
 

Time Critical Lumigraph Rendering

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Sloan, Peter-Pike, Michael F. Cohen, and Steven J. Gortler. 1997.
Time critical lumigraph rendering. In Proceedings of the 1997
Symposium on Interactive 3D Graphics (I3D), Providence, Rhode
Island, April 27-30, ed. Symposium on Interactive 3D Graphics
and Andries Van Dam, 17-23. New York: ACM Press.

Published Version doi:10.1145/253284.253296

Accessed February 17, 2015 2:56:58 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634171

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28930365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/2634171&title=Time+Critical+Lumigraph+Rendering
http://dx.doi.org/10.1145/253284.253296
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634171
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


To appear in the ���� Symposium on Interactive �D Graphics conference proceedings

Time Critical Lumigraph Rendering

Peter�Pike Sloan�

University of Utah

Michael F� Coheny

Microsoft Research

Steven J� Gortlerz

Harvard University

Abstract

It was illustrated in ���� that the light leaving the con�
vex hull of an object �or entering a convex region of empty
space� can be fully characterized by a �D function over the
space of rays crossing a surface surrounding the object �or
surrounding the empty space� ���	 
�� Methods to repre�
sent this function and quickly render individual images from
this representation given an arbitrary cameras were also de�
scribed� This paper extends the work outlined by Gortler et
al �
� by demonstrating a taxonomy of methods to accelerate
the rendering process by trading o quality for time� Given
the speci�c limitation of a given hardware con�guration	 we
discuss methods to tailor a critical time rendering strategy
using these methods�
CR Descriptors� I���� �Computer Graphics� Three�

Dimensional Graphics and Realism� Additional Key�
words� image�based rendering	 critical time rendering

� Introduction

The traditional method of creating realistic images on a
computer involves �rst modeling the geometric and mate�
rial properties of an object or scene as well as any light
sources� This is followed by simulating the propagation of
light and the actions of a synthetic camera to render a view
of the object or scene� The complexity at both the modeling
and rendering stages has led to the development of meth�
ods to directly capture the appearance of real world objects
and then use this information to render new images� These
methods have been called image based rendering or view in�
terpolation ��	 �	 ��	 �	 ��	 ��	 
� since they typically start
with images as input and then synthesize new views from
the input images�
In two papers	 Light�eld Rendering ���� and The Lumi�

graph �
� it was shown that the light leaving the convex hull
of an object �or entering a convex region of empty space�
can be characterized by a �D function over the space of rays
crossing a surface surrounding the object �or surrounding
the empty space�� Given this observation	 the process of
creating the �D function	 dubbed a Lumigraph in Gortler et

�ppsloan�cs�utah�edu
ymcohen�microsoft�com
zsjg�deas�harvard�edu

al	 and synthesizing views involves three steps� �� gather�
ing samples of the Lumigraph	 typically from pixel values in
static images	 �� approximating and representing the con�
tinuous Lumigraph from the samples	 and �� constructing
new views ��D slices of the �D Lumigraph� from arbitrary
synthetic cameras� The third step in the process should
be fast to allow interactive exploration of the Lumigraph
by real�time manipulation of a virtual camera� Both pa�
pers ���	 
� discuss dierent methods to make this possible	
however	 both are limited in dierent ways� The method
discussed by Levoy and Hanrahan operates pixel by pixel
and thus is highly sensitive to image resolution while the
method discussed by Gortler et al takes advantage of tex�
ture mapping hardware and thus is sensitive to other limita�
tions� Leveraging hardware texture mapping is sensitive to
texture memory limitations �in our case �Mb� and the band�
width between the host and the accelerator� Architectures
that support rendering from compressed textures ���	 �� and
ones that read textures directly from host memory could
overcome this bottleneck�

This paper extends the work outlined by Gortler et al by
demonstrating a taxonomy of methods to limit the amount
of texture information required per frame� These methods
make dierent trade�os between quality and time� Given
the speci�c limitation of a given hardware con�guration	 one
can use these methods to tailor a critical time rendering
method� In addition	 the methods lead naturally to progres�
sive re�nement rendering strategies�

� The Lumigraph

In both ���� and �
�	 the �D Lumigraph function was param�
eterized by the intersection of a ray with a pair of planes
�Figure ��� Fully enclosing a region of space involves using a
series of such pairs of planes	 however	 we will restrict our�
selves in this paper to discussing a single pair� In Gortler
et al and in the work here	 the �rst plane has axes s and
t	 with the second plane labeled with axes u and v� The
uv plane is situated to roughly pass through the center of
the object� Thus any point in the Lumigraph space has
parameters �s�t�u�v� and a value �typically an RGB triple�
representing the light passing along the ray seen in Figure
�� One can see the duality between getting samples into the
Lumigraph from an arbitrary image and constructing an ar�
bitrary image from the Lumigraph� In the �rst case	 given
an input image as in Figure �	 the value at �s�t�u�v� is simply
the color of the image at the pixel location where the ray in�
tersects the image� Conversely	 given a Lumigraph	 one can
reconstruct the pixel on a desired image by using L�s�t�u�v�	
the value of Lumigraph at the given parameter location� In
this way	 any arbitrary image can be constructed pixel by
pixel�

Rebecca Cremona
Text Box
© ACM, 1997. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in the Proceedings of the 1997 ACM SIGGRAPH Symposium on Interactive 3D Graphics, 17-23. http://doi.acm.org/10.1145/253284.253296



To appear in the ���� Symposium on Interactive �D Graphics conference proceedings

s

t

u

v

(s,t)

(u,v)

Camera center

Image plane

 pixel

Figure �� Lumigraph Parameterization

��� Discretization

In the �nite context of the computer	 the Lumigraph is dis�
cretized� We have found that a discretization of approxi�
mately ��x�� nodes on the st plane and ���x��� on the uv
plane gives good results� One can think of the ���x��� set
of RGB values associated with each st node �the set of rays
passing through the st node and intersecting the uv plane� as
an image as seen from the given st point �we will call this a
uv image�� We will use these images as a textures in the re�
construction methods� Given a discretization	 one also needs
to select a blending function between nodal values both for
projection of the continuous function into the discrete one
and for reconstruction� We will use a quadralinear basis for
these purposes as was done in �
��

��� Use of Geometry

So far there has been no notion of the geometry of the object
since one of the major features of pure image based render�
ing is that no geometry is needed� On the other hand	 given
some approximate geometry as can be constructed from a se�
ries of silhouettes ���� one can improve the reconstruction of
images as discussed in �
�� We will also use the approximate
geometry in the reconstruction methods discussed below�

��� Reconstruction as Texture Mapping

Gortler et al �
� describe a texture mapping process to per�
form the reconstruction of images with hardware accelera�
tion� To �ll in the shaded triangle on the image plane as seen
in Figure �	 one draws the shaded triangle on the st plane
three times �once for each vertex of the triangle� as a texture
mapped	 alpha blended polygon� For each of the vertices	 the
uv image associated with that vertex is used as the texture�
An alpha value of ��� is set for this vertex with an alpha of
��� at the other vertices� The texture UV coordinates are
common to all three versions of the triangle and are found
by intersecting rays from the camera center through the st
nodes with the uv plane� Summing the alphas results in full

coverage of the triangle and a linear blending of portions of
three textures� Repeating this process for each st triangle
seen in the cameras frustum completes the image� Current
texture mapping hardware from SGI can often render more
than �� frames�sec at ���x��� resolution using this method�

s

t

u

v

Camera center

Image plane

(a)

(b)

(c)

(uvb)

(uvc)

Figure �� Lumigraph Reconstruction as Alpha Blended Tex�
tured Triangles

There are	 however	 some severe limitation of this ap�
proach� The most crucial one is the limited amount of tex�
ture memory available on most machines �e�g�	 �Mb on our
machine�� In addition	 main memory becomes a scarce re�
source as well since a full ��x��x���x��� x � planes x � byte
Lumigraph �lls more than a gigabyte of information� Mov�
ing data to and from disk and to and from texture mem�
ory is the major bottleneck	 particularly if the individual
uv images must be decompressed at the same time� Future
hardware designs that support rendering directly from com�
pressed textures will make this approach more attractive by
ameliorating many of these limitations�

� Fast Approximate Rendering Given Lim�

ited Resources

This section discusses a taxonomy of methods to reuse data
from frame to frame� Taking advantage of coherence will
allow the construction of critical time Lumigraph rendering
algorithms� The methods fall into two categories	 ones that
use a smaller set of textures than a full rendering	 and a
method that uses the current reconstructed image as a new
texture itself for subsequent nearby frames�
We will discuss each method brie�y below�

��� Using a Limited Set of st Nodes

Given a limited budget of texture memory	 we can devise a
number of strategies to use less than the full set of infor�
mation in the Lumigraph for a given view� In general	 by
dynamically adjusting the tesselation of the st plane and the
alpha values at each vertex of the tesselation we will use less

�



To appear in the ���� Symposium on Interactive �D Graphics conference proceedings

memory and need to draw fewer polygons �albeit at reduced
quality�� Each method must �a� cover the st plane �or at a
minimum the visible portion�	 and �b� produce a set of alpha
values that sum to unity�

� Sub�sample� the simplest idea to use a lower resolution
Lumigraph� Cutting the resolution of the st plane in
half results in one fourth of the uv images needed for any
image� The triangles in Figure � would simply be twice
as large in each direction� This results in more depth
of �eld blurring which is ameliorated somewhat by the
depth correction aorded by the use of the approximate
geometry �
�� Cutting the resolution in uv also results
in the need of less texture memory at a cost of overall
blurring� A �D or �D Mipmap ���� of multiple levels
can be constructed	 however	 just two levels of a �D
Mipmap already results in a size ����th that of the
original Lumigraph � see Color Plate �� �

s

t

u

v

Camera center

Image plane

(a)

valid node with data

unused node

fictitious node II

(b)

(a,b)I

Figure �� Triangulation of st Plane from Subset of Nodes

� Fixed pattern of st nodes� if our budget allows a �xed
number of textures	 for example �	 we can ask which
nodes are the best to use and how should we cover the
st plane with the data from those nodes� We can pick
the � st nodes surrounding the center of the image and
generate a triangulation of the st plane� The triangu�
lation is created from the � selected nodes and other
�ctitious nodes used to cover the st plane �see Figure �
and Color Plate ��� The triangles within the square of �
nodes are drawn three times each as before� Those tri�
angles outside are drawn twice� For example	 triangle I
is drawn �rst using the uv plane associated with node
�a� and with alphas of ��� at node �a�	 ��� at node �b�	
and ��� at the �ctitious node labeled �b	c�� A similar
pattern is used from the point of view of node �b�� Sim�
ilarly triangle II is drawn with texture �a� with alphas
����	 ���	 ���� and with texture �b� with alphas ����	
���	 ����� Reuse of this �xed pattern of nodes provides
good parallax cues near the original image	 but �attens
out as the center of the image moves outside the �xed
square� Thus	 the nine nodes can be used for a small

amount of motion	 after which new nodes need to be
brought in and old ones removed from the active set�

� Arbitrary triangulation� any subset of nodes can in
fact be used to render an image by generalizing the
algorithm above� Once a triangulation of the plane is
constructed from the nodes with texture data and �cti�
tious nodes	 each triangle can be drawn by the following
pseudo�code algorithm�

for each vertex a with valid data
set texture to ��em uv� plane for a
draw�node�with�data�a�

draw�node�with�data� Vertex a�
�
set alpha�a � ��	
for each vertex b adjacent to a
set alpha�b � 	�	
for each triangle adjacent to a
draw t
mapped alpha summed triangle

for each vertex b adj� to a wo valid data
alph � ��	 � num�valid�verts�adj�to�b
draw�node�without�data� b� alph�

�

draw�node�without�data� Vertex b� double alph�
�
set alpha�b � alph
for each vertex c adjacent to b
set alpha�c � 	�	
for each triangle adjacent to b
draw t
mapped alpha summed triangle

�

One constraint in the triangulation is that every vertex
must have at least one adjacent vertex that contains
valid data	 or there will be a hole in the reconstruction�
In Figure �	 the shaded area shows the support of in�u�
ence of vertex �a�� A critical time rendering scheme can
be designed to bring in new textures when it has time
and reuse those already loaded when needed� Later we
will show how this scheme can be slightly modi�ed to
produce smooth transitions�

� Nodes along a line� if the user�s motion can be pre�
dicted or restricted to lie along a line �or curve with
low curvature� then st nodes can be chosen to lie along
this line �or tangent�� In this case	 the st plane is not
divided into triangles	 but rather strips perpendicular
to the line �see Figure � and Color Plate ��� Each strip
spans the space between adjacent nodes along the line�
Each strip is drawn twice with the texture associated
with each adjacent node� The alphas are set to ���
along the line through the current node	 and ��� along
the opposite edge� Moving back and forth along the
line of motion provides parallax cues in the direction
of motion� Moving perpendicular to the line appears
to just rotate a �D image� This same trick is used in
the construction of horizontal parallax only holographic
stereograms ����

��� Using Projective Textures

A second type of method uses the current image as a newly
de�ned texture map for subsequent nearby images� The ap�

�



To appear in the ���� Symposium on Interactive �D Graphics conference proceedings

���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������
���������������������������

s

t

u

v

Camera center

Image plane

nodes with valid data

unused node

line of motion

(a)

(a)

Figure �� Subdivision of st Plane from Line of Nodes

proximate geometry of the object is then used to warp the
texture to the new viewpoint� This is similar in �avor to
the original view interpolation work by Chen and Williams
��� and the more recent work by Seitz and Dyer ���� and by
Debevec et al ���� After an initial image is created	 a matrix
M is constructed and used for each subsequent frame� The
composite modeling and viewing matrix used for the initial
frame transforms points �x�y�z� in model space to screen co�
ordinates between �� and � in X and Y� Composing this ma�
trix with a translation of ��	�� and a scale of ����	���� results
in a matrix that maps points in space to a UV texture space
between ��	�� and ��	��� This texture matrix	 M	 is the used
to �nd texture coordinates for vertices of the approximate
model for each subsequent frame ����� The texture coordi�
nates for each vertex are set to their �x�y�z� location� These
are transformed by M into the �D UV texture coordinates�
In pseudo�code�

render an image I as usual
use image I as texture for subsequent frames
set matrix M to composite model�view matrix
compose M with translation����� and scale �����
set M as texture matrix

for each subsequent image
set new view matrix for desired camera
for each polygon in approximate model
for each vertex of polygon
set texture coordinate to �x�y�z�
�� to be transformed by M into U�V ��
set position to �x�y�z�
draw polygon

For subsequent images	 near the original image that set
the texture matrix M	 the warp will provide correct paral�
lax cues� As the new camera position moves away from the
one used for original image	 the inaccuracies in the approx�
imate geometry	 self occlusion changes in visibility	 and any
specular properties will become obvious �see Color Plate ���

A critical time rendering approach thus can use each im�
age as a texture over multiple frames� In the meantime	
a new image is constructed from a new camera position as
close as possible to a predicted position at the end of the
rendering cycle� This new image and its associated texture
matrix are then swapped in to replace the old ones	 and the
process is repeated�

��� Progressive Re�nement

The methods outlined above lead naturally to a number of
possible progressive re�nement and�or progressive transmis�
sion methods� One can transmit an initial �small� set of
st nodes and information about the database �i�e�	 st and
uv resolutions	 crude geometric representation�� As more
nodes are transferred they are inserted into the triangula�
tion �initially without data� and schedule the texture to be
decompressed and added to the new node� The geometry
also could	 of course	 also be represented in a progressive
format ����
With a simple modi�cation of the arbitrary triangulation

algorithm the data for vertices can be smoothly blended in
over time	 or blended out as the vertex is removed� This re�
quires a simple change in the classi�cation of vertices	 adding
a value per vertex for the validity of its associated data	 be�
tween ��� and ���� Changing this value over time smoothly
reduces or increases the contribution of this node to the ��
nal image �Color Plate ��� In pseudocode	 a slightly modi�ed
draw node with data	 would be called for any vertex	 a	 with
data validity greater than ����

draw�node�with�data� Vertex a �
�
set alpha�a � data validity at a
for each vertex b adjacent to a
set alpha�b � 	�	

for each triangle adjacent to a
draw texture mapped alpha summed triangle

for each vertex b adjacent to a
if �b�validity � ��	�
vb � b�validity
alph � ���	 
 vb��num�valid�verts�adj�to�b
�� same as before ��
draw�node�without�data� b� alph �

�

� Critical Time Rendering Strategies

We will explore a critical time rendering strategy applied
to the general case of triangulations of an arbitrary set of st
nodes� This basic strategy can be applied to all the methods
discussed above� The user sets a desired frame rate� Then	
at each frame �or every few frames� a decision is made about

� which new st nodes to bring in �this may involve decom�
pression	 and loading�binding as textures� and which
nodes to delete

� triangulating the currently valid nodes and possible �c�
titious nodes to cover the st plane	 and

� rendering the frame�

The latter two points are discussed in the previous sec�
tions� This leaves us with the decision	 given a �xed budget

�



To appear in the ���� Symposium on Interactive �D Graphics conference proceedings

of time and�or texture memory constraints	 what is the best
set of nodes to use	 keeping in mind which ones we already
have ready to be used� To do this	 like in ��� we de�ne two
concepts for each node	 the bene�t that will be derived from
adding that node	 and the cost of using it� The nodes are
sorted in order of the ratio of their bene�t�cost� Given this
ordered set of nodes	 the strategy is to add the highest rank�
ing nodes until the time budget is used up� As the texture
memory is used up the lowest bene�t node is deleted and re�
placed by the next node in line to be added� The time bud�
get is dynamicaly rescaled as in ��� so that the desired frame
rate is met� This allows for variable load on the machine
and error in the machine dependent cost measurements�

��� Bene�t

The bene�t assigned to a node is set as a function of�

� its distance from the intersection on the st plane of the
center of projection of the camera �the point labeled
�s�t� in �gure ��

� its position relative to the recent motion of the camera�s
center of projection �nodes close to a predicted path are
assigned a higher bene�t�	 and

� its distance from other currently valid nodes

Speci�cally	
bene�t�i�j� � Dist�s�t��Path�s�t��Neighbor�s�t�
where s�t are the coordinates of node �i�j� on the st plane	 and
Dist	 Path	 and Neighbor each return values in ��	��� Dist is
inversely proportional to the squared distance �plus a con�
stant� between the camera center and proposed node� Path
determines the proposed node�s distance from the predicted
future path of the camera on the st plane	 and Neighbor is
based on the fraction of the neighboring nodes currently not
in the triangulation�

��� Cost

The cost of adding a node are primarily the �xed costs of
fetching a node from disk	 decompressing it	 and loading it
into texture memory� The relative costs of each of these
operations is machine dependent� At any time	 some nodes
may be in memory but not bound to textures	 while others
are only resident in compressed form on disk�
There is also the incremental cost of triangulation and

rendering of the additional triangles introduced by the new
node�

� Performance Results

��� Node Usage Methods

The performance of the texture mapping algorithms depend
on�

� Texture Fill Rate� How many million bilinear �ltered
textured pixels the hardware can generate per second�
Each pixel has to be textured � times	 for �� fps at
���x��� resolution requires a texture �ll rate of ����
million textured pixels�second� This is well within the
range of modern �D hardware �a Maximum Impact has
peak rates of ���MTex�sec� and even quite reasonable
for �d hardware destined for personal computers �with
�ll rates between �� and �� MTex�sec�� If the �ll rate

is close to the required amount you will have to work
with almost the entire working set in texture memory�

� Texture Storage� Number of Texels that can be stored�
Our Maximum Impact has fairly limited texture mem�
ory � � megabytes that can only be addressed as � chan�
nel textures for this application� This is a signi�cant
bottleneck�

� Texture Paging Bandwidth� MTex�sec that can be
loaded into texture memory� The Impact loads textures
from the host extremely fast	 �� MTex�s in our bench�
marks� Other platforms �PCs	 RE�	 IR	 DEC POWER�
STORM� may have more texture memory �
��� MB�
and better utilization however �paletized textures or �
channel memory layout��

� Disk Access and Decompression� How fast can a uv
image be made ready to move to texture memory� De�
pending on the compression scheme used this may be
signi�cant	 as is the case in our current implementa�
tion using JPEG� Levoy and Hanrahan use a two stage
scheme	 �rst a vector quantization step �with fast de�
compression� and then an entropy encoding step �slower
to decompress�� By performing the entropy decompres�
sion up front they are able to perform the remaining
decompression at frame rates for the required pixels�
The texture mapping process may also require decom�
pressing some pixels that are never used� Compression
issues remain a signi�cant research topic�

� Frame Buer to Texture Memory Bandwidth �for pro�
jective textures�� How fast a previously rendered frame
can be sent to texture memory� The Impact performs
this at roughly �� MTex�sec�

Below is a table that characterizes the dierent methods
outlined above� Fill Rate refers to the average number of
bilinear textured pixels that need to be drawn per pixel�
Texture Load refers to how e�ciently texture loads can be
scheduled� Locality refers to the distribution of detail for the
given method where �strong� locality means that the image
can be generated with higher �delity in a smaller neighbor�
hood� For the Fixed method we are assuming that the �
central nodes cover one quarter of the screen� In the �ll
rate equation for Arbitrary � partial valid	 x represents the
percentage of nodes with partially valid data� This has a
minimum at ��� and the maximum is at ����� For projec�
tion we are assuming that the model covers about ��� of the
screen and has a low depth complexity � ���

Method Fill Rate Texture Load Locality
Sub�sample � poor low
Fixed ���� good strong
Arbitrary � strong good
Partial Valid �x� � �x� � strong strong
Line � good strong
Projection ��� not a factor strong

Table �� Characterization of dierent reconstruction meth�
ods

Based on the target platforms performance in the above
metrics you could determine what kind of load it can take to
give a desired frame rate	 where load is the average necessary
texture bandwidth per frame�

�



To appear in the ���� Symposium on Interactive �D Graphics conference proceedings

a) RE2 times

b) RE2 num images per frame

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

RE2
Desired

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250 300

RE2

Figure �� Timing results for RE�

��� Critical Time Rendering

Figure � shows our intial results using the critical time ren�
dering strategy previously de�ned running on an SGI Real�
ity Engine �� The graphs represent time per frame �where
the user asked for �� FPS� and the number of textures that
were used for each frame� In general	 the strategy leads to a
reasonably constant frame rate�
The spikes in the graphs appear to be due to a bug in

the gl implementation of a function that determines which
textures are actually in texture memory� In addition	 the in�
dividual costs �rasterization	 texture paging	 JPEG decom�
pression� are not dynamicaly scaled	 but rather the compu�
tations as a whole are scaled by the same factor� Individual
scaling factors will also lead to a more constant frame rate�

��� Issues related to the O� Architecture

Silicon Graphics Inc�	 has recently begun delivering machines
based on a new architecture which they dub the O�� This de�
sign uses main memory to hold both the frame buer �i�e�	 it
has no separate frame buer� and textures �i�e�	 no separate
texture memory�� A performance price is paid for this in
terms of raw rendering speed �number of textured polygons
per second�� However	 for the Lumigraph application this is
generally a win since we render relatively few textured tri�
angles	 but with many textures� The bottleneck of severely
limited texture memory is lifted and replaced only with the

a) O2 times

b) O2 num images per frame

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150 200 250 300

O2
Desired

0

10

20

30

40

50

60

70

80

0 50 100 150 200 250 300

O2

Figure �� Timing results for O�

limitations of main memory� There is also hardware support
for asynchronously decompressing JPEG images� Many of
the strategies outlined above are still valid while others are
of reduced importance� We have made some initial experi�
ments on this machine as well by adjusting the cost function
for individual nodes� We have not yet taken advantage of the
JPEG decompression hardware	 but the initial results are
promising� Figure � shows the results of the same sequence
shown earlier for the RE�	 when run on the O� machine�

� Conclusion

At SIGGRAPH ����	 Levoy and Hanrahan ���� and Gortler
at al �
� showed how a four dimensional data structure	 called
a Lumigraph in the latter work	 could be constructed to
capture the full appearance of a bounded object or the light
entering a bounded region of empty space� Methods were
presented to quickly reconstruct images from the Lumigraph
from arbitrary objects� Unfortunately	 these methods are
limited by the image resolution in the methods in the �rst
paper and by limited texture memory in the latter work�
In this paper we have shown a number of fast approx�

imate reconstruction methods for images from Lumigraphs
using the texture mapping process described in Gortler et al�
These methods fall into two classes	 those that extend the
use of a limited or constant number of textures per image	
and a method that uses the current image as a texture itself
in subsequent images� The second type of reconstruction

�



To appear in the ���� Symposium on Interactive �D Graphics conference proceedings

relies on the approximate geometry of the object being rep�
resented by the Lumigraph� The trade�os of speed versus
artifacts varies for each of these methods�
These reconstruction methods form the basis for develop�

ing strategies for critical time rendering from Lumigraphs�
One such strategy based on a cost�bene�t analysis for each
node is discussed in the context of limitations of texture
memory and disk access and decompression time�
More work needs to be done to discover optimal strate�

gies for rendering and transmission of Lumigraphs given the
varying constraints of hardware and networks�

References

��� Beers� A� C�� Agrawala� M�� and Chaddha� N�
Rendering from compressed textures� In Computer
Graphics Proceedings� Annual Conference Series� ���	
������	 pp� ������
�

��� Benton� S� A� Survey of holographic stereograms�
Proc
 SPIE Int
 Soc
 Opt
 Eng
 �USA� �	� ���
��	 ���
���

��� Bryson� S�� and Johan� S� Time management	 si�
multaneity and time�critical computation in interactive
unsteady visualization environments� In Visualization
�	 ������	 pp� ��������

��� Chen� S� E� Quicktime VR � an image�based approach
to virtual environment navigation� In SIGGRAPH ��
Conference Proceedings �Aug� �����	 R� Cook	 Ed�	 An�
nual Conference Series	 ACM SIGGRAPH	 Addison
Wesley	 pp� ����
� held in Los Angeles	 California	 ���
�� August �����

��� Chen� S� E�� and Williams� L� View interpolation for
image synthesis� In Computer Graphics �SIGGRAPH
�� Proceedings� �Aug� �����	 J� T� Kajiya	 Ed�	 vol� ��	
pp� �����

�

��� Debevec� P� E�� Taylor� C� J�� and Malik� J� Mod�
eling and rendering architecture from photographs� A
hybrid geometry�and�image�based approach� In Com�
puter Graphics Proceedings� Annual Conference Series�
���	 ������	 pp� ������

��� Funkhouser� T� A�� and S�equin� C� H� Adaptive dis�
play algorithm for interactive frame rates during visual�
ization of complex virtual environments� In Computer
Graphics �SIGGRAPH �� Proceedings� �Aug� �����	
J� T� Kajiya	 Ed�	 vol� ��	 pp� ��������

�
� Gortler� S� J�� Grzeszczuk� R�� Szeliski� R�� and
Cohen� M� F� The lumigraph� In Computer Graphics
Proceedings� Annual Conference Series� ���	 ������	
pp� ������

��� Hoppe� H� Progressive meshes� In SIGGRAPH �	 Con�
ference Proceedings �Aug� �����	 H� Rushmeier	 Ed�	
Annual Conference Series	 ACM SIGGRAPH	 Addison
Wesley	 pp� �����
� held in New Orleans	 Louisiana	
��� August �����

���� Levoy� M�� and Hanrahan� P� Light �eld rendering�
In Computer Graphics Proceedings� Annual Conference
Series� ���	 ������	 pp� ������

���� McMillan� L�� and Bishop� G� Plenoptic model�
ing� An image�based rendering system� In SIGGRAPH
�� Conference Proceedings �Aug� �����	 R� Cook	 Ed�	
Annual Conference Series	 ACM SIGGRAPH	 Addison
Wesley	 pp� ������ held in Los Angeles	 California	 ���
�� August �����

���� Segal� M�� Korobkin� C�� van Widenfelt� R��
Foran� J�� and Haeberli� P� E� Fast shadows and
lighting eects using texture mapping� In Computer
Graphics �SIGGRAPH �� Proceedings� �July �����	
E� E� Catmull	 Ed�	 vol� ��	 pp� ��������

���� Seitz� S� M�� and Dyer� C� R� View morphing�
In Computer Graphics Proceedings� Annual Conference
Series� ���	 ������	 pp� ������

���� Szeliski� R� Rapid octree construction from image
sequences� CVGIP� Image Understanding ��	 � �July
�����	 ������

���� Torborg� J�� and Kajiya� J� T� Talisman� Com�
modity realtime �d graphics for the pc� In Computer
Graphics Proceedings� Annual Conference Series� ���	
������	 pp� ��������

���� Williams� L� Pyramidal parametrics� In Computer
Graphics �SIGGRAPH �� Proceedings� �July ��
��	
vol� ��	 pp� �����

�




