h)) . h : � , andMTA(Tag[� ](h)) � � ] fx:�gEquipped with MTA, we can now rede�ne the free-variable tracing algorithm so that it uses Tag to traverseheap values. The algorithm is speci�ed in the same manneras fva, i.e., as a rewriting system among tuples of the formhHf ;�s; Ht;�ti where Hf is the from-heap, �s is a type as-signment corresponding to the scan-set, Ht is the to-heap,and �t is a type assignment for the to-heap:hHf ] fx = hg;�s ] fx:�g; Ht;�ti mono=)hHf ;�0s; Ht ] fx = hg;�0ti

where �0s = (�s [MTA(Tag[� ](h)) n �0t�0t = �t ] fx:�gThe algorithm is initialized by taking the program heap Has the initial from-heap and the minimal type assignment ofthe program expression as �s. At each step in the algorithm,�s describes the types of all locations that are immediatelyreachable from e or Ht, but have not yet been forwarded toHt. �t describes the types of all locations that have beenforwarded to Ht.2When a variable x is found in �s with type � and x isbound in Hf to the heap value h, the collector forwardsthe binding x = h to Ht and adds x:� to �t. It then usesTag[� ] to traverse h, placing the necessary type informationon the components so that MTA can determine the heapvalue's minimal type assignment. This step provides thelocations (and their types) that are immediately reachablefrom h. Finally, the collector adds each of these locations to�s unless they have already been forwarded to Ht.Using this algorithm instead of an a priori partitioningof the heaps, mono-a becomes a high-level speci�cation ofa collector whose traversal of heap values uses types insteadof tag information:(mono-a) letrec H in e mono-a7�! letrec H 0 in eifhH;MTA(e); ;; ;i mono=) �hH 00; ;; H 0;�iThe following de�nition gives the primary invariants ofthe algorithm:De�nition 4.7 (mono-a Invariants) hHf ;�s; Ht;�tisatis�es the mono-a invariants with respect to a programletrec H in e and type assignment �0 i�:1. H = Hf ]Ht2. �s ] �t . e3. Dom(�s) � Dom(Hf)4. �s . Ht : �t5. �s ] �t � �0Intuitively, the invariants guarantee (1) that each bind-ing is accounted for, (2) every binding needed for e is in thescan-set or to-heap, (3) the scan-set corresponds to bindingsin the from-heap, (4) the scan-set holds all free variables inthe to-heap, and (5) the scan-set and to-heap agree with �0.Lemma 4.8 If ; . H : �0, T has the mono-a invariantproperties with respect to P and �0, and T mono=) T 0, then T 02The garbage collection rewriting system only maintains �t to sim-plify the presentation and proof; an implementation will not have toconstruct �t.



has the mono-a invariant properties with respect to P and�0.The correctness of the algorithmic type-based garbagecollection rule can now easily be veri�ed.Theorem 4.9 If P is a well formed program and P mono-a7�!P 0, then P mono7�! P 0.Proof: We must verify that the mono-a garbage collec-tion rule preserves typability in order for mono to apply.That is, we must show that if P is a well formed program,and P mono-a7�! P 0, then . P 0.Let P = letrec H in e and suppose . P . Then, for some�0, ; . H : �0 and �0 . e. IfhH;MTA(e); ;; ;i mono=) �hH 00; ;; H 0;�ti;then by Lemma 4.8 taking �s = ;, we know that ; . H 0 : �tand �t . e . Thus, by the prog rule of the static semantics,. letrec H 0 in e. 2Furthermore, the algorithm never gets stuck, so it alwaysapplies:Theorem 4.10 If P is a well formed program, then thereexists a program P 0 such that P mono-a7�! P 0.Proof: If the algorithm takes a step, the size of thefrom-heap strictly decreases, so we know the collection ei-ther terminates or gets stuck. Here we show that the col-lection cannot get stuck, so it must terminate. SupposeP = letrec H in e and hH;MTA(e); ;; ;i mono=) �hHf ;�s ]fx:�g;Ht;�ti. By Lemma 4.8, we know that x 2 Dom(Hf ),since the domain of the scan type-assignment is a subsetof the from-heap. Consequently, there exists an h suchthat Hf = H 0f ] fx = hg and hHf ;�s ] fx:�g; Ht;�ti mono=)�hH 0f ;�0s; Ht ] fx = hg;�0ti with appropriate �0t and �0s.2 Extending the mono-a collection algorithm to work fora language with explicit polymorphism, where types arepassed to polymorphic routines at run time as suggested byvarious language implementors [21, 1, 27, 15], is straightfor-ward because enough information is preserved by evaluationto always reconstruct the type of a polymorphic object. Inour technical report [20], we show how this may be accom-plished.5 Collecting Reachable Garbage Using Type InferenceThus far, we have only considered speci�cations and algo-rithms for collecting unreachable bindings. In this section,we show that by using type inference during the garbage col-lection process, some bindings that are reachable can still besafely collected. That is, type inference can be used to provethat an object is garbage even though it is reachable.For a simple example, consider the following �gc pro-gram:letrec fx1 = 1; x2 = 2; x3 = hx2; x2i; x4 = hx1; x3ig in �1 x4Every binding in the heap is accessible from the program'sexpression (�1 x4), so the free-variable based collection rulescan collect nothing. But clearly the program will neverdereference x3 nor x2. The inference-based collection schemedescribed in this section will allow us to conclude that re-placing the binding x3 = hx2; x2i with x3 = 0 (or any other

binding) will have no observable e�ect on evaluation. Thatis, the inference collection scheme shows thatletrec fx1 = 1; x2 = 2; x3 = 0; x4 = hx1; x3ig in �1 x4is Kleene equivalent to the original program. Now by apply-ing the free-variable rule, we can conclude that the bindingx2 = 2 can be safely collected.We start by considering the original �gc language as animplicitly typed, monomorphic language, where the types ofthe language are the same as for �gc-mono except for theaddition of type variables:(types) � 2 Type ::= t j int j �1 � �2 j �1 ! �2By implicitly typed, we mean that the terms of the lan-guage are not decorated with types as in �gc-mono. We addtype variables to the set of types so that each well-formedexpression has a principal or most general type (explainedbelow).Type inference is the process of decorating �gc programswith types so that the resulting program type checks un-der the �gc-mono rules. (Refer to Figure 1 for the syntaxand dynamic semantics of �gc and Figure 3 for the typingrules for �gc-mono.) Alternatively, we may directly spec-ify a set of typing rules for �gc programs by taking thetyping rules for �gc-mono and erasing the type informationfrom the terms, resulting in the inference system of Figure 4.These rules de�ne judgements of the form � ` e : � , where �is a type assignment, e is a �gc expression, and � is a type.A given �gc expression can have multiple typing deriva-tions according to these rules and consequently multiple typ-ings, but an expression's typings may be ordered so thatthere is a most general, or principal typing and every othertyping is an instance of this principal typing and is thusderivable.We will show that if we can �nd a typing for a programthat assigns a heap location a type variable, then the con-tents of that location has no e�ect on the rest of evaluation.Consequently, any pointers contained in the location's bind-ing do not need to be scanned and traced during garbagecollection. The intuition behind the theorem is that a loca-tion's type is unconstrained only if the location is not used insome manner that would constrain the type. Consequently,we can replace the binding in the heap with any bindingwe choose. In particular, if the location is bound to a largeheap value, we can bind the location to an integer or dummypiece of code without a�ecting evaluation. This replacementallows us to collect any bindings that used to be reachablethrough this binding without knowing anything about theshape of the original heap value.The proof of the theorem relies upon a semantic inter-pretation of types as logical relations. In our case, the rela-tions are a type-indexed family of binary relations relatingprograms to programs, answers to answers, and heaps toheaps. The relations are contrived so that, if two programsare related, then they are Kleene equivalent, so one programconverges to an answer i� the other converges to a relatedanswer and related answers at base type (int) yield equal val-ues. Roughly speaking, the relations are logically extendedto relate answers of functional type (!) if, whenever suchanswers are applied to appropriately related answers, theresulting computations yield related results. Our proof onlycovers programs without cycles in their heaps, but it shouldbe possible to extend our arguments to all programs (seebelow for more details).The relations are de�ned in Figure 5 by induction ontypes. The de�nitions are parameterized by an arbitrary



(var) � ] fx:�g ` x : � (int) � ` i : int(tuple) � ` e1 : �1 � ` e2 : �2� ` he1; e2i : �1 � �2 (proj) � ` e : �1 � �2� ` �i e : �i (i = 1; 2)(fn) � ] fx:�1g ` e : �2� ` �x:e : �1 ! �2 (app) � ` e1 : �1 ! �2 � ` e2 : �1� ` e1 e2 : �2(heap) 8x 2 Dom(�0) :� ] �0 ` H(x) : �0(x)� ` H : �0 (prog) ; ` H : � � ` e : �` letrec H in e : �Figure 4: Type Inference Rules for �gcrelational interpretation of type variables, �. If t is a typevariable, then �(t) determines some �xed, but arbitrary re-lation between answer programs. This is consistent with theidea that well-typed programs have an implicit \8" quanti-�er for the type variables in a program. The parameteriza-tion of the interpretation of type variables makes it straight-forward to extend the de�nition of the relations to accountfor predicative polymorphism.Two well-typed programs P1 and P2 are related at a type� , written � j= P1 � P2 : � i�, whenever one of the pro-grams terminates with an answer, then the other programterminates with a related answer at type � .Two answers A1 and A2 are related at type � , written� j= A1 � A2 : � , as follows: If � is a type variable t, thenthe answers are related i� they are in the relation �(t). Therelation is extended to the other types in a natural fashion.For example, if � is an arrow type �1 ! �2, the answersare related i�, whenever we apply the answer variables torelated arguments at type �1, we get related programs attype �2. Even though the relations between programs andanswers are de�ned in terms of one another, the relationsare well-founded because the size of the type index alwaysdecreases when one relation refers to another.The de�nition of the relations ensures that related pro-grams remain related even if more bindings are added tothe programs' heaps. Since evaluation only adds new bind-ings and leaves existing bindings intact, it is clear that eval-uation preserves the relations. If the language permittedassignment, then this property would not necessarily hold.For the statement of the following lemma, we need toextend the logical relation on answers to heaps. Two heaps,H1 and H2, are related at a context �, written � j= H1 �H2 : � if for all variables x in �, the answers letrec H1 in xand letrec H2 in x are related at �(x).The following lemma is the key to establishing our result:an expression is related to itself in the context of any tworelated heaps.Lemma 5.1 For all � : Tvar ! P(Ans � Ans), if � `e : � and � j= H1 � H2 : �, then � j= letrec H1 in e �letrec H2 in e : � .Proof (sketch): By induction on the derivation of � `e : � . Here we give the interesting case (fn). Suppose � `�x:e : �1 ! �2 and � j= H1 � H2 : �. By alloc,letrec H1 in �x:e alloc7�! letrec H1 ] fy1 = �x:eg in y1letrec H2 in �x:e alloc7�! letrec H2 ] fy2 = �x:eg in y2

for some fresh y1 and y2. We must show that the two re-sulting answers are appropriately related.Let H 01 andH 02 be heaps such that Hi]fyi = �x:eg � H 0ifor i = 1; 2, and� j= letrec H 01 in z1 � letrec H 02 in z2 : �1for some z1 and z2. We must show that� j= letrec H 01 in y1 z1 � letrec H 02 in y2 z2 : �2:Taking H 00i = H 0i ] fx = H 0i(zi)g, this follows if� j= letrec H 001 in e � letrec H 002 in e : �2:By the induction hypothesis, it su�ces to show that� j= H 001 � H 002 : � ] fx : �1g:since e has a smaller typing derivation than �x:e. By thelemma's hypothesis, we know that � j= H1 � H2 : �, andsince heaps remain related under extensions, � j= H 001 �H 002 : �. By assumption,� j= letrec H 001 in z1 � letrec H 002 in z2 : �1:Since H 00i = H 0i ] fx = H 0i(zi)g, it is easy to show that� j= letrec H 001 in x � letrec H 002 in x : �1Consequently, H 001 and H 002 have related heap-values for eachvariable in �]fx : �1g and thus � j= H 001 � H 002 : �]fx : �1g.The other cases follow in a similar manner. 2Our goal is to show that if � is a type assignment, e anexpression, and H a heap such that � ` e : � and ; ` H :�, then letrec H 0 in e is Kleene equivalent to letrec H in ewhere H 0 is de�ned as follows:H 0 = fx = H(x) j �(x) 62 Tvarg ] fx = 0 j �(x) 2 TvargThis follows from Lemma 5.1 if we can show that, taking�0(t) to be the everywhere-de�ned relation on answer pro-grams, �0 j= H � H 0 : �. This in turn follows if we canshow that �0 j= H � H : � (H is related to itself), since�0(t) relates every program and H 0(x) di�ers from H(x)only when �(x) = t.Unfortunately, we cannot directly show that a wellformed heap is related to itself! The problem is that if we at-tempt to argue by induction on the derivation of ; ` H : �,the uses of the heap rule require that we assume what we



Computations: � j= P1 � P2 : � i� ` P1 : � and ` P2 : � andP1 +R A1 implies P2 +R A2 and � j= A1 � A2 : � andP2 +R A2 implies P1 +R A1 and � j= A1 � A2 : �Answers:� j= A1 � A2 : t i� hA1; A2i 2 �(t)� j= letrec H1 in x1 � letrec H2 in x2 : int i� H1(x1) = H2(x2) = i� j= letrec H1 in x1 � letrec H2 in x2 : �1 � �2 i� � j= letrec H1 in �1 x1 � letrec H2 in �1 x2 : �1and� j= letrec H1 in �2 x1 � letrec H2 in �2 x2 : �2� j= letrec H1 in x1 � letrec H2 in x2 : �1 ! �2 i� 8H 01; H 02; y1; y2;� j= letrec H1 ]H 01 in y1 � letrec H2 ]H 02 in y2 : �1implies� j= letrec H1 ]H 01 in x1 y1 � letrec H2 ]H 02 in x2 y2 : �2Figure 5: Relational Interpretation of Typesare trying to prove. The same problem is encountered whenusing logical relations to reason about conventional calculiwith recursion or iteration operators.If we forbid cycles in the heap, then we can transformthe derivation of the heap's well formedness into a derivationthat only uses a let-style rule instead of the recursive letrec-style heap rule:(let-heap) �1 ] �2 ` h : � �1 ` H : �2�1 ` H ] fx = hg : �2 ] fx:�gConsequently, if a heap is cycle free, we may show by in-duction on the derivation using the let-heap rule that theheap is related to itself.Lemma 5.2 If �1 ` H : �2, � j= H1 � H2 : �1 and H iscycle free, then � j= H1 ]H � H2 ]H : �1 ] �2.Finally, we can state and prove the following InferenceGC speci�cation: Given a cycle-free program, if we can �nda typing that assigns a heap location a type variable, thenthat location can be bound to \0" without e�ecting evalua-tion.Theorem 5.3 (Inference GC) Let�1 = fx1:t1; : : : ; xn:tng and H1 = fx1 = h1; : : : ; xn = hngand H 01 = fx1 = 0; : : : ; xn = 0g. If1. �1 ] �2 ` e : � (� 62 Tvar), and2. �1 ` H2 : �2, and3. 9S:; ` H1 : S�1, and4. H2 is cycle free,then letrec H1 ]H2 in e ' letrec H 01 ]H2 in e.Proof: Taking �0(t) to be the everywhere de�ned rela-tion, �0 j= H1 � H 01 : �1 holds trivially. By Lemma 5.2,since H2 is cycle free and �1 ` H2 : �2, we know that�0 j= H1 ]H2 � H 01 ]H2 : �1 ] �2:Since �1 ] �2 ` e : � , we know by Lemma 5.1 that�0 j= letrec H1 ]H2 in e � letrec H 01 ]H2 in e : �:

Thus, letrec H1 ] H2 in e + letrec Ha in x i� letrec H 01 ]H2 in e + letrec Hb in y and�0 j= letrec Ha in x � letrec Hb in y : �:Suppose Ha(x) = i (or Hb(y) = i). Then � must be int since� 62 Tvar by the �rst hypothesis. By the de�nition of � atint, Hb(y) = i (or Ha(x) = i). Thus,letrec H1 ]H2 in e ' letrec H 01 ]H2 in e: 2Using the Inference GC theorem, we can now show thatthe binding x3 = hx2; x2i in the program:letrec fx1 = 1; x2 = 2; x3 = hx2; x2i; x4 = hx1; x3ig in �1 x4can be replaced by x3 = 0. Taking �1 = fx2: t2; x3: t3g,�2 = fx1: int; x4: int � t3g, H1 = fx2 = 2; x3 = hx2; x2ig,H2 = fx1 = 1; x4 = hx1; x3ig it is easy to show that the pre-conditions of the theorem hold. Consquently, replacing H1with H 01 = fx2 = 0; x3 = 0g results in a Kleene equivalentprogram:letrec fx1 = 1; x2 = 0; x3 = 0; x4 = hx1; x3ig in �1 x4:Now by invoking fv, we can collect the binding x2 = 0:letrec fx1 = 1; x3 = 0; x4 = hx1; x3ig in �1 x4and we know that the resulting program is Kleene equivalentto the original program.6 Related WorkThe literature on garbage collection in sequential program-ming languages per se contains few papers that attempt toprovide a compact characterization of algorithms or correct-ness proofs. Demers et al. [10] give a model of memory pa-rameterized by an abstract notion of a \points-to" relation.As a result, they can characterize reachability-based algo-rithms including mark-sweep, copying, generational, \con-servative," and other sophisticated forms of garbage collec-tion. However, their model is intentionally divorced fromthe programming language and cannot take advantage of



any semantic properties of evaluation, such as type preser-vation. Consequently, their framework cannot model thetype-based collectors of Sections 4 and 5. Nettles [22] pro-vides a concrete speci�cation of a copying garbage collectionalgorithm using the Larch speci�cation language. Our spec-i�cation of the free-variable tracing algorithm is essentiallya high-level, one-line description of his speci�cation.Hudak gives a denotational model that tracks referencecounts for a �rst-order language [16]. He presents an ab-straction of the model and gives an algorithm for comput-ing approximations of reference counts statically. Chirimar,Gunter, and Riecke give a framework for proving invari-ants regarding memory management for a language with alinear type system [9]. Their low-level semantics speci�esexplicit memory management based on reference counting.Both Hudak and Chirimar et al. assume a weak approxi-mation of garbage (reference counts). Barendsen and Smet-sers give a Curry-like type system for functional languagesextended with uniqueness information that guarantees anobject is only \locally acccessible" [6]. This provides a com-piler enough information to determine when certain objectsmay be garbage collected or over-written.Tolmach [27] built a type-recovery collector for a vari-ant of SML that passes type information to polymorphicroutines during execution, e�ectively implementing a poly-morphic version of our language and collector described inSection 4. Aditya and Caro gave a type-recovery algorithmfor an implementation of Id that uses a technique that ap-pears to be equivalent to type passing [1] and Aditya, Flood,and Hicks extended this work to garbage collection for Id [2].Over the past few years, a number of papers on inference-based collection in monomorphic [7, 29, 8] and polymor-phic [3, 13, 14, 12] languages appeared in the literature.Appel [3] argued informally that \tag-free" collection is pos-sible for polymorphic languages such as SML by a combi-nation of recording information statically and performingwhat amounts to type inference during the collection pro-cess, though the connections between inference and collec-tion were not made clear. Baker [5] recognized that Milner-style type inference can be used to prove that reachableobjects can be safely collected, but did not give a formalaccount of this result. Goldberg and Gloger [14] recognizedthat it is not possible to reconstruct the concrete types ofall reachable values in an implementation of an ML-stylelanguage that does not pass types to polymorphic routines.They gave an informal argument based on traversal of stackframes to show that such values are semantically garbage.Fradet [12] gave another argument based on Reynolds's ab-straction/parametricity theorem [24]. Fradet's formulationis closer to ours than Goldberg and Gloger's, since he rep-resented the evaluation \stack" as a source-language term.However, none of these papers give a complete formulationof the underlying dynamic and static semantics of the lan-guage and thus the proofs of correctness are necessarily adhoc.Finally, Purushothaman and Seaman [23, 25] andLaunchbury [17] have proposed \natural" semantics for call-by-need (lazy) languages where the semantic objects includean explicit heap. This allows sharing and memoization ofcomputations to be expressed in the semantics. More re-cently, Ariola et al. [4] have presented a purely syntactictheory of the call-by-need �-calculus that is largely compat-ible with our work.
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