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THE ROLE OF DEVELOPMENTAL GENETICS IN UNDERSTANDING HOMOLOGY
AND MORPHOLOGICAL EVOLUTION IN PLANTS

M. Alejandra Jaramillo1 and Elena M. Kramer

Instituto de Bioquı́mica Médica, Universidade Federal do Rio de Janeiro, CP-Rio de Janeiro, Brasil; and Instituto de Pesquisas Jardim
Botânico do Rio de Janeiro, Rua Pacheco Leão 915, 22460-030 Rio de Janeiro, Brasil; and Organismic and Evolutionary

Biology Department, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A.

Homology assessments are critical to comparative biological studies. Although gene expression data have been
proposed as instrumental for defining homologous relationships, several lines of evidence suggest that this type of
data can be misleading if used in isolation. The correspondence between the homology of genes and that of
structures is not simple, and conclusions can be derived only after careful examination of all available data. For
instance, the MADS-box gene family is one of the best-studied families of transcription factors, and it provides
several examples of dissociation between genetic and morphological homology. In this regard, we examine the
role of APETALA3 and PISTILLATA homologs in the development of petaloid organs, a feature thought to have
originated multiple times. We also consider the role of members of the AGAMOUS subfamily in the development
of the pistil, a character that originated only once. Additionally, we discuss how serial homology makes gene co-
option a very common phenomenon in plants. In spite of the multiple cases of this type of dissociation, com-
parative developmental genetics can yield other types of information that help assess homologies. Furthermore,
comparative gene expression studies provide useful data for dissecting the origin of morphological innovations
and are, therefore, key to understanding character evolution. Finally, we provide some guidelines for the critical
examination of comparative gene expression data in the context of studying morphological innovations.

Keywords: plant developmental evolution, homology, MADS-box genes, YABBY genes, orthology.

A Definition of Homology

The concept of homology was born in the realm of com-
parative anatomy (Owen 1848). Later, homology assumed a
central role in evolutionary theory as homologous features
were perceived as being derived from a common ancestor (re-
viewed in Panchen 1999). The concept of homology has pro-
voked many controversies and the production a large body
of literature from both a philosophical and a methodological
perspective (e.g., Patterson 1982; Roth 1984; Stevens 1984;
Wagner 1989; Sattler 1994). This controversy was further
complicated by the arrival of gene expression data (Bolker
and Raff 1996; Wray and Abouheif 1998; Wray 1999). The
many definitions of homology emphasize the importance of
either similarity or ancestry (reviewed in Donoghue 1992;
Laubichler 2000; Brigandt 2003). Here we adopt the homol-
ogy concept of Van Valen (1982, p. 305), who defined homology
as the ‘‘correspondence caused by a continuity of informa-
tion.’’ In terms of our current evolutionary standpoint, the in-
formation is primarily genetic, and the continuity is provided
by genealogy (Roth 1988). This general concept of continuity
of information allows us to account for both historical and se-
rial homology. Historical, or taxic, homology refers to fea-

tures present in two or more organisms that are derived from
corresponding features in their common ancestor (Mayr 1982).
Serial, or transformational, homology refers to the correspon-
dence of features within the same individual (Roth 1984).

The concept of serial homology is particularly important in
plants because they are masters of modularity. The basic
building block of the plant body is the phytomer (fig. 1), com-
posed of a lateral determinate organ, an axillary meristem,
and an internode (Bell 1991). These modules are produced re-
peatedly during the construction of the plant body, a continu-
ous process that starts only during embryogenesis (Walbot
1996). Diversity in plant morphology is generated by varying
many aspects of the phytomer, the most important of which is
the apical meristem identity program. Apical meristem iden-
tity, in turn, influences a wide array of characteristics, includ-
ing the identity programs expressed in the lateral determinate
organs, the activity of the axillary meristems, the relative posi-
tions of the lateral organs (referred to as phyllotaxy), and the
elongation of the internodes (Steeves and Sussex 1989).

The complete modularity of the plant body means that
much of plant diversity is derived from homeosis—changing
the positional deployment of a wide array of identity programs,
such as those controlling meristem or floral organ identity. Ac-
cording to Sattler (1994, p. 441), the common occurrence of
homeosis in plants ‘‘undermines two widely accepted tenets of
comparative morphology: (1) the importance of relative posi-
tion in the establishment of correspondence or (potential)
homology, and (2) the assumption that all correspondence be-
tween structures must be 1 : 1 correspondences.’’ For instance,
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although stamens usually are positioned between the sterile
organs and the carpels, they can also be located in the outer-
most whorl of the flower (Eupomatia; Endress 2003; Kim
et al. 2005a) or internal to the carpels (Lacandonia; Martinez
and Ramos 1989). Similarly, stamens vary enormously in
number between species (Endress 1994) and are rarely present
as morphological singulars (rare exceptions include orchids
such as Calypso bulbosa var. americana [R.Br.] Luer, which
produces a single flower with a single functional stamen; Luer
1975). Despite this, the homology of stamens across the an-
giosperms is unquestioned (Takhtajan 1991). Thus, homology
assessments in plants can be complicated by their high degree
of modularity and the flexibility with which identity programs
can be expressed. Baum and Donoghue (2002, p. 58) discuss
this phenomenon in detail and point out that ‘‘if all the genes
expressed in the petal of an ancestor came to be expressed in
a position that was previously occupied by a sepal . . . , the
resulting structure would share genetic identity with a petal
while showing positional homology to a sepal.’’ Alternative
terms have been suggested in the literature for such conflicts,
including homocracy (Nielsen and Martinez 2003), which is
intended to describe structures that are organized through the
expression of identical patterning genes. As more information
concerning the genetic control of plant identity programs be-
comes available, it is increasingly apparent that homology
assessment in plants requires explicit consideration of the dis-
sociability that exists between position and identity (Albert
et al. 1998; Baum and Donoghue 2002; Hawkins 2002).

Beyond the morphological, however, it is also important to
remember that homology, as a biological property, can be ex-
amined at other hierarchical levels, particularly the homology
of individual genes and genetic pathways (Bolker and Raff
1996; Abouheif 1997; Hall 1999). When we consider the
evolutionary relationships among genes, we refer to genetic
homology (Hall 1999). This can further be distinguished into
orthology, the relationship between loci that have been inher-
ited through the common descent of species, and paralogy,
the relationship between loci that were derived from a gene
duplication event (Fitch 1970). The next hierarchical level of
homology reflects the inheritance of modular genetic path-
ways, which is sometimes referred to as process homology
(Abouheif 1999; Gilbert and Bolker 2001). The correspon-
dence among these hierarchical levels is not always direct,
and there are many cases of evolutionary dissociation that
have been widely discussed in the animal evo-devo literature
(e.g., Bolker and Raff 1996; Abouheif 1997; Holland 1999;
Wray 1999; Mindell and Meyer 2001). The relation between
the homology of genes and morphology in plants is equally
complex because of the common occurrence of gene dupli-
cations and spatial shifts in gene expression that decouple
topological correspondence (position) from morphological
similarity (identity) as evidence for the homology of morpho-
logical structures. In this review, we present examples to il-
lustrate each of these issues in turn and thereby seek to make
the case for the consideration of all these hierarchical levels
in the context of botanical studies.

Diversification of a Homologous Identity Program
through Gene Duplication: One-to-Many Comparisons

A common expectation is that homologous genes should
be expressed in homologous structures (Roth 1984). Consis-
tent with this supposition, early studies of the genetics of flo-
ral organ identity in the eudicot model species Arabidopsis
and Antirrhinum (Carpenter and Coen 1990; Bowman et al.
1991) suggested that homologous genes function in a very
similar manner in both of these species. Detailed characteri-
zation of mutants exhibiting homeotic transformations of flo-
ral organ identity served as the basis of the ABC model of
flower development (Coen and Meyerowitz 1991). Under
this model, sepal identity is encoded by the A function alone,
petal identity by Aþ B, stamen identity by Bþ C, and carpel
identity by C alone (fig. 2A). Mutants in each class exhibit
homeotic transformations of organ identity in two adjacent
whorls; for instance, B mutants have petals transformed into
sepals and stamens into carpels (Bowman et al. 1989). The
genes corresponding to these classes have been well charac-
terized and in Arabidopsis are represented by APETALA1
(AP1) and APETALA2 (AP2) in the A class, APETALA3
(AP3) and PISTILLATA (PI) in the B class, and AGAMOUS
(AG) in the C class (fig. 2B; Bowman et al. 1989, 1991). All
but one of these genes are members of the pan-eukaryotic
MADS-box family of transcription factors (reviewed in
Theissen et al. 2000), the exception being AP2. Further char-
acterization of the MADS-box family in Arabidopsis has led
to the recognition of a fourth major class of organ identity
genes, the E-class, or SEPALLATA, genes (SEP1–4), which
facilitate the functions of the original organ identity loci

Fig. 1 Photo illustrating a phytomer composed of a determinate

lateral organ, an axillary meristem, and an internode.
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(fig. 2B; Pelaz et al. 2000; Honma and Goto 2001; Ditta et al.
2004). The A-, B-, and C-class mutants from among the core
eudicot model species show very similar morphologies (re-
viewed in Theissen and Saedler 1999). However, now that we
have a more thorough understanding of MADS-box gene phy-
logeny, we see that the orthology of the genes and their func-
tional evolution are not so simple. In particular, multiple
intervening gene duplication events have resulted in a lack of
one-to-one correspondence among the genetic systems of
model species.

A good illustration of this phenomenon is the B-class ho-
mologs, which exhibit a dissociation of their petal and stamen
identity functions in some taxa. The B-class genes of Arabidop-
sis, AP3 and PI, and their respective orthologs in Antirrhinum,
DEFICIENS (DEF) and GLOBOSA (GLO), represent two
major lineages of the MADS-box gene family (fig. 3A; Kramer
et al. 1998). Their gene products function as obligate heterodi-
mers to promote both petal and stamen identity in developing
flowers (Jack et al. 1994; McGonigle et al. 1996; Riechmann
et al. 1996). The lineages themselves are closely related, hav-
ing been derived from a gene duplication that predates the di-
versification of the angiosperms (Purugganan et al. 1995; Aoki
et al. 2004; Kim et al. 2004; Stellari et al. 2004). Within the
individual AP3 and PI lineages, there have been many inde-
pendent gene duplication events (Kramer et al. 1998, 2003;
Tsai et al. 2004; Stellari et al. 2004; Aagaard et al. 2005). Per-
haps most notably, the AP3 lineage experienced duplication
near the base of the core eudicots to give rise to the distinct
paralogous euAP3 and TM6 lineages (fig. 3A; Kramer et al.
1998). Both AP3 itself and DEF are representatives of the
euAP3 lineage, and no TM6 ortholog has been characterized
in the two primary model species. In contrast, the eudicot
model Petunia retains both ancient paralogs: PhTM6 and
PhDEF, the genetic ortholog of AP3 (fig. 3A; Kramer et al.
1998; Vandenbussche et al. 2004). Additionally, Petunia pos-
sesses two PI paralogs, PhGLO1 and PhGLO2, that are the
result of a recent duplication event (fig. 3A). Thus, the B gene
complement of Petunia is double that of Antirrhinum or Arabi-
dopsis. The retention of these paralogs has been accompanied
by divergence in both biochemical and developmental aspects
of gene function. The expression of PhTM6 is restricted to the
third and fourth whorls of the Petunia flower, and genetic evi-
dence suggests that, unlike typical B-class genes, PhTM6 is

necessary for stamen development but does not seem to be
involved in petal development (Vandenbussche et al. 2004;
M. Vandenbussche and T. Gerats, personal communication).
This shift in developmental function may represent a subfunc-
tionalization (Force et al. 1999) or could reflect the original
function of the ancestral paleoAP3 lineage predating the
euAP3/TM6 duplication (Lamb and Irish 2003; Vanden-
bussche et al. 2004). The recent PI paralogs also exhibit al-
tered biochemical function in that PhGLO2 appears to prefer
interacting with PhTM6 rather than PhDEF (Vandenbussche
et al. 2004). These data suggest that the simple picture of
B-class gene function as described for Arabidopsis and Antir-
rhinum is not strictly conserved, even across the eudicots, and
they highlight the complex association between homologous
structures and the genes underlying their development. Sta-
mens in Arabidopsis, Antirrhinum, and Petunia are unques-
tionably homologous structures, but over the course of
evolutionary time, their genetic control has experienced what
is termed developmental system drift (DSD; True and Haag
2001). While stamen identity is controlled by two genes in
Arabidopsis and Antirrhinum, in Petunia it is promoted by
four genes, two ancient and two recent paralogs (fig. 3B).
This situation is likely to be mirrored in the basal eudicot
family Ranunculaceae (Kramer et al. 2003), as well as in
other taxa that exhibit duplicate copies of AP3 and/or PI
(Tsai et al. 2004; Aagaard et al. 2005). As more comparative
evidence becomes available across gene lineages, we will see
additional cases of complex one-to-many and many-to-many
relationships among important developmental loci. While such
findings do not undermine the homology of deeply conserved
structures such as stamens, they do indicate that simple ho-
mologous relationships among their developmental programs
cannot be taken for granted.

Diversification of a Homologous Identity Program
through Gene Duplication: Paralogous Genes

and Homologous Morphology

Another case of gene duplication events that complicate
comparisons among model species is that of the primary
C-class genes in Arabidopsis and Antirrhinum, AG and PLENA
(PLE), respectively. Both genes control the identity of the

Fig. 2 A, Schematic representing the ABCE model for Arabidopsis. B, Same model as in A, showing the Arabidopsis genes corresponding to
each class. SEP ¼ sepal, PET ¼ petal, STA ¼ stamen, CAR ¼ carpel.
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fertile organs (stamens and carpels), as well as flower meri-
stem determinacy (Bowman et al. 1989; Bradley et al. 1993).
Similar to euAP3/TM6, the AG lineage duplicated close to the
base of the core eudicots to produce paralogous lineages that
are represented by AG and PLE (fig. 4; Kramer et al. 2004;
Causier et al. 2005). Therefore, these loci, previously treated
as orthologs based on the inappropriate evidence of their
functional and sequence similarity, are actually paralogous.
Arabidopsis does possess orthologs of PLE, the recently
duplicated SHATTERPROOF1 and SHATTERPROOF2
(SHP1/2) loci. These genes are responsible for specifying tis-
sues that are unique to the silique fruit of the Brassicaceae
(Liljegren et al. 2000) and promoting aspects of carpel and
ovule identity, for which they are partially redundant with
other AG-like genes (AG and SEEDSTICK; Favaro et al.
2003; Pinyopich et al. 2003). Likewise, Antirrhinum has an
AG ortholog, the gene FARINELLI (FAR), but this locus pri-
marily functions in stamen identity and development (Davies
et al. 1999; Causier et al. 2005). Petunia hybrida has also re-
tained orthologs of both gene lineages, pMADS3 and FBP6,
which contribute to reproductive organ identity and floral
meristem determinacy (Kapoor et al. 2002). Thus, in each of
these core eudicot model species, homologous fertile organs
are produced by different combinations of paralogous mem-
bers of the same MADS-box gene subfamily.

Given these findings, in addition to those regarding expres-
sion and function of basal AG homologs (reviewed in
Kramer et al. 2004; Causier et al. 2005), the most parsimoni-
ous model is that the ancestral functional repertoire of the
AG lineage encompassed stamen and carpel identity, floral
meristem determinacy, and, most likely, some contribution to
fruit and ovule development. Following the euAG/PLE dupli-
cation event, these functions were independently divided be-
tween the two paralogous lineages during the diversification
of the core eudicots. As a result, the paralogous AG and PLE
inherited their similar functions from a common ancestor.
This fact illustrates the point made by Theissen (2002) that
orthology determinations do not rely on similarity of func-
tion but rather are a matter of phylogenetic relationships. Gene
expression patterns, sequence similarity, and the capacity to
complement mutant phenotypes are, likewise, not criteria for
demonstrating orthology (Abouheif et al. 1997). Further-
more, it often requires increased sampling to fully understand
phylogenetic relationships due to instances of gene loss (such
as TM6 in Arabidopsis) or intervening gene duplications
(such as PhGLO1/2 in Petunia).

Understanding the evolution of gene function within the
context of gene lineage evolution can be difficult, and several
authors have pointed out the problems inherent in the con-
cept of functional homology (Bolker and Raff 1996; Abou-
heif et al. 1997). In morphological terms, the function of a
structure cannot be considered homologous because it cannot
be inherited, which is a fundamental criterion for homology
assessment. From the genetic perspective, the argument has
been made that because gene functions are in fact heritable,
they can be shared due to common ancestry and therefore can
be homologous (Mindell and Meyer 2001). One difficulty with
this concept is that genetic functional repertoires tend to be
highly changeable. Again, the AG subfamily can be taken as a
good example. Overall, there does appear to be a conserved

Fig. 3 A, Simplified phylogeny of the AP3/PI subfamily of MADS-

box genes (Kramer et al. 1998; Stellari et al. 2004). Gray ovals

indicate ancient duplication events. The AP3 lineage is composed of
three major sublineages known as euAP3, TM6, and paleoAP3. The

first two are restricted to the core eudicots, while the last is found

outside the core eudicots. The PI lineage is shown as a single clade.
The Arabidopsis and Petunia representatives of each lineage are

shown (see text for references). Asterisks indicate paralogs due to

recent duplication events. B, Modification of the ABC model for

Petunia, with emphasis on the genes involved in B function. The
model illustrates the floral whorls, numbered starting with the

outermost: W1 (sepals), W2 (petals), W3 (stamens), and W4 (carpels).

It should be noted that although PhTM6 is expressed in the fourth

whorl, it remains to be determined whether it plays a developmental
role there.
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functional repertoire across the subfamily. However, over the
course of evolutionary time, this collection of functions has
been differently parsed among the multiple AG-like paralogs.
The result is a shifting pattern of functional evolution where
new functions may be added just as others are lost. For in-
stance, within the AG subfamily, there are multiple apparently
independent derivations of paralogs with ovule-specific expres-
sion patterns (Kramer et al. 2004; Di Stilio et al. 2004). Al-
though the majority of the functions represented by AG-like
genes may be homologous in the sense of being derived via in-
heritance from a common ancestor, distinguishing where func-
tional homology starts and ends is a difficult matter.

Serial Homology and Elaboration via Gene Co-Option

Plant lateral organs—leaves, sepals, petals, etc.—are seri-
ally homologous. Regardless of their identity, they share
common genetic pathways that are responsible for producing
a flattened lateral organ. This differentiation of upper (adax-
ial) and lower (abaxial) surfaces is due to the activity of spe-
cific sets of genes acting on each side of the organ (reviewed
in Bowman et al. 2002). Adaxial identity is determined by
members of the class III HD-ZIP transcription factor family,
particularly PHABULOSA (PHB), PHAVOLUTA (PHV),
and REVOLUTA (REV) (McConnell and Barton 1998;
McConnell et al. 2001; Emery et al. 2003). Abaxial cell iden-
tity is determined by the combined and partially redundant
action of members of the KANADI and YABBY families
(Bowman and Smyth 1999; Sawa et al. 1999; Kerstetter et al.
2001). As with the MADS-box gene family, these loci have
experienced multiple gene duplication events, resulting in
patterns of genetic redundancy combined with novel func-
tions. Of particular interest is the Arabidopsis YABBY gene
CRABS CLAW (CRC), which functions in both carpel and

nectary development (Alvarez and Smyth 1999; Bowman and
Smyth 1999). Considering how these functions may have
evolved within the CRC lineage provides some insight into
the phenomenon of genetic co-option in plants. First, we ex-
amine CRC’s role in carpels, which most likely represents a
specialization derived from the family’s ancestral function in
the development of lateral determinate organs. In Arabidop-
sis, crc mutants exhibit a slight loss of floral meristem deter-
minacy and defects in stylar development (Alvarez and
Smyth 1999; Bowman and Smyth 1999). This role in carpel
development appears to be largely downstream of the multi-
ple AG paralogs that promote carpel identity in Arabidopsis
(Lee et al. 2005a). In contrast, the rice ortholog of CRC, a
gene called DROOPING LEAF (DL), has much more severe
affects on development (Yamaguchi et al. 2004). Analysis of
several dl loss-of-function alleles demonstrates that DL is the
primary promoter of carpel identity in rice and also plays a
major role in floral meristem determinacy (Yamaguchi et al.
2004). These findings suggest that important aspects of C
function have shifted not only among AG paralogs but also
between unrelated transcription factors that participate in
the same genetic pathway. Functional analyses of the AG-like
genes in rice, two paralogs known as OSMADS3 and
OSMADS58, indicate that the function of DL in promot-
ing carpel identity is independent of these loci, although
OSMADS58 also contributes to some aspects of carpel devel-
opment (Yamaguchi et al. 2006). Again, these results in no
way negate the homology of Arabidopsis and rice carpels but
suggest that genetic contributions to their development vary.

Aside from this deeply conserved association with carpel
development, both CRC in Arabidopsis and DL in rice ex-
hibit what appear to be independently acquired functions. As
mentioned above, CRC is important for nectary development
in Arabidopsis. A recent comparative study of several core
eudicot taxa indicates that this function is conserved not only
across the Brassicales but also through the closely related
Malvales and even the more distantly related Solanales (Lee
et al. 2005b). These are very notable findings, given that the
nectaries in question differ substantially in structure and po-
sition and had generally been considered to be independently
derived (Fahn 1953, 1979). Analysis of the basal eudicot
Aquilegia, however, does not show an association between
CRC ortholog expression and nectary development (Lee
et al. 2005b). This leads to the conclusion that CRC may
have acquired an important role in secretory tissue specifica-
tion before the diversification of the core eudicots. Of course,
rice does not have nectaries, but DL does exhibit a unique
expression domain, being localized to the developing midribs
of vegetative leaves (Yamaguchi et al. 2004). This correlates
with the drooping leaf phenotype of dl mutants, which lack
proper midrib development. Furthermore, DL overexpres-
sion results in the ectopic formation of midrib-associated
cells throughout the leaf blade. It remains to be determined
whether this role in vegetative leaf development is generally
conserved in other CRC orthologs or is perhaps characteristic
of the distinct leaf type found in the grasses.

Overall, the diverse developmental roles exhibited by
members of the YABBY family, both conserved and derived,
exemplify how the high modularity of the angiosperm body
plan has facilitated the co-option of genes and gene networks

Fig. 4 Simplified phylogeny for the AG lineage (Kramer et al.

2004). Gray oval indicates the gene duplication event within the basal
eudicots that gave rise to the core eudicot euAG and PLE lineages.

The Arabidopsis, Antirrhinum, and Petunia representatives of each

lineage are shown (see text for references). Asterisk indicates a paralog

due to recent duplication events.
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for different roles in different organ types. Furthermore, we
now know that genetic co-option can occur between struc-
tures that are not serially homologous. Most notably, the
expression of meristem identity genes in diverse and indepen-
dently derived compound leaves indicates that there may be
a predisposition for certain co-option events (Bharathan
et al. 2002). Perhaps the most surprising instance of genetic
co-option to date is that of the AP3 and PI paralogs of al-
falfa, which appear to have been recruited to play a role in
root nodulation (Heard and Dunn 1995; Heard et al. 1997).
This example underscores the fact that genes such as AP3 or
CRC are just transcription factors and, ultimately, can be
plugged into various genetic pathways to fulfill any conceiv-
able developmental function.

Homology: Evidence from Identity versus Position

As authors begin to make comparisons across wider phylo-
genetic distances in the angiosperms, many studies become
entangled in the distinction between correspondence of posi-
tion and correspondence of identity. This is particularly true
in regard to the evolution of the perianth and homologs of
the AP3 and PI gene lineages. The perianth takes an enor-
mous diversity of forms and varies in organ number, whorl
number, phyllotaxy, and differentiation of organs (fig. 5).
Cladistic analyses indicate that early angiosperm lineages did
possess petaloid organs that were most likely arranged in
whorls, but whorl number is unclear, and differentiation into
sepals and petals likely evolved several times independently
(Zanis et al. 2003). In Arabidopsis, the establishment of petal
identity relies on the expression of AP3 and PI in the second-
whorl floral primordia (Jack et al. 1992; Goto and Meyerowitz
1994), and, in consequence, ap3 and pi mutants have sepal-
oid organs in place of petals (fig. 6A). Furthermore, these
genes need to be expressed in every cell of the developing
petal in order to confer petal identity (Jenik and Irish 2001).
Studies across the angiosperms have repeatedly found a cor-
relation between the expression of AP3 and PI homologs and
the development of petaloid organs. There are notable excep-
tions, however, two of which we consider in detail.

The first is that of the lodicule in grass flowers. Lodicules
are nonpetaloid organs found in a position that appears to
correspond to the second whorl of an Arabidopsis flower.
The maize AP3 and PI homologs, SI1 and ZMM16, respec-
tively, are expressed together in the lodicules and stamens
(fig. 6B; Ambrose et al. 2000; Whipple et al. 2004). Func-
tional studies of these loci and their rice orthologs demon-
strate that they are required for lodicule and stamen identity
in a manner consistent with B gene function (Kang et al.
1998; Ambrose et al. 2000; Nagasawa et al. 2003). In addi-
tion, like AP3 and PI, SI1 and ZMM16 appear to function
as obligate heterodimers and are able to bind to CArG boxes
in vitro (Whipple et al. 2004). Consistent with these data, it
has been found that SI1 and ZMM16 can largely substitute
for AP3 and PI function in Arabidopsis (Whipple et al.
2004). This type of experiment must be interpreted with
great care, however. Heterologous expression essentially rep-
resents a kind of site-directed mutagenesis experiment that
determines whether the sequence differences between, for ex-
ample, SI1 and AP3, reduce the ability of SI1 to substitute

for AP3 function in the genetic architecture of Arabidopsis.
In the specific case of SI1 and AP3, great care was taken to
use the endogenous promoter, which is preferable to using a
constitutive promoter. However, the transgenic lines analyzed
contained seven to 11 copies of the trangenes and expressed
two to five times the normal level of AP3 transcript. This in-
creased expression level may have affected protein interac-
tion kinetics and would be expected to increase the level of
what may have otherwise been poor protein interactions.
These issues aside, it remains true that these levels of SI1 and
ZMM16 were able to rescue many aspects of AP3 and PI
function. What is the significance of this finding? For one, it
clearly underscores the sequence conservation between the
homologous loci despite their considerable phylogenetic dis-
tance and multiple intervening gene duplications. This does
not mean, however, that the downstream targets of SI1 and
ZMM16 in their endogenous setting are the same as those of
AP3/PI in Arabidopsis, particularly in regard to petal versus
lodicule identity. It has been well established that the binding
specificity of transcription factors is largely dependent on
both their associated proteins and the sequence of the target
promoters (reviewed in Wray 2003). The ability of the SI1/
ZMM16 dimer to produce petaloid tissue is a product of the

Fig. 5 Examples of diverse types of petaloid organs across the

angiosperms. A, Nymphaea rubra (Nymphaeaceae), a member of one

of the basalmost lineages of angiosperms, has several whorls of

petaloid organs. B, Thumbergia grandiflora (Bignoniaceae), like many
Asteridae, has a synpetalous corolla. C, Crinum procerum (Liliaceae),

a monocot, and (D) Amherstia nobilis (Fabaceae), a eudicot, have

petaloid organs in both first and second floral whorls. This condition

is common in members of the Liliaceae but rare in the Fabaceae, with
most species exhibiting a dichogamous perianth. E, Bouganvillea
spectabilis (Nyctaginaceae), a eudicot, and (F) Spathiphyllum walilisi
(Araceae), a monocot, have petaloid bracts subtending the inflores-

cences.
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Arabidopsis genome, which provides the cofactors that are
expressed in the second whorl and the targets that possess
appropriate CArG elements. In their natural setting, SI1 and
ZMM16 are likely to interact with a distinct set of proteins
and target loci, some of which are unique to the grass lodi-
cule identity program. Given the rapid evolution of promoter
sequences, there is little expectation that promoter elements
and their associated target loci would remain invariantly con-
served over long evolutionary time spans.

What has been clearly established is that SI1 promotes lodi-
cule identity, most likely in conjunction with ZMM16. It is
also reasonable to conclude that lodicules are second-whorl
organs (for morphological as well as molecular reasons) and
that their identity program was derived from an ancestral
petal identity program. This apparent transition from an an-
cestral second-whorl organ expressing a petal identity pro-
gram to a similarly positioned organ possessing lodicule
identity is analogous to the evolution of dipteran halteres
from ancestral hindwings (reviewed in Gibson 1999). In that

case, it has become clear that the Ubx gene is expressed in
both butterfly hindwings and dipteran halteres, but there are
significant differences in target gene regulation, despite high
conservation in protein sequences. Likewise, when we con-
sider the character of second-whorl organs, Arabidopsis
petals and Zea lodicules may have positional correspondence,
and they may further express identity programs that are de-
rived from a commonly inherited pathway, but their end char-
acter states as petals and lodicules are morphologically and,
most likely, genetically distinct. One interesting aspect of this
scenario is that it remains to be determined how the second-
whorl position of floral primordia is controlled independent
of the organ identity genes. For example, functional dissection
of the AP3 promoter in Arabidopsis has shown that the petal-
specific regulatory element is actually a whorl two-specific ele-
ment that must be responding to whorl two-specific factors
(Hill et al. 1998). It is possible that the common expression of
AP3 and SI1 in second-whorl organs represents a deep conser-
vation of this regulatory pathway (Kellogg 2004).

Fig. 6 Diagrams representing the floral morphology and AP3/PI homolog expression patterns in (A) the model eudicot Arabidopsis (Jack et al.

1992); (B) a model monocot, Zea (maize) (Ambrose et al. 2000; Whipple et al. 2004); and (C) a basal angiosperm, Aristolochia manshuriensis
(Jaramillo and Kramer 2004). Drawings in the top row represent longitudinal sections of flowers, with the colored areas representing the

expression domains of the AP3 and PI homologs from each species. Floral diagrams in the middle row use color to indicate how these expression

domains relate to the floral organs. In the bottom row, photos of each flower are provided for morphological comparisons.
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The second case we consider revolves around the issue of
spatial deployment of identity programs, specifically in the
magnoliid dicot Aristolochia. Unlike that of Arabidopsis or
grass flowers, the Aristolochia perianth is composed solely of
the calyx (first whorl) and is highly modified to form a trum-
petlike structure that displays both petaloid and nonpetaloid
characteristics. Petaloid characteristics, such as a bright color
and a smooth epidermis, are restricted to the flower limb (fig.
6C). Conversely, the epidermis of the interior of the perianth
tube has nonpetaloid characteristics, including trichomes and
stomata (Jaramillo and Kramer 2004). The AP3 and PI ho-
mologs of Aristolochia manshuriensis are expressed in the
first-whorl calyx, but the expression is restricted to the non-
petaloid tissue of the perianth tube (Jaramillo and Kramer
2004). Therefore, this is a situation in which, arguably, petal-
oid first-whorl organs express AP3/PI homologs but do not
appear to use these genes in the production of petaloid tissue.
Just as the lodicule study demonstrated that AP3/PI can pro-
duce nonpetaloid sterile organs, the Aristolochia results dem-
onstrate that petaloid tissue can develop without the direct
contribution of these genes. Under the terminology of Baum
and Donoghue (2002), this would qualify as nonhomologous
transference of function: the calyx has taken over attractive
functions from the corolla, but this was not accomplished
through homeosis. Furthermore, when considered in combi-
nation with additional studies that have documented appar-
ent shifts of AP3/PI expression into the first-whorl petaloid
organs of monocots and members of the basal eudicots
(Kanno et al. 2003; Kramer et al. 2003; Ochiai et al. 2004;
Tsai et al. 2004; Nakamura et al. 2005), these findings under-
score the mobile nature of organ identity programs (Baum
and Donoghue 2002). Of course, the fact that AP3/PI homo-
logs contribute to the development and/or identity of first-whorl
organs does not mean that these organs are homologous to
Arabidopsis petals. While such structures may express an
identity program related to that expressed in the second whorl
of Arabidopsis, their position is more likely to correspond
with that of the Arabidopsis first whorl. There are several
analogous cases of spatial shifts in identity from animal com-
parative studies, perhaps the most notable being the expres-
sion of Hox genes within the axial skeleton of vertebrates
(Burke et al. 1995). This study found that the transposition of
Hox gene expression was correlated with homeotic shifts
of morphological domains along the anterior-posterior axis of
diverse vertebrates. Similar to the situation in plants, this phe-
nomenon produces a decoupling of position from the mor-
phological similarity of the structures in question.

The above examples help to show the importance of recog-
nizing the different hierarchical levels of homology and the
occurrence of dissociability between the position of organs
and the expression of specific genetic identity programs. In
the case of petals, the distinction is complicated because the
term refers to both position and character state. The second-
whorl organs are usually petaloid and seem to commonly ex-
press AP3/PI homologs (reviewed in Kramer and Irish 2000;
Kim et al. 2005b; Zahn et al. 2005), but petaloid organs are
not always in the second whorl of flowers and may not al-
ways express B gene homologs. Further research is urgently
needed to understand how position is controlled at a genetic
level. Hopefully, this will lead to a better understanding of

the dissociation between the position of an organ and the ho-
mology of the identity program it expresses.

Final Comments and Guidelines for Using Gene
Expression Data to Understand Homology

There are a number of take-home lessons that can be de-
rived from the examples discussed above, but we would like
to start with the most practical. Specifically, it is important
to note the utility of thorough analyses of gene lineage evolu-
tion combined with detailed examination of gene expression
using in situ hybridization and functional studies in original
taxa. A good understanding of gene lineage evolution through
phylogenetic analyses of a broad sample of taxa is crucial to
determine the orthology relationships among genes. The
C-class genes AG and PLE were long considered orthologous
based on functional and sequence similarity, but increased
phylogenetic sampling and genomic analyses have shown
otherwise. In situ hybridization analyses are also important
because there are drawbacks to relying solely on results from
reverse transcriptase PCR (RT-PCR) and Northern hybridiza-
tion. In contrast to the latter two techniques, in situ hybridi-
zation does not depend on the ability to dissect specific
organs and thereby allows the analysis of early developmen-
tal stages as well as organs that are fused. In addition, in situ
hybridization has the capacity to show spatial and temporal
differences in expression patterns that are unlikely to be iden-
tified using other types of comparative expression approaches.
For instance, RT-PCR on the organs of Aristolochia simply
detects AP3/PI expression in both the perianth and the fused
gynostemium, while in situ hybridization reveals the actual
complexity of the genes’ expression. Finally, functional analy-
ses are key to the understanding of gene activity because con-
servation of expression pattern may not represent strict
conservation of function (Baum 2002; Baum et al. 2002; see
also David-Schwartz and Sinha 2007). This fact is under-
scored by the work with DL in Oryza. On its own, the ex-
pression of DL in carpels would likely lead to a conclusion
that the locus functions in a manner similar to CRC. Even
heterologous complementation experiments would be un-
likely to reveal DL’s critical role because this is almost cer-
tainly a product of Oryza’s genomic architecture rather than
a result of inherent differences in the protein itself.

The above examples clearly illustrate the difficulties inherent
in using expression analyses to assess structural homology.
However, it is also apparent that the study of developmental
genetics has added a great deal to our understanding of mor-
phological evolution. In order to make comparative expres-
sion analyses more meaningful, we need to take into account
(1) the evolutionary history of the morphological feature in
question through reconstructions on robust phylogenies; (2)
the evolutionary history of the candidate gene, because gene
duplications are very common (ca. 90% of Arabidopsis and
62% of the rice genome are duplicates; Moore and Purugganan
2003) and these events may make the occurrence of neo- and
subfunctionalization more common among plants than other
organisms; (3) a clear definition of the morphological character
of interest; in the case of flowers—perhaps the best-understood
angiosperm structures—it is important to distinguish each
whorl of organs as a distinct character and the identity that
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they can take (sepaloid organ, petaloid organ, stamen, carpel)
as a character state; (4) comparative expression data from
multiple genes in a genetic network responsible for the char-
acter of interest (Abouheif 1999). At present, most compara-
tive expression analyses focus on the genes in the ABC model;
however, little is known about regulators and targets of these
organ identity genes. These guidelines suggest several lines
for future research. It would be particularly useful to focus
comparative expression and functional analyses on closely re-
lated taxa, where heterologous transformations would be
more meaningful and intermediate morphologies are often
available (Baum 2002). In addition, detailed studies of inter-
mediate taxa that span the phylogenetic distance between the
better-studied Arabidopsis and rice, for example, basal angio-
sperms and lower eudicots, are key to understanding the an-
giosperms’ ancestral genetic tool kit. The development of
new model species within these groups is, therefore, very im-
portant.

Finally, we would like to return to the definition of homol-
ogy cited in the introduction to this article: ‘‘correspondence
caused by a continuity of information’’ (Van Valen 1982),
with continuity being provided by common descent and the
information in question being heritable and, therefore, funda-
mentally genetic in nature. We have argued, however, that
genetic information is not always a reliable indicator of ho-
mology, especially when only one gene is examined. Our par-
ticular concern is the conflation of positional evidence for
homology with evidence from identity. Many of the genes
that have been studied comparatively are floral organ identity
homologs, and it appears that such identity programs can be
shifted spatially, resulting in homeosis. Thus, the activity of,
for example, an AP3 homolog in a particular organ should
be taken primarily as an indicator of the identity program be-
ing expressed rather than the organ’s position. Obviously,
there must also be genetic information that controls position,
but this is not well understood at the present. It is also possi-
ble that as we obtain more information on expression dy-
namics, it will become clear that there are, in fact, qualitative
differences in the ways that these genes are expressed in dif-
ferent whorls (Kramer 2005; Kramer and Jaramillo 2005).

This argument is consistent with Gilbert and Bolker’s
(2001) distinction between process homology and structural
homology, which represent different hierarchical levels of ho-
mology. Process homology reflects the common inheritance
of developmental genetic pathways or modules that can be
co-opted to function in diverse situations. For this reason,
process homology is dissociable from structural homology

and is often invoked in cases where different hierarchical
levels of homology lack straightforward correspondence
(Mindell and Meyer 2001; Brigandt 2003). As proposed by
Baum and Donoghue (2002), novel combinations of such ge-
netic modules may be at the heart of many of Sattler’s (1984,
1994) examples of partial homology or may promote the
evolution of novel organ identities (Kramer and Jaramillo
2005). However, such modules are not always strictly con-
served due to sub- and neofunctionalization as well as other
sources of DSD. As we learn more about developmental
pathways as a whole, including gene targets and regulators,
we may discover that these master organ identity genes
changed their main function during the course of evolution,
taking on several roles within the genetic modules. Ulti-
mately, therefore, our assessments of process homology will
be more robust if they are derived from comparisons of
whole genetic networks (Abouheif 1997, 1999). In general,
when discussing comparative studies of organ identity genes,
it is important to be terminologically explicit that resultant
data are an assessment of process homology (or homocracy;
Nielsen and Martinez 2003) and may not translate directly
into the structural homology of the organ in question. Of
course, other aspects of morphological homology, such as ex-
act positional correspondence, can be equally difficult to de-
termine, especially when comparisons are made across large
phylogenetic distances. For instance, the petaloid tepals of
Amborella may have process homology with the petals of
Arabidopsis (Kim et al. 2005b), but their specific positional
relationship is harder to evaluate (aside from generally being
outside of the fertile organs). As Tautz (1998, p. 17) observed,
homology, like the Hardy-Weinberg equilibrium, is ‘‘an ideal-
ized principle that works under idealized conditions, but
such conditions almost never apply.’’ Despite this lament, we
do believe in the continued utility of the concept, as long as
it is applied with care and specificity.
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