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THEORY PROBAB. APPL. Translated from Russian Journal

Vol. 46, No. 1

THE EXACT CONSTANT IN THE ROSENTHAL INEQUALITY FOR
RANDOM VARIABLES WITH MEAN ZERO∗

R. IBRAGIMOV† AND SH. SHARAKHMETOV‡

(Translated by V. A. Vatutin)

Abstract. Let ξ1, . . . , ξn be independent random variables with Eξi = 0, E|ξi|t < ∞, t > 2,
i = 1, . . . , n, and let Sn =

∑n

i=1
ξi. In the present paper we prove that the exact constant C(2m) in

the Rosenthal inequality

E|Sn|t � C(t)max

(
n∑

i=1

E|ξi|t,
(

n∑
i=1

Eξ2i

)t/2)

for t = 2m, m ∈ N, is given by

C(2m) = (2m)!

2m∑
j=1

j∑
r=1

∑ r∏
k=1

(mk!)
−jk

jk!
,

where the inner sum is taken over all natural m1 > m2 > · · · > mr > 1 and j1, . . . , jr satisfying the
conditions m1j1 + · · ·+mrjr = 2m and j1 + · · ·+ jr = j. Moreover

C(2m) = E(θ − 1)2m,

where θ is a Poisson random variable with parameter 1.

Key words. Rosenthal inequality, zero mean random variables, moment, Poisson random
variable
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Let ξ1, . . . , ξn be independent random variables (r.v.’s) with Eξi = 0, E|ξi|t < ∞, t > 2,
i = 1, . . . , n, and Sn =

∑n

i=1
ξi. The following inequality is valid [1]:

E |Sn|t � C(t) max

(
n∑

i=1

E|ξi|t,
(

n∑
i=1

Eξ2
i

)t/2)
,(1)

where C(t) is a constant depending only on t. A number of papers (see, for instance, [2],
[3], [4], [5], [6], [7], [8], [9], [10], [11], and [18]), deal with refinements and generalizations
of inequality (1) and its analogues. It is shown in [8] that the unimprovable constant C(t)
in inequality (1) has the order of growth t/ log t. Papers [9], [10], and [18] contain the
following explicit expressions (being obtained independently) for the exact constant Cs(t)
in (1) for symmetrically distributed r.v.’s: Cs(t) = 1 + 2t/2Γ((t + 1)/2)/

√
π, 2 < t < 4,

Cs(t) = E|θ1 − θ2|t, t � 4, where Γ(a) =
∫∞
0

xa−1 e−x dx and θ1, θ2 are independent Poisson

r.v.’s with parameter 0.5. In [11] the exact value of the constant is found in an analogue
of inequality (1) for nonnegative r.v.’s. The same paper also contains some results related
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128 R. IBRAGIMOV AND SH. SHARAKHMETOV

to the exact constants in the inequality E |Sn|t � C1(t)
∑n

i=1
E |ξi|t +C2(t) (

∑n

i=1
E ξ2

i )
t/2,

which, like estimate (1), is often called the Rosenthal inequality.
Papers [12], [13], and [14] investigate the problems of finding the exact bounds for the

moments of sums of independent r.v.’s in terms of characteristics of particular summands
which are closely related to problems of unimprovable constants in moment inequalities.
Additional information about basic inequalities for moments of sums of independent r.v.’s
as well as a list of relevant papers can be found in [15].

The present paper is close in spirit to the paper of Pinelis and Utev [13] and is devoted
to finding the exact constant in a general Rosenthal inequality (assuming no symmetry of
the distributions of the r.v.’s in question) for an integer even t. The results of the paper were
announced in [16].

The following theorem is valid.
Theorem. For t = 2m, m ∈ N, the exact constant C(2m) in inequality (1) has the form

C(2m) = (2m)!

2m∑
j=1

j∑
r=1

∑ r∏
k=1

(mk!)
−jk

jk!
,(2)

where the internal sum is taken over all natural m1 > m2 > · · · > mr > 1 and j1, . . . , jr,
satisfying the conditions m1j1 + · · ·+mrjr = 2m, j1 + · · ·+ jr = j. Moreover,

C (2m) = E (θ − 1)2m,(3)

where θ is a Poisson random variable with parameter 1.
Remark 1. Clearly, (2) may be rewritten in the following form which looks a bit

simpler:

C(2m) = (2m)!
∑ 2m−1∏

k=1

1

jk! ((k + 1)!)jk
,

where the sum is taken over all integer-valued solutions of 2j1 + 3j2 + · · ·+ 2mj2m−1 = 2m.
Remark 2. It is interesting to note that the exact constant C(2m) in the general

Rosenthal inequality does not coincide with the exact constant Cs(2m) in the Rosenthal
inequality for r.v.’s with symmetric distributions. According to Remark 1 and relation (7.4)
in [17], C(2m) is equal to the number of partitions of a set consisting of 2m elements into
the parts each of which contains more than one element, while Cs(2m) (see [10]) is equal to
the number of the partitions of the set into the parts each of which contains an even number
of elements.

To demonstrate the theorem we need a number of auxiliary results.
Let U1, U2 be independent r.v.’s with distributions P{Ui = 1} = P{Ui = −1} = 1

2
,

i = 1, 2, let G be a finite positive σ-additive measure on the σ-algebra B(R) of Borel subsets
of R, and let T (G) be an r.v. with characteristic function

E eitT (G) = exp

(∫ ∞

−∞
(eitx − 1) dG(x)

)
.

Repeating completely the line of reasoning used in [14] (see also [11]) we establish the
following lemma.

Lemma 1. Let f : R → R be a continuous nonnegative function satisfying the conditions

f(x) + E f(a1U1 + a2U2 + x) � E f(a1U1 + x) + E f(a2U1 + x), a1, a2, x ∈ R,

|f(a1 + a2)| � C(1 + |f(a1)|) (1 + |f(a2)|), a1, a2 ∈ R,
(4)

(C is a constant). If
∫∞
−∞ f(x) dG(x) < ∞, then

sup
n,ξk

E f(Sn) = E f(T (G)),(5)
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where sup is taken over all independent zero mean random variables ξ1, . . . , ξn such that∑n

i=1
P{ξi ∈ A \ {0}} = G(A), A ∈ B(R).

Remark 3. By analogy with Remark 1 in [11] it is easy to show that if f : R → R is a
twice differentiable function, then (4) is a corollary of the convexity of f ′′(x) which implies
the L-superadditivity of the function g(a1, a2, x) = E f(a1U1 + a2U2 + x) (see also [14]).

Put Ak,n = Ak,n(ξ1, . . . , ξn) =
∑n

i=1
E ξki , k = 1, 2, . . . , 2m, Bn = Bn(ξ1, . . . , ξn) =

A
1/2
2,n . By Lemma 1 with f(x) = x2m and by the Bruno formula for the derivative of the

composite function exp(g(t) − g(0)), where g(t) = exp(
∫∞
−∞ eitxdG(x)), we obtain that for

fixed Ak,n, k = 2, . . . , 2m,

supES2m
n = (2m)!

2m∑
r=0

∑ r∏
k=1

A
jk
mk,n(mk!)

−jk

jk!
,(6)

where the internal sum is taken over all natural m1 > m2 > · · · > mr > 1 and j1, . . . , jr,
meeting the condition m1j1 + · · ·+mrjr = 2m.

Let some A2m, B,D > 0 be given. Denote M1(m,A2m, B) = supn,ξk
ES2m

n , where the
sup is taken over all independent r.v.’s ξ1, . . . , ξn with mean zero and fixed A2m,n = A2m,
Bn = B; M2(m,A2m, B) = supn,ξk

ES2m
n , where the sup is taken over all independent r.v.’s

ξ1, . . . , ξn with zero mean and such that A2m,n � A2m, Bn � B; M(m,D) = supn,ξk
ES2m

n ,
where the sup is taken over all independent r.v.’s ξ1, . . . , ξn with zero mean and fixed
max(A2m,n, B

2m
n ) = D.

Lemma 2. For any integer s ∈ (2, 2m),

|As,n| �
(
As−2

2m,nB
2(2m−s)
n

)1/(2m−2)
,(7)

and for any m > 1, A2m > 0, B > 0 there exists a sequence of series of random variables
ξn1, . . . , ξnn, n � n0, with E ξni = 0, i = 1, . . . , n, being independent within each series, such
that A2m,n(ξn1, . . . , ξnn) = A2m, Bn(ξn1, . . . , ξnn) = B, and

As,n(ξn1, . . . , ξnn) −→
(
As−2

2m B2(2m−s)
)1/(2m−2)

, n → ∞,(8)

for all integer s ∈ (2, 2m).
Proof. Since

∑n

i=1
E |ξi|s =

∫∞
−∞ |x|s dG(x), inequality (7) follows from the Lyapunov

inequality. For n � (B2m/A2m)2/(m−1) put

an =
√
n

( √
n+ 1

n(2m−1)/2 + 1

)1/(2m−2) (
A2m

B2

)1/(2m−2)

,

bn =

( √
n+ 1

n(2m−1)/2 + 1

)1/(2m−2) (
A2m

B2

)1/(2m−2)

,

pn =
(n(2m−1)/2 + 1)1/(m−1)

n3/2(
√
n+ 1)m/(m−1)

(
B2m

A2m

)1/(m−1)

,

qn =
(n(2m−1)/2 + 1)1/(m−1)

n(
√
n+ 1)m/(m−1)

(
B2m

A2m

)1/(m−1)

.

Clearly, pn+qn � n−1/2(B2m/A2m)1/(m−1) � 1. Let P{ξni = an} = pn, P{ξni = −bn} = qn,
P{ξni = 0} = 1−pn−qn, i = 1, . . . , n. It is not difficult to check that E ξni = 0, i = 1, . . . , n,
A2m,n(ξn1, . . . , ξnn) = A2m, Bn(ξn1, . . . , ξnn) = B, and for all integer s ∈ (2, 2m), relation (8)
is valid.

Lemma 2 and relation (6) imply the following statement.
Lemma 3. For A2m, B > 0

Mi(m,A2m, B) = (2m)!

2m∑
j=1

(
j∑

r=1

∑ r∏
k=1

(mk!)
−jk

jk!

)
(Am−j

2m B2m(j−1))1/(m−1), i = 1, 2,



130 R. IBRAGIMOV AND SH. SHARAKHMETOV

where the internal sum is extended over all natural m1 > m2 > · · · > mr > 1 and j1, . . . , jr
satisfying the conditions m1j1 + · · ·+mrjr = 2m, j1 + · · ·+ jr = j.

Proof of the theorem. Lemma 3 and the obvious inequality M1(m,D,D1/2m) �
M(m,D) � M2(m,D,D1/2m) yield

M(m,D) = (2m)!

2m∑
j=1

j∑
r=1

∑ r∏
k=1

(mk!)
−jkD

jk!
,

where the internal sum is taken over all natural m1 > m2 > · · · > mr > 1 and j1, . . . , jr,
satisfying the conditions m1j1 + · · · + mrjr = 2m, j1 + · · · + jr = j. Hence, taking into
account the equality C(2m) = supD>0 M(m,D)/D, we obtain (2).

We show that relations (2) and (3) are equivalent. Let θ be a Poisson r.v. with param-
eter 1. Denote by Tm the number of partitions of a set consisting of m elements into the
parts each of which contains more than one element. According to formula (7.21) in [17] the
following relation is valid:

∞∑
m=0

Tm
tm

m!
= ee

t−t−1.(9)

Since E eθt = (1/e)
∑∞

k=0
etk/k! = ee

t−1, it follows from (9) that
∑∞

m=0
Tmtm/m! =

E e(θ−1)t or ∞∑
m=0

Tm
tm

m!
=

∞∑
m=0

E (θ − 1)m
tm

m!
.(10)

Representation (10) implies Tm = E (θ − 1)m. Since C(2m) = T2m by Remark 2, it
follows that C(2m) = E (θ − 1)2m. The theorem is proved.

A hypothesis. Coincidence of a number of results in [10] and [11] established for r.v.’s
having symmetric distributions with known results for r.v.’s with zero mean (see Remark 4
in [10] and Remark 5 in [11]) makes plausible the hypothesis that for 2 < t < 4 the exact
constant C(t) in the general Rosenthal inequality (1) coincides with the exact constant Cs(t)
in inequality (1) for r.v.’s having symmetric distributions. In light of the results of the
present paper it seems plausible that C(t) = E |θ − 1|t for t � 4, where θ is a Poisson r.v.
with parameter 1.

Acknowledgment. The authors thank an anonymous referee, whose valuable remarks
improved the presentation of the paper in many respects.
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