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We apply the J-integral to free-boundary flows in a channel geometry such as viscous
fingering or blob injection in Hele-Shaw cells, void propagation in electromigration,
and injection of air bubbles into inviscid liquids. The theory of that and related
conservation integrals, developed in elasticity, is outlined in a way that is applicable
to fluid mechanics problems. Depending on the boundary conditions, for infinite
bubbles in Laplacian fields we are able to use the J-integral to predict finger width if
such solutions exist or to predict that there are no solutions. For finite sized bubbles,
bounds can sometimes be derived. In the case of Hele-Shaw flows, in which solutions
appear as a continuum, finger width cannot be constrained, but we do obtain a new
derivation and generalization of Richardson moment conservation. Applications to
vortex motion are also outlined briefly.

1. Introduction
We present here the technique of the path-independent J-integral (Rice 1968a, b) for

interfacial fluid instabilities. The J-integral is commonly used in elasticity for cracks
and notches in static and steady-state dynamic cases. It is useful both for its path
independence, which we exploit here, and its property of giving the configurational
force on an elastic singularity (Eshelby 1951, 1956; Sanders 1960; Cherepanov 1967;
Rice 1968b). It allows an easy determination of the asymptotic stress and strain in
the close vicinity of a crack, for example. It is not restricted to the linear elasticity
case where the field in the sample is biharmonic (Eshelby 1970; Knowles & Sternberg
1972), and can also take into account plasticity for non-growing cracks, within the
approximation of ‘deformation theory’ (Hutchinson 1968; Rice & Rosengren 1968).
In this paper we present some applications of this technique when the field in
the flow is Laplacian. We treat successively Darcy’s law in the Hele-Shaw context,
electromigration, and Euler flow for inviscid fluids, in the strip geometry. We consider
infinite or finite bubbles in two or three dimensions but with axisymmetry. Since
the boundary conditions which constrains the dynamics, and so the existence of
the solution, concern derivatives of the field φ in the normal and the tangential
directions, locally defined on the interface and on the cell boundaries, the J-integral
involving φ seems to be especially convenient. The application is very simple and
for an infinite finger-shaped solution, we are in some cases able to predict the
asymptotic relative width of the finger compared to the cell size when it is unique
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or the possibility of a selection process by surface tension. This information does not
require the complete solution of the free-boundary problem, which is very difficult
and sometimes impossible, for example for electromigration and for inviscid flows
with surface tension. It requires only the boundary conditions. For finite bubbles, only
bounds can be derived. We also show briefly the use of path-independent integrals
for the problems of injection of a fluid blob into a Hele-Shaw cell and the motion of
vortex lines in two-dimensional flows of inviscid fluids.

2. Presentation of the J-integral
We consider the case of a semi-infinite finger growing steadily along the x-axis in an

infinite strip of width 2a in the y-direction. For the moment, we restrict ourselves to
solutions that are symmetric in y; the case of non-symmetric fingers travelling closer
to one side than the other will be examined later. The process geometry is assumed to
be bidimensional. The extension to a three-dimensional geometry with axisymmetry is
straightforward. We consider first that the growth is limited by a Laplacian field valid
everywhere in the strip outside the finger. The normal gradient of this field vanishes
along the finger and on both sides of the channel. This condition is less restrictive
than it may appear: for hydrodynamic flows, it simply means that we choose the
finger frame as the frame of coordinates instead of the laboratory frame. We ask the
following question: What will be the relative width λ of the infinite finger, if it exists,
assuming that the Laplacian field diverges at +∞ as φ ' x. When the field diverges
linearly, it is always possible to rescale to this case by a convenient choice of the
units. We choose 2a as the unit length so the y-coordinate varies between + 1

2
(which

corresponds to the upper-side C1) and − 1
2

(the lower side C2, see figure 1). On the
finger Γ , both the Neumann and Dirichlet conditions are imposed. Because of these
two conditions applied simultaneously, we are faced with a non-trivial free-boundary
problem where the shape of the interface cannot be prescribed arbitrarily. Thus we
must solve

∆φ = 0 (2.1)

with n · ∇φ = 0 on Γ , on C1, and on C2. The Dirichlet condition on Γ depends on
the process. Generically, it concerns either the value of φ or its derivative φs with
respect to the arclength s, along the finger (here and subsequently, φ with a subscript
denotes its partial derivative in the direction given by that subscript; that convention
does not apply to other variables). Since the field is Laplacian, and since

∫
C
φn ds = 0

for any closed contour C , a conservation equation between far fields is obtained very
easily. Calling E the gradient of φ, one obtains

E−∞(1− λ) = E+∞ = 1, (2.2)

with E±∞ = φx at x = ±∞. Both E−∞ and E+∞ are directed along the x-axis and
perpendicular to the contours C3, C4 and C5 (see figure 1). This relation is simply the
conservation of the flux in hydrodynamics. More formally, it can be derived in the
following way: ∆φ = 0 means that

Re

[
∂2Φ(z)

∂z∗∂z

]
= 0, (2.3)

where Φ is the complex potential Φ = φ + iχ, z the complex spatial coordinate
z = x+ iy, and z∗ the complex conjugate.

The J-integral, when applied to Laplacian fields, can be obtained by a similar route.
Let us consider the analytic function (dΦ(z)/dz)2 = Φ′(z)2 where a prime means the
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C2

λ /2

–λ /2
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θ

Γ

x

y = –1/2

y = 1/2

Figure 1. The infinite finger propagating in an infinite channel. This geometry is common to the
viscous fingering case, the electromigration case and a bubble propagating into an isodensity and
inviscid fluid.

derivative with respect to the natural variable z, and use the relation

∂Φ′(z)2

∂z∗
= 0. (2.4)

Taking the real part of (2.4) one obtains the relation

1

2

∂

∂x
[(∇φ)2]− ∂

∂x
(φ2

x)− ∂

∂y
(φxφy) = 0, (2.5)

which, when integrated over a bidimensional domain containing no singularities gives,
with help of the divergence theorem, the path-invariant (and vanishing) J-integral as
in (2.7) below. One may also see, in two or three dimensions, that in a domain where
∆φ = 0,

∂

∂xα
[ 1

2
(∇φ)2δαβ − φαφβ] = 0 (2.6)

(which follows by rearrangement of (∆φ)(∇φ) = 0) giving a respective line or surface
integral version associated with each coordinate direction. The J-integral of fracture
mechanics also has a complex variable form for plane elasticity (Budiansky & Rice
1973). For other situations like three-dimensional-Laplacian growth with axisymmetry
where we cannot use the technique of analytic function theory, (2.6) suggests obvious
transformations.

After integration of (2.5) over the whole domain outside the finger, we can transform
the surface integral

∫
dx dy into a contour integral. For any closed contour C , one

obtains

JC =
1

2

∫
C

(φ2
s + φ2

n) dy −
∫
C

(φxφn) ds = 0. (2.7)

There exists another component of J in the two-dimensional case when we replace dy
with −dx and φx with φy; that is J forms a vector of two integrals in two dimensions,
with there being a third component in the three-dimensional case.

Alternatively, let us consider ∫
(φ2

x + φ2
y) dx dy (2.8)

or its three-dimensional generalization, the stationarity of which yields ∆φ = 0.
Applying the Noether theorem (Noether 1918, translated in Tavel 1971) to an invariant
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translational transformation in the x (or xα) direction (see Gunther 1962; Knowles
& Sternberg 1972 for examples in elasticity), one derives (2.7) and the integral(s)
associated with the other coordinate direction(s). This formulation has the advantage
of applying, in any number of dimensions, to any field resulting from a variational
principle with a translationally invariant Lagrangian density. The Lagrangian density
need not be a function of quadratic order in the field variables and their derivatives,
i.e. the resulting field equations need not be linear (the original applications in crack
theory were principally to nonlinear elasticity). Also, this route via the Noether
theorem, while not used in the discovery of the J-integral, has led to the discovery
of a further path-independent integral L when there is invariance under infinitesimal
rotation about a given axis and to yet another integral M when there is invariance
relative to a self-similar change of scale (see Gunther 1962; Knowles & Sternberg
1972; Budiansky & Rice 1973; Rice 1985). For example, in the two-dimensional case
of Laplacian fields, and a closed contour C that surrounds no singularities, these
additional integrals are

MC =
1

2

∫
C

(φ2
s + φ2

n)(x dy − y dx)−
∫
C

φn(xφx + yφy) ds = 0 (2.9)

and

LC = −1

4

∫
C

(φ2
s + φ2

n) d(x2 + y2)−
∫
C

φn(xφy − yφx) ds = 0. (2.10)

In three dimensions, there is one (scalar) M-integral, whereas L and J are vectors
of three integrals. The version of the M integral corresponding to two-dimensional
elasticity theory has been used to extract the strength of crack tip singularities
in various cases (Freund 1978; Ouchterlony 1978, 1980; Kubo 1982) and to solve
for configurational forces on dislocations (Rice 1985); we will apply the L- and
M-integrals here to two-dimensional vortex motion in inviscid fluids.

As a further example of such conservation integrals of use for fluid mechanics
problems, consider Stokesian flows of possibly nonlinear fluids, with the property
that the deviatoric components, τij , of the stress tensor σij = τij − pδij are given by
τij = ∂Ω/∂(∂Vi/∂xj), where the flow velocities are Vi, and Ω is some function of
the second and third invariants of ∂Vi/∂xj + ∂Vj/∂xi (for which the first invariant
vanishes by incompressibility). That includes the linear viscous case when Ω is chosen
proportional to the second invariant. The existence of Ω ensures that a variational
principle underlies the creeping flow problem. For all such fluids, when subjected to
uniform body force fields like gravity, there exist in three dimensions vectors of three
J-integrals and of three L-integrals, and if Ω is a homogeneous function of any fixed
degree in ∂Vi/∂xj (‘power-law fluid’) there also exists a scalar M-integral. These can
be found from the elastic J , L and M (Budiansky & Rice 1973; Knowles & Sternberg
1972) by using the well-known analogy between the equations of elasticity with
infinitesimal strains but possibly nonlinear stress–strain relations and the nonlinear
viscous fluid case. For example, in the two-dimensional case, a particular component
of J is, for a closed contour surrounding no singularities,

JC =

∫
C

[(Ω − ρgαVα) dy − (nασαβ∂Vβ/∂x) ds] = 0 (2.11)

where there is summation over x, y on the repeated indices α and β, and where ρ
is mass density, the gα are components of gravitational acceleration, and nα com-
ponents of the unit outer normal to C . We do not apply that result in the present
paper.
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In all cases when there are singularities within the domain, J , L and M take gener-
ally non-zero values which are the same for all contours surrounding the singularity
point or domain.

In the case of linear field theories, additional conserved integrals can be generated
based on a sum of two solutions to the governing partial differential equations,
Chen & Shield (1977). For example, in the case of Laplacian fields, if we write
φ(1+2) = φ(1) + φ(2), where both φ(1) and φ(2) are Laplacian, then by subtraction we
can identify

J
(1+2)
C − J (1)

C − J (2)
C =

∫
C

[(φ(1)
n φ

(2)
n + φ(1)

s φ
(2)
s ) dy − (φ(1)

n φ
(2)
x + φ(2)

n φ
(1)
x ) ds], (2.12)

which is conserved for all paths C surrounding any domain within which either φ(1)

or φ(2) has singularities, and is zero in absence of singularities. Later, we show an
example of this in deriving the Richardson (1972) moments in Hele-Shaw flows with
source points.

In our applications of (2.7) to fingering problems, most of the terms may vanish
because of φn. For instance, (2.7), when evaluated along C1 and C2 gives zero so
finally only Γ , C3, C4 and C5 contribute to the surface integral, to give∫ λ/2

−λ/2
φ2
s dy =

λ

(1− λ) . (2.13)

Here, the integral follows the profile of the finger; φs is evaluated on the finger at
height y. We have taken into account (2.2) for the calculation of (2.13) on C3 and
C4. This relation may be responsible for a strong selection process, as shown later
on. Although its derivation is rather simple and the geometry of the finger rather
common in pattern formation, it seems to have not been recognized in the literature
on interfacial fluid flow, unlike that on fracture. We now illustrate its application
to various instabilities. Since it represents a conservation law, the J-integral can
always be applied but it can provide useful information only when φ2

s dy = dF for
some function F defined along the finger and known at x = −∞. For example,
φ2
s = f(y) + g(θ) dθ/ds would be suitable to give λ.

3. Application to flows in Hele-Shaw cells
3.1. Saffman–Taylor fingering

Our first example is one for which it is indeed the case that we obtain a true
representation from the J-integral but no useful information in the sense of allowing
us to infer some important property of the solution without solving for the full field.
This emphasizes that the integral will not be helpful in all fingering problems.

The Saffman–Taylor instability occurs when a viscous fluid (oil) is pushed by a
less viscous one (air) in a Hele-Shaw cell. After a short time, a long finger appears
in an infinite cell with strip geometry. Due to the lubrication approximation (the
gap b between the two plates of the Hele-Shaw cell being small compared to other
characteristic lengths such as the finger or the channel width) the viscous flow
satisfies Darcy’s equation which, with incompressibility, gives rise to a Laplacian
velocity potential. If one neglects the surface tension, a continous family of exact
analytical solutions is known (Saffman & Taylor 1958), with all λ between 0 and 1
possible. For Hele-Shaw flows, the continuity of the normal velocity and Laplace’s
law of capillarity are the two boundary conditions to apply on the interface. As a
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consequence, in the finger frame, the velocity potential is given by φ − Ux, where φ
is the velocity potential in the laboratory frame which is proportional to the pressure
according to Darcy’s law and U is the finger velocity. Now, we apply the J-integral
to this case, knowing that, in dimensionless units,

φs = − 1

1− λ
[

dx

ds
− γd2θ

ds2

]
=

1

1− λ
[
cos(θ) + γ

d2θ

ds2

]
; (3.1)

θ is the angle made by the tangent to the interface with the x-axis. It varies from
1
2
π to π as s varies from 0 at the finger’s nose to ∞ in the tail; γ, the dimensionless

capillary number, is given by the ratio b2γ′/12µUa2, with γ′ the surface tension and µ
the viscosity, all these quantities having physical dimensions. Using (2.13), one obtains
a relation which is of little interest when one ignores the exact analytical profile since
the left-hand side of (2.13) cannot be computed explicitly, independently of the form
of the profile. When the profile is known, one can check that (2.13) is valid, as we
have verified from the solution family of Saffman & Taylor (1958). So in this context,
the J-integral provides no useful information. We understand that, in the absence of
surface tension, the interface shape can adapt to any λ and the J-integral is not a new
constraint. This is consistent with the existence of a continuum of solutions. As it is
now well established, addition of surface tension (Shraiman 1986; Hong & Langer
1986, 1987; Combescot et al. 1986; see Tanveer 2000 for a review) is necessary to select
λ, in agreement with the experiment (Saffman & Taylor 1958), which clearly shows
a unique finger once the physical parameters are fixed. The surface tension gives rise
to a subtle selection mechanism which has been the subject of many theoretical and
numerical works (Tanveer 2000). They show that λ is an increasing function of γ from
a lower threshold of 1/2.

3.2. Richardson moments

An infinite set of conserved integrals has been discovered by Richardson (1972) for
Hele-Shaw flows induced by injection of fluid at a point, and one might wonder
if there is a relation to the class of integrals discussed here. Richardson’s concern
is with simply connected blobs of fluid occupying a time-dependent domain with
zero pressure at their boundary. He shows that integrals

∫∫
zn dx dy, with z = 0 at

the injection point, are conserved for n = 1, 2, 3 . . . and, as is evident from mass
conservation, grow in proportion to the injection rate when n = 0. These are integrals
over a two-dimensional domain whereas the conserved integrals that we discuss here
are along a one-dimensional path within a two-dimensional domain. For further
discussion of this and related conservation integrals, see Richardson (1972, 1992),
Tanveer & Vasconcelos (1995), Cummings, King & Howison (1997), Crowdy &
Tanveer (1998) and Crowdy (1999).

Our two J-integrals, and L- and M-integrals, are independent of the path (but not
necessarily zero) for any contour C surrounding the injection point in Richardson’s
problem. We may apply (2.12) by letting φ(1) = φ(1)(x, y, t) be the solution to Richard-
son’s injection problem, for which the corresponding complex potential Φ(z) has the
form (Richardson 1972)

Φ(1)(z, t) = (Q/2π) log(z) + Φ(1)
reg(z, t), (3.2)

where Φreg is regular throughout the domain D(t) occupied by the fluid, and where
φ(1) = 0 (zero pressure) on the unknown outer bounding contour Co(t) of the domain.
We choose φ(2) = φ(2)(x, y) as a function which is regular everywhere within the
domain, and which satisfies no special boundary conditions, but does satisfy the
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condition φ(2)
x = 0 at the injection point z = 0. Since φ(2) is regular, J (2) = 0, and it is

easy to show (by shrinking the contour C onto the injection point) that J (1+2) = J (1).
Thus, when we recall that φ(1)

n = Vn, the normal velocity of the fluid boundary Co(t),
and that φ(1)

s = 0 and hence φ(1)
x = φ(1)

n dy/ds along Co(t), we obtain from (2.12)

0 = −
∫
Co(t)

φ(2)
x (x, y)Vn(s, t) ds. (3.3)

But we can write φ(2)
x = Re[Φ′(2)(z)] and recognize that Vn ds is just the local rate at

which the area of the domain D(t), occupied by the fluid, is swept out. Hence,∫
D(t)

Re[Φ′(2)(z)] dx dy = constant (3.4)

for every function Φ′(2)(z) which is analytic in the flow domain D(t) over the time
interval considered and which has a real part that vanishes at z = 0. Choosing
Φ′(2)(z) = zn, or izn, with n > 0, this provides a new derivation of Richardson’s (1972)
moment conservation.

We can also derive a less simple conservation result when a portion Cb(t) of the
outer contour Co(t) coincides with a fixed, impenetrable border of D(t), so that the
boundary condition changes from φ(1)

s = 0 on Co(t)−Cb(t) to φ(1)
n = 0 on Cb(t). Then

[φ(1)
x , φ

(1)
y ] = φ(1)

s [dx/ds, dy/ds] on Cb(t) and (2.12) shows, after a little manipulation,
that

0 = −
∫
Co(t)−Cb(t)

φ(2)
x φ

(1)
n ds+

∫
Cb(t)

φ(2)
y φ

(1)
s ds (3.5)

whenever φ(2) is regular in the domain D(t) and φ(2)
x = 0 at z = 0. The first integral

is the same as in (3.3) and this result will therefore lead again to the conservation
result as stated in (3.4) if we ensure, additionally, that φ(2) is yet further constrained
so that φ(2)

y = 0 along Cb(t) (so that the second integral vanishes). Thus for partially

blocked injection flows we obtain (3.4) for every function Φ′(2)(z) which is analytic in
the flow domain, satisfies Re[Φ′(2)(0)] = 0 and additionally satisfies Im[Φ′(2)(z)] = 0
on the portion of the blocking boundary which is touched by the flow domain over
the time interval considered.

3.3. Note on liquid injection into a three-dimensional porous medium

We briefly outline the extension of (3.4) to the analogous Darcy flow case of injection,
at a point and at a uniform rate, of liquid into an otherwise air-filled porous medium,
to grow a liquid blob in three dimensions. This uses the three-dimensional version of
the J-integral, for a pair of fields as in (2.12). We adopt the standard model that pore
pressure is constant at the boundary of the blob, and we neglect gravity. The latter is
acceptable when the injection rate is high, and/or the size of blob is small, and/or the
hydraulic conductivity of the pore fluid is small. The steps of the derivation follow
that of (3.4) above, extended to three dimensions in a straightforward way. Thus, one
proves that ∫

D(t)

u(x, y, z) dx dy dz = constant (3.6)

for every harmonic function u which is regular in the three-dimensional region D(t)
occupied by the blob up to the time of interest and which vanishes at the injection
point.
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4. The J-integral applied to electromigration
We call the drift of voids in a metal circuit due to the imposed electrical current

electromigration. When an electrical current passes through a thin metal film, collisions
between the conduction electrons and the metal ions lead to drift of the ions, in
the opposite direction to the electrical field. This effect combined with the natural
displacement of a positive charge in the direction of the electrical field gives an
ionic current which is inhomogeneous near a void. As a consequence, due to mass
conservation, the void moves in the direction opposite to the ions. So voids can
deform and travel all along the metal lines. Due to the continuing miniaturization of
integrated circuits, the metal lines or interconnects are subject to increasingly high
current densities. Under these conditions, electromigration can be responsible of the
failure of the circuit. This topic has been the subject of many publications (Arzt et
al. 1994; Suo, Wang & Yang 1994; Schimschak & Krug 1997, 1998; Mahadevan
& Bradley 1999) but only recently has the connection to the viscous fingering
instability been stressed (Ben Amar 1999; Cummings, Richardson & Ben Amar 2001;
Mahadevan & Bradley 1999). This seems to be the perfect example to illustrate the
selection by the J-integral on an interfacial free-boundary problem.

4.1. The two-dimensional infinite void in the strip geometry

We focus on the propagation of long voids (finger-shaped) in conducting thin film
having the shape of a strip. Due to the imposed current and to the electron wind,
the ions at the surface of the void drift. A numerical treatment (Ben Amar 1999) has
shown a surprising selection for the relative width λ in this case: λ = 2/3. This result is
obtained by integration of the interfacial equations derived after a standard classical
mapping in the complex plane. The model can include a ‘curvature-like effect’: when
a bump appears, a local diffusion of ions appears in the direction of the bump, in
order to prevent cusp formation. The 2/3-value is obtained in the absence of this
effect. Up to now, no theoretical treatment was able to explain the existence of a
unique solution. We show here that the J-integral offers a simple explanation.

The electric field, normalized to 1 at infinity is quasi-static so the electrical potential
φ satisfies Laplace’s equation. No current flows through the film edges (called C1 and
C2) or through the void contour so φn = 0 there. The void can move in some
direction when there is depletion of atoms. Depletion occurs when the current is
inhomogeneous in space near the void. Since it remains tangential, for any position
R on the void, due to mass conservation one has

n · dR

dt
= U

dy

ds
=

dJs
ds

=
d

ds

[
Mi

(
Z∗eEs − γ′′d

2θ

ds2

)]
(4.1)

with Z∗e the effective charge of the ion and Mi the ionic mobility. The subscript s
on J (the ionic current) and E means tangential quantities. The last term in (4.1) is
the stabilizing surface current which prevents cusp formation, like capillarity. Here
γ′′ is the surface tension (assumed isotropic) of the solid times the atomic volume.
Assuming steady propagation without change of shape along the x-axis, one can
perform an integration on (4.1) and obtain

φs − γd2θ

ds2
= Uy =

[
2

λ(1− λ)
]
y. (4.2)

Here U is the dimensionless void velocity, (2av)/(Z∗eMiE0), with v the steady void
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velocity in physical units and E0 the electrical field at plus infinity. U appears as an
eigenvalue fixed by the asymptotic relation (equation (2.2)).

In a first step, we neglect the capillary effect and note from (2.13) that the left-hand
side can be integrated at once to give

4

(λ(1− λ))2

λ3

12
=

λ

(1− λ) . (4.3)

This has the unique solution

λ = 2
3
, (4.4)

which explains the observations based on numerical solutions discussed above.
It is worthwhile recalling that all the standard methods of complex analysis like

the Hodograph methods with conformal mapping (Saffman & Taylor 1958; Taylor
& Saffman 1959; McLean & Saffman 1980) and Scharwz’s method failed to find this
result although they were very successful for the Saffman–Taylor problem even in
unusual contexts (see for example viscous fingering in the wedge geometry, Ben Amar
1991). It turns out that the boundary condition in (4.2) seems to be responsible for the
failure of such analytic function treatments since this condition breaks the ‘conformal
symmetry’: it balances the modulus of a complex function: ES = [Φ′(z)Φ′∗(z∗)]1/2

with y the imaginary part of z. As a consequence, conformal mapping techniques
like in Saffman & Taylor (1958) give a nonlinear equation, difficult or impossible
to solve. One can give another example where the traditional methods for solving
explicitly free-boundary problems fail: the Bernoulli equation for a bubble growing
in an inviscid and potential flow. This presents the same difficulty since it involves
the square of the velocity. We will come back to this example in § 6.

We can add, at least pertubatively, the capillary effect for electromigration. To
leading order in γ one obtains

λ = 2
3
− 6A0γ (4.5)

with A0 a positive coefficient depending on the exact solution with vanishing γ. This
solution is not known explicitly but it is not difficult to be convinced that

A0 =

∫ λ/2

0

y

[
d2θ

ds2

]
γ=0

dy (4.6)

is a positive quantity since the integrand is positive everywhere. So, if capillarity does
not destroy the solution (in other words, if a solution exists with capillarity) it acts as a
regular perturbation, contrary to the Saffman–Taylor case where it implies a singular
perturbation analysis. This result is in fact a direct consequence of the uniqueness
of the solution without surface tension. As a consequence, the deviation from 2

3
is

linear in γ while, for viscous fingering it deviates from 1
2

by a γ2/3 expansion (McLean
& Saffman 1980). From our study of a limited list of examples, the technique fails
to deliver a definitive value of λ in the cases for which surface tension is a singular
perturbation. Note that, for electromigration, an unphysical negative surface tension
gives a finger larger than 2

3
, which is in agreement with the numerics. However, a

positive surface tension decreases the asymptotic width of the finger and the numerics
indicate that the finger solution no longer exists since it is in the range of finite-length
bubbles.

4.2. Finite-size voids

The finger geometry is, probably, practically irrelevant, in electromigration, although
a finger can be seen as a model for half of a very long bubble. So in this part, we adapt
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the previous analysis to the more realistic case of finite voids in the electromigration
process (see figure 2). We will show that 2/3 is in fact the upper limit for the width of
a finite-size bubble. The area of a void in a metal is fixed by initial conditions or by the
initial phase of nucleation. During the drift, it remains a fixed parameter in a steady
or non-steady process according to (4.1). This seems to be found in experiments and
it is confirmed by molecular dynamic simulations (Singubara, Utsunomiya & Fuji
1995; Ohkubo, Hirotsu & Nikawa 1996). When travelling steadily along the x-axis,
in the absence of capillarity, the bubble has the symmetry x→ −x and y → −y. Let
us now apply the J-integral to a contour containing half of C5, the x-axis C6 (which
corresponds to ψ = 0, ψ being the equivalent of the stream function or the imaginary
part of the complex electrical potential w = φ + iψ so φy = 0), one-fourth of the
bubble from A to B, called Γ , the vertical line equivalent to C3 (we keep the same
notation) and finally the upper-side of the strip (see figure 2). As previously, only part
of the void (Γ ), the contours C3 and C4 contribute to the J-integral. Let us detail the
contribution of C3. The equivalent of (2.2) is∫ 1/2

λ/2

Ex dy = 1
2
E∞ = 1

2
Eav(1− λ) (4.7)

where Eav is the average of the electrical field which is normal by symmetry to C3.
Let us calculate JC3

(that is the J-integral applied to C3 following (2.7)):

JC3
= −1

2

∫ 1/2

λ/2

(Ex)
2 dy = −1

2

∫ 1/2

λ/2

[(Ex − Eav)2 + E2
av] dy. (4.8)

So one obtains the following inequality for bubble voids:

−JC3
6

1

4

1

(1− λ) (4.9)

and as a consequence JΓ is smaller than λ/4(1− λ). But JΓ is itself given in terms of
the electrical field at the top EB which is an unknown in the bubble case. However, we
know that the extrema of analytic functions are always on a border and intuitively,
one can guess from experience with electrostatics (e.g. Durand 1966) as well as with
potential flow that the maximum of Ex is at B, which is the top. So EB is greater than
Eav and we can conclude that

λ

12(1− λ)2
6 JΓ =

1

2

(
2EB
λ

)2 ∫ λ/2

0

y2 dy 6
1

4

λ

1− λ (4.10)

which proves that this 2
3

limit is an upper bound for the width of voids of finite area.
Since surface diffusion decreases the width, this result remains if one adds γ (Ben
Amar 1991).

4.3. Asymmetric patterns in electromigration

Here we consider voids travelling along the strip with constant velocity but which
are closer to one side than the other (figure 3). In this case the y → −y symmetry is
broken for the shape of the void, which allows in principle more degrees of freedom.
For simplicity, we restrict attention to infinite finger voids. We know that such patterns
exist in viscous flows. They have been found analytically in the case of vanishing
surface tension by Taylor & Saffman (1959). They are not seen in experiments except
if one perturbs the symmetry of a cell by adding a thread, for example Couder,
Gerard & Rabaud (1986). Indeed it has been proven that isotropic surface tension
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Figure 2. Finite-size bubble or void propagating steadily in a channel.
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Figure 3. Asymmetric finger.

destroys the double continuum set of solutions found analytically. But, in the radial
geometry, these solutions reappear even with isotropic surface tension. They are
of great interest because of the analogy between the diffusion process and radial
Hele-Shaw flow (Ben Amar & Brener 1996). Moreover, in numerical time-dependent
simulations of electromigration (M. Shelley 2000, personal communication) including
surface tension, it turns out that these non-symmetric solutions have been observed.

For initial data representing a bump at one side of the cell, after a transient regime,
a steady horizontal finger settles near the side where the perturbation began. Let us
apply the J-integral to this case in order to count the available degrees of freedom.
Remember that for viscous flow, this family of solutions has two degrees of freedom:
y0, some asymmetry parameter; and λ which measures the distance between the two
parallel asymptotes at −∞. For non-symmetric fingers, (4.2) must be transformed
since the nose of the finger is not on the central axis (see figure 3):

φs = U(y − y0) =
E+

y+ − y0

(y − y0) =
E−

−y− + y0

(y − y0) =
E+ + E−

λ
(y − y0) (4.11)

with E+ (resp. E−) the electrical field at −∞, close to the upper (resp. lower) side
of the strip, y+ (resp. y−) is the coordinate of the upper (resp. lower) asymptote of
the finger (see figure 3). From (4.11), one can calculate y+ and y− and keep only as
unknown variables y0, λ, E+ and E−. The flux conservation law, (2.2), gives

y0(E+ − E−) + λ

(
E2

+ + E2−
E+ + E−

)
=

(E+ + E−)

2
− 1, (4.12)
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while the J-integral gives, after some algebra (assuming γ = 0),

y0(E
2
+ − E2

−) + 4
3
λ

(
E3

+ + E3−
E+ + E−

)
=

(E2
+ + E2−)

2
− 1. (4.13)

So it may be that the asymmetry parameter y0 and the relative width λ are free
parameters and from our analysis we may think that there is a double continuum
of non-symmetric solutions, as for the viscous case. It will be interesting to see the
effect of surface tension on this kind of solution. Nevertheless, the lack of symmetry
gives obvious degrees of freedom, which are missing in the symmetric case, to satisfy
surface tension.

5. The J-integral in the three-dimensional geometry
Instabilities occuring in two dimensions, in the Hele-Shaw cell for example, can

also be observed in a tube. Nevertheless, the theoretical treatment may be rather
different. As an example, for the viscous fingering in a cylindrical tube, one has to
solve the three-dimensional Stokes equation instead of the Laplace equation resulting
from Darcy’s law. The treatment becomes tremendously difficult and often boundary-
layer analyses are preferred for the prediction of pertinent parameters (Bretherton
1961). The difficulty in this particular case is two-fold: the Stokes equation in the
presence of walls (here the tube) is a challenging problem even in two dimensions;
second the three-dimensional geometry forbids the use of complex analysis. On the
other hand the extension of the J-integral to the three-dimensional axisymmetric
case presents no difficulty. Physically, it is difficult to imagine the electromigration
process in the cylindrical geometry since it concerns thin metal films in printed
circuits, but we can imagine the same process in a conducting wire. We may imagine
also the following experiment: we force a finger-shaped void in a tube filled with
an electrolyte solution in circumstances for which gravity plays negligible role. We
can tune the physical parameters in order to suppress as much as possible the
hydrodynamic effects so the charges are driven only by the electrical current. We
impose an electrical current parallel to the tube. Its value at infinity is fixed to 1.
We may observe the migration of the bubble of relative radius r = λ due to the
existence of a current density. This possible experiment is somewhat similar to recent
works on thermocapillary migration of bubbles in tubes (Mazouchi & Homsy 2000,
2001; Lajeunesse & Homsy 2002): in this case bubbles are driven by a current of
matter induced by thermal change in the surface tension; the so-called Marangoni
effect. According to these authors, migration of bubbles in confined geometry is
rather generic and has applications in microchannels. So migration of bubbles by an
electrical current may be an alternative.

As previously, we define the electrical potential, which is a function of r and z if
the axisymmetry is preserved. The electrical current does not flow into the void so
En = φn = 0. The mass conservation (see (4.1)) in this case is modified due to the
cylindrical geometry:

n · dR

dt
= U

dr

ds
=

1

r

d(rJs)

ds
(5.1)

with s the arclength defined by ds2 = dr2 + dz2, which gives a similar equation for φs,

φs = 1
2
Ur =

[
2

λ(1− λ2)

]
r. (5.2)
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Equation (2.5) also has to be modified, like (2.6) which leads to

1

2

∂

∂z
(∇φ2)− ∂

∂z
(φ2

z)− 1

r

∂

∂r
(rφrφz) = 0. (5.3)

This equality is then responsible for a conserved quantity

JΣ =
1

2

∫
Σ

(φ2
s + φ2

n)2πr dr −
∫
Σ

(φzφn) dS = 0, (5.4)

where Σ is a closed surface. This relation can be found by integration of (2.6) over
the domain outside the void. On the void a simple calculation gives

JB = π
1

4

λ2

(1− λ2)2
, (5.5)

which must balance the contribution given by the vertical surface which closes the
fluid domain at −∞ and +∞:

π

2

λ2

1− λ2
. (5.6)

So finally one obtains for λ2, the relative area of the bubble compared to the tube,
λ2 = 1/2.

Although the selected value is different, the logic of the selection and the calculation
is the same as for the two-dimensional case. One may expect similar results for bubbles
of finite size in cylindrical geometry with an upper bound for width given by 1/

√
2.

6. The J-integral for inviscid flows
Due to the form of the J-integral, and of the Bernoulli relation which involves the

square of the velocity, and so φ2
s , inviscid fluid flows should be a good candidate

for an easy determination of the relative width. We will consider two cases, one with
gravity and the other without gravity.

6.1. Finger in a horizontal channel

We imagine the following situation: in an horizontal and infinite channel of width
h taken as unit length, we push an inviscid gas into an inviscid liquid. We suppose
that the channel is closed at x → +∞, so that the liquid velocity (in the laboratory
frame) is zero there, but that liquid can be displaced at x = −∞ to accommodate the
volume of the injected gas. For example, the vertical channel wall at x = −∞ may be
a movable piston through which we inject gas via a hole towards the top of the wall.
The channel is infinite in the transverse z-direction, so the description of the flow is
limited to the plane (x, y) (see figure 4). Since the gas (considered incompressible and
of negligible density) is much lighter than the fluid, it will travel in the cell along the
upper wall defined by y = 0 while the lower one is located at y = −1. The bottom
of the gas layer is at y = −λ. In real fluids, there may be a thin film between the
wall and the bubble, but we neglect it. We assume that the dynamics is steady and
irrotational, the interface evolving with a velocity Vi in the laboratory frame, which is
also our unit for velocity. The over-pressure in the gas is pi compared to the pressure
at +∞ on the cell upper surface at y = 0. Thus, in the laboratory frame the gas
velocity is Vi and the liquid velocity is 0 at +∞ but is −λVi/(1 − λ) at x = −∞, for
mass conservation. We work in the bubble, or finger, frame in which the gas velocity
is 0, and the liquid velocity is −Vi at +∞ and −Vi/(1− λ) at −∞. The fluid velocity
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is potential and, on the interface, we must satisfy the Bernoulli relation

1
2
v2 + γ

∂θ

∂s
+
y

F
= B (6.1)

with F the Froude number, a dimensionless gravity parameter given by V 2
i /gh, γ is

the capillary parameter given by γ′/ρlV 2
i h with ρl the liquid density; γ is the inverse

of the Weber number. The second term on the left-hand side of (6.1) represents the
pressure gap between the liquid just below the interface and pi, the pressure inside
the gas, divided by the fluid density. It must be negative. B is the Bernoulli constant
which holds everywhere in the fluid. The mass conservation gives the velocity of the
fluid at −∞ as v∞ = −1/(1−λ). Since the normal velocity in the finger frame vanishes,
we can easily apply the J-integral and we obtain for the bubble contribution, with
v = φs,

1

2

∫ 0

−λ
φ2
s dy = Bλ+

1

2F
λ2 − γ[cos(θ)]π0 = Bλ+

1

2F
λ2 + 2γ. (6.2)

θ, the angle between the tangent at the interface and the central axis, varies between
0 at −∞ and π in the case of a thin film between the wall and the gas. Otherwise,
it is limited by the contact angle value. It is important to notice that the J-integral
can treat the capillary term explicitly for inviscid flow. We can calculate the Bernoulli
constant B from the conditions at −∞ as

B =
1

2

1

(1− λ)2
− λ

F
, (6.3)

and hence write the bubble contribution of (6.2) as

λ

2(1− λ)2
− λ2

2F
+ 2γ. (6.4)

Finally taking into account the J-integral at both ends (on the contours C3 and C5),
one obtains

−
[

λ

2(1− λ)2
− λ2

2F
+ 2γ

]
− 1

2
+

1

2

1

1− λ = 0, (6.5)

1

(1− λ)2
=

1

F
− 4

γ

λ2
. (6.6)

Now recall that F = V 2
i /gh, but that Vi is not an experimentally specifiable

parameter. Rather, we could specify hQ, the volumetric rate of gas injection per unit
thickness. Since, in the finger frame, the movable partition at x = −∞ moves with
velocity −Vi/(1 − λ), the finger elongates at rate Vi/(1 − λ) and, since it has height
λh, Q = λVi/(1 − λ). Also, in terms of Q, γ is γ′λ2/ρlhQ

2(1 − λ)2. Thus the forgoing
solution is

1

(1− λ)2
=

ghλ2

Q2(1− λ)2
− 4γ′

ρlhQ2(1− λ)2
, (6.7)

which means that

λ =
√

(Q2 + 4γ′/ρlh)/gh, (6.8)

which expresses λ in terms of the injection rate. We see that when γ′ = 0, the maximum
rate for which the finger geometry is tenable (i.e. λ → 1) is Qmax =

√
gh. Also, when

we neglect surface tension, the solution for λ is simply λ = Q/
√
gh.
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Figure 4. Weightless bubble in inviscid flow.

The two most obvious effects of capillarity are to give a non-zero minimum width
λ at zero injection rate (Q→ 0)

λmin =
√

4γ′/ρlgh2, (6.9)

which would describe quasi-static enlargement of a finger-like bubble, and to limit
the maximum injection rate (for a finger-like solution to occur) to the value

Qmax =

√
gh(1− λ2

min), (6.10)

when λ → 1 and the channel is completely spanned by the finger. For sufficiently
small channel height h, namely h <

√
4γ′/ρlg, λmin cannot be greater than 1, and so no

finger-like solution can exist. Presumably, in that range, a quasi-statically enlarging gas
bubble touches both the upper and lower walls of the channel. To further understand
this solution, if it exists (we have not proven that it does), note again that the velocity
of the fluid in the finger frame at x = −∞ is −Vi/(1−λ) = −Q/λ. When γ′ = 0, this is
always equal to −√gh, independently of the injection rate. The local Froude number
there in the finger frame is thus Floc = [Vi/(1−λ)]2/g(1−λ)h = 1/(1−λ) = 1/

√
F > 1

where F is the Froude number at x = +∞ and we observe that since 1 − λ =
√
F ,

finger-like solutions can exist, if at all, only for F < 1.
We could equally have assumed that the channel end at x = −∞ where injection

occurs was fixed and that the end at x = ∞ was a movable partition, subjected to
the same force as before injection. Then, if Vi is again the interface velocity in the
laboratory frame, the velocities in the finger frame are −Vi at x = −∞ and −(1−λ)Vi
at x = ∞, and the injection rate is Q = λVi. In that case, we obtain, from conditions
at −∞, that B = 1

2
− λ/2F and the J-integral evaluation gives

−[λ/2− λ2/2F + 2γ]− (1− λ)2/2 + (1− λ)/2 = 0. (6.11)

Simplifying, in that case, we obtain

F = λ2/(λ2 + 4γ) (6.12)

(or just F = 1, independently of λ, when γ = 0). In terms of the injection rate Q = λVi
and γ = γ′λ2/ρlhQ

2 for this case, this again gives the same solution:

λ =
√
Q2 + (4γ′/ρlh)/gh. (6.13)
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6.2. Momentum interpretation of the J- and L-integrals

We note that in the inviscid fluid case, with irrotational flow, invariance with respect
to contour C of the J-integrals associated with the x- and y-directions may be
interpreted as statements of conservation of momentum. For example, neglecting
body forces and working in real physical units, we may write −p/ρ for 1

2
(∇φ)2 and

see that the J-integral associated with the x-direction is

ρJC = −
∫
C

p dy −
∫
C

ρVnVx ds. (6.14)

The equality of J for any two contours C1 and C2, which contain between them no
embedded body (like an airfoil) or other singularity, simply expresses that the pressure
force in the x-direction on the fluid between C1 and C2 equals the rate of change of
its momentum in the x-direction. If there is an embedded body (at the boundary of
which Vn = 0) then the two J-integrals, associated with the x- and y-directions, give
the x- and y-components of force/ρ (per unit thickness) acting on the body. This
result, when re-expressed in terms of the complex flow potential Φ(z), simply coincides
with the Blasius expression for lift and drag. Similarly, the L-integral relates to torque
of pressure forces and the rate of change of angular momentum, and coincides with
the Blasius torque expression, although we have found no classical interpretation of
the M-integral.

6.3. Propagating fingers in an inviscid fluid in the absence of gravity

We imagine the same experiment as previously but with two inviscid fluids with
the same density (or approximatively) in order to neglect gravity. In this case, the
propagation is expected to be along the axis of symmetry of the cell or of the tube.
Contrary to gravity, we assume that the capillary effects are not negligible. The frame
of coordinates is the same as in figure 1. With the help of the J-integral we will show
that we cannot find a finger-shape steady solution to this problem in two or three
dimensions, a result which may be considered as surprising. The fluid velocity inside
the finger Vi is uniform and equal to the interface velocity. In the frame of the finger,
the Bernoulli law is given by (6.1) with 1/F∗ = 0. Equation (6.2) also applies with

B =
1

2

1

(1− λ)2
.

So one easily derives the following contradictory relation:

1

2

λ2

(1− λ)2
+ 2γ = 0, (6.15)

which shows that the unique solution with vanishing width (λ = 0) is destroyed by
surface tension. The same calculation in the tube geometry gives the same answer.
The J-integral along the axisymmetric finger with surface tension included gives

πBλ2 + 2πγλ =
π

2

λ2

(1− λ2)2
+ 2πγλ =

π

2

λ2

1− λ2
(6.16)

using (5.6). In (6.16), we have taken into account that the curvature is given by

1

r

d

dr

rz′

(1 + z′2)1/2
(6.17)

in cylindrical coordinates, z′ being the first derivative of z(r) with respect to r.
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The conclusion is the same as for the two-dimensional case. The only solution
is λ = 0. Since infinite long bubbles cannot propagate steadily, let us now examine
finite-size bubbles. As previously all the calculations are made in the bubble frame.
The bubble keeps the symmetry y → −y but loses the symmetry x→ −x, so the right
and the left sides of the bubble are different. This is due to the surface tension effects.
So a priori we have two tips (A and A′) with negative curvature (κ1) but two tops (B
and B′) with curvature (κ2) symmetric with respect to the x-axis but not located at
x = 0. In this case the Bernoulli relation gives

1
2
φ2
s + γ

∂θ

∂s
= B = γκ1, (6.18)

which simply shows that the curvature at the top is larger in absolute value than that
at the tip. Using the theorem of an extremum of an analytical function we find the
following bound for the difference in curvature between tip and top:

1

2

1

(1− λ)2
6 γ(κ1 − κ2). (6.19)

It suggests that the bubble is perhaps more elongated along the y-axis than along the
x-axis.

Having integrated along the contour between B and B′, one obtains for the
J-integral

JB = γκ1λ+ 2γ. (6.20)

As for the finite-size voids of electromigration, this result has an upper bound:

JB 6
1

2

λ

(1− λ) . (6.21)

We cannot go further, but this analysis, which involves as degree of freedom the
curvature so the shape of the bubble itself, suggests that solutions may exist.

7. Some applications to vortices in two-dimensional flows
Some applications of path-independent integrals to straight vortex lines in

two-dimensional inviscid and otherwise irrotational flow fields are given here. Most
of these are well-known results which can be derived (Saffman 1992) by using the
integral representations of conservation of linear and angular momentum, with which
the J- and L-integrals coincide in that case. Other results, apparently new or little
known, have proofs that parallel applications of the path-independent integrals to
dislocation lines in two-dimensional elasticity (Eshelby 1951, 1956, 1970; Rice 1985).
Hence results are stated with little development. Again φ is the velocity potential
with V = ∇φ. Γ , which is not to be confused with its earlier use for the finger profile,
denotes the circulation (anti-clockwise) around a vortex line, and is conserved in the
flow. T is the kinetic energy of the flow field per unit thickness perpendicular to the
flow domain.

As for a dislocation line in two-dimensional elasticity, T becomes infinite in the line
vortex limit and is given by (ρΓ 2/4π) log(ro/ri) (Saffman 1992) where ro scales with a
characteristic size of the flow domain and ri is an inner cut-off radius, interpretable as
the radius of a small core of uniform vorticity. However, derivatives of T with respect
to the position of the vortex line are nevertheless finite and well-defined so long as Γ
and ri are the same for all positions considered. Let x = ξ, y = η be the momentary
position of the vortex line. The line will move in some way with the fluid but for
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the present we take the point of view that we can specify arbitrarily a momentary
position of the line and ask how T changes when we change that position, keeping Γ
and ri fixed. Assuming that contour C surrounds that line and no other singularities,
one may show that

ρJx = −∂T/∂ξ, ρJy = −∂T/∂η. (7.1)

These are analogous to the result that the configurational force on an elastic dislo-
cation line, which is defined as the rate of decrease of potential energy of a loaded
elastic system with respect to the dislocation position, is given by (Jx, Jy) for that case
(Eshelby 1951, 1956, 1970). By shrinking C onto the vortex line and evaluating the
integrals from the singular field which then dominates, one shows also that, when ri
approaches 0,

Jx = ΓV reg
y , Jy = −ΓV reg

x , (7.2)

where (V reg
x , V reg

y ) is the regular part of the velocity field at the vortex position, which
is also the velocity of the line in its natural motion. The same result is given by
Saffman (1992) when it is recognized that ρ(Jx, Jy) is his linear momentum integral,
and has an interpretation in anti-plane elasticity as the configurational force on a
screw dislocation line (in which case Γ corresponds to the Burgers vector and (Vx, Vy)
to the anti-plane components of shear stress).

Equation (7.2) shows that the vortex velocity (V reg
x , V reg

y ) is orthogonal to (Jx, Jy),
whereas (7.1) shows that the latter vector is directed along the gradient of the kinetic
energy. One therefore concludes that the natural motion of the vortex conserves
kinetic energy. The same can also be derived from the Hamiltonian structure of the
equations of vortex motion (e.g. Saffman 1992) in which case the time invariance of
the Hamiltonian, for fixed borders of the flow domain like we consider here, gives
the result. The net pressure force on those borders is given as ρ(Jx, Jy) and hence is
perpendicular to the momentary velocity.

Also, by direct evaluation on a contour C surrounding a vortex at (ξ, η), and shrunk
onto it, one finds that the path-independent integrals L and M of (2.10), (2.9), taken
relative to the coordinate origin at (0, 0), are

L = ξJy − ηJx = rJθ, M = ξJx + ηJy + Γ 2/4π = rJr + Γ 2/4π. (7.3)

The last term in M may be recognized as 1/ρ times the pre-logarithmic factor in
the kinetic energy expression, analogous to the result of Rice (1985) for a line elastic
dislocation. The polar coordinate notation denotes components of J along directions
that are parallel, for Jr , and perpendicular, for Jθ , to the line of length r from (0, 0)
to (ξ, η), and in terms of these directions, Jr = ΓV

reg
θ and Jθ = −ΓV reg

r .
As an elementary application, if the flow domain is a circular annulus between

concentric circles and C is chosen as the border of the domain, then it is immediately
obvious from (2.10) that L = 0. Thus (7.3) requires that Jθ = 0, hence confirming the
expected result that V reg

r = 0.
Suppose now that the flow domain is bounded by an infinite wedge with vertex at

(0, 0), and that the vortex line is distance r away at (ξ, η). Take C to start at distance
r1 < r from the vertex on one flank of the wedge, to continue along that flank to a
large distance r2 > r, then to follow a circular arc of radius r2 until reaching the other
flank, then to move in along that flank to radius r1, and finally to close as a circular
arc of radius r1. From (2.9) there is no contribution to M along the flanks, and none
from the circular arcs either, which can be seen by letting r1 approach 0 (the vertex
singularity is too weak to contribute to M) and r2 approach ∞ (the presence of the
wedge boundary makes the far velocity decay faster than 1/r). Thus M = 0, so that
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(7.3) yields Jr = −Γ 2/4πr. Combining that with Jr = ΓV
reg
θ then gives the unexpected

result that V reg
θ = −Γ/4πr for any wedge angle and any angular position θ within

the flow field. The result, analogous to one in elastic dislocation theory (Rice 1985),
may be checked by a conformal mapping solution.

When the wedge angle is π, in the form of a wall along the y-axis which bounds
the flow field, use of the Jy-integral for a contour C like that just considered shows
that Jy = 0 and hence that V reg

x = 0. The M = 0 result above then shows that
V reg
y = −Γ/4πξ, a result which may be checked by a simple image construction (e.g.

Saffman 1992).

8. Conclusion
As shown in this paper, the J-integral can be useful for predicting information

on the size of bubbles when the strip geometry is considered. This geometry is very
common in laboratories and is also relevant for microelectronics and micromechanics
(MEMS). Unfortunately many analytical treatments, that work in the infinite
geometry, fail in the strip geometry: this is so for the case of electromigration
(in spite of the analyticity of the field), of the Stokes’s equation which is biharmonic,
and of the diffusion equation. The J-integral is especially efficient for a certain class
of boundary conditions, the electromigration case giving the best illustration. This
restriction is in fact typical of free-boundary problems where a technique suitable
for one situation completely fails in another case. As an example, conformal map-
ping techniques McLean & Saffman (1980), Saffman & Taylor (1958) and Taylor &
Saffman (1959) have been shown to be efficient only for the isobaric interface. The
J-integral provides exact results for infinite voids and bounds for finite-size voids.
There are wider possibilities for applications to fluid phenomena as shown, e.g. by our
brief discussion of fluid injection into Hele-Shaw cells and vortex motion. Another
application (not done here) of this technique will be to solitary waves propagating
along boundaries if one is interested in bounds. This technique is not limited to the
examples treated in this paper, nor to problems which are harmonic or linear. Perhaps
one may think of a better choice for φ in order to derive new results.
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