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Let K = (�8). For construction A, let the prime q = 17 and let
L denote the unique subfield of (�17) of degree 8 over . Then by
Theorem 4, the compositum LK gives us the desired extension of K .
Now Gal(K= ) �= C2 � C2—note that unlike in other examples this
Galois group is not cyclic. Then our codewords have the form

(�1A j �2A j �3A j �4A)

whereA is an 8� 8matrix in the image of representation of the algebra
A = (LK=K;Gal(LK=K); �8) and �i are elements of Gal(K= ),
1 � i � 4.

We do not need to lift the ground field for construction B, since the
field K already contains i. However, because we want the product of
determinants to lie in (i), we change the field F to (i).

Note that Gal(K=Q(i)) �= C2, let � denote its generator.
Then our codewords have the form (A j �A); where A is
an 8 � 8 matrix in the image of representation of the algebra
A = (LK=K;Gal(LK=K); �8).

Existing industry standard already include cases of four transmit an-
tenna MIMO systems. Therefore, eight antenna systems will likely be
considered soon, and this last example could become relevant in the
not too distant future.
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Performance Bounds for Bidirectional Coded
Cooperation Protocols

Sang Joon Kim, Patrick Mitran, Member, IEEE, and
Vahid Tarokh, Senior Member, IEEE

Abstract—In coded bidirectional cooperation, two nodes wish to ex-
change messages over a shared half-duplex channel with the help of a relay.
In this correspondence, we derive performance bounds for this problem
for each of three decode-and-forward protocols. The first protocol is a two
phase protocol where both users simultaneously transmit during the first
phase and the relay alone transmits during the second. In this protocol, our
bounds are tight. The second protocol considers sequential transmissions
from the two users followed by a transmission from the relay while the
third protocol is a hybrid of the first two protocols and has four phases. In
the latter two protocols the bounds are not identical. Numerical evaluation
shows that in some cases of interest our bounds do not differ significantly.
Finally, in the Gaussian case with path loss, we derive achievable rates
and compare the relative merits of each protocol. This case is of interest in
cellular systems. Surprisingly, we find that in some cases, the achievable
rate region of the four phase protocol contains points that are outside the
outer bounds of the other two protocols.

Index Terms—Bidirectional communication, capacity bounds, coopera-
tion, network coding, performance bounds.

I. INTRODUCTIONINTRODUCTION

Consider two users, denoted by a and b, who wish to share inde-
pendent messages over a shared channel. Traditionally, this problem is
known as the two-way channel [2], [10].

In many realistic broadcast environments, such as wireless commu-
nications, it is not unreasonable to assume the presence of a third node
which may aid in the exchange of a and b’s messages. In particular, if
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Fig. 1. (i) Traditional approach, (ii) Naive four phase bidirectional cooperation,
(iii) coded broadcast three phase protocol, (iv) two phase protocol.

a is a mobile user andb is a base station, then we may suppose the pres-
ence of a relay station r to assist in the bidirectional communication.

Traditionally, without the presence of the relay station, communica-
tion between nodes a and b is performed in two steps: first a transmits
its message to b followed by similar transmission from b to a (illus-
trated in Fig. 1). In the presence of relay node r, one might initially as-
sume that four phases are needed (see Fig. 1). However, by taking ad-
vantage of the shared wireless medium, it is known that the third and
fourth transmissions may be combined (Fig. 1) into a single transmis-
sion using, for example, ideas from network coding [1], [13]. In partic-
ular, if the messages of a and b arewa andwb respectively and belong
to a group, then it is sufficient for the relay node to successfully transmit
wa�wb simultaneously toa andb. In [4], [5], such a three phase coded
bidirectional protocol is considered when the group is k

2 , the binary op-
erator is component-wise modulo-2 addition (i.e., exclusive or) and en-
coding is performed linearly to produce parity bits. As each user trans-
mits sequentially, each user is amenable to receive “side-information”
from the opposite user during one of the first two phases.

The works of [7] and [8] not only consider the three phase protocol,
but combine the first two phases into a single joint transmission by
nodes a and b followed by a single transmission by the relay which
forwards its received signal (Fig. 1). Coded bidirectional cooperation
may also be extended for the case of multiple relaying nodes [11], [12].
In [9], achievable rate regions are derived assuming full duplex capa-
bilities at all nodes.

In this correspondence, we are interested in determining fundamental
bounds on the performance of coded bidirectional communications
assuming various decode-and-forward protocols for half-duplex chan-
nels. In the case of a two phase protocol where both users transmit
simultaneously in the first phase followed by a transmission from
the relay, we derive the exact performance.1 In the case of three or
more phase protocols, we take into account any side information that
a node may acquire when it is not transmitting and derive inner and
outer bounds on the capacity regions. We find that a four phase hybrid
protocol is sometimes strictly better than the outerbounds of two or
three phase decode-and-forward protocols previously introduced in the
literature. This correspondence is structured as follows. In Section II,
we define our notation and the protocols that we consider. In Section III,
we derive performance bounds for the protocols while in Section IV,
we numerically compute these bounds for fading Gaussian channels.

II. PRELIMINARIES

A. Notation and Definitions

We first start with a somewhat more general formulation of the
problem. We consider anm node set, denoted asM := f1; 2; . . . ;mg
(where := means defined as) for now, where node i has message Wi;j

1Similar results were independently derived in [6].

that it wishes to send to node j. Each node i has channel input alphabet
X �i = Xi [ f g and channel output alphabet Y�i = Yi [ f g, where

is a special symbol distinct of those in Xi and Yi and which denotes
either no input or no output. In this correspondence, we assume that a
node may not simultaneously transmit and receive at the same time.
In particular, if node i selects Xi = , then it receives Yi 2 Yi and
if Xi 2 Xi, then necessarily Yi = , i.e., Xi = iff Yi 6= .2

Otherwise, the effect of one node remaining silent on the received
variable at another node may be arbitrary at this point. The channel is
assumed discrete memoryless. In Section IV, we will be interested in
the case X �i = Y�i = [ f g, 8i 2 M.

The objective of this correspondence is to determine achievable data
rates and outer bounds on these for some particular cases. We use
Ri;j for the transmitted data rate of node i to node j, i.e., Wi;j 2
f0; . . . ; b2nR c � 1g := Si;j .

For a given protocol P, we denote by �` � 0 the relative time
duration of the `th phase. Clearly,

`
�` = 1. It is also convenient to

denote the transmission at time k, 1 � k � n at node i by Xk
i , where

the total duration of the protocol is n and X
(`)
i denotes the random

variable with alphabet X �i and input distribution p(`)(xi) during phase
`. Also,Xk

i corresponds to a transmission in the first phase if k � �1n,
etc. We also define Xk

S := fXk
i ji 2 Sg, the set of transmissions by all

nodes in the set S at time k and similarlyX(`)
S := X

(`)
i ji 2 S , a set

of random variables with channel input distribution p(`)(xS) for phase
`, where xS := fxiji 2 Sg. Lower case letters xi denote instances of
the upper case Xi which lie in the calligraphic alphabets X �i . Boldface
xi represents a vector indexed by time at node i. Finally, it is convenient
to denote by xS := fxiji 2 Sg, a set of vectors indexed by time.

Encoders are then given by functions
Xk
i (Wi;1; . . . ;Wi;m; Y

1
i ; . . . ; Y

k�1
i ), for k = 1; . . . ; n and decoders

by Ŵj;i(Y
1
i ; . . . ; Y

n
i ;Wi;1; . . . ;Wi;m). Given a block size n,

a set of encoders and decoders has associated error events
Ei;j := fWi;j 6= Ŵi;j(�)g, for decoding the message Wi;j at node j
at the end of the block, and the corresponding encoders/decoders
result in relative phase durations f�`;ng, where the subscript n
indicates that the phase duration depends on the choice of block size
(as they must be multiples of 1=n).

A set of rates fRi;jg is said to be achievable for a protocol with
phase durations f�`g, if there exist encoders/decoders of block length
n = 1; 2; . . . with P [Ei;j ] ! 0 and �`;n ! �` as n ! 1 8`. An
achievable rate region (resp. capacity region) is the closure of a set of
(resp. all) achievable rate tuples for fixed f�`g.

B. Basic Results

In Section III, we will use a variation of the cut-set bound. We as-
sume that all messages from different sources are independent, i.e.,
8i 6= j, Wi;k and Wj;l are independent 8k; l 2 M. In contrast to
[2], we relax the independent assumption from one source to different
nodes, i.e., in our case Wi;j and Wi;k may not be independent. Given
subsets S; T � M, we define WS;T := fWi;j ji 2 S; j 2 Tg and
RS;T = limn!1

1
n
H(WS;T ).

Lemma 1: If in some network the information rates fRi;jg are
achievable for a protocol P with relative durations f�`g, then for
every � > 0 and all S � f1; 2; . . . ; mg = M

RS;S �
`

�`I X
(`)
S ;Y

(`)
S jX

(`)
S ; Q + � (1)

for a family of conditional distributions p(`)(x1; x2; . . . ; xmjq) and a
discrete time-sharing random variable Q with distribution p(q). Fur-
thermore, each p(`)(x1; x2; . . . ; xmjq)p(q)must satisfy the constraints
of phase ` of protocol P.

2Thus, FDM cannot be allowed as it violates the half-duplex constraint.
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Proof: Replacing W (T ) by WS;S and W (T ) by WS ;M in [2,
eqs. (15.323)–(15.332)], then all the steps in [2] still hold and we have

H (WS;S ) = H (WS;S jWS ;M) �

n

k=1

I X
k
S ; Y

k
S jXk

S + n�n

where �n ! 0 since
i2S;j2S

P [Ei;j ] ! 0 and the distributions
p xk1 ; . . . ; x

k
m; y

k
1 ; . . . ; y

k
m are those induced by encoders for which

P [Ei;j ] ! 0 as n ! 1.

Defining Q1; Q2; . . . to be discrete random variables uniform over
f1; . . . ; n ��1;ng, fn � �1;n + 1; . . . ; n � �1;n + n ��2;ng; . . ., re-
spectively, we thus have

H (WS;S ) �
`

n ��`;nI X
Q

S ;Y
Q

S jX
Q

S ; Q` + n�n (2)

Defining the discrete random variable Q := (Q1;Q2; . . .), then

1

n
H (WS;S ) �

`

�`;nI X
(`)
S ;Y

(`)
S jX

(`)
S ; Q + �n (3)

where X
(`)
S := X

Q

S . Finally, since the distributions
p(`)(x1; x2; . . . ; xmjq)p(q) are those induced by encoders
for which P [Ei;j ] ! 0, if there is a constraint on the encoders
(such as a power constraint), this constraint is also satisfied by the
distributions p(`)(x1; x2; . . . ; xmjq)p(q).

C. Protocols

In bidirectional cooperation, two terminal nodes denoted a and
b exchange their messages. The messages to be transmitted are
Wa := Wa;b, Wb := Wb;a and the corresponding rates are
Ra := Ra;b and Rb := Rb;a. The two distinct messages Wa and
Wb are taken to be independent and uniformly distributed in the set
of f0; . . . ; b2nR c � 1g := Sa and f0; . . . ; b2nR c � 1g := Sb,
respectively. Then Wa and Wb are both members of the additive
group L, where L = max(b2nR c; b2nR c). The simplest protocol
for the bidirectional channel, is that of Direct Transmission (DT)
(Fig. 2). Here, since the channel is memoryless and � > 0 is arbitrary,
the capacity region from Lemma 1 is

Ra � sup
p (x )

�1I X
(1)
a ;Y

(1)
b

jX
(1)
b

=

Rb � sup
p (x )

�2I X
(2)
b

;Y (2)
a jX(2)

a =

where the distributions are over the alphabetsXa andXb, respectively.
With a relay node r, we suggest three different decode-and-forward

protocols, which we denote as multiple access broadcast (MABC) pro-
tocol, time division broadcast (TDBC), and hybrid broadcast (HBC).
Then, the message from a (resp.,b) to r isWa;r =Wa (resp.,Wb;r =
Wb) and the corresponding rate is Ra;r = Ra (resp., Rb;r = Rb).
Also, in our protocols, all phases are contiguous, i.e., they are per-
formed consecutively and are not interleaved or reordered.3

In the MABC protocol (Fig. 2), terminal nodes a and b transmit
information simultaneously during phase 1 and the relay r transmits
some function of the received signals during phase 2. With this scheme,
we only divide the total time period into two regimes and neither node
a nor node b is able to receive any meaningful side-information during
the first phase due to the half-duplex constraint.

In the TDBC protocol (Fig. 2), only node a transmits during the first
phase and only node b transmits during the second phase. In phase 3,

3If we relax the contiguous assumption, the achievable region could increase
by cooperation between interleaving phases.

Fig. 2. Proposed protocol diagrams. Shaded areas denote transmission by the
respective nodes. It is assumed that all nodes listen when not transmitting.

relay r performs a transmission based on the received data from the first
two phases. Here, node a attempts to recover the message Wb based
on both the transmissions from node b in the second phase and node
r in the third phase. We denote the received signal at node a in the
second phase as second phase side information. Likewise, node b may
also recoverWa based on first phase side information and the received
signal at node b during the third phase.

Finally, we consider the HBC protocol (Fig. 2) which is an amalgam
of the MABC and TDBC protocols. In this scheme, there are 4 distinct
transmissions, two of which result in side-information at a and b.

III. PERFORMANCE BOUNDS

A. MABC Protocol

Theorem 2: The capacity region of the half-duplex bidirectional
relay channel with the MABC protocol is the closure of the set of all
points (Ra; Rb) satisfying

Ra < min �1I X
(1)
a ;Y (1)

r jX
(1)
b
; X

(1)
r = ; Q ;

�2I X
(2)
r ;Y

(2)
b

jX(2)
a = X

(2)
b

= ; Q

Rb < min �1I X
(1)
b

;Y (1)
r jX(1)

a ; X
(1)
r = ; Q ;

�2I X
(2)
r ;Y (2)

a jX(2)
a = X

(2)
b

= ; Q

Ra +Rb <�1I X
(1)
a ; X

(1)
b

; Y (1)
r jX(1)

r = ; Q

over all joint distributions p(q)p(1)(xajq)p(1)(xbjq)p(2)(xrjq) with
jQj � 5 over the alphabet Xa � Xb � Xr.

Remark: If the relay is not required to decode both messages, then
the region above is still achievable, and removing the constraint on the
sum-rate Ra + Rb yields an outer bound.

Proof: Achievability: Random code generation: For simplicity
of exposition only, we take jQj = 1 and therefore consider distribu-
tions p(1)(xa), p(1)(xb) and p(2)(xr). First we generate random (n �

�1;n)-length sequences x(1)a (wa) with wa 2 Sa and x
(1)
b

(wb) with
wb 2 Sb, and (n � �2;n)-length sequences x(2)r (wr) with wr 2 L

where L = max(b2nR c; b2nR c), according to p(1)(xa), p(1)(xb)
and p(2)(xr), respectively.

Encoding: During phase 1, encoders of node a and b send the
codewords x(1)a (wa) and x(1)

b
(wb), respectively. Relay r estimates ŵa

and ŵb after phase 1 using jointly typical decoding, then constructs
wr = ŵa � ŵb in L and sends x(2)r (wr) during phase 2.

Decoding: a and b estimate ~wb and ~wa after phase 2 using jointly
typical decoding. Since wr = wa � wb and a knows wa, node a can
reduce the number of possible wr to b2nR c and likewise at node b,
the cardinality is b2nR c

Authorized licensed use limited to: IEEEXplore Subscriber. Downloaded on October 23, 2008 at 13:59 from IEEE Xplore.  Restrictions apply.
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Error Analysis: For convenience of analysis, first define E(`)
i;j as the

error event at node j that node j attempts to decode wi at the end of
phase ` using jointly typical decoding. Let A(`)

S;T represents the set of

�-weakly typical x
(`)
S ;y

(`)
T sequences of length n ��`;n according

to the input distributions employed in phase `. Also define the set of
codewords x(`)S (wS) := x

(`)
i (wi)ji 2 S and the events

D
(`)
S;T (wS) := (x

(`)
S (wS);y

(`)
T ) 2 A

(`)
S;T

where S and T are disjoint subsets of nodes. Then

P [Ea;b] �P E(1)
a;r [E

(1)
b;r [E

(2)
r;b (4)

�P E(1)
a;r [E

(1)
b;r + P E

(2)
r;bj

�E(1)
a;r \ �E

(1)
b;r (5)

Following the well-known MAC error analysis from [2, eq. (15.72)]:

P E(1)
a;r [ E

(1)
b;r � P �D

(1)
fa;bg;frg(wa; wb)

+ 2nR 2
�n�� I X ;Y jX ;X = �3�

+ 2nR 2
�n�� I X ;Y jX ;X = �3�

+ 2n(R +R )2
�n�� I X ;X ;Y jX = �4� : (6)

Also

P E
(2)
r;bj

�E(1)
a;r \ �E

(1)
b;r

� P �D
(2)
frg;fbg (wa � wb)

+ P [~w 6=w D
(2)
frg;fbg ( ~wa � wb)

� P �D
(2)
frg;fbg (wa � wb)

+ 2nR 2
�n�� I X ;Y jX =X = �3� : (7)

Since � > 0 is arbitrary, with the conditions of Theorem 2 and the
AEP property, we can make the right-hand sides of(6) –(7) tend to 0 as
n ! 1. Similarly, P [Eb;a] ! 0 as n ! 1.

Converse: We use Lemma 1 to prove the converse part of Theorem
2. As we have three nodes, there are six cut-sets, S1 = fag,S2 = fbg,
S3 = frg, S4 = fa;bg, S5 = fa; rg and S6 = fb; rg, as well as
two rates Ra and Rb. The outer bound corresponding to S1 is then

Ra ��1I X(1)
a ;Y (1)

r ; Y
(1)
b

jX(1)
r ; X

(1)
b
; Q

+�2I X(2)
a ; Y (2)

r ; Y
(2)
b

jX(2)
r ; X

(2)
b
; Q + � (8)

=�1I X(1)
a ;Y (1)

r jX
(1)
b
; X(1)

r = ; Q + � (9)

where (9) follows since in the MABC protocol, we must have

Y (1)
a = Y

(1)
b

= X(1)
r = ; X(2)

a = X
(2)
b

= Y (2)
r = : (10)

We find the outer bounds of the other cut-sets in the same manner:

S2 :Rb � �1I X
(1)
b

; Y (1)
r jX(1)

a ; X(1)
r = ; Q + �: (11)

S3 :N=A (12)

S4 :Ra +Rb � �1I X(1)
a ; X

(1)
b

;Y (1)
r jX(1)

r = ; Q + �

(13)

S5 :Ra � �2I X(2)
r ;Y

(2)
b

jX(2)
a = X

(2)
b

= ; Q + � (14)

S6 :Rb � �2I X(2)
r ; Y (2)

a jX(2)
a = X

(2)
b

= ; Q + �: (15)

Since � > 0 is arbitrary, together, (9), (11) –(15) and the fact that the
half-duplex nature of the channel constrains X(1)

a to be conditionally
independent of X(1)

b
given Q yields the converse. By Fenchel-Bunt’s

theorem in [3], it is sufficient to restrict jQj � 5.

B. TDBC Protocol

Theorem 3: An achievable region of the half-duplex bidirectional
relay channel with the TDBC protocol is the closure of the set of all
points (Ra; Rb) satisfying

Ra < min �1I X(1)
a ; Y (1)

r jX
(1)
b

= X(1)
r = ; Q ;

�1I X(1)
a ; Y

(1)
b

jX
(1)
b

= X(1)
r = ; Q

+�3I X(3)
r ;Y

(3)
b

jX(3)
a = X

(3)
b

= ; Q

Rb < min �2I X
(2)
b

; Y (2)
r jX(2)

a = X(2)
r = ; Q ;

�2I X
(2)
b

; Y (2)
a jX(2)

a = X(2)
r = ; Q

+�3I X(3)
r ;Y (3)

a jX(3)
a = X

(3)
b

= ; Q

over all joint distributions p(q)p(1)(xajq)p(2)(xbjq)p(3)(xrjq) with
jQj � 4 over the alphabet Xa � Xb � Xr.

Proof: Random code generation: First, we generate a par-
tition of Sa randomly by independently assigning every index
wa 2 Sa to a set Sa;i, with a uniform distribution over the indices
i 2 f0; . . . ; b2nR c � 1g. We denote by sa(wa) the index i of
Sa;i to which wa belongs and likewise, a partition for wb 2 Sb
is similarly constructed. For simplicity of exposition, we take
jQj = 1. For any � > 0 and distributions p(1)(xa), p(2)(xb)
and p(3)(xr), we generate random (n � �1;n)-length sequences
x
(1)
a (wa) with wa 2 Sa, (n � �2;n)-length sequences x(2)

b
(wb) with

wb 2 Sb and (n � �3;n)-length sequences x(3)r (wr) with wr 2 L,
L = b2n�maxfR ;R gc.

Encoding: During phase 1 (resp., phase 2), the encoder at node a
(resp., node b) sends the codeword x(1)a (wa) (resp., x(2)

b
(wb)). Relay

r estimates ŵa and ŵb after phases 1 and 2, respectively. The relay
then constructs wr = sa(ŵa) � sb(ŵb) in L, and sends x(3)r (wr)
during phase 3.

Decoding: Terminal nodes a andb estimate the indices ~sb(wb) and
~sa(wa) after phase 3 from x

(3)
r and then decode ~wb and ~wa if there

exists a unique ~wb 2 Sb;~s \ A
(2)
fbg;fag and ~wa 2 Sa;~s \ A

(1)
fag;fbg.

Error Analysis: Define E(`)
i;j as the error events from node i to node

j assuming node j attempts to decode wi at the end of phase ` using
jointly typical decoding and ~sa or ~sb if available. Also we use the same
definitions of A(`)

S;T and D(`)
S;T (wS) as in the proof of Theorem 2. Then

P [Ea;b] �P E(1)
a;r [E

(2)
b;r [E

(3)
r;b [ E

(3)
a;b (16)

�P E(1)
a;r + P E

(2)
b;r + P E

(3)
r;bj

�E(1)
a;r \ �E

(2)
b;r

+ P E
(3)
a;bj

�E(1)
a;r \ �E

(2)
b;r \

�E
(3)
r;b : (17)

Also

P E(1)
a;r � P �D

(1)
fag;frg(wa)

+ 2nR 2
�n�� I X ;Y jX =X = �3� (18)

P E
(2)
b;r � P �D

(2)
fbg;frg(wb)

+ 2nR 2
�n�� I X ;Y jX =X = �3� (19)
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P E
(3)
r;bj

�E(1)
a;r \ �E

(2)
b;r

� P �D
(3)
frg;fbg(sa(wa)� sb(wb))

+ P [~s 6=s (w )D
(3)
frg;fbg(~sa � sb(wb))

� P �D
(3)
frg;fbg(sa(wa)� sb(wb))

+ 2nR 2
�n�� I X ;Y jX =X = �3� (20)

P E
(3)
a;bj

�E(1)
a;r \ �E

(2)
b;r \

�E
(3)
r;b

� P �D
(1)
fag;fbg(wa)

+ P [~w 6=w D
(1)
fag;fbg( ~wa); sa(wa) = sa( ~wa)

� P �D
(1)
fag;fbg(wa)

+ 2
n R �� I X ;Y jX =X = �R +3�

: (21)

Since � > 0 is arbitrary, with the proper choice of Ra0, the conditions
of Theorem 3 and the AEP property, we can make the right-hand sides
of (18)–(21) vanish as n ! 1. Similarly, P [Eb;a] ! 0 as n ! 1.
By Fenchel-Bunt’s theorem in [3], it is sufficient to restrict jQj � 4:

Theorem 4: The capacity region of the bidirectional relay channel
with the TDBC protocol is outer bounded by the union of

Ra � min �1I X
(1)
a ;Y (1)

r ; Y
(1)
b
jX

(1)
b

= X
(1)
r = ; Q ;

�1I X
(1)
a ; Y

(1)
b
jX

(1)
b

= X
(1)
r = ; Q

+�3I X
(3)
r ;Y

(3)
b
jX(3)

a = X
(3)
b

= ; Q

Rb � min �2I X
(2)
b

; Y (2)
r ; Y

(2)
a jX(2)

a = X
(2)
r = ; Q ;

�2I X
(2)
b

; Y (2)
a jX(2)

a = X
(2)
r = ; Q

+�3I X
(3)
r ;Y (3)

a jX(3)
a = X

(3)
b

= ; Q

Ra +Rb � �1I X
(1)
a ;Y (1)

r jX
(1)
b

= X
(1)
r = ; Q

+�2I X
(2)
b

;Y (2)
r jX(2)

a = X
(2)
r = ; Q

over all joint distributions p(q)p(1)(xajq)p(2)(xbjq) p(3)(xrjq) with
jQj � 5 over the alphabet Xa � Xb � Xr.

Remark: If the relay is not required to decode both messages, re-
moving the constraint on the sum-rate Ra+Rb yields an outer bound.

Proof Outline: The proof of Theorem 4 follows the same argu-
ment as in the proof of the converse part of Theorem 2.

C. HBC Protocol

Theorem 5: An achievable region of the half-duplex bidirectional
relay channel with the HBC protocol is the closure of the set of all
points (Ra; Rb) satisfying

Ra < min �1I X
(1)
a ;Y (1)

r jX
(1)
b

= X
(1)
r = ; Q

+�3I X
(3)
a ; Y (3)

r jX
(3)
b
; X

(3)
r = ; Q ;

�1I X
(1)
a ;Y

(1)
b
jX

(1)
b

= X
(1)
r = ; Q

+�4I X
(4)
r ; Y

(4)
b
jX(4)

a = X
(4)
b

= ; Q

Rb < min �2I X
(2)
b

;Y (2)
r jX(2)

a = X
(2)
r = ; Q

+�3I X
(3)
b

;Y (3)
r jX(3)

a ; X
(3)
r = ; Q ;

�2I X
(2)
b

;Y (2)
a jX(2)

a = X
(2)
r = ; Q

+�4I X
(4)
r ;Y (4)

a jX(4)
a = X

(4)
b

= ; Q

Ra +Rb <�1I X
(1)
a ; Y (1)

r jX
(1)
b

= X
(1)
r = ; Q

+�2I X
(2)
b

;Y (2)
r jX(2)

a = X
(2)
r = ; Q

+�3I X
(3)
a ; X

(3)
b

;Y (3)
r jX(3)

r = ; Q

over the joint distribution p(q)p(1)(xajq)p
(2)(xbjq)p

(3)(xajq)
p(3)(xbjq) p

(4)(xrjq) over the alphabet X 2
a �X

2
b �Xr with jQj � 5.

Proof Outline: Generate random codewordsx(1)a (wa),x
(2)
b

(wb),
x
(3)
a (wa), x

(3)
b

(wb). Relay r receives data from terminal nodes during
phases 1 – 3, which is decoded by the relay using a MAC protocol
to recover wa, wb. Theorem 5 then follows the same argument as the
proof of Theorem 3.

Theorem 6: The capacity region of the bidirectional relay channel
with the HBC protocol is outer bounded by the union of

Ra � min �1I X
(1)
a ;Y (1)

r ; Y
(1)
b
jX

(1)
b

= X
(1)
r = ; Q

+�3I X
(3)
a ;Y (3)

r jX
(3)
b
; X

(3)
r = ; Q

�1I X
(1)
a ; Y

(1)
b
jX

(1)
b

= X
(1)
r = ; Q

+�4I X
(4)
r ;Y

(4)
b
jX(4)

a = X
(4)
b

= ; Q

Rb � min �2I X
(2)
b

;Y (2)
r ; Y

(2)
a jX(2)

a = X
(2)
r = ; Q

+�3I X
(3)
b

;Y (3)
r jX(3)

a ; X
(3)
r = ; Q

�2I X
(2)
b

; Y (2)
a jX(2)

a = X
(2)
r = ; Q

+�4I X
(4)
r ;Y (4)

a jX(4)
a = X

(4)
b

= ; Q

Ra +Rb ��1I X
(1)
a ;Y (1)

r jX
(1)
b

= X
(1)
r = ; Q

+�2I X
(2)
b

;Y (2)
r jX(2)

a = X
(2)
r = ; Q

+�3I X
(3)
a ; X

(3)
b

;Y (3)
r jX(3)

r = ; Q

over all joint distributions p(q)p(1)(xajq)p
(2)(xbjq)p

(3)(xa,
xbjq) p

(4)(xrjq) with jQj � 5 over the alphabet X 2
a � X

2
b � Xr.

Remark: If the relay is not required to decode both messages, then
removing the constraint on the sum-rate Ra +Rb in the region above
yields an outer bound.

Proof Outline: The proof of Theorem 6 follows the same argu-
ment as the proof of the converse part of Theorem 2.

IV. THE GAUSSIAN CASE

In the following section, we apply the performance bounds derived
in the previous section to the AWGN channel with pass loss. Defi-
nitions of codes, rate, and achievability in the memoryless Gaussian
channels are analogous to those of the discrete memoryless channels. If
Xa[k] 6= ; Xb[k] 6= ; Xr[k] = , then the mathematical channel
model is Yr[k] = garXa[k] + gbrXb[k] +Zr[k] and Ya[k] and Yb[k]
are given by similar expression in terms of gar; gbr and gab if only
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Fig. 3. Achievable sum rates of the protocols (P = 15 dB, G = 0 dB).

one node is silent. If Xa[k] = Xb[k] = and Xr[k] 6= , then
Ya[k] = graXr[k] + Za[k] and Yb[k] = grbXr[k] + Zb[k] and sim-
ilar expressions hold if other pairs of nodes are silent, where the effec-
tive complex channel gain gij between nodes i and j combines both
quasi-static fading and path loss and the channels are reciprocal, i.e.,
gij = gji. For convenience, we defineGij := jgij j

2, i.e.,Gij incorpo-
rates path loss and fading effects on received power. Furthermore, we
suppose the interesting case that Gab � Gar � Gbr. Finally, we as-
sume full Channel State Information (CSI) at all nodes (i.e., each node
is fully aware of gab, gbr and gar) and that each node has the same
transmit power P for each phase, employs a complex Gaussian code-
book and the noise is of unit power, additive, white Gaussian, complex
and circularly symmetric. For convenience of analysis, we also define
the function C(x) := log2(1 + x).

For a fading AWGN channel, we can optimize the �i’s for given
channel mutual informations in order to maximize the achievable sum
rate (Ra + Rb). First, we optimize the time periods in each protocol
and compare the achievable sum rates obtained to determine an op-
timal transmission strategy in terms of sum-rate in a given channel.
For example, applying Theorem 3 to the fading AWGN channel, the
optimization constraints for the TDBC protocol are4:

Ra < min �1C(PGar);�1C(PGab) + �3C(PGbr) (22)

Rb < min �2C(PGbr);�2C(PGab) + �3C(PGar) : (23)

We have taken jQj = 1 in the derivation of (22) and (23), since a
Gaussian distribution simultaneously maximizes each mutual informa-
tion term individually as each node is assumed to transmit with at most
power P during each phase. Linear programming may then be used to
find optimal time durations. The optimal sum rate corresponding to the
inner bounds of the protocols is plotted in Fig. 3. As expected, the op-
timal sum rate of the HBC protocol is always greater than or equal to
those of the other protocols since the MABC and TDBC protocols are
special cases of the HBC protocol. Notably, the sum rate of the HBC
protocol is strictly greater than the other cases in some regimes. This
implies that the HBC protocol does not reduce to either of the MABC
or TDBC protocols in general.

4The power constraint is satisfied almost surely as n ! 1 in the random
coding argument for Gaussian input distributions with E[X ] < P .

Fig. 4. Achievable rate regions and outer bounds with P = 0 dB (top) and
P = 10 dB (bottom) (G = 0 dB, G = 5 dB, G = �7 dB).

In the MABC protocol, the performance region is known. How-
ever, in the other cases, there exists a gap between the expressions. An
achievable region of the 4 protocols and an outer bound for the TDBC
protocol is plotted in Fig. 4 (in the low and the high SNR regime). As
expected, in the low SNR regime, the MABC protocol dominates the
TDBC protocol, while the latter is better in the high SNR regime. It is
difficult to compute the outer bound of the HBC protocol numerically
since, as opposed to the TDBC case, it is not clear that jointly Gaussian
distributions are optimal due to the joint distribution p(3)(xa; xbjq) as
well as the conditional mutual information terms in Theorem 6. For this
reason, we do not numerically evaluate the outer bound. Notably, some
achievable HBC rate pairs are outside the outer bounds of the MABC
and TDBC protocols.
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The Poset Metrics That Allow Binary Codes of
Codimension to be -, -, or -Perfect

Hyun Kwang Kim and Denis S. Krotov

Abstract—A binary poset code of codimension m (of cardinality 2 ,
where n is the code length) can correct maximum m errors. All possible
poset metrics that allow codes of codimension m to be m-, (m � 1)-, or
(m � 2)-perfect are described. Some general conditions on a poset which
guarantee the nonexistence of perfect poset codes are derived; as examples,
we prove the nonexistence of r-perfect poset codes for some r in the case of
the crown poset and in the case of the union of disjoint chains.

Index Terms—Perfect codes, poset codes.

I. INTRODUCTIONINTRODUCTION

We study the problem of existence of perfect codes in poset metric
spaces, which are a generalization of the Hamming metric space, see
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[2]. There are several papers [1], [3], [4] on the existence of 1-, 2-,
or 3-error-correcting poset codes. The approach of the present work is
opposite; we start to classify posets that admit the existence of perfect
codes correcting as many as possible errors with respect to the code
length and dimension, i.e., when the number of errors is close to the
code codimension.

As stated by Lemma 2-5 below, the codimension m of an r-error-
correcting (n; 2n�m) code cannot be less than r. And the posets that
allow binary poset-codes of codimension m to be m-perfect have a
simple characterization (Theorem 2-6).

The main results of this work, stated by Theorem 4-4 and Theorem
6-1, are criteria for the existence of (m � 1)- and (m � 2)-perfect
(n; 2n�m) P -codes. The intermediate results formulated as lemmas
may also be useful for the description of other poset structures admit-
ting perfect poset codes.

Let P = ([n];�) be a poset, where [n] f1; . . . ; ng. A subset I
of [n] is called an ideal, or downset (an upset, or filter) iff for each
a 2 I the relation b � a (respectively, b � a) means b 2 I .
For a1; . . . ; ai 2 P denote by <a1; . . . ; ai> or <fa1; . . . ; aig> the
principal ideal of fa1; . . . ; aig, i.e., the minimal ideal that contains
a1; . . . ; ai; and by >a1; . . . ; ai< or >fa1; . . . ; aig<, the minimal
upset that contains a1; . . . ; ai.

Denote by IrP � 2[n] the set of all r-ideals (i.e., ideals of cardinality
r) of P , where r 2 f0; 1; . . . ; ng.

If S is an arbitrary set (poset), then the set of all subsets of S is
denoted by 2S . The set 2[n] will be also denoted as Fn, and we will not
distinguish subsets of [n] from their characteristic vectors; for example,
2[5] 3 f2; 4; 5g = (01011) 2 F 5.

If �x 2 2[n], then the P -weight wP (�x) of �x is the cardinality of
<�x>. Now, for two elements �x; �y 2 Fn we can define the P -distance
dP (�x; �y) wp(�x+ �y), where + means the symmetrical difference in
terms of subsets of [n] and the mod-2addition in terms of their charac-
teristic functions.

For r 2 f0; . . . ; ng we denote by BrP f�x 2 Fn jwP (�x) � rg
the ball of radius r with center in the all-zero vector �0. A subset C of
Fn is called an r-error-correcting P -code (r-perfect P -code) iff each
element �x of Fn has at most one (respectively, exactly one) represen-
tation in the form �x = �c+�b, where �c 2 C and �b 2 BrP . In other words,
the balls of radius r centered in the codewords of an r-error-correcting
P -code C are mutually disjoint (the ball-packing condition) and, if C
is r-perfect, cover all the space Fn. As a consequence

jCj � jFnj=jBrP j

(the ball-packing bound), where equality is equivalent to the r-perfect-
ness of C.

For the rest of the correspondence we will use the following nota-
tions. Let C � Fn be a P -code and �0 2 C; denote

• m n � log2 jCj;
• P r

I2I I � [n];

• u j
I2I Ij;

• P r P rn
I2I I (studying r-perfect codes, we can call P r

the “essential part” of P ; indeed, the ball BrP is the Cartesian
product of Br�u

P
and 2P nP );

• � jP rj � r;
• max(R) denotes the set of maximal elements of a poset R;
• min(R) denotes the set of minimal elements of a poset R;
• k jmax(P r)j.

Note that u, �, and k depend on P and r though the notations do not
reflect this dependence explicitly.
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