
 

Layered depth images

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Shade, Jonathan, Steven J. Gortler, Li-wei He, and Richard
Szeliski. 1998. Layered depth images. In Proceedings of the 25th
annual conference on computer graphics and interactive
techniques (SIGGRAPH 1998), July 19-24, 1998, Orlando, Flor.,
ed. SIGGRAPH and Michael Cohen, 231-242. New York, N.Y.:
ACM Press.

Published Version doi:10.1145/280814.280882

Accessed February 17, 2015 2:53:31 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2640599

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Harvard University - DASH 

https://core.ac.uk/display/28930358?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/2640599&title=Layered+depth+images
http://dx.doi.org/10.1145/280814.280882
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2640599
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Layered Depth Images
Jonathan Shade Steven Gortler∗ Li-wei He† Richard Szeliski‡

University of Washington ∗Harvard University †Stanford University ‡Microsoft Research

Abstract
In this paper we present a set of efficient image based rendering
methods capable of rendering multiple frames per second on a PC.
The first method warps Sprites with Depth representing smooth sur-
faces without the gaps found in other techniques. A second method
for more general scenes performswarping from an intermediate rep-
resentation called a LayeredDepth Image (LDI). AnLDI is a view of
the scene from a single input camera view, but with multiple pixels
along each line of sight. The size of the representation grows only
linearly with the observed depth complexity in the scene. Moreover,
because the LDI data are represented in a single image coordinate
system, McMillan’s warp ordering algorithm can be successfully
adapted. As a result, pixels are drawn in the output image in back-
to-front order. No z-buffer is required, so alpha-compositing can
be done efficiently without depth sorting. This makes splatting an
efficient solution to the resampling problem.

1 Introduction
Image based rendering (IBR) techniques have been proposed as an
efficient way of generating novel views of real and synthetic objects.
With traditional rendering techniques, the time required to render an
image increases with the geometric complexity of the scene. The
rendering time also grows as the requested shading computations
(such as those requiring global illumination solutions) becomemore
ambitious.

The most familiar IBR method is texture mapping. An image is
remapped onto a surface residing in a three-dimensional scene. Tra-
ditional texture mapping exhibits two serious limitations. First, the
pixelization of the texture map and that of the final image may be
vastly different. The aliasing of the classic infinite checkerboard
floor is a clear illustration of the problems this mismatch can cre-
ate. Secondly, texture mapping speed is still limited by the surface
the texture is applied to. Thus it would be very difficult to create
a texture mapped tree containing thousands of leaves that exhibits
appropriate parallax as the viewpoint changes.

Two extensions of the texture mapping model have recently been
presented in the computer graphics literature that address these two
difficulties. The first is a generalization of sprites. Once a complex
scene is rendered from a particular point of view, the image that
would be created from a nearby point of view will likely be similar.
In this case, the original 2D image, or sprite, can be slightly altered
by a 2D affine or projective transformation to approximate the view
from the new camera position [30, 26, 14].

The sprite approximation’s fidelity to the correct new view is highly
dependent on the geometry being represented. In particular, the

errors increase with the amount of depth variation in the real part
of the scene captured by the sprite. The amount of virtual camera
motion away from the point of view of sprite creation also increases
the error. Errors decrease with the distance of the geometry from
the virtual camera.

The second recent extension is to add depth information to an image
to produce a depth image and to then use the optical flow that would
be induced by a camera shift towarp the scene into an approximation
of the new view [2, 21].

Each of these methods has its limitations. Simple sprite warping
cannot produce the parallax induced when parts of the scenes have
sizable differences in distance from the camera. Flowing a depth
image pixel by pixel, on the other hand, can provide proper parallax
but will result in gaps in the image either due to visibility changes
when some portion of the scene become unoccluded, or when a
surface is magnified in the new view.

Some solutions have been proposed to the latter problem. Laveau
and Faugeras suggest performing a backwards mapping from the
output sample location to the input image [13]. This is an expensive
operation that requires some amount of searching in the input image.
Another possible solution is to think of the input image as a mesh
of micro-polygons, and to scan-convert these polygons in the output
image. This is an expensive operation, as it requires a polygon
scan-convert setup for each input pixel [17], an operation we would
prefer to avoid especially in the absence of specialized rendering
hardware. Alternatively one could use multiple input images from
different viewpoints. However, if one uses n input images, one
effectively multiplies the size of the scene description by n, and the
rendering cost increases accordingly.

This paper introduces two new extensions to overcome both of these
limitations. The first extension is primarily applicable to smoothly
varying surfaces, while the second is useful primarily for very com-
plex geometries. Each method provides efficient image based ren-
dering capable of producing multiple frames per second on a PC.

In the case of sprites representing smoothly varying surfaces, we
introduce an algorithm for rendering Sprites with Depth. The algo-
rithm first forward maps (i.e., warps) the depth values themselves
and then uses this information to add parallax corrections to a stan-
dard sprite renderer.

For more complex geometries, we introduce the Layered Depth Im-
age, or LDI, that contains potentially multiple depth pixels at each
discrete location in the image. Instead of a 2D array of depth pixels
(a pixel with associated depth information), we store a 2D array of
layered depth pixels. A layered depth pixel stores a set of depth
pixels along one line of sight sorted in front to back order. The
front element in the layered depth pixel samples the first surface
seen along that line of sight; the next pixel in the layered depth pixel
samples the next surface seen along that line of sight, etc. When
rendering from an LDI, the requested view can move away from the
original LDI view and expose surfaces that were not visible in the
first layer. The previously occluded regions may still be rendered
from data stored in some later layer of a layered depth pixel.

There are many advantages to this representation. The size of the

© ACM, 1998. This is the author's version of 
the work. It is posted here by permission of 
ACM for your personal use. Not for 
redistribution. The definitive version was 
published in the Proceedings of the 25th 
annual conference on computer graphics 
and interactive techniques, 231-242. http://
doi.acm.org/10.1145/280814.280882



Environment Map

Planar Sprites

Sprite with Depth

Layered
Depth
Image

Polygons

Viewing Region

Camera Center for LDI
and Sprite with Depth

Figure 1 Different image based primitives can serve well
depending on distance from the camera

representation grows linearly only with the depth complexity of the
image. Moreover, because the LDI data are represented in a single
image coordinate system, McMillan’s ordering algorithm [20] can
be successfully applied. As a result, pixels are drawn in the output
image in back to front order allowing proper alpha blending without
depth sorting. No z-buffer is required, so alpha-compositing can be
done efficiently without explicit depth sorting. This makes splatting
an efficient solution to the reconstruction problem.

Sprites with Depth and Layered Depth Images provide us with two
new image based primitives that can be used in combination with
traditional ones. Figure 1 depicts five types of primitives we may
wish to use. The camera at the center of the frustum indicates where
the image based primitives were generated from. The viewing vol-
ume indicates the range one wishes to allow the camera to move
while still re-using these image based primitives.

The choice of which type of image-based or geometric primitive
to use for each scene element is a function of its distance, its in-
ternal depth variation relative to the camera, as well as its internal
geometric complexity. For scene elements at a great distance from
the camera one might simply generate an environment map. The
environment map is invariant to translation and simply translates
as a whole on the screen based on the rotation of the camera. At
a somewhat closer range, and for geometrically planar elements,
traditional planar sprites (or image caches) may be used [30, 26].
The assumption here is that although the part of the scene depicted
in the sprite may display some parallax relative to the background
environment map and other sprites, it will not need to depict any
parallax within the sprite itself. Yet closer to the camera, for ele-
ments with smoothly varying depth, Sprites with Depth are capable
of displaying internal parallax but cannot deal with disocclusions

due to image flow that may arise in more complex geometric scene
elements. Layered Depth Images deal with both parallax and dis-
occlusions and are thus useful for objects near the camera that also
contain complex geometries that will exhibit considerable parallax.
Finally, traditional polygon rendering may need to be used for im-
mediate foreground objects.

In the sections that follow, we will concentrate on describing the
data structures and algorithms for representing and rapidly rendering
Sprites with Depth and Layered Depth Images.

2 Previous Work
Over the past fewyears, there have beenmany papers on image based
rendering. In [16], Levoy and Whitted discuss rendering point data.
Chen andWilliams presented the idea of rendering from images [2].
Laveau and Faugeras discuss IBR using a backwards map [13].
McMillan and Bishop discuss IBR using cylindrical views [21].
Seitz and Dyer describe a system that allows a user to correctly
model view transforms in a user controlled image morphing sys-
tem [28]. In a slightly different direction, Levoy and Hanrahan [15]
and Gortler et al. [7] describe IBR methods using a large number of
input images to sample the high dimensional radiance function.

Max uses a representation similar to an LDI [18], but for a purpose
quite different than ours; his purpose is high quality anti-aliasing,
while our goal is efficiency. Max reports his rendering time as
5 minutes per frame while our goal is multiple frames per second.
Maxwarps from n input LDIswith different camera information; the
multiple depth layers serve to represent the high depth complexity
of trees. Wewarp from a single LDI, so that the warping can be done
most efficiently. For output, Max warps to an LDI. This is done so
that, in conjunction with an A-buffer, high quality, but somewhat
expensive, anti-aliasing of the output picture can be performed.

Mark et al.[17] and Darsa et al.[4] create triangulated depth maps
from input images with per-pixel depth. Darsa concentrates on
limiting the number of triangles by looking for depth coherence
across regions of pixels. This triangle mesh is then rendered tra-
ditionally taking advantage of graphics hardware pipelines. Mark
et al.describe the use of multiple input images as well. In this aspect
of their work, specific triangles are given lowered priority if there
is a large discontinuity in depth across neighboring pixels. In this
case, if another image fills in the same area with a triangle of higher
priority, it is used instead. This helps deal with disocclusions.

Shade et al.[30] and Shaufler et al.[26] render complex portions
of a scene such as a tree onto alpha matted billboard-like sprites

Layered
Depth
Image
Camera

Output
Camera

Epipolar Point

Figure 2 Back to front output ordering



and then reuse them as textures in subsequent frames. Lengyel and
Snyder [14] extend this work by warping sprites by a best fit affine
transformation based on a set of sample points in the underlying
3D model. These affine transforms are allowed to vary in time as
the position and/or color of the sample points change. Hardware
considerations for such system are discussed in [31].

Horry et al. [10] describe a very simple sprite-like system in which a
user interactively indicates planes in an image that represent areas in
a given image. Thus, from a single input image and some user sup-
plied information, they can warp an image and provide approximate
three dimensional cues about the scene.

The system presented here relies heavily on McMillan’s ordering
algorithm [20, 19, 21]. Using input and output camera information,
a warping order is computed such that pixels that map to the same
location in the output image are guaranteed to arrive in back to front
order.

In McMillan’s work, the depth order is computed by first finding
the projection of the output camera’s location in the input camera’s
image plane, that is, the intersection of the line joining the two
camera locations with the input camera’s image plane. The line
joining the two camera locations is called the epipolar line, and
the intersection with the image plane is called an epipolar point
[6] (see Figure 1). The input image is then split horizontally and
vertically at the epipolar point, generally creating 4 image quadrants.
(If the epipolar point lies off the image plane, we may have only 2
or 1 regions.) The pixels in each of the quadrants are processed
in a different order. Depending on whether the output camera is
in front of or behind the input camera, the pixels in each quadrant
are processed either inward towards the epipolar point or outwards
away from it. In other words, one of the quadrants is processed left
to right, top to bottom, another is processed left to right, bottom to
top, etc. McMillan discusses in detail the various special cases that
arise and proves that this ordering is guaranteed to produce depth
ordered output [19].

When warping from an LDI, there is effectively only one input cam-
era view. Therefore one can use the ordering algorithm to order the
layered depth pixels visited. Within each layered depth pixel, the
layers are processed in back to front order. The formal proof of [19]
applies, and the ordering algorithm is guaranteed to work.

3 Rendering Sprites
Sprites are texture maps or images with alphas (transparent pixels)
rendered onto planar surfaces. They can be used either for locally
caching the results of slower rendering and then generating new
views by warping [30, 26, 31, 14], or they can be used directly as
drawing primitives (as in video games).

The texture map associated with a sprite can be computed by simply
choosing a 3D viewing matrix and projecting some portion of the
scene onto the image plane. In practice, a view associated with the
current or expected viewpoint is a good choice. A 3D plane equation
can also be computed for the sprite, e.g., by fitting a 3D plane to the
z-buffer values associated with the sprite pixels. Below, we derive
the equations for the 2D perspective mapping between a sprite and
its novel view. This is useful both for implementing a backward
mapping algorithm, and lays the foundation for our Sprites with
Depth rendering algorithm.

A sprite consists of an alpha-matted image I1(x1, y1), a 4×4 camera
matrix C1 which maps from 3D world coordinates (X , Y , Z , 1) into

the sprite’s coordinates (x1, y1, z1, 1),






w1x1
w1y1
w1z1
w1






= C1







X
Y
Z
1






, (1)

(z1 is the z-buffer value), and a plane equation. This plane equation
can either be specified in world coordinates, AX +BY +CZ +D = 0,
or it can be specified in the sprite’s coordinate system, ax1 + by1 +
cz1 + d = 0. In the former case, we can form a new camera matrix
Ĉ1 by replacing the third row of C1 with the row [A B C D], while
in the latter, we can compute Ĉ1 = PC1, where

P =







1 0 0 0
0 1 0 0
a b c d
0 0 1 0







(note that [A B C D] = [a b c d]C1).

In either case, we can write the modified projection equation as






w1x1
w1y1
w1d1
w1






= Ĉ1







X
Y
Z
1






, (2)

where d1 = 0 for pixels on the plane. For pixels off the plane, d1 is
the scaled perpendicular distance to the plane (the scale factor is 1
if A2 + B2 + C2 = 1) divided by the pixel to camera distance w1.

Given such a sprite, how do we compute the 2D transformation
associated with a novel view Ĉ2? The mapping between pixels
(x1, y1, d1, 1) in the sprite and pixels (w2x2,w2y2,w2d2,w2) in the
output camera’s image is given by the transfermatrixT1,2 = Ĉ2 ·Ĉ−1

1 .

For a flat sprite (d1 = 0), the transfer equation can be written as




w2x2
w2y2
w2



 = H1,2





x1
y1
1



 (3)

where H1,2 is the 2D planar perspective transformation (homogra-
phy) obtained by dropping the third row and column of T1,2. The
coordinates (x2, y2) obtained after dividing out w2 index a pixel ad-
dress in the output camera’s image. Efficient backward mapping
techniques exist for performing the 2D perspective warp [8, 34], or
texture mapping hardware can be used.

3.1 Sprites with Depth

The descriptive power (realism) of sprites can be greatly enhanced
by adding an out-of-plane displacement component d1 at each pixel
in the sprite.1 Unfortunately, such a representation can no longer be
rendered directly using a backward mapping algorithm.

Using the same notation as before, we see that the transfer equation
is now





w2x2
w2y2
w2



 = H1,2





x1
y1
1



 + d1e1,2, (4)

1The d1 values can be stored as a separate image, say as 8-bit signed
depths. The full precision of a traditional z-buffer is not required, since
these depths are used only to compute local parallax, and not to perform
z-buffer merging of primitives. Furthermore, the d1 image could be stored
at a lower resolution than the color image, if desired.



where e1,2 is called epipole [6, 25, 11], and is obtained from the third
column of T1,2.

Equation (4) can be used to forward map pixels from a sprite to a
new view. Unfortunately, this entails the usual problems associated
with forward mapping, e.g., the necessity to fill gaps or to use larger
splatting kernels, and the difficulty in achieving proper resampling.
Notice, however, that Equation (4) could be used to perform a back-
ward mapping step by interchanging the 1 and 2 indices, if only we
knew the displacements d2 in the output camera’s coordinate frame.

A solution to this problem is to first forward map the displacements
d1, and to then use Equation (4) to perform a backward mapping
step with the new (view-based) displacements. While this may at
first appear to be no faster or more accurate than simply forward
warping the color values, it does have some significant advantages.

First, small errors in displacement map warping will not be as ev-
ident as errors in the sprite image warping, at least if the displace-
ment map is smoothly varying (in practice, the shape of a simple
surface often varies more smoothly than its photometry). If bilinear
or higher order filtering is used in the final color (backward) re-
sampling, this two-stage warping will have much lower errors than
forwardmapping the colors directlywith an inaccurate forwardmap.
We can therefore use a quick single-pixel splat algorithm followed
by a quick hole filling, or alternatively, use a simple 2× 2 splat.

The second main advantage is that we can design the forward warp-
ing step to have a simpler formby factoring out the planar perspective
warp. Notice that we can rewrite Equation (4) as





w2x2
w2y2
w2



 = H1,2





x3
y3
1



 , (5)

with




w3x3
w3y3
w3



 =





x1
y1
1



 + d1e∗
1,2, (6)

where e∗
1,2 = H−1

1,2 e1,2. This suggests that SpritewithDepth rendering
can be implemented by first shifting pixels by their local parallax,
filling any resulting gaps, and then applying a global homography
(planar perspective warp). This has the advantage that it can handle
large changes in view (e.g., large zooms) with only a small amount
of gap filling (since gaps arise only in the first step, and are due to
variations in displacement).

Our novel two-step rendering algorithm thus proceeds in two stages:

1. forward map the displacement map d1(x1, y1), using only the
parallax component given in Equation (6) to obtain d3(x3, y3);

2a. backward map the resulting warped displacements d3(x3, y3)
using Equation (5) to obtain d2(x2, y2) (the displacements in
the new camera view);

2b. backward map the original sprite colors, using both the ho-
mography H2,1 and the new parallax d2 as in Equation (4)
(with the 1 and 2 indices interchanged), to obtain the image
corresponding to camera C2.

The last two operations can be combined into a single raster scan
over the output image, avoiding the need to perspective warp d3
into d2. More precisely, for each output pixel (x2, y2), we compute
(x3, y3) such that





w3x3
w3y3
w3



 = H2,1





x2
y2
1



 (7)

to compute where to look up the displacement d3(x3, y3), and form
the final address of the source sprite pixel using





w1x1
w1y1
w1



 =





w3x3
w3y3
w3



 + d3(x3, y3)e2,1. (8)

We can obtain a quicker, but less accurate, algorithm by omitting
the first step, i.e., the pure parallax warp from d1 to d3. If we as-
sume the depth at a pixel before and after the warp will not change
significantly, we can use d1 instead of d3 in Equation (8). This still
gives a useful illusion of 3-D parallax, but is only valid for a much
smaller range of viewing motions (see Figure 3).

Another variant on this algorithm, which uses somewhat more stor-
age but fewer computations, is to compute a 2-D displacement field
in the first pass, u3(x3, y3) = x1 − x3, v3(x3, y3) = y1 − y3, where
(x3, y3) is computed using the pure parallax transform in Equation
(6). In the second pass, the final pixel address in the sprite is com-
puted using

[

x1
y1

]

=
[

x3
y3

]

+
[

u3(x3, y3)
v3(x3, y3)

]

, (9)

where this time (x3, y3) is computed using the transform given in
Equation (7).

We can make the pure parallax transformation (6) faster by avoiding
the per-pixel division required after adding homogeneous coordi-
nates. One way to do this is to approximate the parallax transforma-
tion by first moving the epipole to infinity (setting its third compo-
nent to 0). This is equivalent to having an affine parallax component
(all points move in the same direction, instead of towards a common
vanishing point). In practice, we find that this still provides a very
compelling illusion of 3D shape.

Figure 3 shows some of the steps in our two-pass warping algorithm.
Figures 3a and 3f show the original sprite (color) image and the depth
map. Figure 3b shows the sprite warped with no parallax. Figures
3g, 3h, and 3i shows the depth map forward warped with only pure
parallax, only the perspective projection, and both. Figure 3c shows
the backward warp using the incorrect depth map d1 (note how dark
“background” colors are mapped onto the “bump”), whereas Figure
3d shows the backward warp using the correct depth map d3. The
white pixels near the right hand edge are a result of using only a
single step of gap filling. Using three steps results in the better
quality image shown in Figure 3e. Gaps also do not appear for a
less quickly slanting d maps, such as the pyramid shown in Figure
3j.

The rendering times for the 256×256 image shown in Figure 3 on a
300 MHz Pentium II are as follows. Using bilinear pixel sampling,
the frame rates are 30 Hz for no z-parallax, 21 Hz for “crude” one-
pass warping (no forward warping of d1 values), and 16 Hz for
two-pass warping. Using nearest-neighbor resampling, the frame
rates go up to 47 Hz, 24 Hz, and 20 Hz, respectively.

3.2 Recovering sprites from image sequences

While sprites and sprites with depth can be generated using com-
puter graphics techniques, they can also be extracted from image
sequences using computer vision techniques. To do this, we use a
layered motion estimation algorithm [32, 1], which simultaneously
segments the sequence into coherently moving regions, and com-
putes a parametric motion estimate (planar perspective transforma-
tion) for each layer. To convert the recovered layers into sprites, we
need to determine the plane equation associated with each region.
We do this by tracking features from frame to frame and applying



(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3 Plane with bump rendering example: (a) input color (sprite) image I1(x1, y1); (b) sprite warped by homography only
(no parallax); (c) sprite warped by homography and crude parallax (d1); (d) sprite warped by homography and true parallax (d2);
(e) with gap fill width set to 3; (f) input depth map d1(x1, y1); (g) pure parallax warped depth map d3(x3, y3); (h) forward warped
depth map d2(x2, y2); (i) forward warped depth map without parallax correction; (j) sprite with “pyramid” depth map.

(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 4 Results of sprite extraction from image sequence: (a) third of five images; (b) initial segmentation into six layers;
(c) recovered depth map; (d) the five layer sprites; (e) residual depth image for fifth layer; (f) re-synthesized third image (note
extended field of view); (g) novel view without residual depth; (h) novel view with residual depth (note the “rounding” of the
people).



Pixel

Depth Pixel

Layered Depth Pixel

a

b

c

C1 C2
C3

d

a2

Figure 5 Layered Depth Image

a standard structure from motion algorithm to recover the camera
parameters (viewing matrices) for each frame [6]. Tracking several
points on each sprite enables us to reconstruct their 3D positions,
and hence to estimate their 3D plane equations [1]. Once the sprite
pixel assignment have been recovered, we run a traditional stereo
algorithm to recover the out-of-plane displacements.

The results of applying the layered motion estimation algorithm to
the first five images from a 40-image stereo dataset2 are shown in
Figure 4. Figure 4(a) shows the middle input image, Figure 4(b)
shows the initial pixel assignment to layers, Figure 4(c) shows the
recovered depth map, and Figure 4(e) shows the residual depth map
for layer 5. Figure 4(d) shows the recovered sprites. Figure 4(f)
shows the middle image re-synthesized from these sprites, while
Figures 4(g–h) show the same sprite collection seen from a novel
viewpoint (well outside the range of the original views), both with
and without residual depth-based correction (parallax). The gaps
visible in Figures 4(c) and 4(f) lie outside the area corresponding
to the middle image, where the appropriate parts of the background
sprites could not be seen.

4 Layered Depth Images
While the use of sprites and Sprites withDepth provides a fast means
to warp planar or smoothly varying surfaces, more general scenes
require the ability to handle more general disocclusions and large
amounts of parallax as the viewpoint moves. These needs have led
to the development of Layered Depth Images (LDI).

Like a sprite with depth, pixels contain depth values along with their
colors (i.e., a depth pixel). In addition, a Layered Depth Image (Fig-
ure 5) contains potentially multiple depth pixels per pixel location.
The farther depth pixels, which are occluded from the LDI center,
will act to fill in the disocclusions that occur as the viewpoint moves
away from the center.

The structure of an LDI is summarized by the following conceptual
representation:

DepthPixel =
ColorRGBA: 32 bit integer
Z: 20 bit integer
SplatIndex: 11 bit integer

LayeredDepthPixel =
NumLayers: integer
Layers[0..numlayers-1]: array of DepthPixel

2Courtesy of Dayton Taylor.

LayeredDepthImage =
Camera: camera
Pixels[0..xres-1,0..yres-1]: array of LayeredDepthPixel

The layered depth image contains camera information plus an array
of size xres by yres layered depth pixels. In addition to image data,
each layered depth pixel has an integer indicating how many valid
depth pixels are contained in that pixel. The data contained in the
depth pixel includes the color, the depth of the object seen at that
pixel, plus an index into a table that will be used to calculate a splat
size for reconstruction. This index is composed from a combination
of the normal of the object seen and the distance from the LDI
camera.

In practice, we implement Layered Depth Images in two ways.
When creating layered depth images, it is important to be able to
efficiently insert and delete layered depth pixels, so the Layers array
in the LayeredDepthPixel structure is implemented as a linked list.
When rendering, it is important to maintain spatial locality of depth
pixels in order to most effectively take advantage of the cache in
the CPU [12]. In Section 5.1 we discuss the compact render-time
version of layered depth images.

There are a variety of ways to generate an LDI. Given a synthetic
scene, we could use multiple images from nearby points of view for
which depth information is available at each pixel. This informa-
tion can be gathered from a standard ray tracer that returns depth
per pixel or from a scan conversion and z-buffer algorithm where
the z-buffer is also returned. Alternatively, we could use a ray tracer
to sample an environment in a less regular way and then store com-
puted ray intersections in the LDI structure. Given multiple real
images, we can turn to computer vision techniques that can infer
pixel correspondence and thus deduce depth values per pixel. We
will demonstrate results from each of these three methods.

4.1 LDIs from Multiple Depth Images

We can construct an LDI by warping n depth images into a com-
mon camera view. For example the depth images C2 and C3 in
Figure 5 can be warped to the camera frame defined by the LDI (C1
in figure 5). 3 If, during the warp from the input camera to the LDI
camera, two or more pixels map to the same layered depth pixel,
their Z values are compared. If the Z values differ by more than
a preset epsilon, a new layer is added to that layered depth pixel
for each distinct Z value (i.e., NumLayers is incremented and a new
depth pixel is added), otherwise (e.g., depth pixels c and d in fig-
ure 5), the values are averaged resulting in a single depth pixel. This
preprocessing is similar to the rendering described by Max [18].
This construction of the layered depth image is effectively decou-
pled from the final rendering of images from desired viewpoints.
Thus, the LDI construction does not need to run at multiple frames
per second to allow interactive camera motion.

4.2 LDIs from a Modified Ray Tracer

By construction, a Layered Depth Image reconstructs images of a
scene well from the center of projection of the LDI (we simply
display the nearest depth pixels). The quality of the reconstruction
from another viewpoint will depend on how closely the distribution
of depth pixels in the LDI, when warped to the new viewpoint,
corresponds to the pixel density in the new image. Two common
events that occur are: (1) disocclusions as the viewpoint changes,

3Any arbitrary single coordinate system can be specified here. However,
we have found it best to use one of the original camera coordinate systems.
This results in fewer pixels needing to be resampled twice; once in the LDI
construction, and once in the rendering process.



Figure 6 An LDI consists of the 90 degree frustum exiting
one side of a cube. The cube represents the region of interest
in which the viewer will be able to move.

and (2) surfaces that grow in terms of screen space. For example,
when a surface is edge on to the LDI, it covers no area. Later, it may
face the new viewpoint and thus cover some screen space.

When using a ray tracer, we have the freedom to sample the scene
with any distribution of rays we desire. We could simply allow
the rays emanating from the center of the LDI to pierce surfaces,
recording each hit along theway (up to somemaximum). Thiswould
solve the disocclusion problem but would not effectively sample
surfaces edge on to the LDI.

What set of rays should we trace to sample the scene, to best ap-
proximate the distribution of rays from all possible viewpoints we
are interested in? For simplicity, we have chosen to use a cubical
region of empty space surrounding the LDI center to represent the
region that the viewer is able to move in. Each face of the viewing
cube defines a 90 degree frustumwhichwewill use to define a single
LDI (Figure 6). The six faces of the viewing cube thus cover all of
space. For the following discussion we will refer to a single LDI.

Each ray in free space has four coordinates, two for position and two
for direction. Since all rays of interest intersect the cube faces, we
will choose the outward intersection to parameterize the position of
the ray. Direction is parameterized by two angles.

Given no a priori knowledge of the geometry in the scene, we as-
sume that every ray intersection the cube is equally important. To
achieve a uniform density of rays we sample the positional coor-
dinates uniformly. A uniform distribution over the hemisphere of
directions requires that the probability of choosing a direction is pro-
portional to the projected area in that direction. Thus, the direction
is weighted by the cosine of the angle off the normal to the cube
face.

Choosing a cosine weighted direction over a hemisphere can be
accomplished by uniformly sampling the unit disk formed by the
base of the hemisphere to get two coordinates of the ray direction,
say x and y if the z-axis is normal to the disk. The third coordinate
is chosen to give a unit length (z =

√

1− x2 − y2). We make the
selection within the disk by first selecting a point in the unit square,
then applying a measure preserving mapping [23] that maps the unit
square to the unit disk.

Given this desired distribution of rays, there are a variety of ways to
perform the sampling:

Uniform. A straightforward stochastic method would take as input
the number of rays to cast. Then, for each ray it would choose an
origin on the cube face and a direction from the cosine distribution

Figure 7 Intersections from sampling rays A andB are added
to the same layered depth pixel.

and cast the ray into the scene. There are two problems with this
simple scheme. First, such white noise distributions tend to form
unwanted clumps. Second, since there is no coherence between
rays, complex scenes require considerable memory thrashing since
rays will access the database in a random way [24]. The model
of the chestnut tree seen in the color images was too complex to
sample with a pure stochastic method on a machine with 320MB of
memory.

Stratified Stochastic. To improve the coherence and distribution of
rays, we employ a stratified scheme. In this method, we divide the
4D space of rays uniformly into a grid of N × N × N × N strata.
For each stratum, we cast M rays. Enough coherence exists within
a stratum that swapping of the data set is alleviated. Typical values
for N and M are 32 and 16, generating approximately 16 million
rays per cube face.

Once a ray is chosen, we cast it into the scene. If it hits an object, and
that object lies in the LDI’s frustum, we reproject the intersection
into the LDI, as depicted in Figure 7, to determine which layered
depth pixel should receive the sample. If the new sample is within an
epsilon tolerance in depth of an existing depth pixel, the color of the
new sample is averaged with the existing depth pixel. Otherwise,
the color, normal, and distance to the sample create a new depth
pixel that is inserted into the Layered Depth Pixel.

4.3 LDIs from Real Images

The dinosaurmodel in Figure 13 is constructed from 21 photographs
of the object undergoing a 360 degree rotation on a computer-
controlled calibrated turntable. An adaptation of Seitz and Dyer’s
voxel coloring algorithm [29] is used to obtain the LDI represen-
tation directly from the input images. The regular voxelization of
Seitz and Dyer is replaced by a view-centered voxelization similar
to the LDI structure. The procedure entails moving outward on rays
from the LDI camera center and projecting candidate voxels back
into the input images. If all input images agree on a color, this voxel
is filled as a depth pixel in the LDI structure. This approach en-
ables straightforward construction of LDI’s from images that do not
contain depth per pixel.

5 Rendering Layered Depth Images
Our fast warping-based renderer takes as input an LDI along with its
associated camera information. Given a new desired camera posi-
tion, the warper uses an incremental warping algorithm to efficiently
create an output image. Pixels from the LDI are splatted into the
output image using the over compositing operation. The size and



footprint of the splat is based on an estimated size of the reprojected
pixel.

5.1 Space Efficient Representation

When rendering, it is important to maintain the spatial locality of
depth pixels to exploit the second level cache in the CPU [12]. To
this end, we reorganize the depth pixels into a linear array ordered
from bottom to top and left to right in screen space, and back to
front along a ray. We also separate out the number of layers in each
layered depth pixel from the depth pixels themselves. The layered
depth pixel structure does not exist explicitly in this implementation.
Instead, a double array of offsets is used to locate each depth pixel.
The number of depth pixels in each scanline is accumulated into
a vector of offsets to the beginning of each scanline. Within each
scanline, for eachpixel location, a total count of the depth pixels from
the beginning of the scanline to that location is maintained. Thus to
find any layered depth pixel, one simply offsets to the beginning of
the scanline and then further to the first depth pixel at that location.
This supports scanning in right-to-left order as well as the clipping
operation discussed later.

5.2 Incremental Warping Computation

The incremental warping computation is similar to the one used
for certain texture mapping operations [9, 27]. The geometry of
this computation has been analyzed by McMillan [22], and efficient
computation for the special case of orthographic input images is
given in [3].

Let C1 be the 4 × 4 matrix for the LDI camera. It is composed of
an affine transformation matrix, a projection matrix, and a viewport
matrix,C1 = V1 ·P1 ·A1. This cameramatrix transforms a point from
the global coordinate system into the camera’s projected image co-
ordinate system. The projected image coordinates (x1, y1), obtained
after multiplying the point’s global coordinates by C1 and dividing
out w1, index a screen pixel address. The z1 coordinate can be used
for depth comparisons in a z buffer.

Let C2 be the output camera’s matrix. Define the transfer matrix as
T1,2 = C2 · C−1

1 . Given the projected image coordinates of some
point seen in the LDI camera (e.g., the coordinates of a in Figure 5),
this matrix computes the image coordinates as seen in the output
camera (e.g., the image coordinates of a2 in camera C2 in Figure 5).

T1,2 ·







x1
y1
z1
1






=







x2 · w2
y2 · w2
z2 · w2

w2






= result

The coordinates (x2, y2) obtained after dividing by w2, index a pixel
address in the output camera’s image.

Using the linearity of matrix operations, this matrix multiply can
be factored to reuse much of the computation from each iteration
through the layers of a layered depth pixel; result can be computed
as

T1,2 ·







x1
y1
z1
1






= T1,2 ·







x1
y1
0
1






+ z1 · T1,2 ·







0
0
1
0






= start + z1 · depth

To compute thewarped position of the next layered depth pixel along
a scanline, the new start is simply incremented.

C1

C2

d1

d2

φ1

φ2

Z2

θ1

θ2

Normal

Surface

Figure 8 Values for size computation of a projected pixel.

T1,2 ·







x1 + 1
y1
0
1






= T1,2 ·







x1
y1
0
1






+ T1,2 ·







1
0
0
0






= start + xincr

The warping algorithm proceeds using McMillan’s ordering algo-
rithm [20]. The LDI is broken up into four regions above and below
and to the left and right of the epipolar point. For each quadrant,
the LDI is traversed in (possibly reverse) scan line order. At the
beginning of each scan line, start is computed. The sign of xincr
is determined by the direction of processing in this quadrant. Each
layered depth pixel in the scan line is then warped to the output
image by calling Warp. This procedure visits each of the layers in
back to front order and computes result to determine its location
in the output image. As in perspective texture mapping, a divide is
required per pixel. Finally, the depth pixel’s color is splatted at this
location in the output image.

The following pseudo code summarizes the warping algorithm ap-
plied to each layered depth pixel.

procedure Warp(ldpix, start, depth, xincr)
for k←0 to dpix.NumLayers-1
z1←ldpix.Layers[k].Z
result ←start + z1 ∗ depth
//cull if the depth pixel goes behind the output camera
//or if the depth pixel goes out of the output cam’s frustum
if result.w > 0 and IsInViewport(result) then
result←result / result.w
// see next section
sqrtSize←z2 ∗ lookupTable[ldpix.Layers[k].SplatIndex]
splat(ldpix.Layers[k].ColorRGBA, x2, y2, sqrtSize)

end if
// increment for next layered pixel on this scan line
start ←start + xincr

end for
end procedure



5.3 Splat Size Computation

To splat the LDI into the output image, we estimate the projected
area of the warped pixel. This is a rough approximation to the
footprint evaluation [33] optimized for speed. The proper size can
be computed (differentially) as

size = (d1)
2 cos(θ2) res2 tan(fov1/2)

(d2)2 cos(θ1) res1 tan(fov2/2)

where d1 is the distance from the sampled surface point to the LDI
camera, fov1 is the field of view of the LDI camera, res1 = (w1h1)−1
where w1 and h1 are the width and height of the LDI, and θ1 is the
angle between the surface normal and the line of sight to the LDI
camera (see Figure 8). The same terms with subscript 2 refer to the
output camera.

It will be more efficient to compute an approximation of the square
root of size,

√
size = 1

d2
·
d1

√

cos(θ2)res2tan(fov1/2)
√

cos(θ1)res1tan(fov2/2)

≈ 1
Z2

·
d1

√

cos(φ2)res2tan(fov1/2)
√

cos(φ1)res1tan(fov2/2)

≈ z2 ·
d1

√

cos(φ2)res2tan(fov1/2)
√

cos(φ1)res1tan(fov2/2)

We approximate the θs as the angles φ between the surface nor-
mal vector and the z axes of the camera’s coordinate systems. We
also approximate d2 by Z2, the z coordinate of the sampled point
in the output camera’s unprojected eye coordinate system. During
rendering, we set the projection matrix such that z2 = 1/Z2.

The current implementation supports 4 different splat sizes, so a very
crude approximation of the size computation is implemented using
a lookup table. For each pixel in the LDI, we store d1 using 5 bits.
We use 6 bits to encode the normal, 3 for nx , and 3 for ny. This gives
us an eleven-bit lookup table index. Before rendering each new
image, we use the new output camera information to precompute
values for the 2048 possible lookup table indexes. At each pixel we
obtain

√
size by multiplying the computed z2 by the value found in

the lookup table.
√
size ≈ z2 · lookup[nx,ny,d1]

To maintain the accuracy of the approximation for d1, we discretize
d1 nonlinearly using a simple exponential function that allocates
more bits to the nearby d1 values, and fewer bits to the distant d1
values.

The four splat sizes we currently use have 1 by 1, 3 by 3, 5 by 5, and
7 by 7 pixel footprints. Each pixel in a footprint has an alpha value
to approximate a Gaussian splat kernel. However, the alpha values
are rounded to 1, 1/2, or 1/4, so the alpha blending can be done with
integer shifts and adds.

5.4 Depth Pixel Representation

The size of a cache line on current Intel processors (Pentium Pro
and Pentium II) is 32 bytes. To fit four depth pixels into a single
cache line we convert the floating point Z value to a 20 bit integer.
This is then packed into a single word along with the 11 bit splat
table index. These 32 bits along with the R, G, B, and alpha values
fill out the 8 bytes. This seemingly small optimization yielded a 25
percent improvement in rendering speed.

Figure 9 LDI with two segments

5.5 Clipping

The LDI of the chestnut tree scene in Figure 11 is a large data set
containing over 1.1 million depth pixels. If we naively render this
LDI by reprojecting every depth pixel, we would only be able to
render at one or two frames per second. When the viewer is close
to the tree, there is no need to flow those pixels that will fall outside
of the new view. Unseen pixels can be culled by intersecting the
view frustum with the frustum of the LDI. This is implemented by
intersecting the view frustum with the near and far plane of the
LDI frustum, and taking the bounding box of the intersection. This
region defines the rays of depth pixels that could be seen in the new
view. This computation is conservative, and gives suboptimal results
when the viewer is looking at the LDI from the side (see Figure 9).
The view frustum intersects almost the entire cross section of the
LDI frustum, but only those depth pixels in the desired view need
be warped. Our simple clipping test indicates that most of the LDI
needs to be warped. To alleviate this, we split the LDI into two
segments, a near and a far segment (see Figure 9). These are simply
two frustra stacked one on top of the other. The near frustum is kept
smaller than the back segment. We clip each segment individually,
and render the back segment first and the front segment second.
Clipping can speed rendering times by a factor of 2 to 4.

6 Results
Sprites with Depth and Layered Depth Images have been imple-
mented in C++. The color figures show two examples of rendering
sprites and three examples of rendering LDIs. Figures 3a through 3j
show the results of rendering a sprite with depth. The hemisphere
in the middle of the sprite pops out of the plane of the sprite, and
the illusion of depth is quite good. Figure 4 shows the process of
extracting sprites from multiple images using the vision techniques
discussed in Section 3. There is a great deal of parallax between the
layers of sprites, resulting in a convincing and inexpensive image-
based-rendering method.

Figure 10 shows two views of a barnyard scene modeled in Sof-
timage. A set of 20 images was pre-rendered from cameras that
encircle the chicken using the Mental Ray renderer. The renderer
returns colors, depths, and normals at each pixel. The images were
rendered at 320 by 320 pixel resolution, taking approximately one
minute each to generate. In the interactive system, the 3 images
out of the 17 that have the closest direction to the current camera
are chosen. The preprocessor (running in a low-priority thread) uses
these images to create an LDI in about 1 second. While the LDIs are
allocated with a maximum of 10 layers per pixel, the average depth
complexity for these LDIs is only 1.24. Thus the use of three input
images only increases the rendering cost by 24 percent. The fast



Figure 10 Barnyard scene

Figure 11 Near segment of chestnut tree

Figure 12 Chestnut tree in front of environment map



Figure 13 Dinosaur model reconstructed from 21 photographs

renderer (running concurrently in a high-priority thread) generates
images at 300 by 300 resolution. On a Pentium II PC running at
300MHz, we achieved frame rate of 8 to 10 frames per second.

Figures 11 and 12 show two cross-eye stereo pairs of a chestnut tree.
In Figure 11 only the near segment is displayed. Figure 12 shows
both segments in front of an environment map. The LDIs were
created using a modified version of the Rayshade raytracer. The tree
model is very large; Rayshade allocates over 340 MB of memory to
render a single image of the tree. The stochastic method discussed
in Section 4.2 took 7 hours to trace 16 million rays through this
scene using an SGI Indigo2 with a 250 MHz processor and 320MB
of memory. The resulting LDI has over 1.1 million depth pixels,
70,000 of which were placed in the near segment with the rest in the
far segment. When rendering this interactively we attain frame rates
between 4 and 10 frames per second on a Pentium II PC running at
300MHz.

7 Discussion
In this paper, we have described two novel techniques for image
based rendering. The first technique renders Sprites with Depth
without visible gaps, and with a smoother rendering than traditional
forward mapping (splatting) techniques. It is based on the observa-
tion that a forward mapped displacement map does not have to be as

accurate as a forward mapped color image. If the displacement map
is smooth, the inaccuracies in the warped displacement map result
in only sub-pixel errors in the final color pixel sample positions.

Our second novel approach to image based rendering is a Layered
Depth Image representation. The LDI representation provides the
means to display the parallax induced by camera motion as well as
reveal disoccluded regions. The average depth complexity in our
LDI’s is much lower that one would achieve using multiple input
images (e.g., only 1.24 in the Chicken LDI). The LDI representation
takes advantage of McMillan’s ordering algorithm allowing pixels
to be splatted back to Front with an over compositing operation.

Traditional graphics elements and planar sprites can be combined
with SpriteswithDepth andLDIs in the same scene if a back-to-front
ordering is maintained. In this case they are simply composited onto
one another. Without such an ordering a z-buffer approach will still
work at the extra cost of maintaining depth information per frame.

Choosing a single camera view to organize the data has the advan-
tage of having sampled the geometry with a preference for views
very near the center of the LDI. This also has its disadvantages.
First, pixels undergo two resampling steps in their journey from in-
put image to output. This can potentially degrade image quality.
Secondly, if some surface is seen at a glancing angle in the LDIs
view the depth complexity for that LDI increases, while the spatial
sampling resolution over that surface degrades. The sampling and
aliasing issues involved in our layered depth image approach are
still not fully understood; a formal analysis of these issues would be
helpful.

With the introduction of our two new representations and rendering
techniques, there now exists a wide range of different image based
rendering methods available. At one end of the spectrum are tradi-
tional texture-mapped models. When the scene does not have too
much geometric detail, andwhen texture-mapping hardware is avail-
able, this may be the method of choice. If the scene can easily be
partitioned into non-overlapping sprites (with depth), then triangle-
based texture-mapped rendering can be used without requiring a z
buffer [17, 4].

All of these representations, however, do not explicitly account for
certain variation of scene appearance with viewpoint, e.g., specu-
larities, transparency, etc. View-dependent texture maps [5], and
4D representations such as lightfields or Lumigraphs [15, 7], have
been designed to model such effects. These techniques can lead to
greater realism than static texture maps, sprites, or Layered Depth
Images, but usually require more effort (and time) to render.

In future work, we hope to explore representations and rendering al-
gorithms which combine several image based rendering techniques.
Automatic techniques for taking a 3D scene (either synthesized or
real) and re-representing it in the most appropriate fashion for im-
age based rendering would be very useful. These would allow us to
apply image based rendering to truly complex, visually rich scenes,
and thereby extend their range of applicability.

Acknowledgments

The authors would first of all like to thank Michael F. Cohen. Many
of the original ideas contained in this paper as well as much of the
discussion in the paper itself can be directly attributable to him. The
authors would also like to thank Craig Kolb for his help in obtaining
and modifying Rayshade. Steve Seitz is responsible for creating
the LDI of the dinosaur from a modified version of his earlier code.
Andrew Glassner was a great help with some of the illustrations in
the paper. Finally, we would like to thank Microsoft Research for
helping to bring together the authors to work on this project.



References
[1] S. Baker, R. Szeliski, and P. Anandan. A Layered Approach to Stereo

Reconstruction. In IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’98). Santa Barbara, June 1998.

[2] Shenchang Eric Chen and Lance Williams. View Interpolation for Im-
age Synthesis. In James T. Kajiya, editor, Computer Graphics (SIG-
GRAPH ’93 Proceedings), volume 27, pages 279–288. August 1993.

[3] WilliamDally, LeonardMcMillan, GaryBishop, andHenryFuchs. The
Delta Tree: An Object Centered Approach to Image Based Rendering.
AI technical Memo 1604, MIT, 1996.

[4] Lucia Darsa, Bruno Costa Silva, and Amitabh Varshney. Navigating
Static Environments Using Image-Space Simplification andMorphing.
In Proc. 1997 Symposium on Interactive 3D Graphics, pages 25–34.
1997.

[5] Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling
and Rendering Architecture from Photographs: A Hybrid Geometry-
and Image-Based Approach. In Holly Rushmeier, editor, SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 11–20.
ACM SIGGRAPH, Addison Wesley, August 1996.

[6] O. Faugeras. Three-dimensional computer vision: A geometric view-
point. MIT Press, Cambridge, Massachusetts, 1993.

[7] Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F.
Cohen. The Lumigraph. In Holly Rushmeier, editor, SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 43–54.
ACM SIGGRAPH, Addison Wesley, August 1996.

[8] Paul S. Heckbert. Survey of TextureMapping. IEEEComputer Graph-
ics and Applications, 6(11):56–67, November 1986.

[9] Paul S. Heckbert and Henry P. Moreton. Interpolation for Polygon
Texture Mapping and Shading. In David Rogers and Rae Earnshaw,
editors, State of the Art in Computer Graphics: Visualization andMod-
eling, pages 101–111. Springer-Verlag, 1991.

[10] Youichi Horry, Ken ichi Anjyo, and Kiyoshi Arai. Tour Into the Pic-
ture: Using a SpideryMesh Interface toMakeAnimation from a Single
Image. In TurnerWhitted, editor, SIGGRAPH 97Conference Proceed-
ings, Annual Conference Series, pages 225–232. ACM SIGGRAPH,
Addison Wesley, August 1997.

[11] R. Kumar, P. Anandan, and K. Hanna. Direct recovery of shape from
multiple views: A parallax based approach. In Twelfth International
Conference on Pattern Recognition (ICPR’94), volume A, pages 685–
688. IEEE Computer Society Press, Jerusalem, Israel, October 1994.

[12] AnthonyG. LaMarca. Caches andAlgorithms. Ph.D. thesis, University
of Washington, 1996.

[13] S. Laveau and O. D. Faugeras. 3-D Scene Representation as a Col-
lection of Images. In Twelfth International Conference on Pattern
Recognition (ICPR’94), volume A, pages 689–691. IEEE Computer
Society Press, Jerusalem, Israel, October 1994.

[14] Jed Lengyel and John Snyder. Rendering with Coherent Layers. In
Turner Whitted, editor, SIGGRAPH 97 Conference Proceedings, An-
nual Conference Series, pages 233–242. ACM SIGGRAPH, Addison
Wesley, August 1997.

[15] Marc Levoy and Pat Hanrahan. Light Field Rendering. In Holly Rush-
meier, editor, SIGGRAPH96ConferenceProceedings, Annual Confer-
ence Series, pages 31–42. ACMSIGGRAPH,AddisonWesley, August
1996.

[16] Mark Levoy and Turner Whitted. The Use of Points as a Display
Primitive. Technical Report 85-022, University of North Carolina,
1985.

[17] William R. Mark, Leonard McMilland, and Gary Bishop. Post-
Rendering 3D Warping. In Proc. 1997 Symposium on Interactive 3D
Graphics, pages 7–16. 1997.

[18] Nelson Max. Hierarchical Rendering of Trees from Precomputed
Multi-Layer Z-Buffers. In Xavier Pueyo and Peter Schröder, editors,
Eurographics Rendering Workshop 1996, pages 165–174. Eurograph-
ics, Springer Wein, New York City, NY, June 1996.

[19] Leonard McMillan. Computing Visibility Without Depth. Technical
Report 95-047, University of North Carolina, 1995.

[20] Leonard McMillan. A List-Priority Rendering Algorithm for Redis-
playing Projected Surfaces. Technical Report 95-005, University of
North Carolina, 1995.

[21] Leonard McMillan and Gary Bishop. Plenoptic Modeling: An Image-
Based Rendering System. In Robert Cook, editor, SIGGRAPH 95Con-
ference Proceedings, Annual Conference Series, pages 39–46. ACM
SIGGRAPH, Addison Wesley, August 1995.

[22] LeonardMcMillan and Gary Bishop. Shape as a Pertebation to Projec-
tive Mapping. Technical Report 95-046, University of North Carolina,
1995.

[23] Don P. Mitchell. personal communication. 1997.
[24] Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. Render-

ing Complex Scenes with Memory-Coherent Ray Tracing. In Turner
Whitted, editor, SIGGRAPH97Conference Proceedings, Annual Con-
ference Series, pages 101–108. ACM SIGGRAPH, Addison Wesley,
August 1997.

[25] H. S. Sawhney. 3D Geometry from Planar Parallax. In IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition
(CVPR’94), pages 929–934. IEEE Computer Society, Seattle, Wash-
ington, June 1994.

[26] Gernot Schaufler and Wolfgang Stürzlinger. A Three-Dimensional
Image Cache for Virtual Reality. In Proceedings of Eurographics ’96,
pages 227–236. August 1996.

[27] Mark Segal, Carl Korobkin, Rolf vanWidenfelt, Jim Foran, and Paul E.
Haeberli. Fast shadows and lighting effects using texture mapping.
In Edwin E. Catmull, editor, Computer Graphics (SIGGRAPH ’92
Proceedings), volume 26, pages 249–252. July 1992.

[28] StevenM.Seitz andCharlesR.Dyer. ViewMorphing: Synthesizing 3D
Metamorphoses Using Image Transforms. In Holly Rushmeier, editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference Series,
pages 21–30. ACM SIGGRAPH, Addison Wesley, August 1996.

[29] Steven M. seitz and Charles R. Dyer. Photorealistic Scene Recon-
struction by Voxel Coloring. In Proc. Computer Vision and Pattern
Recognition Conf., pages 1067–1073. 1997.

[30] Jonathan Shade, Dani Lischinski, David Salesin, Tony DeRose, and
John Snyder. Hierarchical Image Caching for Accelerated Walk-
throughs of Complex Environments. In Holly Rushmeier, editor, SIG-
GRAPH96Conference Proceedings, Annual Conference Series, pages
75–82. ACM SIGGRAPH, Addison Wesley, August 1996.

[31] Jay Torborg and Jim Kajiya. Talisman: Commodity Real-time 3D
Graphics for the PC. In Holly Rushmeier, editor, SIGGRAPH 96 Con-
ference Proceedings, Annual Conference Series, pages 353–364. ACM
SIGGRAPH, Addison Wesley, August 1996.

[32] J. Y. A. Wang and E. H. Adelson. Layered Representation for Motion
Analysis. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’93), pages 361–366. New York, New
York, June 1993.

[33] Lee Westover. Footprint Evaluation for Volume Rendering. In Forest
Baskett, editor, Computer Graphics (SIGGRAPH ’90 Proceedings),
volume 24, pages 367–376. August 1990.

[34] G. Wolberg. Digital Image Warping. IEEE Computer Society Press,
Los Alamitos, California, 1990.


