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of the first summand. Taking (1) into account, we can distinguish two
cases.

1) If is a RKHS with reproducing kernel , i.e., , then
is also a RKHS with reproducing kernel and thus,

(1) implies . Moreover,
the convergence of the preceding series is absolute in .
Hence, (11) holds.

2) If is a -space, then (1) does not necessarily imply the
pointwise convergence of the series to

. For this assertion to hold it is necessary to impose
additional conditions on the process . For example, if

is a smooth process5 then, there exists a finite,
non-negative measure on ( is the -algebra of
Lebesgue measurable subsets of ) which is equivalent to the
Lebesgue measure and satisfies [12].
In this case, we set . Moreover, it follows
that , where the series
converges absolutely in . Therefore, (11) follows.
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Abstract—We consider a model of the form , where
is sparse with at most nonzero coefficients in unknown locations,

is the observation vector, is the measurement ma-
trix and is the Gaussian noise. We develop a Cramér–Rao bound
on the mean squared estimation error of the nonzero elements of , cor-
responding to the genie-aided estimator (GAE) which is provided with the
locations of the nonzero elements of . Intuitively, the mean squared es-
timation error of any estimator without the knowledge of the locations of
the nonzero elements of is no less than that of the GAE. Assuming that

is fixed, we establish the existence of an estimator that asymptotically
achieves the Cramér–Rao bound without any knowledge of the locations of
the nonzero elements of as , for a random Gaussian matrix
whose elements are drawn i.i.d. according to .

Index Terms—Compressive sampling, information theory, parameter
estimation.

I. INTRODUCTION

We consider the problem of estimating a sparse vector based on noisy
observations. Suppose that we have a compressive sampling (Please see
[2] and [5]) model of the form

(1)

where is the unknown sparse vector to be estimated,
is the observation vector, is the Gaussian

noise and is the measurement matrix. Suppose that
is sparse, i.e., . Let and

be fixed numbers.
The estimator must both estimate the locations and the values of the

non-zero elements of . If a Genie provides us with , the problem
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reduces to estimating the values of the non-zero elements of . We
denote the estimator to this reduced problem by genie-aided estimator
(GAE).

Clearly, the mean-square estimation error (MSE) of any estimator is
no less than that of the GAE (see [3]), since the GAE does not need to
estimate the locations of the nonzero elements of (

bits, where is the binary entropy function).
Recently, Haupt and Nowak [6] and Candès and Tao [3] have pro-

posed estimators which achieve the estimation error of the GAE up to
a factor of . In [6], a measurement matrix based on Rademacher
projections is constructed and an iterative bound-optimization recovery
procedure is proposed. Each step of the procedure requires
operations and the iterations are repeated until convergence is achieved.
It has been shown that the estimator achieves the estimation error of the
GAE up to a factor of .

Candès and Tao [3] have proposed an estimator based on linear pro-
gramming, namely the Dantzig Selector, which achieves the estimation
error of the GAE up to a factor of , for Gaussian measurement
matrices. The Dantzig Selector can be recast as a linear program and
can be efficiently solved by the well-known primal-dual interior point
methods, as suggested in [3]. Each iteration requires solving an
system of linear equations and the iterations are repeated until conver-
gence is attained.

In this correspondence, we construct an estimator based on Shannon
theory and the notion of typicality [4] that asymptotically achieves
the Cramér–Rao bound on the estimation error of the GAE without
the knowledge of the locations of the nonzero elements of , for
Gaussian measurement matrices. Although the estimator presented in
this correspondence has higher complexity (exponential) compared to
the estimators in [3] and [6], to the best of our knowledge it is the first
result establishing the achievability of the Cramér–Rao bound for noisy
compressive sampling. The problem of finding efficient and low-com-
plexity estimators that achieve the Cramér–Rao bound for noisy com-
pressive sampling still remains open.

The outline of this correspondence follows next. In Section II,
we state the main result of this correspondence and present its proof
in Section III. We then discuss the implications of our results in
Section IV.

II. MAIN RESULT

The main result of this correspondence is the following:
Main Theorem: In the compressive sampling model of

, let be a measurement matrix whose elements are i.i.d.
and distributed according to . Let be the Cramér–Rao
bound on the mean squared error of the GAE (averaged over and

), and be a fixed number. If
• as
•
• grows polynomially in ,

assuming that the locations of the nonzero elements of are not
known, there exists an estimator (namely, the joint typicality estimator,
given explicitly in this correspondence) for the nonzero elements of

with mean-square error , such that

III. PROOF OF THE MAIN THEOREM

In order to establish the Main Result, we need to define the Joint
Typicality Estimator. We first state the following Lemma for random
matrices:

Lemma 3.1: Let be a measurement matrix whose elements are
i.i.d. and distributed according to , such
that and be the submatrix of with columns corre-
sponding to the index set . Then, with probability 1.

Proof: Let and be any two columns of . The law of
large numbers implies

(2)

as . Thus, the columns of are mutually orthogonal with
probability 1, which proves the statement of the Lemma.

We can now define the notion of Joint Typicality. We adopt the def-
inition from [1]:

Definition 3.2: We say an noisy observation vector,
and a set of indices , with , are

-jointly typical if and

(3)

where is the submatrix of with columns corresponding to the
index set and . We denote -jointly
typicality of with by .

Note that we can make the assumption of without
loss of generality, based on Lemma 3.1.

Definition 3.3 (Joint Typicality Estimator): The Joint Typicality Es-
timator finds a set of indices which is -jointly typical with , by pro-
jecting onto all the possible -dimensional subspaces spanned
by the columns of and choosing the one satisfying (3). It then pro-
duces the estimate by projecting onto the subspace spanned by :

(4)

If the estimator does not find any set -typical to , it will output the
zero vector as the estimate. We denote this event by .

We show that the Joint Typicality Estimator has the property stated
in the Main Theorem. In order to prove this claim, we first establish the
following Lemmas:

Lemma 3.4: For any unbiased estimator of ,

(5)

where is the submatrix of with columns corresponding to the
index set .

Proof: Assuming that a Genie provides us with , we have

(6)

where is the subvector of with elements corresponding to the
index set . The Fisher information matrix is then given by

(7)

Therefore, for any unbiased estimator by the Cramér–Rao bound
[7],

(8)

We note that Lemma 3.4 is also presented in [3].
Lemma 3.5: Let be an matrix whose elements are i.i.d.

and distributed according to . Then

(9)
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as with fixed.
Proof: Let . We have

(10)

Since the elements of are i.i.d. and normally distributed, we can
invoke the law of large numbers as follows:

(11)

if and

(12)

as . Therefore

(13)

We note that is non-singular with probability 1, since it
converges to element-wise with probability 1. Thus, the limit

exists with probability 1. Hence

(14)

as . Taking the trace of both sides of the above equation,
along with the linearity of the trace operator, proves the statement of
the Lemma.

Lemma 3.6 (Lemma 3.3 of [1]): For any ,

(15)

and

(16)

where is an index set such that and and
and

Proof: Please refer to [1] for the proof.
Proof of the Main Theorem: We can upper-bound the MSE of the

Joint Typicality Estimator, averaged over all possible Gaussian mea-
surement matrices, as follows:

(17)

where denotes the event probability defined over the noise density,
denotes the Gaussian probability measure and the inequality

follows from the union bound. Taking the term corresponding to out
of the summation, we can rewrite (17) as

(18)

The first term on the right-hand side of (18) can be upper-bounded
as

(19)

where the inequality follows from Lemma 3.6. This term clearly tends
to zero as , since grows polynomially in by as-
sumption.

Using Lemma 3.5, the second term on the right-hand side of (18) can
be expressed as follows:

(20)

Finally, the third term on the right-hand side of (18) can be upper-
bounded as

(21)

where denotes the th component of . The first inequality fol-
lows from a trivial upper bound of on the error vari-
ance, and the second inequality follows from Lemma 3.6. The number
of index sets such that is upper-bounded by

. Also, . There-
fore, we can rewrite the right-hand side of (21) as

(22)
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We use the inequality

(23)

in order to upper-bound the th term of the summation in (22) by

(24)

where . We define

(25)

By Lemmas 3.4, 3.5 and 3.6 of [1], it can be shown that
asymptotically attains its maximum at either or , if

as . Thus, we can upper-bound the
right-hand side of (21) by

(26)

It is straightforward to obtain
(27)

and
(28)

Since due to the assumption of
, both and will grow to linearly as

. Hence, the exponent in (26) will grow to as ,
as long as grows polynomially in . Thus, the MSE of the
Joint Typicality Estimator is asymptotically upper-bounded by

(29)

By Lemma 3.5, we know that this is the asymptotic Cramér–Rao
bound on the mean squared estimation error of the GAE, which proves
the statement of the main theorem.

IV. DISCUSSION OF THE MAIN RESULT

We consider the problem of estimating a sparse vector, ,
using noisy observations. Let . The estimator must
both estimate the locations and the values of the non-zero elements of

. Clearly, the mean squared estimation error of any estimator is no
less than that of the genie-aided estimator, for which the locations of the
nonzero elements of are known. We have constructed a Joint Typ-
icality Estimator that asymptotically achieves the Cramér–Rao bound
on the mean squared estimation error of the GAE without any knowl-
edge of the locations of nonzero elements of , as for

a fixed number.
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