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ABSTRACT 

Twenty-first century ecology requires statistical fluency. Observational and experimental 

studies routinely gather non-Normal, multivariate data at many spatiotemporal scales. 

Experimental studies routinely include multiple blocked and nested factors. Ecological theories 

routinely incorporate both deterministic and stochastic processes. Ecological debates frequently 

revolve around choices of statistical analyses. Our journals are replete with likelihood and state-

space models, Bayesian and frequentist inference, complex multivariate analyses, and papers on 

statistical theory and methods. We test hypotheses, model data, and forecast future environmental 

conditions. And many appropriate statistical methods are not automated in software packages. It 

is time for ecologists to understand statistical modeling well enough to construct nonstandard 

statistical models and apply various types of inference – estimation, hypothesis testing, model 

selection, and prediction – to our models and scientific questions. In short, ecologists need to 

move beyond basic statistical literacy and attain statistical fluency.  
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In a nutshell: 23 

! Ecologists need to use nonstandard statistical models and methods of statistical inference to 24 

test models of ecological processes and to address pressing environmental problems. 25 

! Such statistical models of ecological processes include both deterministic and stochastic 26 

parts, and statistically-fluent ecologists will need to use probability theory and calculus to fit 27 

these models to available data. 28 

! Many ecologists lack appropriate background in probability theory and calculus because 29 

there are serious disconnections between the quantitative nature of ecology, the quantitative 30 

skills we expect of ourselves and our students, and how we teach and learn quantitative 31 

methods. 32 

! A prescription for attaining statistical fluency includes: two semesters of standard calculus; a 33 

calculus-based introductory statistics course; a two-course sequence in probability and 34 

mathematical statistics; and most importantly, a commitment to using calculus and post-35 

calculus statistics in courses in ecological and environmental-science curricula. 36 
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INTRODUCTION 

For the better part of a century, ecology has used statistical methods developed mainly for 

agricultural field trials by statistics luminaries such as Gossett, Fisher, Neyman, Cochran, and 

Cox (Gotelli and Ellison 2004). Calculation of sums of squares was just within the reach of 

mechanical (or human) calculators (Fig. 1), and generations of ecologists have spent many hours 

in their labor of love: caring and curating the results of analysis of variance (ANOVA) models. 

Basic linear models (ANOVA and regression) continue to be the dominant mode of ecological 

data analysis; they were used in 75% of all papers published in Ecology in 2008 (N = 344; 24 
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papers were excluded from the analysis because they were conceptual overviews, notes, or 

commentaries that reported no statistics at all). These methods are employed most appropriately 

to analyze relatively straightforward experiments aimed at estimating the magnitudes of a small 

number of additive fixed effects or testing simple statistical hypotheses. Although the vast 

majority of papers published in Ecology test statistical hypotheses (75% reported at least one P-

value) and estimate effect sizes (69%), only 32% provided assessments of uncertainty (e.g., 

standard errors, confidence intervals, probability distributions) on the estimates of the effect sizes 

themselves (as distinguished from the common practice of reporting standard errors of observed 

means). 

But these methods do not reflect ecologists’ collective statistical needs for the 21st 

century. How can we use ANOVA and simple linear regression to forecast ecological processes 

in a rapidly changing world (Clark et al. 2001)? Familiar examples or ecological problems that 

would benefit from sophisticated modeling approaches include: forecasts of crop production; 

population viability analyses; prediction of the spread of epidemics or invasive species; and 

predictions of fractionation of isotopes through food webs and ecosystems. Such forecasts, and 

many others like them, are integral to policy instruments such as the Millennium Ecosystem 

Assessment (2005) or the IPCC reports (IPCC 2007). Yet such forecasts and similar types of 

studies are uncommon in top-tier ecological journals. Why? Do ecologists limit their study 

designs so as to produce data that will fit into classical methods of analysis? Are nonstandard 

ecological data sometimes mis-analyzed with off-the-shelf statistical techniques (Bolker et al. 

2009)? In the statistical shoe store, do ecologists sometimes cut the foot to fit the shoe? How do 

we learn to do more than determine P-values associated with mean squared error terms in 

analysis of variance (Butcher et al. 2007)? 
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The short answer is by studying and using “models”. Statistical analysis is fundamentally 

a process of building and evaluating stochastic models, but such models were hidden or even 

forbidden in the agricultural statistics-education tradition that emphasized practical training and 

de-emphasized calculus. Yet, any ecological process producing variable data can (and should) be 

described using a stochastic, statistical model (Bolker 2008). Such models may start as a 

conceptual or “box-and-arrow” diagram, but these should then be turned into more quantitative 

descriptions of the processes of interest. The building blocks of such quantitative descriptions are 

deterministic formulations of the hypothesized effects of environmental variables, time, and 

space, coupled with discrete and continuous probability distributions. These distributions, rarely 

Normal, are chosen by the investigator to describe how the departures of data from the 

deterministic sub-model are hypothesized to occur. The Sums of Squares – a surrogate for 

likelihood in Normal distribution models – is no longer the only statistical currency; likelihood 

and other such statistical objective functions are the more widely useful coins of the realm.  

Alternatives to parametric model-based methods include non-parametric statistics and 

machine-learning. Classical non-parametric statistics (Conover 1998) have been supplanted by 

computer simulation and randomization tests (Manly 2006) but the statistical or causal models 

that they test are rarely apparent to data analysts and users of packaged (especially compiled) 

software products. Similarly, model-free machine-learning and data-mining methods (Breiman 

2001) seek large-scale correlative patterns in data by letting the data “speak for themselves”. 

Although the adherents of these methods promise that machine-learning and data-mining will 

make the “standard” approach to scientific understanding – hypothesis ! model ! test – 

obsolete (Anderson 2008), the ability of these essentially correlative methods to advance 

scientific understanding and provide reliable forecasts of future events has yet to be 
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demonstrated. Thus we focus here on the complexities inherent in fitting stochastic statistical 

models, estimating their parameters, and carrying out statistical inference on the results. 

Our students and colleagues create or work far less frequently with stochastic statistical 

models than they use routine ANOVA and its relatives; in 2008, only 23% of papers published in 

Ecology used stochastic models or applied competing statistical models on their data (and about 

half of these used automated software such as stepwise regression or MARK [White and 

Burnham 1999] that take much of the testing out of the hands of the user to contrast among 

models constructed from many possible combinations of parameters). Why? It may be that we 

(or at least those of us who publish in our leading journals) primarily conduct well designed 

experiments that test one or two factors at a time and have sufficient sample sizes and balance 

among treatments to satisfy all the requirements of ANOVA and yield high statistical power. If 

this is true, the complexity of stochastic models is simply unnecessary. But our data rarely are so 

forgiving; more frequently our sample sizes are too small, our data are not Normally distributed 

(or even continuous), our experimental and observational designs include mixtures of fixed and 

random effects, and we know that process affect our study systems hierarchically. And finally, 

we want to do more with our data than simply tell a good story. We want to generalize, predict, 

and forecast. In short, we really do need to model our data. 

We suggest that there are profound disconnections between the quantitative nature of 

ecology, the quantitative (mathematical and statistical) skills we expect of ourselves and of our 

students, and how we teach and learn quantitative methods. We illustrate these disconnections 

with two motivating examples and suggest a new standard – statistical fluency – for quantitative 

skills that are learned and taught by ecologists. We close by providing a prescription for better 

connecting (or reconnecting) our teaching with the quantitative expectations we have for our 
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students so that ecological science can progress more rapidly and with more relevance to society 

at large. 

 

TWO MOTIVATING EXAMPLES 

The first law of population dynamics 

Under optimal conditions, populations grow exponentially:  

 Nt = N0 ert (Eqn. 1) 

In this equation, N0 is the initial population size, Nt is the population size at time t, r is the 

instantaneous rate of population growth (units of individuals per infinitesimally small units of 

time t), and e is the base of the natural logarithm. This simple equation is often referred to as the 

first law of population dynamics (Turchin 2001) and it is universally presented in undergraduate 

ecology textbooks. Yet we all know all too well that students in our introductory ecology classes 

view exponential growth mainly through glazed eyes. Why? Equation 1 is replete with complex 

mathematical concepts normally encountered in the first semester of calculus: the concept of a 

function, raising a real number to a real power, and Euler’s number e. But the majority of 

undergraduate ecology courses do not require calculus as a prerequisite, thereby insuring that 

understanding fundamental concepts such as exponential growth is not an expected course 

outcome. The current financial meltdown associated with the foreclosure of exponentially 

ballooning sub-prime mortgages illustrates writ large Albert Bartlett’s assertion that “the greatest 

shortcoming of the human race is our inability to understand the exponential function”. Surely 

ecologists can do better. 

Instructors of undergraduate ecology courses that do require calculus as a prerequisite 

often find themselves apologizing to their students that ecology is a quantitative science and go 
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on to provide conceptual or qualitative workarounds that keep course enrollments high and deans 

happy. Students in the resource management fields – forestry, fisheries, wildlife, etc. – suffer 

even more, as quantitative skills are further de-emphasized in these fields. Yet resource managers 

need a deeper understanding of exponential growth (and other quantitative concepts) than do 

academic ecologists; for example, the relationship of exponential growth to economics or its role 

in the concept of the present value of future revenue. The result in all these cases is the 

perpetuation of a culture of quantitative insecurity among many students. 

 The actual educational situation with our example of population growth models in 

ecology is much worse. The exponential growth expression as understood in mathematics is the 

solution to a differential equation. Differential equations, of course, are a core topic of calculus. 

Indeed, because so many dynamic phenomena in all scientific disciplines are naturally modeled 

in terms of instantaneous forces (rates), the topic of differential equations is one of the main 

reasons for studying calculus in the first place! To avoid introducing differential equations to 

introductory ecology classes, most ecology textbooks present exponential growth in a discrete-

time form: Nt+1 = (1 + births – deaths) Nt and then miraculously transmogrify this (with little or 

no explanation) into the continuous time model given by dN/dt = rN. The attempts at intuition 

obscure, for instance, the exact nature of the quantities “births” and “deaths” and how they 

would be measured, not to mention the assumptions involved in discrete time versus continuous 

time formulations.  

Furthermore, Eqn. 1 provides no insights into how the unknown parameters (r and even 

N0 when population size is not known without error) ought to be estimated from ecological data. 

To convince yourself that it is indeed difficult to estimate unknown parameters from ecological 

data, consider the following as a first exercise for an undergraduate ecology laboratory: for a 
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given set of demographic data (perhaps collected from headstones in a nearby cemetery), 

estimate r and N0 in Eqn. 1 and provide a measure of confidence in the estimates.  

Finally, to actually use Eqn. 1 to describe the exponential growth of a real population, one 

must add stochasticity by modeling departures of observed data from the model itself. There are 

many different ways of modeling such variability that depend on the specific stochastic forces 

acting on the observations; each model gives a different likelihood function for the data and 

thereby prescribes a different way for estimating the growth parameter. In addition, the choices 

of models for the stochastic components, such as demographic variability, environmental 

variability, and sampling variability, must be added to (and evaluated along with) the suite of 

modeling decisions concerning the deterministic core, such as changing exponential growth to 

some density dependent form or adding a predator. Next, extend these concepts and methods to 

“simple” Lotka-Volterra models of competition and predation... 

 

The Cumulative Distribution Function for a Normal curve 

Our second motivating example deals with a core concept of statistics:  

 " # " # " # " #a!b!=dy"y#
b

a
$% &

'

(
)
*

+ $
$

$

2

2
2/12

2!
exp2"  (Eqn. 2) 176 

The function " #y!  is the cumulative distribution function for the Normal distribution and Eqn. 2 

describes the area under a Normal curve (with two parameters: mean = " and variance = #2) 

between a and b. This quantity is important because the Normal distribution is used as a model 

assumption for many statistical methods (e.g., linear models, probit analysis), and Normal 

probabilities can express predicted frequencies of occurrence of observed events (data). Also, 

many test statistics also have sampling distributions that are approximately Normal. Rejection 

177 

178 

179 

180 

181 

182 



 9

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

regions, P-values, and confidence intervals all are defined in terms of areas under a Normal 

curve.  

The meaning, measurement, and teaching of P-values continues to bedevil statisticians 

(e.g., Berger 2003, Hubbard and Byarri 2003, Murdoch et al., 2008), yet ecologists often use and 

interpret probability and P-values uncritically, and few ecologists can clearly describe a 

confidence interval with any degree of… uh, confidence. To convince yourself that this is a real 

problem, consider asking any graduate student in ecology (perhaps during their oral 

comprehensive examination) to explain why P(10.2 < , < 29.8) = 0.95 is not the correct 

interpretation of a confidence interval on the parameter , (original equation from Poole 1974); 

odds are you will get an impression of someone who is not secure in their statistical 

understanding. Bayesians should refrain for chortling about the transparency of credible sets. 

Interpreting Bayesian credible intervals makes equally large conceptual demands (Hill 1968, 

Lele and Dennis 2009). When pushed, students can calculate a confidence interval by hand or 

with computer software. But interpreting it (Box 1) and generalizing its results is where the 

difficulty lies. 

Three centuries of study of Eqn. 2 by mathematicians and statisticians have not reduced it 

to any simpler form, and evaluating it for any two real numbers a and b must be done 

numerically. Alternatively, one can proceed through the mysterious, multi-step table-look-up 

process, involving the Z-tables provided in the back of every basic statistics text. Look-up tables 

or built-in functions in statistical software may work fine for standard probability distributions 

such as the Normal or F distribution, but what about non-standard distributions or mixtures of 

distributions used in many hierarchical models? Numerical integration is a standard topic in 

calculus classes, and it can be applied to any distribution of interest, not just the area under a 
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Normal curve. Consider the power of understanding: how areas under curves can be calculated 

for other continuous models besides the Normal distribution; how the probabilities for other 

distributions sometimes converge to the above form based on the Normal; and how Normal-

based probabilities can serve as building blocks for hierarchical models of more complex data 

(Clark 2007). Such interpretation and generalization is at the heart of statistical fluency. 

 

DEVELOPING STATISTICAL FLUENCY AMONG ECOLOGISTS 

Fluency defined 

We use the term “fluency” to emphasize that a deep understanding of statistics and 

statistical concepts differs from “literacy” (Table 1). Statistical literacy is a common goal of 

introductory statistics courses that presuppose little or no familiarity with basic mathematical 

concepts introduced in calculus, but it is insufficient for 21st century ecologists. Like fluency in a 

foreign language, statistical fluency means not only a sufficient understanding of core theoretical 

concepts (grammar in languages, mathematical underpinnings in statistics) but also the ability to 

apply statistical principles and adapt statistical analyses for nonstandard problems (Table 1). 

We must recognize that calculus is the language of the general principles that underlie 

probability and statistics. We emphasize that statistics is not mathematics; rather, like physics, 

statistics uses a lot of mathematics (De Veaux and Velleman 2008). And ecology uses a lot of 

statistics. But the conceptual ideas of statistics are really hard. Basic statistics contains abstract 

notions derived from those in basic calculus, and students who take calculus courses and use 

calculus in their statistics courses have a deeper understanding of statistical concepts and the 

confidence to apply them in novel situations. In contrast, students who take only calculus-free, 
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cookbook-style statistical methods courses often have a great deal of difficulty adapting the 

statistics that they know to ecological problems for which those statistics are inappropriate.  

For ecologists, the challenge of developing statistical fluency has moved well beyond the 

relatively simple task of learning and understanding fundamental aspects of contemporary data 

analysis. The very theories themselves in ecology include stochastic content that can only be 

interpreted probabilistically and include parameters that can only be estimated using complex 

statistics. For example, conservation biologists struggle with (and frequently mis-express) the 

distinctions between demographic and environmental variability in population viability models 

and must master the intricacies of first passage properties of stochastic growth models. 

Community ecologists struggle to understand (and figure out how to test) the “neutral” model of 

community structure (Hubbell 2001), itself related to neutral models in genetics (see Leigh 2007) 

with which ecological geneticists must struggle. Landscape ecologists must struggle with 

stochastic dispersal models and spatial processes. Behavioral ecologists must struggle with 

Markov chain models of behavioral states. All must struggle with huge individual-based 

simulations and hierarchical (random or latent effects) models. No subfield of ecology, no matter 

how empirical the tradition, is safe from encroaching stochasticity and the attendant need for the 

mathematics and statistics to deal with it. 

 

Statistics is a post-calculus subject 

What mathematics do we need – to create, parameterize, and use stochastic statistical 

models of ecological processes? At a minimum, we need calculus. We must recognize that 

statistics is a post-calculus subject and that calculus is a prerequisite for development of  

statistical fluency. Expectation, conditional expectation, marginal and joint distributions, 
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independence, likelihood, convergence, bias, consistency, distribution models of counts based on 

infinite series… are key concepts of statistical modeling that must be understood by practicing 

ecologist, and these are straightforward calculus concepts. No amount of pre-calculus statistical 

“methods” courses can make up for this fact. Calculus-free statistical methods courses doom 

ecologists to a lifetime of insecurity with regard to the ideas of statistics. Such courses are like 

potato chips: virtually no nutritional value, no matter how many are consumed. Pre-calculus 

statistics courses are similar to pre-calculus physics courses in that regard; both have reputations 

for being notorious, unsatisfying parades of mysterious plug-in formulas. Ecologists who have 

taken and internalized post-calculus statistics courses are ready to grapple with the increasingly 

stochastic theories at the frontiers of ecology and will be able to rapidly incorporate future 

statistical advances in their kit of data analysis tools. How do our students achieve statistical 

fluency? 

 

The prescription 

Basic calculus, including an introduction to differential equations, seems to us to be a 

minimum requirement. Our course prescription includes (1) two semesters of standard calculus 

and an introductory, calculus-requiring introductory statistics course in college; and (2) a two-

semester post-calculus sequence in probability and mathematical statistics in the first or second 

year of graduate school (Box 2). But it is not enough to simply take calculus courses, as calculus 

already is clearly required (or at least recommended) by virtually all undergraduate science 

degree programs (Fig. 2). Rather, calculus must be used; not only in statistics courses taken by 

graduate students in ecology but most importantly in undergraduate and graduate courses in 

ecology (including courses in resource management and environmental science)! If this seems 
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overly daunting, consider that Hutchinson (1978) summarizes “the modicum of infintesimal 

calculus required for ecological principles” in three and a half pages. Contemporary texts (such 

as Clark 2007 or Bolker 2008) in ecological statistical modeling use little more than single 

variable calculus and basic matrix algebra. Like Hutchinson, Bolker (2008) covers the essential 

calculus and matrix algebra in 4 pages, each half the size of Hutchinson’s! Clark’s (2007) 100-

page mathematical refresher is somewhat more expansive, but in all cases the authors illustrate 

that knowledge of some calculus allows one to advance rapidly on the road to statistical fluency. 

We emphasize that nascent ecologists need not take more courses to attain statistical 

fluency; they just need to take courses that are different from standard “methods” classes. 

Current graduate students may need to take refresher courses in calculus and mathematical 

statistics, but we expect that our prescription (Box 2) will actually reduce the time that future 

ecology students spend in mathematics and statistics classrooms. Most undergraduate life science 

students already take calculus and introductory statistics (Fig. 2). The pre-calculus statistical 

methods courses that are currently required can be swapped out in favor of two semesters of 

post-calculus probability and statistics. Skills in particular statistical methods can be obtained 

through self-study or through additional methods courses; a strong background in probability and 

statistical theory makes self-study a realistic option for rapid learning for motivated students. 

 

Why not just collaborate with professional statisticians? 

In the course of speaking about statistics education to audiences of ecologists and natural 

resource scientists, we often are asked questions such as: “I don’t have to be a mechanic to drive 

a car, so why do I need to understand statistical theory to be an ecologist? (and why do I have to 

know calculus to do statistics?)” Our answer, the point of this article, is that the analogy of 
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statistics as a tool or black box increasingly is failing the needs of ecology. Statistics is an 

essential part of the thinking, the hypotheses, and the very theories of ecology. Ecologists of the 

future should be prepared to confidently use statistics so that they can make substantial progress 

at the frontiers of our science.  

“But,” continues the questioner, “why can’t I just enlist the help of a statistician?” 

Collaborations with statisticians can produce excellent results and should be encouraged 

wherever and whenever possible, but ecologists will find that their conversations and interactions 

with professional statisticians will be enhanced if ecologists have done substantial statistical 

ground work before their conversation begins and if both ecologists and statisticians speak a 

common language (mathematics!). Collaborations between ecologists and statisticians also can 

be facilitated by building support for consulting statisticians into grant proposals; academic 

statisticians rely on grant support as much as academic ecologists do. However, ecologists cannot 

count on the availability of statistical help whenever it is needed. And, statistical help may be 

unavailable at many universities. Thus, we believe that ecologists should be self-sufficient and 

self-assured. We should master our own scientific theories and be able to discuss with confidence 

how our conclusions are drawn from ecological data. We should be knowledgeable enough to 

recognize what we do understand and what we do not, learn new methods ourselves, and seek 

out experts who can help us increase our understanding. 

 

CONCLUSION: MATHEMATICS AS THE LANGUAGE OF ECOLOGICAL NARRATIVES 

 It is increasingly appreciated that scientific concepts can be communicated to students of 

all ages through stories and narratives (Fig. 3; see also Molles 2006). We do not disagree with the 

importance of telling a good story and engaging our students with detailed narratives of how the 
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world works. Nor do we minimize the importance of doing “hands-on” ecology through inquiry-

based learning, which is both important and fun. Field trips, field work, and lab work are exciting 

and entertaining, draw students into ecology, and dramatically enhance ecological literacy. For 

individuals who pursue careers in fields outside of science, qualitative experiences and an 

intuitive grasp of the story-line can be sufficient (Cope 2006). But for our students who want the 

deepest appreciation and joy of how science works – understanding how we know what we know 

– and for those of us who are in scientific careers and are educating the next generation of 

scientists, we should use the richest possible language for our narratives of science. And that 

language is mathematics.  
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Table 1. The different components and stages of statistical literacy.* “Process” refers to a 

statistical concept (such as a P-value or confidence interval) or method. 

Basic literacy Ability to reason statistically Fluency in statistical thinking 

Identify the process 

Describe it 

Rephrase it 

Translate it 

Interpret it 

Explain the process 

Why does it work? 

How does it work? 

Apply the process to new situations 

Critique it 

Evaluate it 

Generalize from it 

 * modified from delMas 2002 409 
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Figure Legends 

Figure 1 – Milestones in statistical computing. A. Women (ca. 1920) in the Computing Division 

of the U.S. Department of the Treasury (or the Veterans’ Bureau) determining the bonuses to be 

distributed to veterans of World War I. Photograph from the Library of Congress Lot 12356-2, 

negative LC-USZ62-101229. B. Professor (and Commander) Howard Aiken, Lieutenant (and 

later Rear Admiral) Grace Hopper, and Ensign Campbell in front of a portion of the Mark I 

Computer. The Mark I was designed by Aiken, built by IBM, fit in a steel frame 16 m long × 2.5 

m high, weighed approximately 4,500 kg, and included 800 km of wire, It was used to solve 

integrals required by the U.S. Navy Bureau of Ships during World War II, and physics problems 

associated with magnetic fields, radar, and the implosion of early atomic weapons. Grace 

Hopper was the lead programmer of the Mark I. Her experience developing its programs led her 

to develop the first compiler for a computer programming language (which subsequently evolved 

into COBOL), and she developed early standards for both the FORTRAN and COBOL 

programming languages. The Mark I was programmed using punched paper tape and was the 

first automatic digital computer in the U.S. Its calculating units were mechanically synchronized 

by an ~ 15-m long drive shaft connected to a 4 kW (5 horsepower) electric motor. The Mark I is 

considered to be the first universal calculator (Stoll 1983). Photograph from the Harvard 

University Office of News and Public Affairs, Harvard University Archives call number HUPSF 

Computers (2), and reproduced with permission of the Harvard University Archives. C. A ca. 

2007 screen-shot of the open-source R statistical package running on a personal computer. The 

small, notebook computers that on which we run R and other statistical software every day have 

central processors that execute10,000 – 100,000 MIPS (million instructions per second). In 

contrast, the earliest commercial computers executed 0.06-1.0 KIPS (thousand instructions per 
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second), and Harvard’s Mark I computer took approximately 6 seconds to simply multiply two 

numbers together; computing a single logarithm took more than a minute. (Image from 

http://www.r-project.org, copyright the R Foundation, and used with permission). 

 

Figure 2 - Total number of quantitative courses, calculus courses, and statistics courses required 

at the 25 liberal-arts colleges and universities that produce the majority of students who go on to 

receive Ph.D.s in the life sciences. Institutions surveyed are based on data from the National 

Science Foundation (1996). Data collected from department web sites and college or university 

course catalogs, July 2008.  

 

Figure 3 – Telling a compelling ecological story requires quantitative data. Here, Harvard 

Forest researcher Julian Hadley describes monthly cycles of carbon storage in hemlock and 

hardwood stands. The data are collected at 10-20 Hz from three eddy-covariance towers, 

analyzed and summarized with time-series modeling, and incorporated into regional estimates 

(e.g., Matross et al. 2006) and forecasts (e.g., Desai et al. 2007), and used to determine regional 

and national carbon emissions targets and policies. Photograph by David Foster, and used with 

permission of the Harvard Forest Archives.
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450  

Box 1. Why “P(10.2 < , < 29.8) = 0.95” is not a correct interpretation of confidence 451 

interval, and what are confidence intervals, anyway?  452 

This statement says that the probability that the true population mean , lies in the interval 453 

(10.2, 29.8) equals 0.95. But ,-is a fixed (but unknown) constant: it is either in the interval (10.2, 454 

29.8) or it is not. The probability that , is in the interval is zero or one; we just do not know 455 

456 which. A confidence interval actually asserts that 95% of the confidence intervals resulting from 

457 hypothetical repeated samples (taken under the same random sampling protocol used for the 

single sample) will contain , in the long run. Think of a game of horseshoes in which you have 458 

459 to throw the horseshoe over a curtain positioned so that you cannot see the stake. You throw a 

460 horseshoe and it lands (thud!); the probability is zero or one that it is a ringer, but you do not 

461 know which. The confidence interval arising from a single sample is the horseshoe on the 

ground, and , is the stake. If you had the throwing motion practiced so that the long run 462 

463 proportion of successful ringers was 0.95, then your horseshoe game process would have the 

464 probabilistic properties claimed by 95% confidence intervals. You do not know the outcome 

(whether or not , is in the interval) on any given sample, but you have constructed the sampling 465 

466 process so as to be assured that 95% of such samples in the long run would produce confidence 

intervals that are ringers. The distinction is clearer when we write the probabilistic expression for 467 

468 a 95% confidence interval: 

95.0)( .// ULP ,  469 

What this equation is telling us is that the true (but unknown) population mean , will be found 470 

95% of the time in an interval bracketed by L at the lower end and U at the upper end, where L 471 



and U vary randomly from sample to sample. Once the sample is drawn, the lower and upper 472 
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bounds of the interval are fixed (the horseshoe has landed), and ,-(the stake) is either contained 473 

474 in the interval or it is not.  

475  Many standard statistical methods construct confidence intervals symmetrically in the 

form of a “point estimate” plus or minus a “margin of error”. For instance, a " #0$1100 % 476 

confidence interval for , when sampling from a Normal distribution is constructed based on the 477 

478 following probabilistic property: 

)1()//( 2
2/

2
2/ 0, 00 $.1//$ nStYnStYP  . 479 

Here t0/2 is the percentile of a t-distribution with n – 1 degrees of freedom such that there is an 480 

area of 2/0  under the t-distribution to the right of t0/2 , and Y  and  are respectively the 2S481 

sample mean and sample variance of the observations. The quantities Y  and  vary randomly 2S482 

from sample to sample, making the lower and upper bounds of the interval vary as well. The 483 

confidence interval itself becomes nsty /2
2/02 , in which the lowercase y  and  are the 2s484 

485 actual numerical values of sample mean and variance resulting from a single sample. In general, 

486 modern-day confidence intervals for parameters in non-Normal models arising from 

487 computationally intensive methods such as bootstrapping and profile likelihood are not 

necessarily symmetric around the point estimates of those parameters. 488 
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489  
Box 2. A prescription for statistical fluency. 490 

The problem of how to use calculus in the context of developing statistical fluency can be 491 

solved easily and well by rearranging courses and substituting different statistics courses (those 492 

hitherto rarely taken by ecologists) for many of the statistical methods courses now taken in 493 

college and graduate school. The suggested courses are standard ones, with standard textbooks, 494 

and already exist at most universities. Our prescription is as follows.  495 

 496 

For undergraduate majors in the ecological sciences (including “integrative biology”, ecology, 497 

evolutionary biology), along with students bound for scientific careers in resource management 498 

fields such as wildlife, fisheries, and forestry: 499 

 500 

1. At least two semesters of standard calculus. “Standard” means real calculus, the courses 501 

taken by students in physical sciences and engineering. Those physics and engineering 502 

students go on to take a third (multivariable calculus) and a fourth semester (differential 503 

equations) of calculus, but these latter courses are not absolutely necessary for ecologists. 504 

Only a small amount of the material in those additional courses is used in subsequent 505 

statistics or ecology courses and can be introduced in those courses or acquired through 506 

self-study. Most population models must be solved numerically, methods for which can 507 

be covered in the population ecology courses themselves. (Please note we do not wish to 508 

discourage additional calculus for those students interested in excelling in ecological 509 

theory; our prescription, rather, should be regarded as minimum core for those who will 510 

ultimately have Ph.Ds in the ecological sciences, broadly defined.) 511 
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2. An introductory statistics course which lists calculus as a prerequisite. This course is 512 

standard everywhere; it is the course that engineering and physical science students take, 513 

usually as juniors. A typical textbook is Devore (2007).  514 

3. A commitment to using calculus and post-calculus statistics in courses in life-science 515 

curricula must go hand-in-hand with course requirements in calculus and post-calculus 516 

statistics. Courses in the physical sciences for physical science majors use the language of 517 

science – mathematics – and its derived tool – statistics – unapologetically, starting in 518 

beginning courses. Why don’t ecologists or other life scientists do the same? The basic 519 

ecology course for majors should include calculus as a prerequisite and must use calculus 520 

so that students see its relevance.  521 

 522 

For graduate students in ecology (sensu lato): 523 

1. A standard two-course sequence in probability and mathematical statistics. This sequence 524 

is usually offered for undergraduate seniors and can be taken for graduate credit. Typical 525 

textbooks are Rice (2006), Larson and Marx (2005), or Wackerly et al. (2007). The 526 

courses usually require two semesters of calculus as prerequisites. 527 

2. Any additional graduate-level course(s) in statistical methods, according to interests and 528 

research needs. After a two-semester post-calculus probability and statistics sequence, the 529 

material covered in many statistical methods courses also is amenable to self-study.  530 

3. Most ecologists will want to acquire some linear algebra somewhere along the line, because 531 

matrix formulations are used heavily in ecological and statistical theory alike. Linear 532 

algebra could be taken either in college or graduate school. Linear algebra is often 533 

reviewed extensively in courses such as multivariate statistical methods and population 534 
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ecology, and necessary additional material can be acquired through self-study. Those 535 

ecologists whose research is centered on quantitative topics should consider formal 536 

coursework in linear algebra. 537 

 538 

The benefit of following this prescription is a rapid attainment of statistical fluency. 539 

Whether students in ecology are focused more on theoretical ecology or on field methods, 540 

conservation biology, or the interface between ecology and the social sciences, a firm grounding 541 

in quantitative skills will make for better teachers, better researchers, and better interdisciplinary 542 

communicators (for good examples see Armsworth et al. 2009 and other papers in the associated 543 

special feature on “Integrating ecology and the social sciences” in the April 2009 issue of the 544 

Journal of Applied Ecology). Since our prescription replaces courses rather than adds new ones, 545 

the primary cost to swallowing this pill is either to recall and use calculus taken long ago or to 546 

take a calculus refresher course.  547 


