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Experience-Induced Neural Circuits That Achieve High Capacity

Vitaly Feldman∗ Leslie G. Valiant†

January 23, 2009

Abstract

Over a lifetime cortex performs a vast number of different cognitive actions, mostly dependent on
past experience. Previously it has not been known how such capabilities can be reconciled, even in
principle, with the known resource constraints on cortex, such as low connectivity and low average
synaptic strength. Here we describe neural circuits and associated algorithms that respect the brain’s
most basic resource constraints and support the execution of high numbers of cognitive actions when
presented with natural inputs. Our circuits simultaneously support a suite of four basic kinds of task that
each require some circuit modification: hierarchical memory formation, pairwise association, supervised
memorization, and inductive learning of threshold functions. The capacity of our circuits is established via
experiments in which sequences of several thousands of such actions are simulated by computer and the
circuits created tested for subsequent efficacy. Our underlying theory is apparently the only biologically
plausible systems-level theory of learning and memory in cortex for which such a demonstration has been
performed, and we argue that no general theory of information processing in the brain can be considered
viable without such a demonstration.

1 Introduction

Cortical computations face severe resource constraints. Each neuron is connected to only a very small
fraction of the other neurons (Braitenberg & Schuz, 1998). Also, the individual influence of any one neuron
on another to which it is connected is often weak, the synaptic strength being weak on the average (Abeles,
1991). Further, cortex can perform complex tasks very fast, even tasks involving learned information such as
the recognition of manufactured objects (VanRullen & Thorpe, 2001a, 2001b), and it is consequently believed
that it must be doing these using a modest number, say 10-20, of temporal steps of neural processing,
perhaps in feedforward fashion. Yet, it can handle large numbers of concepts, perhaps in the hundreds
of thousands, without undue interference amongst them. The severity of these constraints taken together
makes it challenging to identify any computational mechanisms that might overcome them together, even in
principle.

In this paper we formulate this problem as one of establishing circuits by processes that are prompted by
natural inputs to the circuits. These processes will be of four different kinds, each realizing a separate task :
hierarchical memory formation, pairwise association, supervised memorization, and inductive learning of
threshold functions. The circuit will be exposed to a sequence of inputs. Each input will prompt an instance
of one of these four tasks of circuit modification to be executed. Each act of circuit modification will aim
to add the new functionality demanded by that input, without causing previously added functionalities to
be seriously degraded. After a long enough sequence of such task executions, any further modifications will
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inevitably cause more serious degradation. The upper limit attainable without such degradation we shall call
the capacity. We investigate this capacity by performing computer simulations on a network that supports
algorithms for the four tasks and is subject to long sequences of such prompts.

The main finding is that the circuits we describe do attain impressive capacities using realistic resource
and computation-time constraints. The phenomena we investigate dichotomize into two algorithmic regimes.
In regime α weak synapses are sufficient and highly distributed representations result. In regime β large
synaptic strengths are needed and sparse representations are supported. We find that regime α can support
sequences of tens of thousands of actions, and regime β hundreds of thousands. Such capacities are necessary
to reconcile with the various estimates of human capacity, such as the 30,000 estimate of the number of visual
concepts (Biederman, 1987).

Our approach can be distinguished from previous work by the simultaneous emphasis on building circuits
for multiple tasks, and awareness of biologically realistic quantitative constraints on the parameters of neuron
numbers, neuron connections, synaptic strengths, computation time, capacities, and the numbers of neurons
that correspond to a single real-world item. Previous theoretical approaches to analyzing networks of neuron-
like structures have tended to analyze one task at a time. For example, there is a large literature on associative
memories (Willshaw, Buneman, & Longuest-Higgins, 1968; Marr, 1969; Hopfield, 1982; Graham & Willshaw,
1997), structures that enable fixed patterns to be memorized and retrieved. There is another literature on
inductive learning algorithms (Rosenblatt, 1958; Minsky & Papert, 1969; Rumelhart, Hinton, & Williams,
1986; Littlestone, 1987). Such previous approaches have not yielded general schemes that achieve the large
capacities for multiple tasks and realistic constraints such as we consider here.

We emphasize the quantitative aspect of our approach. Our algorithms rely on particular relationships
among the following four parameters: n the number of neurons, d the number of neurons from which a neuron
receives presynaptic inputs, k the minimum number of neurons that need to be active to cause a common
neighbor to become active, and r the number of neurons that are active when a typical real world item,
such as an odor for an olfactory system, is represented. All these parameters can be measured in principle.
All four have been measured and analyzed for at least one neural system (Valiant, 2006; Jortner, Farivar,
& Laurent, 2007), and some can be estimated for others (Quiroga, Reddy, Kreiman, Koch, & Fried, 2005;
Valiant, 2006). These parameter values and the quantitative relationships among them that our algorithms
support can offer telltale signs of whether our style of algorithms may be at work, where direct verification
is beyond current experimental methods.

The algorithms described and tested are based on simple synaptic modifications triggered by the inputs.
They take one or two basic steps, which guarantees fast computation times. Such algorithms are called
vicinal (Valiant, 1994) because they emphasize neighborly communication among neurons and the storage
of information in the neighborhood of where related information is stored. The biological grounding of this
type of algorithm has been investigated by Shastri (2001). The relationship intended between our model
and biology is that the model be faithful in the four numerical parameters n, k, d and r but otherwise be
clearly supportable by neurons and hence underestimate their capabilities.

In this work we consider vicinal algorithms for the four tasks described above. Algorithms similar to
the ones we investigate here have been previously analyzed one execution at a time (Valiant, 1994, 2005,
2006). Analysis of long sequences of such executions appears to be beyond current analytic methods. Here
we demonstrate through computer simulations of long sequences of such actions that high capacities are
achievable. In order to make these multiple functions attain substantial capacities we needed to make
several innovations over the previous work. First, we developed a more refined semantics of the network,
one that distinguishes appropriately among the following three situations: a given real-world item A is being
recognized, item A is not being recognized, and the intermediate third case, which in normal operation is
guaranteed to occur with only negligible probability. We believe that the proposed semantics is appropriate
for exploring phenomena more complex still than the ones tested in this paper. Second, compared to
previous work (Valiant, 1994, 2005) we have made regime α algorithms particularly simple, and they all now
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require just one circuit level. Third, our algorithms incorporate new methods for dealing with interference
in the network. Previously suggested algorithms do not handle several types of interference that were
observed in the course of simulation. Finally, our suite of algorithms have a modest number of adjustable
numerical parameters overall, and we needed to choose these carefully to achieve the reported capacities.
The computational experiments described involve substantial computations, and were performed on a large
memory (256GB) 16-processor machine.

The relationship of our approach to previous work is discussed more fully by Valiant (1994, 2005, 2006).
We note here that the allocation of unused memory to a new item, in the manner of our hierarchical
memorization, has been called recruitment learning (Feldman & Ballard, 1982; Feldman, 1982). With respect
to earlier general discussions of localist versus distributed representations, and sparsity versus density, we
observe that our two regimes are both precisely defined in terms of numerical parameters. Both regimes α
and β have a highly distributed nature, but the latter also has an additional strongly localist aspect.

In conclusion, we observe that the rationale for the two regimes α and β that we investigate in this
capacity study, is simply that these are the only two for which we have previous evidence (Valiant (1994,
2005, 2006)) of a capability for computing instances of all of the tasks that we target. At the simplest level
regime α should be thought of as having essentially minimal assumptions - a web of randomly connected
neurons with all synapses weak and all algorithms conceptually simple and working between pairs of directly
connected neurons. One would have to conjecture that this regime would be easy to evolve once neurons
are available because the algorithms are the simplest imaginable. However, as we show the capacity of this
regime while considerable is nevertheless limited and does not scale well with the total number of neurons.
In order to go to higher capacities the only proposal we know is our regime beta, in which some extra
complexity is needed, namely the existence of maximally strong synapses and algorithms act conceptually
via intermediate so-called relay neurons. Note that the algorithms are still strictly distributed, acting on each
neuron independently using only information local to it and the firing activity of its presynaptic neurons.
However, the mechanisms are more complex and one would have to conjecture, for example, that if they
exist in biology then they would have been discovered at a later stage of evolution

2 Overview

We shall now describe how items are represented in the network and give a brief overview of how the network
is created and tested.

2.1 Item Representation

We represent a real world item, such as an event, word, concept or odor, by a set of model neurons. More
precisely, let A be such a real world item. A basic assumption of our model is that there exists a set of
neurons SA such that the activity of neurons in SA correlates strongly with A being recognized. The model
does not require perfect correlation between each neuron in SA and the system’s recognition of A. Such
perfect correlation is impossible, for example, if the neuron sets of different items overlap, as is allowed in our
regime α. Instead the recognition of A will be associated with a probability distribution over the fraction
of neurons in SA that are firing. The nonrecognition of A will be associated with a different probability
distribution. While we do not know the exact distribution for every item we assume that such distributions
assign high weight to fractions close to 1. More formally, we introduce the notion of the ON fraction bound
function, CON . For every fraction p, CON (p) bounds from below the probability that at least p-fraction
of neurons representing an item A will be active when A is recognized. The probability is taken over all
the times that A is recognized. Similarly, we define COFF to be the function that bounds from above the
probability that at most p-fraction of neurons representing an item A will be active when A is not recognized.
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Specifying these bounds is essential for making specific what the simulations are to achieve, and we shall
use the following functions for this purpose. For real a, b ∈ [0, 1] and τ such that sign(τ) = sign(b− a) we
define a fraction bounding functions C[a, b, τ ] to be

C[a, b, τ ](p) =





0 sign(τ) = sign(a− p)
1 sign(τ) = sign(p− b)
1− 2−p/τ−2−b/τ

2−a/τ−2−b/τ otherwise

For our regime α when an item is recognized, we shall choose an ON distribution and characterize it by the
parameters [0.98,0.88,-0.01]. This will mean that when the item is recognized (i) with probability 1 at least
88% of the neurons in SA fire, (ii) for a fraction p ∈ [0.88, 0.98] the probability that less than p-fraction of the
neurons in SA fires is exponentially decreasing as p decreases (with 100=1/0.01 as an exponent multiplier),
and (iii) nothing is guaranteed for fractions above 98%.

For the same regime when an item is not recognized we choose an OFF distribution with parameters
[0.05, 0.3, 0.025]. This will mean that (i) with probability 1 at most 30% of the neurons in SA fire, (ii) for a
fraction p ∈ [0.05, 0.30] the probability that more than p-fraction of the neurons in SA fires is exponentially
decreasing as p increases, and (iii) nothing is guaranteed for fractions below 0.05%. We define parameters
for regime β similarly. The specific parameters therefore impose a precise semantics on the network of
neurons by which the success of any algorithm can be evaluated. We note that this semantics comes in two
varieties depending on whether the neuron sets SA for distinct items are disjoint or not. These two versions
are refinements of what have been called positive and positive shared representations (Valiant, 1994, 2005),
which are employed in regimes β and α, respectively.

2.2 Model of Computation

The underlying model of computation used for the networks is the neuroidal model (Valiant, 1994), which was
designed to capture the communication capabilities and limitations of cortex as simply as possible. Below
we provide a brief summary of the relevant assumptions. A neuroidal net consists of a weighted directed
graph G with a model neuron or neuroid at each node. A neuroid is a linear threshold element that can be
in one of a fixed set of states. The weight of an edge or connection from node v to node u is wv,u and models
the strength of the synapses for which v is presynaptic and u is postsynaptic. The only way a neuroid u
can be influenced by other neuroids is through the quantity wu which equals the sum of the weights wv,u

over all neurons v presynaptic to u that are in firing states. The firing of a neuroid can be caused either by
an external input or when wu ≥ Θ for threshold Θ. In this paper the values of Θ are fixed throughout the
computation. Each neuroid executes an algorithm that is local to itself and can be formally defined in terms
the transitions that update the neuroid’s state and the weights of its incoming connections. The changes
made by a transition can depend only on the neuroid’s current state and wu.

The model assumes a simple timing mechanism. There is a global synchronization mechanism such that
if the representations of a set of items, such as items A and B, are prompted to fire simultaneously, by an
external input for example, then the neurons in these representations will fire synchronously enough that
the succession of transitions that will be caused to execute by the algorithms running locally on the relevant
neurons will keep in lockstep for the few steps of duration of these algorithms. In this paper all state and
threshold transitions are assumed to take one unit of time.

2.3 Design Overview

The networks that we investigate consist of two main parts or layers. The first layer, which we refer to as
primitive, will contain the neurons used for the so-called primitive items to which neurons are preassigned.
These can be thought of as representing sensory input primitives preprogrammed at birth. The second or
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main layer will contain the neurons for all the other items. The basic process of adding an item is hierarchical
memory formation, which creates an item in the main layer that is the conjunction of two previously existing
items. The other cognitive tasks involve changing the weights and states of neurons in the main layer. We
shall, in particular simulate three such tasks: association, supervised memorization, and inductive learning.

We examine two regimes which have been identified as efficacious for neural processing by earlier the-
oretical work (Valiant, 1994, 2005). In regime α the influence of each neuron on its neighbors is limited.
Specifically, to cause a neuron to fire at least k neurons directly synapsing on to it have to fire simultaneously,
where k > 1. In general large item size r is required to overcome the weakness of the influences. Representing
a significant number of items in this regime is only possible if the sets of neurons representing items may
overlap. In Figure 1 we provide a schematic view of a regime α network.

Figure 1: Regime α network: a and b are primitive items; A and B are main layer items.

In regime β, the firing of a single neuron is sufficient to cause its neighbor to fire. In other words k = 1.
In addition, in this regime neurons in the main layer are connected to each other via a layer of relay neurons.
Strong synapses and use of the relay layer allow significantly smaller item sizes and hence items may be
represented by disjoint sets of neurons and higher capacities attained. In Figure 2 we provide a schematic
view of a regime β network.

We note that regime α will require only minimally simple network structure and algorithms, and only
weak synapses. Regime β is a little more demanding in these respects, but in return will be shown to achieve
extremely high capacities.

The life-cycle of the network that we simulate can be split into the following stages:

• Create the neurons and connections of both the primitive and the main layers. In regime β the relay
layer and its connections are also created. Assign neurons to items in the primitive layer.

• Neurons are assigned to items in the main layer via hierarchical memory formation. For a pair of items
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Figure 2: Regime β network: a and b are primitive items; A and B are main layer items.
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A and B in the primitive layer, neurons in the main layer that are the most strongly connected to the
neurons representing A and B will represent the conjunction A ∧B.

• Perform the sequence of association, supervised memorization, and inductive learning requests on the
items in the main layer.

• Measure the effectiveness and robustness of the circuits created by these requests and the network as
a whole.

Hierarchical memory formation is the process in which a higher-level item corresponding to a combination
of specific lower-level items is created. Here we only consider one level of hierarchical memory formation,
namely, for a pair of primitive items A and B, an item that represents A ∧ B is formed in the main layer.
The neurons that are assigned to represent A ∧ B are the neurons that fire whenever all neurons in both
A and B are firing. While it is easy to implement this process using a vicinal algorithm (we describe such
algorithms for both regimes in Section 4), the circuits we obtained are not robust to interference from later
executions of other tasks. Therefore we use this stage only to produce an assignment of neurons to items in
the main layer that is based on connections to combinations of items in the primitive layer. We note that
in regime α items created via this method often share a significant fraction of neurons making interference
more likely.

The goal of each task execution in the main layer is to modify the weights so that on future inputs some
chosen target item becomes recognized for new combinations of certain other source items being recognized.
The network supports the following types of task.

• Association. An item A is associated with item B if activation of B activates A.

• Supervised memorization. An item A is a memorized conjunction of items B1 and B2 if A is acti-
vated whenever both B1 and B2 are activated. (Each supervised memorization task in our simulations
is executed in two steps.)

• Inductive learning. Inductive learning is used when the desired functionality is not known in advance
but correct examples of this functionality are observed. It permits creation of a variety of functionalities
via a single learning mechanism. Here we will use a simple mechanism based on the Winnow algorithm
(Littlestone, 1987). This mechanism enables learning of monotone linear threshold functions. We
tested this mechanism on threshold functions of up to eight items and weights from the set {0, 1, 2}.
We also assumed that the examples which are very close to the separating plane do not occur, in other
words there is a margin between the separating plane and the observed examples. Learning of linear
thresholds with margins by neural networks was previously studied by Arriaga and Vempala (1999).
They also point to a number of cognitive experiments that support the use in human learning of linear
threshold functions with substantial margins.

Unlike the other tasks learning involves a step for each one of the many examples that are presented.
These steps are not necessarily performed consecutively.

In Figure 3 we illustrate the relations between items that can be created by executing tasks on the
network.

A task execution is initiated by a prompt, i.e. by setting a subset of the neurons representing the relevant
source items to firing states. The subset depends also on the semantics of representation defined above (see
Section 5 for details). In addition it is assumed that the type of the task is “known” to each of the neurons
representing the target item. This is necessary to ensure that the local algorithm for the given task type
is performed at each of the neurons of the target item. We take no position on how the type of task to be
executed is communicated to the target neurons. Possible options include additional vicinal algorithms, fine
grain timing mechanisms in the prompt, or global mechanisms akin to neuromodulators in the brain.

7



Figure 3: Relations between main layer items after the following sequence of tasks: (1) A is associated with
D; (2) G is associated with C; (3) I is memorized as conjunction of K and H; (4) G is associated with
P ; (5) A is associated with L; (6) A is associated with E; (7) A is memorized as conjunction of N and F ;
(8) K is learned as a linear threshold of N,O, A,B,D, E, H and J (the thickness of an edge represents the
weight that is contributed by a source item); (9) G is associated with L. Note that (8) would be executed as
a result of the presentation of a series of examples, which need not be contiguous but may be intermingled
with other task executions.
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The list of all task instances that are executed in a simulation corresponds to complex relations among the
items in the brain. In our simulations these relations are chosen randomly and uniformly within a number
of constraints governed by explicit parameters. The capacity of a network with naturally created relations
and examples may differ from the capacity for random relations.

In the rest of this document we will describe in detail each of these stages, list the parameters that govern
their execution, and describe the numerical results obtained. The description of the tasks and testing is given
from the perspective of the simulator. This makes the algorithms for the tasks and the assumptions on the
external inputs explicit.

3 Network Creation

In this stage first the neurons that represent neurons of the primitive and the main layers are created. The
number of neurons in the primitive layer is controlled by parameter primitiveNetSize and the number
of neurons in the main layer is controlled by the parameter netSize. In addition, in regime β relaySize
neurons are created that represent the relay neurons. For simplicity, we will use primarily networks with

primitiveNetSize = netSize = relaySize

and refer to this size by n.
In the next step random edges are created from the primitive layer to the main layer and inside the main

layer. Each edge in this network models a synaptic connection between two neurons. The strength of a
synapse is modeled by an integer number in the range from 0 to maxSynapseStrength. This implies that all
weights in the network are non-negative, that is correspond to excitatory synapses. This will be sufficient
for implementing the tasks we consider. We note that the underlying model also supports negative weights
to model inhibitory synapses.

For each of the neurons of the primitive layer, primitiveDegree outgoing connections are created to
distinct randomly and uniformly chosen neurons of the main layer. The initial strength of these connections
is set to the maximum value (maxSynapseStrength). In regime α, for each of the neurons of the main layer,
degree incoming connections are created from distinct randomly and uniformly chosen neurons of the main
layer. The initial strength of these connections is set to 0. In regime β, for each of the neurons of the main
layer, degree incoming connections are created from distinct randomly and uniformly chosen neurons of the
relay layer and relayDegree outgoing connections are created to distinct randomly and uniformly chosen
neurons of the relay layer. The initial strength of the incoming connections is set to 0 and the initial strength
of the outgoing connections is set to the maximum value. For simplicity we will use

primitiveDegree = degree = relayDegree

and denote this degree by d.
We note that expected effective incoming degree of each neuron in the main layer is degree+primitiveDegree·

primitiveNetSize/netSize. Expected outgoing degree for every main-layer neuron in regime α is degree.
In regime β each relay neuron has expected incoming degree of relayDegree · netSize/relaySize and
outgoing degree of degree · netSize/relaySize. The action potential of each neuron is equal to k ·
maxSynapseStrength (which equals maxSynapseStrength in regime β). We refer to this value as the thresh-
old of a neuron and denote it by Θ.

Then, in the primitive layer we create primitiveItemN items each of size primitiveItemSize, which
is the r value for the primitive layer. In regime α the neurons representing each item are chosen randomly
and uniformly and therefore the items might overlap. In regime β the neurons are chosen randomly and
uniformly from the neurons that have not been already assigned to another item. This might appear to be a
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strong assumption on primitive items since in an actual biological system the neurons representing primitive
items might not be distributed randomly. However this choice has little impact on the performance of the
network as long as pairs of primitive items share few neurons. In particular, in regime β the choice of neurons
for the primitive items does not affect the performance of the network when the primitive items are disjoint.

4 Hierarchical Memory Formation

In the hierarchical memory formation stage neurons are assigned to all items in the main layer. Each item
in the main layer corresponds to a conjunction of two primitive items. The simulator creates workingItemN
items using distinct pairs of primitive items chosen randomly and uniformly from the set of all pairs of
primitive items.

For a pair of primitive items A and B, the neurons that are assigned to represent A∧B are the neurons
that have the largest number of connections to both A and B. Specifically, the mechanism for assigning the
neurons is as follows. In regime β a neuron in the main layer is assigned to represent the item A ∧ B if it
has incoming connections from both A and B and was not previously assigned to represent another item. In
regime α we explore two alternative mechanisms. In the first each of the neurons that represent either A or
B is activated. Neurons in the main layer whose input potential is higher than their threshold are assigned
to represent A ∧ B. This is equivalent to saying that neurons that have at least k incoming connections
altogether from the neurons of A and B will represent A ∧B.

In the second mechanism, the neurons that represent A are activated and in the next step neurons that
represent B. Neurons in the main layer whose input potential is higher than their threshold in both steps
are assigned to represent A ∧B. This process assigns all neurons that have at least k incoming connections
from the neurons of A and also at least k incoming connections from the neurons of B to represent A ∧ B.
We refer to these two mechanisms as one-step and two-step, respectively, because they correspond to the two
sources being activated concurrently versus sequentially. In both mechanisms items that share a common
primitive item (i.e. A ∧B and A ∧ C) also share a significant fraction of neurons. This fraction is lower for
two-step memory creation.

We choose the value of the parameter primitiveItemSize to ensure that the average size of the items
created in the main layer equals the value of the parameter r. In both regimes the size of an item created
in the main layer depends on several random choices (such as the choice of the neurons in A and B, and
connections from these neurons). The expectation of this size is a monotone function of primitiveItemSize.
Therefore, the desired value of primitiveItemSize can be found via a binary search.

5 Association, Supervised Memorization and Inductive Learning

Next we describe the three basic task types implemented within the main layer. The goal of each task
execution is to modify the weights so that on future inputs some chosen target item becomes active for new
combinations of certain other source items being active. Each of the four task types we have described is
realized by an explicit algorithm detailed later. The simulator starts by creating a list of all the operations
that need to be simulated. The total of taskN cognitive tasks are performed by the simulator. They are as
follows:

• Association. An item A is associated with item B if activation of B activates A. Randomly chosen
taskN/5 of all the workingItemN items are targets of association. Each of the targets is associated
with 3 random other items (therefore total 3 · taskN/5 associations are performed).

• Supervised memorization. An item A is a memorized conjunction of items B1, B2, . . . , B` if A is
activated whenever all of the Bi’s are activated. Randomly chosen taskN/5 of all the workingItemN
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items are targets of supervised memorization for ` = 2. This might include items that were previously
chosen as the target or the source of an association task. If the target of a supervised memorization task
is not also the target of an association then two source items are chosen randomly from the set of all
the items excluding the target itself. If this target is also the target of some association then two source
items are chosen randomly from the set of all the items excluding the three sources of associations with
that target item. This is necessary to avoid conflicting requirements on the activation function of the
target item. Note that this does not prevent conflicts at the level of single neurons and synapses as
they might be used for different functions.

• Inductive learning. Inductive learning is used when the desired functionality is not known in advance
but correct examples of this functionality are observed. Here we will use a simple mechanism based on
the Winnow algorithm (Littlestone, 1987) that allows learning of monotone linear threshold functions
with significant margins. Further details of the mechanism are given in Section 5.3. Randomly chosen
taskN/5 of all the workingItemN items are targets of inductive learning. Each of these target items
is learned as some function of eight source items. The source items are chosen randomly from all
the items that are not already used as sources for that same target item (in association or supervised
memorization). Unlike the other tasks that are performed in a single operation, learning involves many
steps that are not necessarily performed consecutively.

We shall now describe how each of these tasks is performed. Each of the algorithms can be easily
implemented within the model of computation described in Section 2.2. We shall require the following
notation in this discussion. For neurons u and v, we denote by wu,v the current weight on the connection
from u to v; by Fv the set of all the neurons that have incoming connections to v and are currently active
(that is firing), and by wv the current total incoming potential of v, namely the sum of the connection
weights of connections incoming to v from neurons in Fv.

5.1 Association

Our association algorithm is based on the LINK algorithm given by Valiant (2005). Let A be the target item
and B be the source item of an association task. First, all the neurons in SB are set to the firing state. In
regime β this causes firing of all the neurons in the relay layer that have incoming connections from SB . Now
for every neuron v ∈ SA, if wv ≥ α1 · Θ then nothing is changed. Here α1 is a constant chosen in advance.
Otherwise, for every u ∈ Fv the new weight of the connection u, v is set to be

w′u,v = min
{

wu,v +
α1 ·Θ− wv

|Fv| , maxSynapseStrengh

}

rounded to the closest integer. In other words, the weight that is required to reach α1 ·Θ is distributed evenly
among all the incoming connections from firing neurons (but is not allowed to exceed maxSynapseStrengh).
Note that in regime α these incoming connections are from other neurons in the main layer, whereas in
regime β they are from neurons in the relay layer.

The constant factor α1 is used to compensate for situations where the source item is recognized but
not all of the neurons in SB are firing. It also compensates for some degree of interference with other task
instances performed on the network. Values that were used in our simulations are 5

4 for regime α and 4
3 for

regime β.
We note that in regime α this algorithm can be performed in a single step of neural processing at each

of the neurons that represent the target item. In regime β an additional step of processing is required to
activate the neurons of the relay layer.
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5.2 Supervised Memorization

This algorithm is similar to the association algorithm above. Let item A be the target of a supervised
memorization task and items B and C be its sources. First, all the neurons in SB are set to the firing state
(in the case of regime β causing the firing of neurons connected to them in the relay layer). Now for every
neuron v ∈ SA, if wv ≥ α2 · Θ/2 then nothing is changed. As before, α2 is a constant chosen in advance.
Otherwise, for every u ∈ Fv the new weight of the connection u, v is defined to be

w′u,v = min
{

wu,v +
α2 ·Θ/2− wv

|Fv| , maxSynapseStrengh

}

rounded to the closest integer. In other words the weight that is required to reach α2 · Θ/2 is distributed
evenly among all the incoming connections from firing neurons. Then the same operation is performed with
all the neurons in SC set to the firing state. In other words, half of the weight that is required to reach α2 ·Θ
is distributed evenly among all the incoming connections from firing neurons when B is activated and the
other half of this weight is distributed evenly among all the incoming connections from firing neurons when
C is activated. We used α2 = 6

5 in our simulations.
As can be easily seen from this description, in regime α supervised memorization can be performed in two

steps of neural processing at each of the neurons that represent the target item. In regime β an additional
step of processing is required to activate the neurons of the relay layer. We also note that a one-step overall
algorithm in regime α is also possible, but would give lower capacities.

5.3 Inductive Learning

The learning process that we simulate is based on the use of examples of the correct function to attain or
approximate the same function. Here an example specifies the states (recognized or not) of all the source
items and the desired state of the target item. We assume that when receiving an example all the source
items are in the state that is specified by the example and the correct label is given to every neuron of
the target item. Upon receiving an example each neuron of the target item can update the weights on its
incoming connections and thereby update the function it computes. In our model the activation function of
a neuron is a linear threshold function over the states (firing or not) of the neurons from which there are
incoming connections. A linear threshold function (LTF) over m variables is defined by a vector of m weights
and a threshold value. We denote an LTF by [w̄, θ], where w̄ is the weight vector and θ is the threshold. For
a point x̄ ∈ Rm, [w̄, θ](x̄) equals 1 if 〈w̄, x̄〉 =

∑
i≤m wixi ≥ θ and equals 0, otherwise.

5.3.1 Learning Algorithm

In our setting, that is, when examples are given one-by-one (also referred to as online learning) a number of
algorithms for learning LTFs are known, most notably, the Perceptron algorithm and the Winnow algorithm
(Rosenblatt, 1958; Minsky & Papert, 1969; Littlestone, 1987). We chose to use a variant of Littlestone’s
Winnow algorithm for learning LTFs with non-negative weights in our simulations. The Winnow algorithm
is known to be robust to moderate amounts of noise and its performance is not affected significantly by the
presence of irrelevant input variables. This makes it a natural choice for our purposes.

The Winnow algorithm starts with a certain fixed LTF as its initial hypothesis and updates it if the
prediction of the hypothesis is not correct on a given example. We denote by ht = [w̄t, θ] the hypothesis
generated by the algorithm after t mistakes. When the algorithm receives an example x̄ labeled by b ∈ {0, 1}.
Then for every i such that xi = 1, the new weight wt+1

i is set to be wt
i · αb−ht(x̄) where α > 1 is a constant

chosen in advance. Notice that no changes are made if the prediction is correct.
If the examples come from a linearly separable set of examples X then the Winnow algorithm is guaranteed

to converge to an LTF that correctly classifies all the examples in X. The maximum number of mistakes
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that the Winnow algorithm can make until it converges depends on the maximum margin with which the
data points can be separated; the larger the separation margin the fewer mistakes the Winnow algorithm will
make. Formally, for a set of examples X and a linear threshold function (w̄, θ) consistent with the examples,
the margin of [w̄, θ] on X is equal to the shortest distance from a data point in X to the hyperplane defined
by 〈w̄, x̄〉 = θ, or

minx∈X{|〈w̄, x̄〉 − θ|}
||w̄|| .

In order to use a learning algorithm in our model we need the learning algorithm to produce a hypothesis
that is not only consistent with the examples but also robust to interference from other tasks and imperfect
representation of items. This robustness can be improved by using an LTF that separates the examples
with a “large” margin. The original Winnow algorithm does not necessarily produce an LTF with a large
margin even when such an LTF exists. We therefore modify it as follows. Instead of updating the weights
only on mistakes we also update them when an example is “too” close to the current separating hyperplane.
Formally, for example x̄ labeled by b, if b = 0 and 〈w̄t, x̄〉 ≥ β1 · θ then for every i such that xi = 1,
wt+1

i = wt
i/α. If b = 1 and 〈w̄t, x̄〉 < β2 · θ then for every i such that xi = 1, wt+1

i = wt
i ·α. Here β1 < 1 and

β2 > 1 are fixed constants that depend on the maximum margin of the example set. A similar modification
was previously applied to the Perceptron algorithm by Krauth and Mezard (1987).

In addition, in order to reduce the number of examples needed for learning we allow more than one
update on every example. That is, if after the update on example (x̄, b) it is still classified incorrectly or
too close to the separating hyperplane, then the current hypothesis is updated on this example again. This
is done up to reuseBound times for a small constant reuseBound. Some such bound is useful here since
algorithms that reuse examples many times are less robust to outliers.

Finally, the weights of the connections are integers in the range from 0 to maxSynapseStrengh. Therefore
we limit the weights that are produced by the learning algorithm to this range and round the weights to the
closest integer after each update. Rounding after an update of a low weight connection can potentially cancel
the effect of the update. In such cases we decrease or increase the weight by 1 according to the direction of
the original update. We remark that this is exactly the update rule in the Perceptron algorithm.

5.3.2 Target Functions and Distributions

The LTFs on which we test the learning algorithms are chosen randomly from the set of all balanced
thresholds with weights 0, 1 and 2, where by balanced we mean that the threshold is equal to the sum
of all the weights divided by 2. More formally, for each i ≤ 8 we choose a random weight wi ∈ {0, 1, 2}
(equiprobably). The threshold is then set to be θ = 1

2

∑
i≤8 wi. With this LTF we use all the examples that

are sufficiently far from the hyperplane 〈x̄, w̄〉 = θ. That is we only allow examples from the set

Xw̄,γ = {x̄ ∈ {0, 1}8 | |〈x̄, w̄〉 − θ| > γ · θ} ,

for a fixed constant γ. This effectively makes the example set separable with a large margin. The learning
algorithm is supplied with examples randomly and uniformly chosen from Xw̄,γ . Note that this makes the
positive and the negative examples equiprobable.

5.3.3 Training

Examples are created for each instance of an inductive learning task until that task exceeds the bound
on the total number of mistakes denoted by mistakeBound or does not encounter a mistake in the last
correctRunLength examples. The second condition indicates that the learning process has likely achieved
sufficiently high accuracy.
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To feed an example (x̄, b) we need to set the source items into the states prescribed by the point x̄. This
implies that we need to simulate an item in the state of being recognized and in the state of being not
recognized. For brevity we refer to these states as being ON and OFF states. To simulate these states we
define worst case distributions on fractions that do not violate the bounds COFF and CON . Specifically, for
an item of size r we denote by Dr

ON the “worst” distribution on the number of neurons that are active when
the item is recognized. Here by the worst we mean that smaller numbers are generated with the highest
possible probability that does not violate CON . It is easy to see that for every r′ ≤ r, the probability that
exactly r′ neurons are active Dr

ON (r′) = CON ( r′−1
r ) − CON ( r′

r ). Similarly, we define Dr
OFF and note that

Dr
OFF (r′) = COFF ( r′

r )− COFF ( r′+1
r ).

For an item A let rA be the size of SA. In order to simulate A in the ON state we choose r′ randomly
according to the distribution DrA

ON . We then randomly choose r′ neurons from SA and set their states to
firing. Similarly, in order to simulate A in the OFF state we choose a random r′ according to distribution
DrA

OFF and then fire random r′ neurons from SA.
After the activation of the source items according to x̄ (and the activation of corresponding relay neurons

in regime β), each of the neurons that represent the target item updates its weights according to the
algorithm described above (the correct label b is available to every target neuron). The simulator also needs
to determine whether an example should be considered a mistake. We consider a positive (negative) example
a mistake if more than trainingONBound (trainingOFFBound) fraction of the neurons in the target item
required updating when this example was fed. These constants are chosen in advance and depend on the
bounding functions COFF and CON .

In regime α weight updates for each example can be performed in a single step of neural processing at
each of the neurons that represent the target item. In regime β an additional step of processing is required
to activate the neurons of the relay layer.

5.4 Order of Execution

It is easy to see that the order in which the task instances are performed on the network influences the final
state of the network. The simulator permutes randomly all the operations that it needs to perform and then
performs them sequentially. Here a single operation is either an association, a supervised memorization or
processing a sequence of examples for inductive learning until either a mistake is encountered or no mistakes
have been made for correctRunLength examples. (For considerations of efficiency in regime α, the learning
operation is performed until 4 mistakes - rather than just 1 - are encountered. This did not affect the results
of our simulations substantially.)

Thus, for example, if taskN = 250, 000 then the operations that are performed in random order are the
following: 150,000 associations, 50,000 supervised memorizations, and an appropriate number of presenta-
tions of examples for 50,000 targets of inductive learning that give them a chance to converge. Note that
the various presentations for each inductive learning target are also randomly permuted.

6 Testing

The main phenomenon we wish to demonstrate is that sequences of thousands of tasks can be done without
undue interference with each other. Thus while the later task instances modify synaptic weights these later
modifications will not interfere unduly with the performance of task instances executed earlier. This is a
most basic requirement for claims of capacity. It can be verified by testing each task instance in isolation
from each other, with inputs that manipulate and test only the source and target items of that task. The
tests we perform are of this general nature. More advanced tests of chaining are considered in Section 6.4
which investigates whether the chaining of more than one task in the main layer introduces undue biases.
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Following the completion of all the taskN circuit modifications, we test in worst case fashion whether they
behave correctly. For each of the task instances we first test whether the target item evaluates the desired
function of the source items. We then test how the evaluation is affected by the simultaneous activation
of a number of irrelevant items. We also test the whole network: we activate random sets of items and
test whether this causes any unintended items to be recognized. Finally, we test in worst case fashion the
behavior of all chained tasks. We find all task instances for which at least one of the source items is the
target item of another task instance. For each instance of such chaining we test whether the target item
evaluates the function obtained by chaining the corresponding functions of individual task instances.

All our testing is done in a worst case manner in the following sense. If, for example, we are testing a
condition in which an item is recognized, for some conditions it may be more onerous on the algorithms if
all the neurons are active, and for other conditions it may be more onerous if the neurons are active with the
minimal probabilities Dr

ON (as defined in Section 5.3). In each case we perform the testing using the more
onerous distribution.

6.1 Testing Functionality

To test the functionality of a certain task the simulator tests the activity of the target item on all the
permissible combinations of Boolean values, or ”states” of its source items. These tests are separated into
testing of the ON state and testing of the OFF state. Testing of the ON state is done by simulating all
the states of the source items that should cause the activation of the target item. Each of these simulations
activates a certain subset of the neurons that represent the target item. The results of all such simulations
for a single task are aggregated and compared to the bounds imposed by CON . The fraction of tests that do
not satisfy CON is considered the ON error of this task. More formally, let A be the target of a task T and
let r′ be the number of neurons in SA that fired as a result of a test of A. We add the fraction r1

rA
to the

collection of the fractions obtained while testing the ON state for T . We denote this collection by ΦT,ON

and define PT,ON (p) to be the probability that a fraction randomly and uniformly chosen from ΦT,ON is
greater than or equal to p. Then the ON error of the task T is simply maxp∈[0,1]{CON (p)−PT,ON (p)}.

Analogous tests are also performed for the OFF state, that is the states that should not cause the
recognition of a target item. In this case we define PT,OFF (p) to be the probability that a fraction randomly
and uniformly chosen from ΦT,OFF is less or equal than p. Accordingly, the OFF error is defined to be
maxp∈[0,1]{COFF (p)−PT,OFF (p)}.

For each type of task average ON and OFF errors are calculated.

6.1.1 Association

The following tests are performed for each association task. Let A be the target item and B be the source
item of a certain association task. Item A has to be recognized when item B is recognized. To simulate the
activation of B we use CON – the lower bound on the number of firing neurons when an item is recognized.
That is, as in Section 5.3.3, the simulator chooses a random r′ according to the distribution DrB

ON . Then it
activates r′ neurons randomly chosen from SB . We refer to such an activation as a random ON state. The
fraction of the neurons in SA that fired as a result of this test is added to the collection of ON fractions for
this association task. This test is repeated testRepeat times to test the function for different random ON
state activations.

The testing of the OFF state is analogous. The item A should not be activated when B is not activated.
To simulate the OFF state of B the simulator chooses a random r′ according to the distribution DrB

OFF .
Then it activates r′ neurons randomly chosen from SB . We refer to such an activation as a random OFF
state. The fraction of the neurons in SA that fired as a result of this test is added to the collection of OFF
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fractions for this association task. This test is repeated testRepeat times (for different random OFF state
activations).

Given the results of these tests, ON and OFF errors are estimated for each of the tasks.

6.1.2 Supervised Memorization

The testing of supervised memorization task instances is done similarly to the testing of association task
instances. Let A denote the target item of a supervised memorization task and let B and C denote its source
items. Item A has to be recognized when items B and C are recognized. Therefore to test the ON state of
A, the simulator activates random ON states of B and C. It then adds the fraction of the neurons in SA

that fired as a result of this activation to the collection of ON fractions for this supervised memorization
task. This test is repeated testRepeat times.

The item A should not be activated if at least one of the source items is not activated. Therefore to test
the OFF state of A, the simulator activates a random OFF state of item B and fires all the neurons in SC .
All the neurons in SC are fired (and not a random ON state of C) since we need to use an upper bound
on the number of firing neurons, whereas a random ON state gives a lower bound. The same test is then
performed with the roles of B and C reversed. These tests are repeated testRepeat times. The tests with
both B and C being in the OFF state are not performed since correct performance on these tests is implied
by the correct performance in the above OFF state tests.

6.1.3 Inductive Learning

Let A be the target item of an inductive learning task, let B1, B2, . . . , B8 be the source items, and let [w̄, θ]
be the LTF on which A was trained. To test the ON state of A, the simulator tests it on each example
x̄ ∈ Xw̄,γ such that [w̄, θ](x̄) = 1. To perform this test the simulator activates a random ON state of each
Bi such that xi = 1 and adds the fraction of the neurons in SA that fired as a result to the collection of ON
fractions for this learning task. Note that Bi’s for which xi = 0 are not activated at all since we need to use
a lower bound on the number firing source neurons in ON tests.

To test the OFF state the simulator tests A on each example x̄ ∈ Xw̄,γ such that [w̄, θ](x̄) = 0. To
perform this test, the simulator activates a random OFF state for each Bi such that xi = 0 and fires all the
neurons in SBi for each Bi such that xi = 1 (thereby producing an upper bound on the number of firing
source neurons).

6.2 Testing Robustness to Irrelevant items

In addition to testing functionality when only the source items of a task are activated, the simulator also tests
functionality when other irrelevant items are activated at the same time. We consider an item B irrelevant
for an item A if B is not a source item for any of the task instances for which A is the target item. We first
observe that since all the weights in the network are positive, irrelevant items can only increase the number
of neurons that fire during an execution of a task. This implies that only the OFF error can increase and
therefore only the OFF state tests are performed in the presence of irrelevant items.

For each of the task instances the simulator performs OFF state tests again while activating a number
of irrelevant items. Specifically, for an association task a random OFF state of its source item is activated.
For a supervised memorization task one of the source items is activated entirely and the other is activated
in a random OFF state (and then vice versa). For a learning task a random OFF state point x̄ ∈ Xw̄,γ is
chosen (that is [w̄, θ](x̄) = 0) and the source items are activated according to x̄ as in the OFF state tests.
Then the simulator activates all the neurons in a randomly chosen irrelevant item. The fraction of neurons
in the target item that fired as a result is recorded. Now the neurons of another randomly chosen irrelevant
item are set to the firing state in addition to the neurons that were already activated. The new fraction of
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neurons in the target item that fired as a result is recorded. This is continued until ` irrelevant items are
added for some number ` that depends on the type of the task tested. For each task this test is repeated
irrelevantRepeat times. For each task and each number of added irrelevant items, the resulting fractions
are aggregated into a separate collection. The OFF error is then calculated for each of these collections.
This error measures the robustness of the task to a specific number of active irrelevant items.

6.3 Robustness of the Whole Network

We would also like to ensure that activity of items in the main will not cause activity in any item that is
totally unrelated to them through any of the task instances executed. (The tests above all fired at least one
item that was related to one of the task instances.) To test this property, for a number `, the simulator
performs the following test wholeNetworkTests times. It chooses randomly ` items B1, B2, . . . , B` and
activates all the neurons that represent them. Then for every item A such that none of the Bi’s is a source
in any of the performed task instances, it records the fraction of neurons in SA that fired as a result. All
these fractions are aggregated in a separate collection for each item A and number `. The OFF error is then
calculated for each of these collections. The sum of the OFF errors for all the items equals the expected
number of items that violate the OFF bound. This statistic is referred to as the total OFF error with `
irrelevant items.

6.4 Chaining of Tasks

The main goal of our experiments is to estimate the capacity of networks by examining the performance of
and interference among the individual task instances realized by the network. However the network model,
the semantics of item representations, and the task algorithms are all designed to also support the chaining
of task executions in a hierarchical manner. To provide support for the possibility of such chaining we also
tested the performance of all chained main layer tasks within our simulation design. We note that all the
items in the main layer tested here are created by hierarchical memory formation from pairs of items in the
primitive layer, and in that sense the simulations are consistent with chaining starting from activation of the
primitive layer alone, which is the mode of operation ultimately intended.

The chaining of tasks can introduce two new sources of error. The first one comes from the fact that if
a task instance T2 is chained with a task instance T1 then the inputs to T1 are no longer truly random ON
or OFF states (as in our tests), since biases may be introduced among the neurons that fire in the target
item of T2. The other source of error comes from the fact that the activation of the source items of T2 might
cause firing of neurons that do not represent the target of T2. These irrelevant firing neurons might interfere
indirectly with the functionality of T1. In our tests we examine both of these sources of error.

6.4.1 Test Design

Let A be the target item of task instance T1 and let B1, B2, . . . , B` be the source items of T1. Further
we assume that one or more of the source items are themselves target items of some task instances. For
concreteness let us assume that B1 is the target item of task instance T2 with source items C1,1, C1,2, . . . , C1,`,
B2 is the target item of task instance T3 with source items C2,1, C2,2, . . . , C2,` and B3, B4, . . . , B` are not
targets of any task instances. We refer to T1 as root task instance and to T2 and T3 as level-two task instances.

As a result of such chaining, item A realizes a function of items C1,1, C1,2, . . . , C1,`; C2,1, C2,2, . . . , C2,`

and B3, B4, . . . , B`. In order to test if A behaves correctly when the input items are activated we examine
two possible ways to time the activation of the input items.

• Parallel. All source items of level-two task instances are activated simultaneously, that is the neurons
representing items C1,1, C1,2, . . . , C1,` and C2,1, C2,2, . . . , C2,` are activated at the same time according
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to the input that is tested. This causes firing of some of the neurons representing B1 and B2 as well as
possibly some other neurons in the next step. We denote the set of neurons that fired as a result by S.
Then, in addition to the neurons in the set S, the neurons in B3, B4, . . . , B` are activated according to
the tested input. In the following time step this causes firing of some of the neurons of A. The fraction
of A’s neurons that are firing is used to calculate the error of the function realized by A in the same
way as for one-level functions.

• Sequential. Source items of level-two task instances are activated one after the other, that is, first the
neurons in items C1,1, C1,2, . . . , C1,` are activated and then the neurons in items C2,1, C2,2, . . . , C2,` are
activated (according to the tested input). Let S1 and S2 denote the sets of neurons that fire as a result
of activating the sources of T2 and T3 respectively. In the next time step, in addition to the neurons
in the sets S1 and S2, the neurons in B3, B4, . . . , B` are activated according to the tested input. In
the following time step this causes firing of some of the neurons representing A. As in the previous
case, the fraction of A’s neurons that are firing can be used to derive the error rates of this instance of
chaining.

The difference between these two methods is that in the parallel one task instances T2 and T3 may interfere
causing the firing of some neurons that would not fire if sources of just one of the two task instances were
activated. Note that because of the monotonicity of all the functions realized such interference only increases
the OFF error (and might decrease the ON error). On the other hand, the sequential method assumes a
more delicate timing of the input item activations.

In order to estimate the ON and the OFF errors of chained task instances we test the behavior of the
target item on random inputs to the function realized by the chained task instances in a fashion analogous
to our one-level tests. To create a random setting of all the inputs in the ON error test we first choose a
random Boolean setting of the ` inputs to T1 such that the Boolean function realized by T1 equals to 1 on
this setting. We denote this setting by v1, v2, . . . , v`. For example, if T1 is a supervised memorization task
then ` = 2 and the only setting of inputs for which supervised memorization equals 1 is v1 = 1, v2 = 1. For
each input of T1 that itself is the target item of a task instance, say T2, we choose a random Boolean setting
of inputs to T2 that would give the desired value of the target item of T2. For example if v1 = 1 and the
first input to T1 is the target of a learning task instance T2 then a random Boolean setting of inputs to T2

that causes the threshold to be equal to 1 is chosen. If a certain input of T1 is the target of more than one
task instance then one of the chained task instances is chosen randomly. Given a setting of all the inputs,
we activate the neurons of the corresponding items in the same conservative way as in the one-level tests:
if the input is supposed to be 1 then the random ON state of the corresponding source item is activated;
otherwise none of the neurons in the corresponding item are activated. These activations are fed to the
network as defined by either parallel of sequential testing method and the fraction of A’s neurons that are
firing is recorded. For each chained task instance this test is repeated 25 times (as in the tests of robustness
to irrelevant item activations) and ON error is calculated as described in Section 6. We refer to the error
obtained in this way as the chained ON error.

We estimate the OFF error of chained tasks in an analogous way. In addition, we estimate the influence of
the irrelevant firing neurons on the error. To do this we count the number of neurons that were caused to fire
by the source items of the level-two task instances (T2 and T3 in the example above) but are not representing
the target items of the level-two task instances (B1 and B2 in the example above). The magnitude of such
irrelevant firing is measured in item equivalents, that is we divide the number of neurons by r and round to
the closest integer. Using this value we aggregate the firing fractions of the target item by the magnitude of
irrelevant firing (in items). For magnitude m we refer to the error obtain in this way as the chained OFF
error with m irrelevant items. We use the same term as in the one-level error tests since in both cases we
measure the effect that activity outside of the source items has on the OFF error of a task instance. However,
unlike in the one-level tests where active irrelevant items are added randomly, in chaining tests the irrelevant
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activity is inherent in the test since it is caused by the source items of the level-two task instances. For each
chained task instance this test is repeated 75 times.

We test ON and OFF errors of all the two-level chained task instances that were formed by the task
instances executed in the main layer. Given all the errors obtained in this way we calculate the average
errors for each type of the root task instance.

7 Results

We now summarize the results of simulations for each of the two regimes. We emphasize that our main goal
was to demonstrate that high capacities, namely high values of taskN, could be successfully simulated with
low error rates for each of the various measures of error. For each of regimes alpha and beta we achieved
the reported capacities by carefully choosing the values of the controllable parameters. Each such choice of
parameters is reported as a column in a table. The values in the top block describe the values of the 11
parameters chosen, and the entries below state the error rates measured for each of the four types of error
detailed in Section 6. The effect of the 11 parameters on the various error measures is highly complex and
we do not attempt here to generalize about it beyond informal statements. The goal is to demonstrate that
high capacities are achievable with combinations of reasonable parameter values.

7.1 Regime α

In our base setting of regime α there are 250,000 neurons in both the primitive and the main layers, and
d = 8, 000. We found that the average r that supports the highest capacity while maintaining relatively low
errors is around 898. A total of 3,200 items of such average size were created using (the simpler) one-step
memory formation on random pairs of 1,600 primitive items. Note that each neuron in the main layer is
shared by more than 11 (i.e. 3,200*898/250,000) items on average. In Table 1 we describe all the parameters
of this base setting along with brief descriptions. Our main tests show that sequences of 2,000 task executions
can be supported with low average error in the functionality that those executions aim to realize, even in
the presence of some irrelevant items firing. Further more than 99.9% of the time, simultaneous firing of up
to 8 items will cause no spurious unrelated activity anywhere in the network.

In Table 2 we describe the results of regime α simulations along with the parameters that were modified
from the base regime α setting.

• AVG, STDEV: This column contains the averages of each of the tested error measurements over
10 simulations of networks with the base parameters described in Table 1. Specifically, 10 random
networks with the base setting of parameters are created, taskN = 2000 task instances are executed
and then the network is tested (as detailed in Section 6). For each error measurement, the average
value for these 10 simulations is reported. In the second column (“STDEV”) we give the standard
deviations for these 10 simulations to illustrate the general level of variation.

• MLN: In this setting the number of neurons in each layer is 1, 000, 000 while d and k are the same
as in the base setting. In order to support high capacity with low interference average r is chosen to
be about 3,581. Testing of this network with the same number of task instances as in the base setting
produced slightly lower general level of errors than in the base setting. This suggests that the base
setting becomes more stable when it is scaled up. However, as we will elaborate in the next section, in
regime α capacity is largely determined by the value of d/k and cannot be increased significantly by
merely increasing the number of neurons n.

• T1000: In this setting we construct the same base network but execute fewer task instances on it.
Specifically, taskN = 1, 000. Predictably, the errors resulting from interference between the tasks are
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Name Value Description
netSize 250,000 number of neurons in the main layer
primitiveNetSize 250,000 number of neurons in the primitive layer
d 8,000 number of connections to and from neurons in the main and

relay layers and from the primitive layer to the main layer
k 16 inverse of the maximum influence of a neuron on its neuron
r 898 average size of items in the main layer
primitiveItemSize 116 size of items in the primitive layer
maxSynapseStrength 200 maximum weight of a connection (corresponding to synaptic

strength)
primitiveItemN 1,600 number of primitive items
workingItemN 3,200 number of items in the main layer
taskN 2,000 total number of task instances performed
CON (p) B[0.98, 0.88,−0.01](p) lower bound on the distribution of fractions when an item

is active
COFF (p) B[0.05, 0.3, 0.025](p) upper bound on the distribution of fractions when an item

is inactive
α1 5/4 association compensating factor
α2 6/5 supervised memorization compensating factor
α 4/3 Winnow multiplicative factor
β1 4/5 Winnow negative margin
β2 5/4 Winnow positive margin
γ 2/5 target LTF margin
mistakeBound 20 bound on the number of mistakes done while learning an

LTF
reuseBound 3 maximum number of updates on an example
correctRunLength 50 bound on the number of examples classified without a single

mistake
trainingONBound 0.98 a positive example is considered a mistake if more than this

fraction of target’s neurons required updating
trainingOFFBound 0.05 same as above for negative examples
testRepeat 200 number of times association and supervised memorization

functionality tests are repeated for each task
irrelevantRepeat 25 number of times each task is tested with irrelevant items
wholeNetworkTests 200 number of times the whole network is tested for undesired

activations

Table 1: Parameters of the base regime α simulation
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Param/Test name AVG STDEV MLN T1000 T3000 D1000 2sD1000 2-step 10mst k = 16/5 PRIM

netSize 250,000 250,000 1,000,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000
primitiveNetSize 250,000 250,000 1,000,000 250,000 250,000 250,000 250,000 250,000 250,000 250,000 50,000
d 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000 8,000
k 16 16 16 16 16 16 16 16 16 16/5 16
primitiveItemSize 116 116 458 116 116 116 324 324 116 40 116
primitiveItemN 1,600 1,600 1,600 1,600 1,600 1,000 1,000 1,600 1,600 10,000 1,600
memory formation 1-step 1-step 1-step 1-step 1-step 1-step 2-step 2-step 1-step 2-step 1-step
average r 898 898 3581 898 898 898 893 893 898 369 898
workingItemN 3,200 3,200 3,200 3,200 3,200 3,200 3,200 3,200 3,200 20,000 3,200
taskN 2,000 2,000 2,000 1,000 3,000 2,000 2,000 2,000 2,000 12,500 2,000
mistakeBound 20 20 20 20 20 20 20 20 10 20 20

Assoc ON 0.0103 0.0014 0.0076 0.0031 0.0297 0.0317 0.0275 0.0104 0.0036 0.0201 0.0126
Assoc OFF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Assoc OFF, 4 irrel. 4.6E-6 9.2E-6 0.0 0.0 2.4E-5 2.6E-5 0.0 0.0 0.0 0.0 0.0
Assoc OFF, 5 irrel. 7.6E-6 1.1E-5 0.0 0.0 2.2E-4 1.6E-4 0.0 0.0 0.0 0.0 0.0
Assoc OFF, 6 irrel. 4.3E-5 3.5E-5 1.3E-5 0.0 0.0024 0.0011 0.0 0.0 5.2E-5 0.0 1.5E-4
Assoc OFF, 7 irrel. 3.7E-4 1.2E-4 5.4E-4 0.0 0.1595 0.0104 1.7E-4 0.0 4.2E-4 2.0E-6 0.0019
Assoc OFF, 8 irrel. 0.0042 8.6E-4 0.0060 0.0 0.6589 0.1427 0.0193 2.1E-4 0.0045 4.2E-5 0.041

Sup.mem ON 0.0057 0.0039 0.0049 5.3E-5 0.0062 0.0078 0.0068 0.004 5.4E-4 7.4E-4 0.0025
Sup.mem OFF 5.4E-4 5.9E-4 8.3E-4 0.0 0.0 0.0013 0.0 0.0 0.0 0.0 0.0
Sup.mem OFF, 1 irrel 6.6E-4 6.2E-4 8.9E-4 0.0 0.0014 0.0018 0.0 0.0 7.1E-4 0.0044 1.3E-4
Sup.mem OFF, 2 irrel 0.0046 0.0014 0.0048 0.0 0.1271 0.0186 0.0070 0.002 0.0224 0.0503 0.0079
Sup.mem OFF, 3 irrel 0.1248 0.0105 0.1405 2.4E-4 0.7143 0.2773 0.1961 0.0722 0.2472 0.1933 0.2414
Sup.mem OFF, 4 irrel 0.6294 0.0088 0.6498 0.0068 0.9768 0.8031 0.7149 0.5073 0.6980 0.6007 0.7856

Learn ON 0.0274 0.0034 0.0219 0.0170 0.0249 0.0293 0.0194 0.0259 0.0947 0.0566 0.0258
Learn OFF 0.0148 0.0017 0.0118 0.0070 0.0210 0.0198 0.0150 0.0144 0.0558 0.0274 0.0173
Learn OFF, 1 irrel. 0.0317 0.0026 0.0313 0.0149 0.0561 0.0482 0.0359 0.0281 0.0968 0.0525 0.0369
Learn OFF, 2 irrel. 0.0620 0.0043 0.0563 0.0219 0.1285 0.0963 0.0662 0.0534 0.1550 0.0896 0.073
Learn OFF, 3 irrel. 0.1212 0.0073 0.1067 0.0315 0.2827 0.1911 0.1295 0.1037 0.2385 0.1491 0.1576
Learn OFF, 4 irrel. 0.2275 0.0102 0.2139 0.0476 0.4949 0.3415 0.2508 0.1928 0.3550 0.2365 0.2934

Total OFF, 4 irrel. 0.0014 0.003 0.0 0.0 0.0017 0.0017 0.0 0.0 0.0 0.0 0.0
Total OFF, 5 irrel. 0.0013 0.002 0.0 0.0 0.0021 0.0044 0.0 0.0 0.0 0.0 5.3E-4
Total OFF, 6 irrel. 3.9E-4 6.8E-4 9.0E-4 0.0 0.0056 0.0069 0.0 0.0 0.0014 0.0 0.0053
Total OFF, 7 irrel. 0.0027 0.0024 7.0E-4 0.0 0.5711 0.1028 0.0 0.0 0.0 0.0 0.0051
Total OFF, 8 irrel. 0.0098 0.0077 0.0041 0.0018 148.56 1.0914 0.0 0.0 0.0 0.0 0.0149
Total OFF, 9 irrel. 0.1656 0.2038 0.853 0.0 1110.7 65.817 4.4094 0.0 0.2069 0.0 12.46
Total OFF, 10 irrel. 28.056 5.3671 41.292 0.0 2248.7 350.81 120.20 1.836 30.348 0.0 167.85

Table 2: Results of regime α simulations .
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significantly lower than in the base setting.

• T3000: In this setting we construct the same base network and execute taskN = 3, 000 task instances
on it. As can be seen from the results this increases the interference, especially errors resulting from
the activation of irrelevant items. In particular, this demonstrates that taskN = 2, 000 is close to the
capacity if one wants to ensure correct performance of the network when 8 or more irrelevant items
are activated.

• D1000: In this setting we examine the influence of the number of primitive items on the performance
of a circuit. When fewer primitive items are used to create items in the main layer, more items in the
main layer share a primitive item. Such items also share more neurons causing higher interference in
functionality. In this setting we use 1,000 primitive items (versus 1,600 in the base setting) and as a
result errors are higher.

• 2sD1000: In this setting, as in the previous one, only 1,000 primitive items are used in the memory
formation but with the two-step memory formation mechanism used in place of the one-step mechanism
(see Section 4 for details). In the two step mechanism, items in the main layer that share a primitive
item share a smaller fraction of neurons than in the one-step memory creation mechanism. Therefore
the errors in this test are lower than in D1000 and are similar to those of the base setting.

• 2-step: This is the same setting as the base one but with the two-step memory formation. According
to the results of the simulation, the errors in this setting are observably lower than in the base setting.

• 10mst: In this setting we test learning from fewer examples. Specifically, at most 10 mistakes per
every learning task instance are allowed (versus 20 in the base setting). This increases the average
error of inductive learning from about 2% to about 7.5%. Errors of other tasks are lower because each
learning task instance now causes less interference with other task instances.

• k=16/5: In this setting we test a network with stronger synapses and the more robust two-step
memory formation. Specifically, we use k = 16/5 in place of k = 16. The results of this simulation
demonstrate, that for an appropriately chosen average r, 12,500 task executions on 20,000 main layer
items can be supported without significant degradation in performance of association and learning
tasks and with significantly improved robustness to unrelated activity anywhere in the network. This
shows that the maximum strength of synapses has a significant impact on the capacity of a network.

• PRIM: In this setting the primitive layer contains 50,000 neurons (versus 250,000 in the base setting).
The errors are similar to the base setting. This suggests that our simplifying assumption that the sizes
of primitive layer and the main layer are equal is not necessary to achieve the claimed capacities. Note
that the smaller size of the primitive layer implies that fewer connections are incoming to neurons of
the main layer. Specifically, the expected incoming degree of each neuron in this setting is 8, 000 +
8, 000 ∗ 50, 000/250, 000 = 9, 600 whereas in the base setting it equals 16, 000.

7.1.1 Chaining

In Table 3 we present the results of testing the functionality of chained tasks. The first column describes
the type of error that is measured. Then for each task type of the root task instance, we give three versions
of that error. The first is the error of the task without any chaining. The second (Ch S) is the error of
the task when chained with other tasks and the sequential method of testing the chained tasks is used (as
detailed in Section 6.4.1). Similarly, the third one (Ch P) gives the error of the task when chained with other
tasks and the parallel method of testing the chained tasks is used. For association these two methods are
identical (since it has one input) and therefore only one column is given. Some entries are left blank since
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Error/Test type Assoc Assoc Assoc SMem SMem SMem SMem Learn Learn Learn Learn
Ch S/P Freq Ch S Ch P Freq Ch S Ch P Freq

ON 0.0111 0.006 0.0098 0.007 0.0063 0.0208 0.0124 0.0104
OFF with 0 irrel. 0.0 0.0 0.921 0.0 0.0 6.9E-4 0.814 0.0169 0.0165 0.0168 0.601
OFF with 1 irrel. 0.0 3.0E-4 0.442 6.1E-5 0.0089 0.0136 0.647 0.0354 0.0309 0.0397 0.691
OFF with 2 irrel. 0.0 0.0 0.184 0.0018 0.0201 0.0272 0.409 0.0641 0.0518 0.086 0.542
OFF with 3 irrel. 0.0 – 0.078 0.1256 0.096 0.1468 0.211 0.1256 0.1294 0.1906 0.369
OFF with 4 irrel. 0.0 – 0.005 0.6407 0.3348 0.5454 0.101 0.2365 0.1817 0.4077 0.22

Table 3: Results for tests of chained tasks in regime α base setting.

very few tests with that number of active irrelevant items were available. Finally, in column “Freq” for each
magnitude of irrelevant activity in OFF tests, the table provides the fraction of task chaining instances in
which that magnitude of irrelevant activity occurred. Note that different magnitudes of irrelevant activity
can occur when testing a single instance of task chaining since numerous tests are performed for each instance
(75 in this case). Therefore the fractions do not sum up to 1.

Given the results we first observe that for all tasks the ON error of chained tasks is lower than for one-level
tests. The likely explanation for this is that active irrelevant items compensate for any deterioration that
results from imperfect firing of the source items. Our second observation is that for the sequential method of
testing the errors of chained tasks the OFF errors obtained are (on average) within the errors of individual
task instances. This suggests that no significant deterioration is caused by the bias in the source items.
Finally, we observe that for the parallel method of testing the OFF errors obtained are observably higher.
This implies that the interference caused by the simultaneous activation of all source items of level-two task
instances is quite significant.

7.2 Regime β

In our base setting for regime β the primitive layer neurons, the relay neurons and non-relay main layer
neurons each number 20,000,000, and d = 2, 400. The average r was chosen to be 50. 100,000 main layer
items are created from 20,000 primitive items each of size 17. Note that effectively only 340,000 (=17*20,000)
neurons in the primitive layer are used and approximately 5,000,000 (=50*100,000) in the main layer. 100,000
task instances are executed on the main layer items. Note that in this regime we allow higher density of
memory formation (that is the number of main layer items per primitive item) and relations in the main
layer (that is taskN/workingItemN) than in regime α. The general level of errors achievable in regime β
tests is also significantly lower than in regime α. In Table 4 we describe all the parameters of this base
setting along with brief descriptions.

In Table 5 we describe the results of regime β simulations along with the parameters that were modified
from the base regime β setting.

• BASE: These are the results of a single simulation performed with the base setting of the parameters.

• 1/10, STDEV: To obtain an estimate of the error variation in the base setting we performed 10 tests
of this setting with 10,000 task instances performed on 10,000 items chosen randomly from the 100,000
created by memory formation. For each error measurement the average value for these 10 simulations
and the standard deviation are reported.

Here and in the other tests in regime β extensive testing of all 100,000 concepts was beyond our
computational resources. We note that while fewer task instances are performed, the density of the
relations created between the items is preserved. This informal explanation and the simulations show
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Name Value Description
n 20,000,000 number of neurons in the primitive, main, and relay layers
d 2,400 number of connections to and from neurons in the main and

relay layers and from the primitive layer to the main layer
r 49 average size of items in the main layer
primitiveItemSize 14 size of items in the primitive layer
maxSynapseStrength 500 maximum weight of a connection (corresponding to synaptic

strength)
primitiveItemN 20,000 number of primitive items
workingItemN 100,000 number of items in the main layer
taskN 100,000 total number of task instances performed
CON (p) B[.99, 0.89,−0.01](p) lower bound on the distribution of fractions when an item

is active
COFF (p) B[0, 0.25, 0.025](p) upper bound on the distribution of fractions when an item

is inactive
α1 4/3 association compensating factor
α2 6/5 supervised memorization compensating factor
α 4/3 Winnow multiplicative factor
β1 4/5 Winnow negative margin
β2 6/5 Winnow positive margin
γ 1/3 target LTF margin
mistakeBound 20 bound on the number of mistakes done while learning an

LTF
reuseBound 3 maximum number of updates on an example
correctRunLength 50 bound on the number of examples classified without a single

mistake
trainingONBound 0.98 a positive example is considered a mistake if more than this

fraction of target’s neurons required updating
trainingOFFBound 0.05 same as above for negative examples
testRepeat 200 number of times association and supervised memorization

functionality tests are repeated for each task
irrelevantRepeat 25 number of times each task is tested with irrelevant items
wholeNetworkTests 200 number of times the whole network is tested for undesired

activations

Table 4: Parameters of the base regime β simulation
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Params/Test BASE 1/10 STDEV NetX5 d=4000 T5000 T15000 10mst K=4

n 2 · 107 2 · 107 2 · 107 108 108 2 · 107 2 · 107 2 · 107 2 · 107

d 2,400 2,400 2,400 2,400 4,000 2,400 2,400 2,400 2,400
primitiveItemSize 14 14 14 72 26 14 14 14 17
primitiveItemN 20,000 20,000 20,000 20,000 50,000 20,000 20,000 20,000 14,000
average r 49 49 49 252 100 49 49 49 74
workingItemN 100,000 10,000 10,000 100,000 250,000 10,000 10,000 10,000 10,000
taskN 100,000 10,000 10,000 100,000 250,000 5,000 15,000 10,000 10,000
mistakeBound 20 20 20 20 20 20 20 10 20

Assoc. ON 0.0014 0.0012 2.9E-4 3.8E-5 6.3E-5 7.1E-4 0.0015 5.4E-4 1.9E-4
Assoc. OFF 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Assoc. OFF with 4 irrel. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Assoc. OFF with 5 irrel. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Assoc. OFF with 6 irrel. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Assoc. OFF with 7 irrel. 5.0E-7 2.0E-7 6.3E-7 0.0 0.0 0.0 2.0E-6 2.0E-6 0.0
Assoc. OFF with 8 irrel. 2.5E-6 9.0E-7 1.7E-6 0.0 0.0 0.0 4.0E-6 5.0E-6 1.1E-5
Assoc. OFF with 9 irrel. 7.4E-6 1.1E-5 8.3E-6 5.3E-7 0.0 0.0 2.0E-5 3.2E-5 9.9E-5
Assoc. OFF with 10 irrel. 2.7E-5 3.5E-5 1.6E-5 5.4E-5 0.0 0.0 5.1E-5 1.5E-4 0.0016
Assoc. OFF with 11 irrel. 1.5E-4 1.7E-4 5.5E-5 6.5E-4 0.0 1.8E-5 3.7E-4 6.7E-4 0.0089
Assoc. OFF with 12 irrel. 8.1E-4 8.4E-4 1.6E-4 0.0029 0.0 1.7E-4 0.0017 0.0023 0.0271

Sup. mem. ON 0.0016 0.0022 7.7E-4 5.9E-5 7.3E-5 0.0031 0.0021 0.0029 1.3E-5
Sup. mem. OFF 0.0044 0.0042 7.5E-4 0.0048 0.0011 0.0023 0.0056 0.0092 7.5E-4
Sup. mem. OFF, 1 irrel. 0.0051 0.0048 9.1E-4 0.0056 0.0013 0.0027 0.0074 0.0104 0.0018
Sup. mem. OFF, 2 irrel. 0.0067 0.0062 0.0011 0.0077 0.0018 0.0033 0.0109 0.0125 0.0037
Sup. mem. OFF, 3 irrel. 0.0133 0.0129 0.0012 0.0214 0.0025 0.0057 0.0227 0.0207 0.0201
Sup. mem. OFF, 4 irrel. 0.0391 0.0391 0.0018 0.0578 0.0039 0.0157 0.0647 0.0476 0.0752
Sup. mem. OFF, 5 irrel. 0.0788 0.0788 0.0025 0.1028 0.0097 0.0313 0.1255 0.0867 0.1341
Sup. mem. OFF, 6 irrel. 0.1167 0.1165 0.0031 0.1434 0.027 0.0494 0.1806 0.1237 0.1738

Learning ON 0.0142 0.0146 0.0012 0.0176 0.0125 0.0134 0.0145 0.0732 0.0099
Learning OFF 0.0093 0.0092 7.7E-4 0.0084 0.0062 0.0076 0.0093 0.0488 0.0063
Learning OFF, 1 irrel. 0.0147 0.0146 8.0E-4 0.0133 0.0094 0.0108 0.0163 0.064 0.0127
Learning OFF, 2 irrel. 0.02 0.0199 9.4E-4 0.0183 0.0115 0.0148 0.024 0.0758 0.0195
Learning OFF, 3 irrel. 0.0276 0.0277 0.0013 0.0257 0.0146 0.0193 0.0356 0.0895 0.0311
Learning OFF, 4 irrel. 0.0385 0.039 0.0015 0.0365 0.0185 0.0257 0.0525 0.1051 0.0506
Learning OFF, 5 irrel. 0.0529 0.0537 0.0018 0.0512 0.0236 0.0337 0.0749 0.1224 0.0772
Learning OFF, 6 irrel. 0.0698 0.0709 0.0021 0.0694 0.0302 0.0443 0.101 0.1405 0.106

Total OFF, 8 irrel. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total OFF, 9 irrel. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total OFF, 10 irrel. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total OFF, 11 irrel. 0.0662 4.6E-4 0.0015 0.1715 0.0 0.0 0.0407 0.0129 5.9248
Total OFF, 12 irrel. 0.4558 0.062 0.0778 7.0786 0.0 0.0 0.1447 0.4218 23.428
Total OFF, 13 irrel. 7.7367 0.7421 0.1977 49.791 0.0 0.0 1.9505 2.5636 71.412
Total OFF, 14 irrel. 51.43 5.3508 0.6382 158.29 0.0 0.4395 17.442 9.2672 171.3
Total OFF, 15 irrel. 166.49 16.92 1.0568 401.26 0.0 1.4686 50.501 26.385 294.72
Total OFF, 16 irrel. 348.02 35.849 1.5714 843.4 0.0 5.4011 101.6 51.77 437.78

Table 5: Results of regime β simulations .

25



that the results obtained in this way closely approximate the results of testing 100,000 task instances
on 100,000 items. It should be noted that “Total OFF error” measures the expected number of items
that violate the OFF error bound and therefore scales linearly with the number of items. In particular,
“Total OFF error” of the base setting is approximately 10 times larger than “Total OFF error” when
only 10,000 items are examined.

• NetX5: In this setting the number of neurons n and sizes of items are increased fivefold, that is
n = 100, 000, 000 and average r is about 252. This allows us to examine how the errors are influenced
by scaling up the network. According to the results of the simulation, the overall level of errors is similar
to the base setting. The scaling has decreased ON errors of association and supervised memorization
but increased total OFF errors.

• d=4000: In this setting we show that even higher capacities are achievable in a network with higher
degree of connectivity. Specifically, for n = 100, 000, 000, d = 4, 000 and average r = 100 we obtain
capacity as high as 250,000 task executions on 250,000 main layer items. In addition, all errors are
significantly lower than in the base and NetX5 settings.

• T5000: In this setting the base network is the same as in “1/10” but only 5,000 task instances are
executed (versus 10,000 in the “1/10” setting). The errors resulting from interference between the
tasks are observably lower than in the base setting.

• T15000: This setting is the base as “1/10” setting but with 15,000 task instances executed on 10,000
items. According to the simulations, errors of all tasks are similar to the base setting but the whole
network is significantly less robust to activations of irrelevant items.

• 10mst: In this setting we test learning from fewer examples. Specifically, at most 10 mistakes per
every learning task instance are allowed (versus 20 in the base setting). This increases the average
error of learning from about 1.2% to about 6.1%.

• k=4: The goal of this setting is to show that the strongest “k = 1” synapses are only required for
connections incoming into the relay neurons. We restricted the strength of the connections incoming
to all target neurons to be at most 1/4 of the neurons’ threshold value. In order to achieve this the
average r needs to be increased from 49 to 74 and, correspondingly, workingItemN decreased from
100,000 to 70,000. We present the results of testing 10,000 task instances on 10,000 items (of the 70,00
created). According to the results, the errors of all tasks are lower than in the base setting but the
network is less robust to activations of irrelevant items.

7.2.1 Chaining

In Table 6 we present the results of testing the functionality of chained tasks in the “1/10” regime β setting.
The format of the table is the same as the one used in Table 3. According to the results, for both the
sequential method of testing and the parallel one, the errors of chained tasks are (on average) within the
errors of individual task instances. This implies that no significant deterioration is caused by the bias in the
source items. In addition, the error caused by the simultaneous activation of all source items of level-two
task instances is relatively insignificant. This gives further evidence that computations in regime β are more
robust to activity of irrelevant items.

8 Discussion

We have shown that long sequences of association, supervised memorization and inductive learning tasks
performed on items created via hierarchical memory formation, as we have defined them, can be robustly
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Error/Test type Assoc Assoc Assoc SMem SMem SMem SMem Learn Learn Learn Learn
Ch S/P Freq Ch S Ch P Freq Ch S Ch P Freq

ON 0.0016 0.0041 0.0019 0.0044 0.0036 0.0138 0.0102 0.0083
OFF with 0 irrel. 0.0 2.1E-4 0.873 0.003 0.002 0.0024 0.66 0.0091 0.0071 0.0094 0.229
OFF with 1 irrel. 0.0 9.3E-4 0.433 0.0034 0.0056 0.0053 0.633 0.0137 0.0129 0.0125 0.358
OFF with 2 irrel. 0.0 4.6E-4 0.296 0.0044 0.0125 0.012 0.468 0.019 0.0195 0.0195 0.444
OFF with 3 irrel. 0.0 0.0033 0.149 0.0109 0.0268 0.0256 0.323 0.0269 0.0249 0.0302 0.457
OFF with 4 irrel. 0.0 0.0046 0.062 0.0365 0.0542 0.0573 0.204 0.0379 0.0365 0.0445 0.414
OFF with 5 irrel. 0.0 0.0 0.021 0.0742 0.0961 0.0954 0.135 0.0526 0.0503 0.0561 0.327
OFF with 6 irrel. 0.0 – 0.001 0.1105 0.1234 0.1386 0.067 0.07 0.0778 0.0767 0.242

Table 6: Results for tests of chained tasks in regime β base setting.

supported by a suite of algorithms working on networks with realistic neuron and synapse numbers. We
believe that cognition in humans is realized over a lifetime by a sequence of discrete interactions with
the world, which encompass various kinds of action including those modeled by our four task types. The
challenge for information processing in the brain is then to execute these long sequences of actions, each
with the desired long-term results, without undue interference by later actions on the long-term behavior
desired from earlier ones. In this paper we have exhibited, apparently for the first time, an information
processing scheme that supports this desirable behavior over tens of thousands of such actions, while using
only realistic resource parameters. We believe that no general theory of information processing in cortex can
be considered viable without such a demonstration.

The simulations show that the desired results can be realized in two regimes with distinguishable charac-
teristics. In the first, regime α, algorithms can be supported by weak synapses. They need a large replication
factor r but two items may be represented by overlapping sets of neurons. They correspond to systems in
which neurons that represent an identified real world item abound (e.g. place cells in hippocampus (OKeefe
& Dostrovsky, 1971)) and are, in that sense, easily found by single neuron recordings. The simulations show,
for example, that starting from 3,200 items created by hierarchical memory formation in 250,000 neurons
with k = 16, and with average r = 898, sequences of 2,000 task instances altogether, consisting of associ-
ations, supervised memorization and inductive learning tasks in random order, can be supported without
the functionality degrading significantly. With stronger synapses k = 16/5 and two step memory formation,
the higher capacity of 12,500 can be attained. The following informal argument shows where the capacity
limitation comes from in regime α. If there are nd synapses in the system and each item uses at least rk
of them, then if each synapse is used for at most one item on the average, then at most nd/(rk) items
can be represented. But it was previously observed (Valiant, 2005) that association in this regime requires
d/k > n/r, which means that the bound nd/(rk) is at most ∼ (d/k)2. Thus, for example, if the ratio d/k
is regarded as fixed, then having more neurons does not increase this upper bound on the capacity at all,
though it may increase the capacity by making the operations more stable. The similarity between columns
AVG and MLN corroborates this analysis. The reader should also note that by the same argument, if we
had increased n to higher numbers such as the 108 used in Table 5, while keeping d and k unchanged, we
would not have obtained significantly higher capacities.

The algorithms in the second regime, regime β, require some strong k = 1 synapses and are slightly more
complex, requiring an intermediate level of relay neurons. We have shown here that the k = 1 synapses are
only needed at the static relay neurons, and the dynamic synapses at the target neurons may be weaker,
such as k = 4. The advantage regime β offers is that the replication factor r can be small, and hence even if
items are represented by disjoint neuron sets, the capacity is large, namely n/r. Association in this regime
requires that r > n/d2 (Valiant, 1994). This gives the number of relay neurons activated by an item to be
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∼ r · d > n/d if r and d are small enough. The capacity upper bound n/r is therefore ∼ d2. Our simulations
show that now with average r = 100, sequences of as many as 250,000 task instances can be supported on
100,000,000 neurons without substantial degradation. Representing items by such disjoint sets of neurons
may also make it easier to realize higher level functions, but we know of no rigorous argument that shows
that regime β is fundamentally more powerful than regime α.

Verifying directly whether a certain algorithm is being executed in a biological system may be beyond
current experimental techniques. However, our various algorithms do have various telltale signatures. If
all four parameters n, d, k and r can be measured, as done by Jortner et al. (2007), then the relationship
quoted above can be verified (Valiant, 2006). In the case of regime β where r is small, it may be difficult to
measure it by finding cells that represent any one chosen item. In that case the existence of strong synapses
(k = 1) and silent cells would be telltale signs, as would also the relay neurons which would resemble the
shared denser representations of regime α. Note that the expressions given above for regime α, r is at least
nk/d while for regime β the number of relay neurons activated by an item is at least n/d. In general for
all our vicinal algorithms there is no requirement that the set of neurons representing any one item should
synapse on each other with more than average frequency or strength. On the other hand they may synapse
more frequently and strongly on a set of postsynaptic neurons that represents a semantically related item.

We also make the following remarks on issues that are not covered in this work. As has been observed
elsewhere the memory formation mechanisms described are not robust if implemented to many levels, but
there are several ideas for approaching this (Valiant, 1994; Gerbessiotis, 1998; Gunay & Maida, 2006; Beal
& Knight, 2008). These mechanisms are very sensitive to the size of the items and also to interference
from other active items. A thorough investigation of how greater robustness can be achieved remains to
be done. We note, however, that in the brain there are mechanisms that go beyond the excitatory local
mechanisms that are sufficient for everything described in this paper. For example there are inhibitory
synapses, and also global action realized by neuromodulators. It remains for future work to explore how
these extra mechanisms might be harnessed for the benefit of implementing the sets of functionalities we
have described more effectively.

Finally we would like to draw attention to the extreme simplicity of the mechanisms that are sufficient in
regime α to realize each of our tasks. The neurons are identical and random connections among them suffice.
The updates operate across just one circuit level, and, with the exception of supervised memorization, in
just one time step. Regime β differs in that it enables items to be represented sparsely and disjointly, in that
sense akin to a digital computer, and our experiments suggest that it supports significantly higher capacities
than does regime α.
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