
 

surface remeshing in arbitrary codimensions

 

 

(Article begins on next page)

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Citation Cañas, Guillermo D., and Steven J. Gortler. 2006. Surface
Remeshing in Arbitrary Codimensions. Special Issue. The Visual
Computer: International Journal of Computer Graphics 22(9-11):
885-895. Also published in Proceedings of the 14th Pacific
conference on computer graphics and applications (Pacific
Graphics 2006), October 11-13, Taipei, Taiwan, ed. Pacific
Graphics 2006, Marc Alexa, Steven Jacob Gortler, and Tao JuLos.
Alamitos, Calif.: IEEE Computer Society.

Published Version doi:10.1007/s00371-006-0073-8

Accessed February 17, 2015 2:44:04 PM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634389

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-
use#LAA

http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/2634389&title=surface+remeshing+in+arbitrary+codimensions
http://dx.doi.org/10.1007/s00371-006-0073-8
http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634389
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA


Surface Remeshing in Arbitrary Codimensions

Guillermo D. Cãnas
Harvard University

Steven J. Gortler
Harvard University

Abstract

We present a method for remeshing surfaces that is both
general and efficient. Existing efficient methods are restric-
tive in the type of remeshings they produce, while methods
that are able to produce general types of remeshings are
generally based on iteration, which prevents them from pro-
ducing remeshes at interactive rates. In our method, the
input surface is directly mapped to an arbitrary (possibly
high-dimensional) range space, and uniformly remeshed in
this space. Because the mesh is uniform in the range space,
all the quantities encoded in the mapping are bounded, re-
sulting in a mesh that is simultaneously adapted to all crite-
ria encoded in the map, and thus we can obtain remeshings
of arbitrary characteristics. Because the core operation is
a uniform remeshing of a surface embedded in range space,
and this operation is direct and local, this remeshing is effi-
cient and can run at interactive rates.

1 Introduction

In this paper we describe a novel remeshing algorithm that
produces flexible remeshes of reasonable approximation
quality at interactive rates. Due to its speed, it may can be
applied to dynamically changing meshes during simulation
and rendering.

The algorithm uses the following simple two-stage struc-
ture. In the first stage, the meshM is mapped usingsome
chosen functionf to some range spaceRn. In the second
stage, a uniform grid is placed in the range space, andf(M)
is uniformly contouredby intersecting it against this grid.
In the resulting uniform remesh, each face will lie in a sin-
gle grid-cell inRn and so the variation of its range-space
coordinates will be bounded by the grid size. Finally, this
remesh is then mapped back toR3 and output by the algo-
rithm.

Clearly the choice off greatly affects the properties of the
output remesh. Iff is simply the identity mapping toR3,
then each face of the remesh will be guaranteed to have
bounded area. If, in contrast, we map each surface point
p to R3 by using its normalp → (nx, ny, nz), then each

face of the remesh will be bounded in its normal variation.
As shown later, when the Gauss map is used, then in the
limit each face will have aspect ratio roughly proportional
to the ratio of the surface’s principle curvatures.

Mappings toR6 of the formp → (px, py, pz, nx, ny, nz)
will guarantee bounds on both spatial and normal varia-
tion. Other mappingsf can also be chosen to include data
fields such as color to bound that type of variation in each
output face. The mapping can be also chosen in a view-
dependent fashion allowing for spatial variation to be mea-
sured in pixel coordinates.

Our algorithm has the following desired properties.

• It is fast, running in real time for moderate-sized
meshes. The mapping and contouring stages each only
require a single pass over the mesh. No iterative pro-
cessing is needed. The mapping can be evaluated lazily
as needed, resulting in sub-linear time behavior.

• It is quite flexible, one simply chooses the mappingf
to encapsulate the kinds of remesh properties they wish
to bound.

• By construction the algorithm outputs faces withL∞

bounds on the variation of the mesh underf .

• If f is chosen appropriately, the output remesh faces
will be anisotropically elongated as needed. For exam-
ple if f maps each mesh point toR3 using its normal
(nx, ny, nz) then faces will have aspect ratio propor-
tional to the ratio of the surface’s principle curvatures.

• Because of the regular structure of the intersection grid
in Rn, the output mesh is guaranteed to have all ver-
tices with valence 4. If this mesh is dualized, the re-
sulting remesh has all quad faces.

Our algorithm does have the following limitations

• Our remeshes are not optimal, and better results can
be achieved using off-line methods. The algorithm can
over-tessellatein some local regions. This also may
result in some over long and skinny faces.

• When we dualize the remesh to obtain a mesh with
all quad faces, we have no guarantees to the regularity



of the valences of the vertices. Both of these problems
can be ameliorated to some degree using some iterative
post-process as we describe.

• Similarly to many implicit surface contouring meth-
ods, we can not guarantee that the output mesh will
have topology that matches the input surface. If the
surface has a small feature that misses all grid-edges,
this feature may not be sampled. (For example, an in-
put barbell shape may get meshed as two disconnected
spherical shapes.) Moreover, since our algorithm is a
“seeded traversal”, it will not directly find all of the
disconnected components.

Overall our paper has the following contributions

• We introduce a general remeshing strategy based on
mappings toRn followed by uniform contouring in
Rn.

• We describe a novel but simple algorithm to trace out
the intersection of a surface and uniform grid inRn to
produce the uniform tessellation. Traditional methods
used to contour implicit surfaces inR3 are not appro-
priate for our remeshing since whenn > 3, the surface
is not codimension 1.

• We explore a number of interesting mappingsf and
show their resulting remeshes.

2 Previous Work

Approaches for surface remeshing that are based on iter-
ation perform a series of local operations in order to ob-
tain a mesh that is more optimal with respect to some met-
ric [15, 13, 25]. These algorithms do not require any spe-
cial pre-processing of the input, and allow great flexibility
in the way they operate. Because they generally can accept
any metric to evaluate the quality of a mesh, the output they
produce can be adapted to any number of criteria. They are,
however, inherently iterative, preventing them from produc-
ing complete remeshes at interactive rates.

Other approaches reduce the dimensionality of the prob-
lem by posing it in a parametrized domain of the surface.
The remesh can be computed by uniformly sampling the
parametrization in a direct way [11, 14, 21]. These tech-
niques produce highly regular remeshes, but often at the ex-
pense of the resulting approximation quality. The domain
can be non-uniformly point-sampled and a mesh built that
connects these samples [3, 2], producing locally isotropic
remeshes at interactive rates, but onlyafter an expensive
parametrization step. [1] uses curvature lines traced on the
parametrized domain to induce a mesh. This method is
specifically designed to produce one type of remesh.

The method of [8] poses the remeshing problem as a vari-
ational optimization problem, by decomposing the surface
into regions that are balanced with respect to a predefined
criteria using a k-means clustering approach. The regions
are then approximated by polygons of an arbitrary number
of sides, which can be adapted to the curvature of the sur-
face. Dong et al. compute quadrilateral meshes with semi-
regular connectivity, but their method is not interactive and
produces nearly uniform elemnts [10].

The type of contouring that our approach uses is similar to
methods for reconstructing implicit surfaces that are based
on spatial decompositions [19, 18, 17, 23]. These methods
are efficient when reconstructing implicit volumes, but un-
fortunately cannot be applied to input meshes without first
converting them to implicit form (i.e. by computing their
distance field). Extensions of implicit methods exist for n-
dimensions [6, 24].

Other methods exist that reconstruct or repair a surface by
finding its intersection with a grid or an octree [16, 4, 22,
20]. They are typically separated in two stages: ascan-
conversionstage, and a contouring stage that may be based
on a primal [4, 22, 20] or a dual grid [16]. In these methods,
the scan conversion uses no coherence between neighboring
triangles and can typically take seconds of processing time.
The contouring process is limited to the codimension-1 case
of recovering surfaces inR3.

Our approach is perhaps closest in spirit to that of [5], where
an implicit surface is adaptively triangulated in a three-stage
process that first warpsR3, then applies a uniform con-
touring algorithm, and finally transforms the resulting mesh
through the inverse of the warping function. Since this is a
method for contouring implicit surfaces, it does not extend
to arbitrary dimensions, and the warping is restricted to be
invertible. By allowing both non-invertible mappings and
mappings into arbitrary-dimensional spaces, we can create
a variety of useful adaptive remeshes in a direct way and at
fast rates.

3 Uniform Contouring in R3

We begin our exposition by describing a simple an efficient
algorithm that is capable of uniformly contouring surfaces
that are embedded inR3, and later show how this can be ex-
tended to surfaces (triangulated 2-manifold) inRn. This is
a different problem than iso-surface extraction, which finds
ann − 1 dimensional manifold inRn. Although this arbi-
trary co-dimension method is quite simple and natural, we
are not aware of its previous use in the literature. In sec-
tion 8 we will show how various mappingsf : M → Rn,
can be applied to a mesh to obtain useful remeshes.

We uniformly approximate a surfaceM sitting in R3 by
considering its intersection with a uniform grid. This is



shown in figure 2.a-c. The intersection between the surface
and the uniform grid (figure 2.a) is a decomposition of the
surface, with vertices of valence four everywhere. (There-
fore by taking its dual (figure 2.b), we will later be able to
obtain a uniform remesh with quads only). What follows
assumes that the input surface is a triangle mesh represent-
ing a closed 2-manifold, and we describe latter in section 7
how this can be extended to manifolds with boundary. We
will use the termsurface-triangleto refer to a triangle in
this input surface.

A uniform grid in R3 is a cellular decomposition of space,
comprising what we termgrid-cells, grid-faces, andgrid-
edges. Cells are unit cubes that tile space, while faces are
the two-dimensional sets shared by adjacent cells. Edges
are one-dimensional sets shared by adjacent faces. By in-
tersecting the surface against this grid, we create a de-
composition ofM . This decomposition is comprised of
intersection-vertices, intersection-arcs, and intersection-
regions, which are the result of intersecting the surfaceM
with the grid-edges, grid-faces, and grid-cells, respectively.

More specifically, the intersection between a surface and a
grid has the following structure:

• A grid-edge is a one-dimensional segment, and will
transversely intersect the surface at one (or more) dis-
crete point(s) on the surface.

• A two-dimensional grid-face will intersect the surface
forming one (or more) curve(s) onM . There are
two possible cases for each such curve. In thegood
case, the curve is anintersection-arcconnecting two
intersection-vertices. In thebad case, the curve is a
closed loop.

• The intersection of a grid-cell withM results in one
(or more) disjoint intersection-regions of finite area on
M . There are two possible cases for these regions.
In thegood case, regions have the topology of a disk.
In the bad case, a region can have more complicated
topology.

Associated with these intersections we define the following
remeshed surface:

• For each surface with grid-edge intersection, we will
output an intersection-vertex.

• For each intersection-arc of the good kind we will out-
put an intersection-edge. Intersections of the bad kind,
however, are ignored.

• For each simple cycle of intersection-arcs that is
associated with one grid-cell, we will output one
intersection-face.

First we note that if all of the intersections between the sur-
face and the grid-cells are of the good kind, then this remesh
will be homeomorphic to the input surface. Currently we do
not have any conditions that guarantee all intersections will
be of the “good kind”, nor have we yet explored methods to
test for this and adapt appropriately.

We also note that the remesh described above retains the
same incidence relations of the grid, because it is derived
from it. For this reason, the graph formed by intersection-
vertices and intersection-arcs can be properly embedded (as
a polyline) in the surface without any crossings.

Additionally because every grid-edge is incident to four
grid-faces, every intersection-vertex will be incident to four
intersection-edges. That is, all intersection-vertices have
valence four. However, intersection-faces may be bounded
by an arbitrary number of edges.

The above decomposition can be computed efficiently using
a simple tracing algorithm, which we discuss next. Unlike
implicit surface methods, this algorithm will generalize to
arbitrary codimensions in a straight-forward way.

3.1 Algorithm

We compute the above decomposition of the surface, ob-
tained by intersecting it with a uniform grid, by tracing the
graph formed by the decomposition.

The tracing algorithm uses the following key data types:
point: R3 coordinates

intersectionVertex:

{point, surfaceTriangle, gridEdge, 4 gridFaceProcessedBits}
intersectionEdge:{2 intersectionVertices}

The intersection-vertexdata type represents the point of in-
tersection of a grid-edge with the surface. Each grid-edge is
incident to four grid-faces. Each of these faces will need to
be processed by tracing out the intersection arc between that
face and the surface. As such we need to store 4 processed-
bits at an intersection-vertex.

Starting from an intersection-vertex, we progress on the
surface along all its incident arcs, which arrive at other
intersection-vertices and in turn spawn more arcs. Eventu-
ally, arcs reach intersection-vertices that were already com-
puted, closing the graph. The following pseudo-code sum-
marizes this algorithm, which uses a seed intersectionv0

that is a chosen surface point that is simply translated to
make it pass through a grid edge.

Q← empty queue of intersectionVertices.

Enqueuev0 in Q.

While Q is not emptydo

Dequeuev fromQ.

While v has an unprocessed gridFacef do



Mark f as processed inv.

(point p̄, surfaceTriangle t, gridEdge e)←
ArcTraverse(v.point, v.surfaceTriangle,f )

if (p̄, t, e) has yet to be encountered

v̄ ← new intersectionVertex(̄p, t, e)

enqueuēv

create intersectionEdge connecting(v, v̄)

markf as processed in̄v

The intersection-vertices and intersection-edges can be used
to form the connectivity of the output remesh. The faces of
the remesh can be easily computed by finding the simple
cycles in the graph of intersection-vertices and intersection-
edges. The various data fields in the remesh are obtained by
sampling the surface point at the intersection-vertex.

3.1.1 Computing The Intersection-Arcs
The key operation, and the
one that consumes the major-
ity of the time in the entire
algorithm, is the arc traver-
sal along the surface. Be-
cause the surface is piecewise
linear, its intersection with a
grid-facef is a polyline, with
one linear segment for every
surface-triangle that the grid-

face intersects (in the side figure, the intersection between
the surface and a facef is the polylinew0w1w2w3). To
trace an intersection-arc, represented as a polyline, we find
the intersection between the supporting plane of the grid-
face and every input surface-triangle along the polyline. We
then test whether each of these intersections are completely
inside the grid-face or whether it we have reached a grid-
edge indicating, whether we should continue tracing the
polyline or an intersection-vertex has been found.

Consider the example depicted in the side figure. A simple
polyline fromw0 to w3 represents the intersection between
a grid-facef and the surface. The grid-face is a squared por-
tion of its supporting planeΠ. Imagine that we start tracing
the polyline fromw0, knowing that we must progress in the
direction towardsw1, which lies inΠ. We first test whether
w1 is insidef . Becausew1 ∈ f , we can continue trac-
ing to the next triangle4bcd. In order to process triangle
4bcd, starting fromw1, we compute the intersection be-
tween4bcd andΠ, resulting in segment(w1, w2). Again,
becausew2 ∈ f , we have not yet reached a grid-edge and so
we proceed to triangle4cde. We compute the intersection
between this triangle andf , and find that this time the inter-
section (segment(w2, w4)) exitsf at pointw3. In general,
because the input surface may be very finely tessellated, we
may be forced to traverse many triangles along the arc until

we reach a grid-edge on the boundary off . Once the grid-
edge is reached, the arc is completely traced. We can then
report the found intersection. The following pseudo-code
summarizes this procedure for tracing an arc.

ArcTraverse(point p, surfaceTriangle t, gridFace f)

lineSegment(p, p̄)← intersection betweenf andt.

While p̄ does not lie on a gridEdgedo

t← neighbor surfaceTriangle oft that contains̄p.

p← p̄.

lineSegment(p, p̄)← intersection betweenf andt.

e← gridEdge containinḡp

return(p̄, t, e)

In practice, we have found that the cost, in terms of float-
ing point operations, of computing the arc segments is low
enough to be small even when compared with the cost of
simply reading the sequence of triangles from memory.

We note here that this algorithm does not require the map-
ping f of the surface toR3 to be an invertible embedding.
The arcTraverse routine always keeps track of the current
surface-triangle and so it can unambiguously trace the in-
tersection of the mapped surface and a grid-face. The main
algorithm uses the surface-triangle id and grid-edge id to
uniquely identify an intersection-vertex, as well as to test
if we have previously encountered it. (A surface-triangle
and grid-edge can intersect at most once). As the arcs are
traversed, and new intersection-vertices are encountered,
we sample the appropriate data from the surface-point (un-
mapped geometric position, as well as normal, and color).
This data is stored in the intersection-vertex data structure.
Because we directly sample unmapped position data from
the surface, we never need to explicitly applyf−1.

We note that in our algorithm, the representation of the grid
is implicit in the logic of the algorithm, and requires no ex-
plicit storage. (From a grid-edge id, we can directly com-
pute neighboring grid-face ids, and vice-versa. And from
a grid-face id, we can directly compute the geometry of its
supporting plane,π.) We also note that the algorithm never
touches surface-triangles that lie completely in a grid-cell
and that do not touch any grid-face. Thus, for highly tes-
sellated input surface, the remeshing algorithm will run in
sublineartime.

Degenerate Intersections Certain degenerate intersec-
tions between the surface and the grid may invalidate the
structure described in section 3: surface vertices lying on
grid-faces or grid-edges, surface triangles lying entirely on
grid-faces, or grid-edges intersecting a surface-triangle at
one of its edges. We detect these events by using exact large
integer arithmetic and predicates that involve only multi-
plications and additions. Degenerate cases are symboli-
cally perturbed to break ties in a consistent manner, similar
to [12]. This frees us from considering degeneracies in the



logic while ensuring consistency for all inputs.

4 Uniform Reconstruction in Rn

We now generalize the algorithm of the previous section to
higher-dimensions. Given a continuous, but not necessarily
invertible mapf : M → Rn that embeds a surfaceM in
Rn (with n ≥ 3), we uniformly triangulatef(M) directly
in Rn.

We first transform the input surfaceM , which is given as a
triangle mesh, by applying the mappingf to all its vertices.
Points in the interior of each surface-triangle map toRn

using their barycentric coordinates.

We must now extend all the operations of the algorithm de-
scribed in section 3 to work with a grid inRn and a sur-
facef(M) ⊂ Rn. We use the same pseudo-code that was
used before, but we must generalize the operations of find-
ing a seed and computing arcs. In order to understand how
these operations can be extended toRn, we first describe the
structure of a uniform grid inRn, against which the surface
will be intersected.

4.1 Uniform Grid in Rn

A uniform grid in Rn is composed of elements of every di-
mensionality, from0 to n. However, we are only concerned
with those of dimensionn, n−1, andn−2, that is, of codi-
mension0, 1, and2. We again refer to these as grid-cells,
grid-faces, and grid-edges, respectively. Note that forn = 3
this results in exactly the same notation as used above.

This generalization of a uniform grid inR3 to n-dimensions
has the advantage that many of its properties are intact.
For instance, the intersection of the surfacef(M) with
a grid-cell, grid-face, and a grid-edge is, respectively, an
intersection-region, an intersection-arc, and an intersection-
vertex on the surface. Intuitively, because a grid-cell has
codimension0, its is simply a portion of space with vol-
ume, and its intersection with the transformed surface is a
two dimensional region of it. Analogously, a grid-face is the
result of applying to a cellonelinear constraint, it is there-
fore of codimension1 and its (generic) intersection with the
surface is a set of dimension one less than the dimension-
ality of the surface. As a result, the intersection of the sur-
face with a grid-face is an intersection-arc of dimension1.
Predictably, intersecting a grid-edge (codimension2) with
the surface results in a single point: an intersection-vertex.
Grid elements of higher codimension than2 do not need
to be considered since, for a surface in general position, its
transversal intersection with such an element is null.

An important property that is carried over ton-dimensions
is the valence of intersection-vertices, which once again is
always four. Analogously as inR3, grid-faces are con-
tained in a (codimension-1) axis-aligned hyperplane (one

linear constraint). A grid-edge in turn, is contained in a
(codimension-2) axis-aligned set obtained by intersecting
two hyperplanes (two linear constraints). Similarly as in
R3, in Rn, grid-edges have two incident grid-faces for each
of the two hyperplanes that they are contained in, therefore
grid-edges have exactly four incident grid-faces. Conse-
quently, every intersection-vertex has valence four.

We can now confront the task of extending all the steps
in the reconstruction algorithm ton-dimensions. Finding
a seed has a simple extension: we choose a point on the sur-
facef(M) and translate the surface so that a grid-edge will
pass through the chosen point. This point can now serve as
a seed. Computing the intersection-arcs, however, requires
further considerations.

4.2 Computing Arcs in Rn

Tracing arcs inRn follows exactly the same pseudo-code as
in section 3.1.1. An intersection-arc is still the intersection
between a grid-face and the surface. As before, we trace the
arc from surface-triangle to surface-triangle until we reach a
grid-edge, and we place an intersection-vertex at that point.

In order to find the intersection between a surface-triangle
in Rn and a grid-face, we first compute the intersection
between the (two-dimensional) supporting plane of the
surface-triangle and the (codimension one) supporting hy-
perplane of the grid-face, resulting in a (one-dimensional)
line. This is an algebraic operation (which is especially sim-
ple when our grid is axis aligned).

The actual intersection between the triangle and the face
must be contained as a line segment contained in this com-
puted line. This segment is computed byclipping the line
against the surface-triangle and the grid-face. (Note, how-
ever, that the cost of clipping a line against a grid-face is
linear in the dimensionn).

The above generalization of the arc traversal is expressive
enough that we, in fact, do not use separate implementations
for R3 andRn, but instead a single one with the dimension
n being a compile-time parameter. Additionally, the speed
of the algorithm in practice does not vary with the dimen-
sionn, as the operations that are sensitive to the dimension
have a very small constant, and, as explained above, then
dimensional grid is never explicitly constructed or stored.

5 Computing the Dual

If we want our algorithm to output a mesh with all quads,
we can achieve this by creating a dualized remesh. In this
remesh, the connectivity is the topological dual of the pri-
mal remesh. Because all vertices in the primal have valence
four, all faces in the dual are quads.



The result is always a manifold This is in contrast with dual
contouring methods for implicit surfaces where two or more
sheets of the surface can touch at a vertex. This cannot hap-
pen in our method. Because the traversal is doneon the
surface, not by traversing space. If a surface passes by a
grid-cell cube several times, it will generate a new set of
vertices and quads for that cell each time it passes through
the cell.

We can simply set the
geometry and normal
for a dual vertex(v̄, n̄),
whose primal is a face
f , by simple averag-
ing as (v =

∑
vi/m,

n =
∑

ni/‖
∑

ni‖),
where (vi,ni) are the

primal vertices incident tof .

To obtain a higher quality dualization, we set the positionv̄
to minimize the Quadric Error Metric based on the distance
to the tangent planes defined by(vi,ni).

6 Iterative Improvement

Although globally the density and sizes of elements of our
algorithm adjust to all the quantities measured by the map-
ping, they may not be well distributed locally.

Consider as an example the situation depicted in the side
figure, where a straight line is remeshed by intersecting it
with a uniform grid on the plane. Although the average dis-
tribution of sampling points is proportional to the length of
the curve, locally, their density is irregular: higher where

the line passes close to
a grid-vertex, and lower
away from them. This
situation is aggravated
as the dimensionality of
the mapping increases.
A (0-dimensional) vertex
of a uniform grid in Rn

will have n · (n − 1)
(codimension-2) grid-edges incident to it. As the number of
incident grid-edges increases, the local non-uniformity of
the sampling equally increases. For very-high-dimensional
mappings, intersection-vertices can cluster together in
groups. This can degrade the quality of the remesh.

Relaxation A natural solution to the above problem is
to somehow relax the vertices’ positions until they are lo-
cally uniformly distributed. The relaxation step could take
the form of simple averaging of neighboring vertices, but
this produces significant shrinking and smoothing. Other
methods exist that do not shrink the surface, but produce

smoothing [26, 27]. The type of relaxation that we desire lo-
cally slides the verticeswithoutsmoothing the surface. One
possible solution would be the vertex repositioning method
of [25]. Here we present a very simple alternative.

To produce better vertex distributions, we apply a series of
relaxation iterations to each dual vertex(v̄, n̄) - each it-
eration consisting on two steps: a smoothing step, and a
projection step. A smoothing step is an instance of simple
Gaussian smoothing, where each dual vertex’s position and
normal are substituted by the average of those of its neigh-
bors, obtaining a newsmoothed vertex(v̄′, n̄′). This first
step locally relaxes vertices over the surface, but also intro-
duces smoothing and shrinking.

We follow every smoothing step by a projection step, in-
tended to eliminate the shrinking and smoothing, while re-
taining the local relaxation. To this end, we consider a mod-
ification of the Quadric Error Metric method. Because each
dual vertex has associated with it a primal face with incident
vertices(vi,ni), we can consider the Quadric Error Met-
ric defined by the distances to the tangent planes defined
at those points. However, if we were to apply the QEM
method directly at this point, the resulting vertex would
be always the same and independent of the position of the
smoothed dual vertex(v̄′, n̄′). Instead, we restrict the QEM
solution to lie on the linēv′ + λn̄′. The consequence of
this decision is two-fold. On the one hand, because the so-
lution lies in v̄′ + λn̄′, the effect of the combined smooth-
ing/projection iteration is that vertices are effectively locally
slidover the surface without smoothing or shrinking. On the
other hand, while the solution to the original QEM prob-
lem reduces to solving a linear system, or more generally
an SVD decomposition [18, 17] to avoid stability problems,
the solution of a QEM problem restricted to a line reduces
to simply solving a linear equation (a considerably faster
operation).

Furthermore, the projection step can be made uncondition-
ally non-singular by introducing an extraQEM constraint
plane at(v̄′, n̄′) weighted by a very smallε, which, if n̄′ is
unitary, leads to the following expression:

λ =

m∑
i=1

< vi − v̄′,ni > · < n̄′,ni >

m∑
i=1

< n̄′,ni >2 + ε

As shown in figure

1 (lower left and right), by applying the described relax-
ation step, vertices in the final remeshing are locally more
evenly distributed while retaining their global density dis-
tribution over the surface, and no shrinking or smoothing
is introduced. The speed impact of this step is quite small,
generally around5 to 8
Quad Collapses The local non-uniformity of the primal
remesh described above affects both the distribution of dual



Figure 1. The hippo remeshed inR6. The primal inter-
section (upper left) is dualized into a quad-remesh (upper
right). A quad-collapsing pass improves the vertex valence
distribution (lower left). Vertex relaxation locally redis-
tribute the vertices’ positions (lower right).

vertices on the surface as well as their valence. We use
vertex relaxation to improve the first, while the second can
greatly benefit from local optimization operations similar in
spirit to those of [3, 25]. In their work, a series of edges are
considered and they are flipped only when this improves the
valence regularity of the mesh.

Because our dual remesh is composed of quads only, edge
flipping cannot be applied in general without generating
non-quads. However, we may pick any quad in the dual
and collapse it if the valence variance of its incident vertices
is lower after the collapse. To implement a quad collapse,
consider a quad with ordered vertices(a, b, c, d). We col-
lapse opposing vertices, say(a, c). It is easy to see that the
resulting mesh is still all quads (assuming their respective
neighborhoods are unrelated). This operation eliminates
one quad and collapses two vertices into one.

is determined by simple averaging from those of the col-
lapsed vertices, while its associated QEM is obtained by
merging those of the collapsed vertices. The vertex is then
projected back to the surface using the merged QEM infor-
mation, by applying the procedure described above.

Note that this collapsing step can modify both the positions
of certain vertices as well as their connectivity. For this
reason, we apply it just after the dualization step, and before
the local vertex relaxation. Figure 2 shows this complete
process, where a primal remesh is first dualized, a quad-
collapsing stage locally improves the valence regularity of

the remesh, and finally vertex relaxation improves the local
uniformity of the vertices.

7 Reconstructing Manifolds with Boundary

If we allow the input mani-
fold to have boundaries, then
as we trace intersection-arcs
we may reach the bound-
ary of the surface. Shown
in the side figure is a dia-
gram of an intersection graph
near a boundary (solid circles
are intersection-vertices and

black segments connecting them are intersection arcs; the
boundary is shown in red). At the point of intersection
between the arc and the boundary we may not continue
tracing. However, we use this intersection point in or-
der to reconstruct the boundary itself by placing a new
boundary-intersection-vertex there (hollow circle). Because
the boundary intersection-vertices shown in the figure have
valence one (they are only connected along the arc that gen-
erated them), they do not form regions. We must therefore
connect them usingboundary edgesto the two boundary
intersection-vertices that are contiguous along the boundary
(dashed lines).

During the dualization process, we do not create dual edges
for each primal boundary edge. We note that on boundaries,
there will be vertices with only valence 2.

To prevent the new dual boundary edges from “shrinking”
away from the primal boundary, we only use primal bound-
ary vertices when computing the initial dual boundary ver-
tex position. During the smoothing stage, we only average
dual boundary vertices with other dual boundary vertices.
During the QEM stage, we only use data from the primal
boundary vertices.

8 Mappings for Remeshing

The following applications demonstrate that our contouring
algorithm is able to produce a wide variety of remeshes by
simply varying the chosen mapf .

Choosing the identity map and reconstructing the surface in
R3, we efficiently obtain a uniform remesh with elements
of bounded size. This is shown in figure 2.a-c. The graph
that we trace in section 3 is shown in figure 2.a, whose el-
ements (arcs and vertices) are, respectively, the intersection
of the surface with the edges and faces of the uniform grid.
Its dual (figure 2.b) is an all-quads uniform remesh. By in-
cluding a scaling factor in the mapping we can control the
resolution of the uniform remesh (figure 2.c shows the ef-
fect of increasing this factor.)



Different types of anisotropic meshes can be obtained by in-
corporating normal variation in the mapping. We may wish
to directly map the surface through its Gauss map - mapping
every point to its normal inS2. We show in the appendix
that, for surfaces, if a uniform tesselation of the Gauss map
is used as range, then in the limit each intersection-region
will have aspect ratio roughly proportional to the ratio of
the surface’s principle curvatures, which has been shown
to be the optimal aspect ratio with respect to derivative er-
ror [9, 8, 7]. In order to avoid dealing with a codimension-0
mapping, and to ensure that the elements in the range space
are approximately uniform (of approximate the same size
and unit aspect ratio), we simply embed the Gauss map in
R3 and reconstruct the transformed surface inR3 directly,
rescaling the normals so they map to the unit cube and not
the unit sphere. This introduces a small amount of bounded
distortion in the mapping.

The results of using the Gauss map are shown in figures 2.d
and 2.g, where 2.d is the intersection structure (visualized in
the unmapped space) and 2.g is its all-quads dual. Although
using the Gauss mapping will produce anisotropic remeshes
at interactive rates, certain problems can occasionally arise.
As seen in Figure 2.d, the image of the intersection-arcs on
the mesh can be quite curved. If these arcs are to be rep-
resented as straight intersection-edges, significant approxi-
mation errors will occur.

If we are using a Gauss map,
we are required to have aC0-
continuous normal-field over
the input surface. Thus, in or-
der to represent a sharp fea-
ture in the input surface, we
must insert a degenerate tri-
angle of null area between
any two input triangles that
straddle a feature edge (resp.
an additional triangle with no

area at a sharp vertex). This ensures, without changing the
surface’s geometry, that normals can have differing values
at both sides of a feature. When the Gauss map is applied
to such a model, the sharp features will exhibit significant
normal variation. As such, the uniform tessellation in this
space will automatically place intersection arcs along these
sharp features. This behavior is shown in the side figure.

This mesh could be topologically dualized. In this case, the
resulting quads may have more than one vertex/edge co-
incident on the original surface, and so may be degenerate
geometrically. Because of the large bending of intersection-
arcs, this remesh is not geometrically suitable to be directly
dualized and, similarly to [8], it would instead need to be
approximated by a polygonization of the primal regions.

To ensure stability when computing anisotropic remeshings
we therefore combineboth position and normal variation
in the mapping. Position and normal components are each
embedded inR3, and thus the mapping is six-dimensional.
Both can have a different scale factor associated with them,
providing control over the amount of anisotropy of the re-
construction. Because this is a high-dimensional mapping,
the reconstruction tends to have a less regular valence dis-
tribution. We follow the reconstruction by one pass over
the remesh intended to improve the vertex valence vari-
ance. Results of this algorithm are shown in figures 2.e,
2.f, 2.h, and 2.i. Figure 2.e shows the intersection between
the six-dimensional grid and the transformed surface. The
dual remesh is shown in figure 2.f. We show the effect of
varying the spatial and normal scaling factors in figures 2.f,
2.h, and 2.i. By decreasing the scaling factor of the normal
component of the mapping we obtain remeshes that range
from highly anisotropic (2.f), to uniform (2.i).

Figures 2.j-l, show an example where the input surface has
been mapped to a nine-dimensional space using position,
normal, and color-gradient, with three components each:
p → (px, py, pz, nx, ny, nz, ‖∇r‖, ‖∇g‖, ‖∇b‖). The con-
tribution of the color variation part of the mapping is best
seen at the sharp color transitions between the white and
red areas, in the hat and near the hands. The primal de-
composition is shown in figure 2.k, representing the inter-
section between the surface embedded inR9 and a uniform
grid in that space. The dual all-quads remesh is shown in
figure 2.l. Figure 2.j shows the fraction of the model that
is actually transformed through the mapping (the colored
part). Because it is evaluated lazily as needed, the mapping
only has to transform part of the surface, resulting in sub-
linear remeshing cost when applied to high resolution input
meshes.

Timings are presented in table 1. Speed was measured on
a Pentium 4, 3Ghz. Error was measured using the METRO
tool. For comparison, we have run QEM [13] on the hippo
model, which was approximated with an equal number of
edges, and an RMS error of7.04e−5 (runtime 850 ms.),
as opposed to7.82e−4 for our remeshing of figure 1 (run-
time 51 ms.) The speed depends on the size of the input
and output. Most models can run at interactive speeds, with
perhaps the exception of the adaptive David model, which
produces as output a quad-mesh of size comparable to the
input.

9 Conclusion and Future Work
In this paper we have described a simple and effective
remeshing algorithm based on mapping a surface to a range
space, and uniformly tessellating the surface in that space.
The result is a fast algorithm that is flexible and provides ab-
solute bounds on data variation over the faces in the remesh
and is guaranteed to have all quad faces.



Model n input size output time (ms) RMS

David 3 100,454 23,600 53 5.62e-4
David 6 100,454 69,174 223 4.08e-4
Elephant 3 311,376 14,208 52 3.40e-4
Hippo 6 46,202 8,375 51 2.07e-3
Fish 3 129,664 17,287 61 8.42e-4
Santa 9 151,558 18,578 83 5.55e-4

Table 1. Timings for remeshings.n is the dimensionality
of the mapping.Input andoutputsizes are, respectively, in
number of triangles and quads. RMS error is measured after
scaling models to a unit bounding box diagonal.

In future work, we plan to more carefully study various
mappings and their approximation theoretic properties. It
would be beneficial to find mappings that canguaranteethe
topological correctness of the tessellation.

References

[1] P. Alliez, D. Cohen-Steiner, D. Devillers, B. Lévy, and
M. Desbrun. Anisotropic polygonal remeshing. InSIG-
GRAPH 03, pages 485–493, 2003.

[2] P. Alliez, É. C. de Verdìere, O. Devillers, and M. Isenburg.
Isotropic surface remeshing. InProceedings SMI ’03, pages
49–58, 2003.

[3] P. Alliez, M. Meyer, and M. Desbrun. Interactive geometry
remeshing. InSIGGRAPH 02, pages 347–354, 2002.

[4] C. Andujar, P. Brunet, and D. Ayala. Topology-reducing sur-
face simplification using a discrete solid representation.ACM
Trans. Graph., 21(2):88–105, 2002.

[5] L. Balmelli, C. J. Morris, G. Taubin, and F. Bernardini. Vol-
ume warping for adaptive isosurface extraction. InIEEE VIS
’02, pages 467–474, 2002.

[6] P. Bhaniramka, R. Wenger, and R. Crawfis. Isosurfacing in
higher dimensions. InIEEE Visualization, Washington, DC,
USA, 2000.

[7] G. D. Canas and S. J. Gortler. On asymptotically optimal
meshes by coordinate transformation. InProceedings of 15th
International Meshing Roundtable, 2006.

[8] D. Cohen-Steiner, P. Alliez, and D. Desbrun. Variational
shape approximation.SIGGRAPH ’04, pages 905–914, 2004.

[9] E. D’Azevedo and B. Simpson. On optimal triangular meshes
for minimizing the gradient error. InNumer. Math. 59, 321–
348, 1991.

[10] S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. C.
Hart. Spectral surface quadrangulation. InACM Transactions
on Graphics, Proceedings of SIGGRAPH, 2006.

[11] M. Eck, T. D. DeRose, T. Duchamp, H. Hoppe, M. Louns-
bery, and W. Stuetzle. Multiresolution analysis of arbitrary
meshes. InSIGGRAPH 95, pages 173–182, Aug. 1995.

[12] H. Edelsbrunner and E. P. Mucke. Simulation of simplic-
ity: a technique to cope with degenerate cases in geometric
algorithms. InSCG ’88, pages 118–133. ACM Press, 1988.

[13] M. Garland and P. S. Heckbert. Surface simplification using
quadric error metrics.SIGGRAPH ’97, pages 209–216, 1997.

[14] X. Gu, S. J. Gortler, and H. Hoppe. Geometry images. In
SIGGRAPH ’02, pages 355–361, 2002.

[15] H. Hoppe. Progressive meshes. InSIGGRAPH ’96, pages
99–108, 1996.

[16] T. Ju. Robust repair of polygonal models.SIGGRAPH ’04,
pages 888–895, 2004.

[17] T. Ju, F. Losasso, S. Schaefer, and W. Warren. Dual contour-
ing of Hermite data.SIGGRAPH ’02, pages 339–346, 2002.

[18] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Sei-
del. Feature sensitive surface extraction from volume data.
In SIGGRAPH ’01, pages 57–66, 2001.

[19] W. E. Lorensen and H. E. Cline. Marching cubes: a high
resolution 3D surface construction algorithm. InSIGGRAPH
’87), pages 163–170, 1987.

[20] F. S. Nooruddin and G. Turk. Simplification and repair of
polygonal models using volumetric techniques.IEEE TVCG,
9(2):191–205, 2003.

[21] E. Praun and H. Hoppe. Spherical parametrization and
remeshing.SIGGRAPH ’03, pages 340–349, 2003.

[22] C. Rocchini, P. Cignoni, F. Ganovelli, C. Montani, P. Pingi,
and R. Scopigno. Marching intersections: An efficient resam-
pling algorithm for surface management. InSMI ’01, pages
296–305, 2001.

[23] S. Schaefer and J. Warren. Dual marching cubes: Primal
contouring of dual grids. InPacific Conference on Computer
Graphics and Applications, pages 70–76, 2004.

[24] J.-K. Seong, G. Elber, and M.-S. Kim. Contouring 1- and
2-manifolds in arbitrary dimensions. InShape Modeling and
Applications, 2005.

[25] V. Surazhsky and C. Gotsman. Explicit surface remeshing.
In Symposium on Geometry Processing, pages 17–28, 2003.

[26] G. Taubin. Curve and surface smoothing without shrinkage.
In International Conference on Computer Vision, pages 852–
857, 1995.

[27] G. Taubin. Dual mesh resampling.Graphical Models,
64(2):94–113, 2002.

Appendix
We briefly argue that, by mapping every point of a surface to its normal,
and reconstructing the surface uniformly in normal space, the elements
will, in the limit, have aspect ratio approaching the ratio of principal cur-
vatures, and will be elongated along the direction of minimum curvature.

For a surface being approximated very finely we can approximate the sur-
face near a facef by its second order Taylor expansion which, in a refer-
ence frame formed by the normal (ẑ) and the principal curvature directions
(x̂, ŷ), can be expressed asz = − 1

2
(κ1x2 + κ2y2). The normal field in

the vicinity of the center of the expansion isn̂ =
(κ1x,κ2y,1)

1+κ2
1

x2+κ2
2

y2 .

Because the facef is uniform in normal space, we can consider it cir-
cumscribed by a very small circle around the normal(0, 0, 1), and see
how this circle transforms back on the surface to analyze the shape of the
face. A small circle around normal(0, 0, 1) is the set of normals such
that< n̂, [0, 0, 1] >= c, with c < 1 very close to1. This circle can be
transformed back to the surface as the set of points such that

<
[κ1x, κ2y, 1]

1 + κ2
1
x2 + κ2

2
y2

, [0, 0, 1] >=
1

1 + κ2
1
x2 + κ2

2
y2

= c (1)

which can be written as

κ2
1
x2 + κ2

2
y2 = ε (2)

whereε = 1
c
− 1, which, becausec is close to1, means thatε > 0 is very

small. Equation 2 represents an ellipse aligned with the principal curvature

directions, of aspect ratio equal to the ratio of the principal curvatures, and

elongated along the direction of minimum curvature.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2. Remeshings obtained using our algorithm by applying different mappings to input surfaces. The first row shows the
effect of remeshing under the identity map. Figures d and g show how surfaces are remeshed when mapped through the Gauss map.
We combine position and normal in figures e, f, h, and i. Finally, figures j through l describe the process of remeshing a surface
undergoing a nine-dimensional mapping.


