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Low-Complexity Systolic V-BLAST Architecture
Toshiaki Koike-Akino

Abstract—In multiple-input multiple-output systems, an or-
dered successive interference canceller, termed the vertical Bell
laboratories layered space-time (V-BLAST) algorithm, offers
good performance. This letter presents a low-complexity V-
BLAST scheme suited for parallel implementation. The proposed
scheme, using a greedy ordering, can achieve a performance
comparable to that of V-BLAST with optimum ordering, while
its computational complexity is lower than a linear detector.

Index Terms—MIMO, V-BLAST, greedy ordering

I. INTRODUCTION

RADIO communications systems using multiple antennas
at both transmitter and receiver, to form a multiple-input

multiple-output (MIMO) system, have attracted attention, as
a promising technique for achieving a significant increase in
spectrum efficiency [1, 2]. A large number of MIMO detectors,
such as linear detectors based on minimum mean-square error
(MMSE) and based on zero-forcing (ZF), have been studied so
far. Although linear detectors are generally low in complexity,
their performance can be poor, especially in MIMO systems
that use a small number of receiving antenna branches. To
improve performance, a so-called vertical Bell laboratories
layered space-time (V-BLAST) algorithm has been introduced;
this performs successive interference cancellations in the ap-
propriate order [3–8]. V-BLAST yields higher diversity gains
and improves bit-error-rate (BER) performance.

The computational complexity of V-BLAST, when com-
pared to a linear detector, is generally increased from O[M3]
to O[M4]. Here, O[·] denotes the order of complexity and
M denotes the number of antenna pairs. In time-varying
MIMO channels, since the V-BLAST requires re-ordering and
weight updating, the complexity reduction is significant for
any realistic application. Hitherto, some advanced algorithms
have been derived to decrease the complexity from O[M4]
to O[M3] (see references in [5–10] for example). In [5], Wai
et al. have introduced a low-complexity ZF/V-BLAST using
Gram-Schmidt orthonormalization (GSO) and sub-optimum
ordering. However, ZF/V-BLAST does not offer such good
performance as does MMSE/V-BLAST, especially at a low
SNR regime. Hassibi has proposed a square-root algorithm to
reduce the complexity of MMSE/V-BLAST [6]. However, it is
only advantageous with a very large number of antenna pairs,
as discussed in [8]. In [7], Benjebbour et al. have studied a
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hybrid scheme of direct matrix inversion (DMI) and an adap-
tive weight update implemented by the recursive least-squares
(RLS) algorithm[11]. However, we should properly select an
interval for the DMI weight generations and recognize that this
scheme is not useful in fast fading channels where optimum
ordering can frequently change. Benesty et al. have developed
the lowest-complexity algorithm with optimum ordering [8].
This scheme employs a computationally efficient recursion
technique to obtain a matrix inversion. The V-BLAST with
sorted QR decomposition proposed by Wübben et al. is
another alternative efficient algorithm[9, 10]. Wübben et al.
have introduced norm-based sub-optimum ordering and a post-
sorting algorithm to improve performance.

In this letter, we propose an efficient recursion approach
with greedy ordering that is suitable for parallel systolic-
array implementation [11]. By using greedy ordering, the
computational complexity of MMSE/V-BLAST is reduced and
is lower than that of a simple MMSE linear detector with
almost no performance degradation, even without optimum
ordering. Through performance analyses, we confirm that the
proposed scheme is significantly more advantageous than are
existing schemes that use other algorithms.

II. V-BLAST TECHNIQUE WITH AN MMSE CRITERION

A. MMSE Nulling

The subject of this letter is an uncoded M × N MIMO
system, which uses M transmitting and N receiving antennas
(assuming that M ≤ N ). The received signal is modelled as

y = Hx + w, (1)

where y ∈ CN×1, H ! [h1, h2, . . . ,hM ] ∈ CN×M ,
x ! [x1, x2, . . . , xM ]T ∈ CM×1 and w ∈ CN×1 denote the
received signals vector, the channel matrix, the transmitted
signals vector, and the additive Gaussian noise vector, re-
spectively. A superscript [·]T represents the transpose. Here,
hm ∈ CN×1, xm denote the channel vector and the transmit-
ted signal, respectively, from the m-th transmitting antenna.
Using the channel matrix H , the MMSE nulling weight matrix
GM ∈ CM×N is given in favour of minimizing the mean-
square error between the actual transmitted signal x and the
filter output GMy as follows:

GM = argmin
G∈CM×N

E ‖x − Gy‖2 (2)

= H†(HH† + σ2IN

)−1 ! H†R−1
M (3)

=
(
H†H + σ2IM

)−1
H† ! Q−1

M H†, (4)

where ‖ · ‖ denotes the Euclidean norm, Ip ∈ Rp×p is the
identity matrix, E[·] stands for the expectation function, and
[·]† represents the Hermitian transpose. Here, it is assumed
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that E[xx†] = IM and E[ww†] = σ2IN . (If the system
uses any linear precoding with a transmitting matrix P T and
a receiving matrix P R, we need only to substitute P RHP T

for H to obtain the MMSE weight matrix for such precoding.)
The MMSE weight generation requires a matrix inversion:

its computational complexity is generally a cubic order that
accords with the matrix size [12]. Therefore, the formula
expressed in (4) is often more useful than the one in (3)
because the matrix size of QM is smaller than or equal to
that of RM . Since the error covariance is expressed as

E
[
(x − Q−1

M H†y)(x − Q−1
M H†y)†

]
= σ2Q−1

M , (5)

the most reliable signal with the smallest error rate can be
predicted by observing the diagonal entries of Q−1

M . (Since
we consider the same constellation for each transmitting
antenna for the sake of simplicity, the smallest diagonal entry
corresponds to the most reliable signal. For a per-antenna
link adaptation [13], we should slightly modify its ordering
metric.) On the other hand, when using the formulation of
GM = H†R−1

M , we should compute h†
mR−1

M hm for all
1 ≤ m ≤ M to estimate the most reliable signal, because
the error covariance can be written as

E
[
(x−H†R−1

M y)(x−H†R−1
M y)†

]
=IM −H†R−1

M H. (6)

Hence, some researchers have used the representation in (4) to
reduce complexity. Nevertheless, the expression in (3) is useful
when deriving the proposed recursion algorithm because the
proposed scheme does not need to compute R−1

M explicitly,
as is explained later in detail.

B. Basic V-BLAST Algorithms

As discussed above, we can choose the most reliable signal
out of the MMSE nulling outputs. To simplify, it is supposed
that the signals are optimally sorted in order of ascending reli-
ability (the MMSE output for xM is the most reliable and has
the least error variance). At first, we detect the most reliable
signal xM using the MMSE nulling weights GM . Next, using
the obtained hard-decision symbol x̂M ! dec([GM ]M :y),
where dec(·) denotes the decision function and [A]i: is the
i-th row vector of a matrix A, the receiver subtracts the
corresponding replica hM x̂M from y. If the decision is not
erroneous, this replica subtraction leads to a better weight ma-
trix GM−1 for the next reliable signal xM−1 using a deflated
channel matrix HM−1 which is obtained by removing the
last column of H . Correspondingly, the V-BLAST algorithm
successively detects multiplexed signals xM , xM−1, . . . , x1

in the most reliable order, and this improves the diversity
gains significantly. Since V-BLAST requires M times weight
generation and (M−1) times replica cancellation, the order of
computational complexity is generally believed to be O[M4].
It has been said that the complexity of the traditional V-
BLAST scheme is inevitably greater than that of an MMSE
linear detector. We propose an efficient technique that has a
lower complexity than an MMSE linear detector and most
existing low-complexity V-BLAST schemes [5–8].

C. Revision of Fast V-BLAST Algorithms

Here, we reconsider the lowest-complexity algorithm pro-
posed in [8]. This algorithm uses a recursive technique gener-
ating the inversion matrix Q−1

m to reduce its complexity. We
define Qm =

(
H†

mHm + σ2Im

)
as an equation in which

Hm = [h1, h2, . . . , hm]. Using the defrated matrix Qm−1,
the matrix Qm is rewritten as

Qm =
[
Qm−1 vm

v†
m νm

]
, (7)

where vm ! H†
m−1hm and νm ! ‖hm‖2+σ2. The inversion

of the matrix above is obtained as

Q−1
m =

[
Q−1

m−1 + µmumu†
m −µmum

−µmu†
m µm

]
!

[
T m tm

t†m µm

]
, (8)

where um ! Q−1
m−1vm and µm ! 1/(νm − u†

mvm). Using
these, we can recursively generate Q−1

M , with an initial matrix
of Q−1

1 = 1/(σ2 + ‖h1‖2). The recursion above is more effi-
cient for deriving Q−1

M than the original algorithm presented
in [8], in which the computation of Q−1

M is performed using
the Sherman-Morrison formula[12].

In addition, matrix deflation from Q−1
m to Q−1

m−1 that occurs
in [8] can be further improved in the following manner. As
shown in (8), we can compute Q−1

m−1 from Q−1
m as

Q−1
m−1 = T m − µ−1

m tmt†m. (9)

This is a simpler method than the one based on the Sherman-
Morrison formula that is proposed in [8]. Although the deriva-
tion in (8) has also been introduced in [8] for the sole purpose
of matrix deflation, the chief difference between it and our
modification is that this expression is used for constructing
Q−1

m from Q−1
m−1 and for deflating Q−1

m to Q−1
m−1.

The original scheme, which uses the Sherman-Morrison
formula, in [8] requires O[6M2N ] for constructing Q−1

M
and O[2M3] for deflating the matrix. The revised scheme
described in this section can reduce the computational com-
plexity to O[2M2N +2M3] when constructing Q−1

M with the
method described in (8) and for deflation to O[2M3/3] using
the method described in (9). Therefore, our modification can
reduce the complexity by O{10M3/3} for M = N . This
section is focused on the basic recursion idea of the fast
algorithm in [8], which we modified to decrease complexity.

III. PROPOSED RECURSIVE ALGORITHM

A. Matrix Recursion

The matrix RM is rewritten as

RM = σ2IN +
M∑

m=1

hmh†
m. (10)

With the term σ2IN defined as R0, we obtain the recurrence
formula Rm = Rm−1 + hmh†

m. The inversion matrix R−1
m

can be obtained in a recursive manner using the Sherman-
Morrison formula with an initial matrix of R−1

0 = 1/σ2IN :

R−1
m = R−1

m−1 −
R−1

m−1hmh†
mR−1

m−1

1 + h†
mR−1

m−1hm

. (11)
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We call this recursive technique a matrix recursion. Matrix
recursion can reduce the complexity order of V-BLAST from
quadratic to cubic [8]. However, the inversion matrix R−1

m is
not explicitly needed. To achieve this, we need only the weight
vector h†

mR−1
m for detecting xm. More specifically, we do not

require h†
mR−1

p when m < p. If we can predict the proper
ordering in advance, we can omit these calculations.

B. Vector Recursion

Using (11), we can derive the weight vectors in a recursive
manner without explicitly using R−1

m :

g†
m,p ! h†

mR−1
p = h†

mR−1
p−1 −

h†
mR−1

p−1hph
†
pR

−1
p−1

1 + h†
pR

−1
p−1hp

(12)

= g†
m,p−1 − αm,p g†

p,p−1, (13)

where

αm,p !
g†

m,p−1hp

1 + g†
p,p−1hp

. (14)

We refer to this recursive technique for obtaining weight
vectors as vector recursion. This scheme can systematically
generate all weight vectors {g†

m,m}. It is also suitable for
parallel systolic array implementation [11]. Note that vector
recursion can be derived by using the recursive formula
for Q−1

m found in (8); since the same recursive formula is
generated, its complexity is not different from the above
recursion.

Note that replica cancellation can be performed by a scalar
operation instead of a vector one:

x̃m = g†
m,m

(
y −

M∑

p=m+1

hpx̂p

)
= g†

m,my −
M∑

p=m+1

α∗
p,mx̂p,

(15)

where [·]∗ denotes the complex conjugate, and the factors αp,m

are already calculated in (13).
The recursion process for obtaining the weight vector g†

M,M
can provide all weight vectors and replica cancellation factors.
Because we can omit weight generations for g†

m,p when
m < p, the computational complexity of V-BLAST becomes
smaller than that of an MMSE linear detector (which requires
g†

m,M for all 1 ≤ m ≤ M ). This results from the assumption
that ordering is performed in advance. For this reason, we
propose a greedy ordering method, with which we determine
the least reliable signal by observing g†

m,p−1 at each step.

C. Greedy Ordering

We can select the most reliable signal to be detected first,
the one which has the maximum ordering metric given by
γm,p = g†

m,phm as in (6). Based on this metric, we propose
the following greedy ordering. At the p-th recursion step, we
decide on the least reliable signal to be detected:

γ′
m,p−1 !

(
g†

m,p−1hm

)2

∑M
i=p

∣∣g†
m,p−1hi

∣∣2
. (16)

This represents a kind of signal-to-interference ratio (SIR).

D. Scalar Recursion

In addition, we can simplify the vector recursion scheme
to a scalar recursion scheme, focusing on the fact that the
receiver needs only the nulling outputs g†

m,my. Using (13),
we can generate the filter output in a recursive manner:

ξm,p = ξm,p−1 − αm,p ξp,p−1, (17)

where ξm,p ! g†
m,py. Here, the factor αm,p is rewritten as

αm,p =
ηm,p−1,p

1 + ηp,p−1,p
, (18)

where ηm,p,q ! g†
m,phq. For calculating αm,p, however, the

following scalar recursion is needed:

ηm,p,q = ηm,p−1,q − αm,p ηp,p−1,q, (19)

Note that there is a relationship; ηm,p,q = η∗
q,p,m, which can

omit superfluous computation. The ordering metric can be
rewritten as

γ′
m,p−1 =

η2
m,p−1,m∑M

i=p |ηm,p−1,i|2
. (20)

Using the scalar recursion, the systolic array architecture
becomes a multi-layered structure as illustrated in Fig. 1.
The upper layer can be computed using the lower layers. For
preprocessing, we require H†y and H†H . Its computational
complexity is O[2M3]. As an essential element, the systolic
computation requires an additional O[2M3/3] complexity. For
computing ordering metrics, we need an O[M3/3] complex-
ity. The top-layered recurrence formula in (17) should be
computed for every symbol, whereas the calculation of the
recurrence formula in (19) is needed only once in a frame
if the channel does not change. We summarize the proposed
scalar recursion scheme in Algorithm 1. As shown in Fig. 1,
the required memory load is M for ξm,p, M(M + 1)/2 for
ηi,p,j , and M(M + 1)/2 for ordering at the p-th stage. Note
that M(M +3)/2 memories are used for real-valued numbers,
and the others are for complex-valued numbers.

E. Adaptive Scalar Recursion for Fast Fading

For fast fading channels, the MMSE weight matrix should
be updated frequently and optimum ordering may change
during a transmission frame. For reducing complexity in such
a channel, we present an adaptive scheme. The initialization
process in the proposed algorithm dominates the overall
complexity: ηi,0,j (H†H/σ2) has an O[2NM2] complexity,
which we reduce to a square-order complexity in this section.

It is assumed that the receiver will employ some kind of
least-squares adaptive algorithms for tracking channel estima-
tion. The least mean-square (LMS) algorithm or the recursive
least-squares (RLS) algorithm is typically used for fast fading
channels[11]. For both channel estimation schemes, a channel
estimation is updated with the following:

H ′ = H + eb†, (21)

where e = y − Hx̂ ∈ CN is an error vector and x̂ is the
hard decision for x. The vector b ∈ CM is given as b = µssx̂
for LMS, and b = Φx̂/(λff + x̂†Φx̂) for RLS, where Φ is
updated as Φ′ = (Φ − bx̂†Φ)/λff with an initial condition
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║h1║
2 

h2
† h1 

h3
† h1 

1/σ2  

η1,0,1 

η2,0,1 

η3,0,1 

α1,1 

α2,1 

α3,1 

║h2║
2 

h3
† h2 

1/σ2  

η2,0,2 

η3,0,2 

η2,1,2 

η3,1,2 

α2,2 

α3,2 

η2,0,1 

║h3║
2 

1/σ2  

η3,0,3 η3,1,3 

η3,0,1 

α3,1 
η3,2,3 α3,3 

η3,1,2 

α3,2 

h3
† y 

h2
† y 

h1
† y 

1/σ2  

ξ3,0 

ξ2,0 

ξ1,0 

ξ3,1 

ξ2,1 

ξ1,1 

ξ3,2 

ξ2,2 

ξ3,3 

α3,1 

α2,1 

α3,1 

α2,1 

α1,1 

α3,2 

α2,2 

α3,3 

Layer h1 

Layer h2 

Layer h3 

Layer y 

x3 = dec( ξ3,3 ) ^ 

x2 = dec( ξ2,2 – α3,2 x3 ) ^ * ^ 

x1 = dec( ξ1,1 – α2,1 x2 – α3,1 x3 ) ^ * ^ ^ * 

Fig. 1. Scalar recursion for MMSE/V-BLAST in a systolic array with greedy
ordering (M = 3).

Algorithm 1 Proposed V-BLAST Scalar Recursion Algorithm
with Greedy Ordering

— Initialization:
S0 = {1, 2, . . . , M}
for all i, j ∈ S0 do

ξi,0 = h†
i y/σ2

ηi,0,j = h†
i hj/σ2

end for
— V-BLAST Recursion with Greedy Ordering:
for k = 1 to M do

pk = argminm∈Sk−1

(
η2

m,k−1,m/
∑

i∈Sk−1
|ηm,k−1,i|2

)

Sk = Sk−1 \ {pk}
for all m ∈ Sk−1 do

αm,k = ηm,k−1,pk/(1 + ηpk,k−1,pk )
ξm,k = ξm,k−1 − αm,k ξpk,k−1

for all q ∈ Sk do
ηm,k,q = ηm,k−1,q − αm,k ηpk,k−1,q

end for
end for

end for
— Successive Detection
for k = M to 1 do

x̂pk = dec
(
ξpk,k −

∑
i∈Sk

α∗
i,kx̂i

)

end for

of Φ = ςIM (ς & 1). Here, µss is referred to as a step-size
factor, and λff is a forgetting factor. Using (21), we can update
ηi,0,j as follows:

A′ = A + b
(
ξ − Ax̂ + ‖e‖2b/2σ2

)†

+
(
ξ − Ax̂ + ‖e‖2b/2σ2

)
b†, (22)

where A = H†H/σ2 (the (i, j)-th entry is ηi,0,j) and ξ =
[ξ1,0, ξ2,0, . . . , ξM,0]T. The above computation may reduce the
complexity of the initial process to a square order O[8M2].
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Fig. 2. Asymptotic complexity in multiplications as a function of number
of antenna pairs (M = N ).

IV. EVALUATION

A. Computational Complexity

Table I lists the computational complexity for the original
V-BLAST algorithm, the square-root algorithm [6], the fast
algorithm [8], the modified fast algorithm in section II-C, the
sorted QR decomposition [9], the proposed scalar recursion
algorithm with greedy ordering, the adaptive scalar recursion
algorithm with greedy ordering, and the MMSE linear detector
using a scalar recursion for reference. This is the total number
of real-valued multiplications and additions for the overall
process including weight generations, ordering, interference
cancellations and so on. Here, the Golub-Reinsch algorithm
[12] is employed for a computationally stable way to compute
an inversion matrix in the conventional V-BLAST algorithm
[8]. The number of multiplications are plotted in Fig. 2 as a
function of the number of antenna pairs for M = N . Table II
shows their asymptotic complexities when M = N is used.
One can see that the proposed scheme offers a remarkable
advantage for computational complexity. The adaptive scalar
recursion algorithm for fast fading is also advantageous,
especially for a large number of antenna pairs. Note that the
proposed scalar recursion has a lower complexity than does a
simple MMSE linear detector.

B. Bit Error Rate Performance

Figs. 3 and 4 show BER performance as a function of
average Eb/N0 per receiving antenna for uncoded QPSK 4×4
systems and uncoded 16QAM 4 × 4 systems, respectively, in
frequency-flat Rayleigh fading channels. These figures plot
the performance curves of V-BLAST scalar recursion with
optimum ordering, V-BLAST scalar recursion with greedy
ordering, V-BLAST based on the sorted QR decomposition,
and MMSE linear detection. Note that the scalar recursion
with optimum ordering performs in the same way as a
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TABLE I
TOTAL NUMBER OF REAL-VALUED ARITHMETIC OPERATIONS REQUIRED FOR V-BLAST ALGORITHMS

Algorithm Multiplication Addition
Conventional 16NM3/3 + 9M4 + 10NM2 + 68M3/3 + O(M2) 16NM3/3 + 9M4 + 50M3/3 + 10NM2 + O(M2)
Square-root [6] 28NM2 + 8M3/3 + 8N2M + 8NM 28NM2 + 8M3/3 + 8N2M + 8NM
Fast algorithm [8] 8NM2 + 2M3 + 10NM − 4M2 − 4N + 2M 4NM2 + 2M3 + 12NM − 3M2 − 6N − 5M + 2
Modified fast algorithm 4NM2 + 8M3/3 + 6NM + 2M2 − 4N − 8M/3 4NM2 + 8M3/3 + 6NM − 5M2 − 4N + M/3
Sorted QR [9] 4NM2 + 4M3 + M2 − 3M 4NM2 + 4M3 − 2NM − M2 − 3M
Proposed scalar algorithm 2NM2 + M3 + 4NM + 13M2/2 − 3M/2 − 1 2NM2 + 7M3/6 + 4NM + 2M2 − M/6
Adaptive scalar algorithm M3 + 8M2 + 4NM + 13M2/2 − 3M/2 + 4N − 1 M3 + 8M2 + 4NM + 15M2/2 + 5M/2 + 4N − 1
MMSE linear 2NM2 + 2M3 + 7M2 + 4NM − 2M − 4 2NM2 + 2M3 + 4NM + 3M2 − 5M − 4

TABLE II
ASYMPTOTIC COMPUTATIONAL COMPLEXITY FOR MMSE/V-BLAST IN MULTIPLICATIONS (M = N )

Conventional Square-root [6] Fast algorithm [8] Modified fast Sorted QR [9] Proposal Adaptive MMSE linear
(43M + 98)M3/3 116M3/3 10M3 20M3/3 8M3 3M3 M3 4M3
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Fig. 3. Average BER performance as a function of average Eb/N0 per
receiving antenna in frequency-flat Rayleigh fading channel (uncoded QPSK
4 × 4 MIMO system, perfect channel estimation).

conventional MMSE/V-BLAST algorithm with optimum or-
dering. As shown in these figures, V-BLAST offers good BER
performance when compared to an MMSE linear detector,
especially for low level modulations. Note that the proposed
algorithm with greedy ordering offers an almost comparable
performance to a V-BLAST with optimum ordering, and it
significantly outperforms an MMSE linear detector and the
sorted QR decomposition BLAST algorithm although its com-
putational complexity is lower than that of other detectors. The
proposed scheme works well even for high level modulations,
whereas the sorted QR decomposition suffers from a severe
performance degradation.

V. SUMMARY

First, we described a lower complexity version of the V-
BLAST fast algorithm originally proposed in [8]. Then we
proposed a more computationally efficient recursion scheme
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Fig. 4. Average BER performance as a function of average Eb/N0 per
receiving antenna in frequency-flat Rayleigh fading channel (uncoded 16QAM
4 × 4 MIMO system, perfect channel estimation).

for MMSE/V-BLAST, which is suitable for hardware im-
plementation, and greedy ordering. The proposed technique
is less complex than most existing V-BLAST algorithms,
because of its simplified recurrence formula. This proposal
can readily deal with optimum ordering as well as greedy
ordering. It should be noted that even though the proposed
scheme is less complex than a simple MMSE linear detection,
the proposed scheme outperforms the MMSE scheme.
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