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Earthquake slip between dissimilar poroelastic materials

Eric M. Dunham1 and James R. Rice1

Received 26 September 2007; revised 8 June 2008; accepted 18 June 2008; published 10 September 2008.

[1] A mismatch of elastic properties across a fault induces normal stress changes
during spatially nonuniform in-plane slip. Recently, Rudnicki and Rice showed that
similar effects follow from a mismatch of poroelastic properties (e.g., permeability) within
fluid-saturated fringes of damaged material along the fault walls; in this case, it is pore
pressure on the slip plane and hence effective normal stress that is altered during slip. The
sign of both changes can be either positive or negative, and they need not agree. Both
signs reverse when rupture propagates in the opposite direction. When both elastic and
poroelastic properties are discontinuous across the fault, steady sliding at a constant
friction coefficient, f, is unstable for arbitrarily small f if the elastic mismatch permits the
existence of a generalized Rayleigh wave. Spontaneous earthquake rupture simulations on
regularized slip-weakening faults confirm that the two effects have comparable
magnitudes and that the sign of the effective normal stress change cannot always be
predicted solely from the contrast in elastic properties across the fault. For opposing
effects, the sign of effective normal stress change reverses from that predicted by the
poroelastic mismatch to that predicted by the elastic mismatch as the rupture accelerates,
provided that the wave speed contrast exceeds about 5–10% (the precise value depends
on the poroelastic contrast and Skempton’s coefficient). For faults separating more
elastically similar materials, there exists a minimum poroelastic contrast above which the
poroelastic effect always determines the sign of the effective normal stress change, no
matter the rupture speed.

Citation: Dunham, E. M., and J. R. Rice (2008), Earthquake slip between dissimilar poroelastic materials, J. Geophys. Res., 113,

B09304, doi:10.1029/2007JB005405.

1. Introduction

[2] Current understanding of the strength of faults rests
on the principle of effective stress,

t ¼ f s � pð Þ ¼ f s; ð1Þ

which states that the shear strength, t, is given by the
product of the coefficient of friction, f, and the effective
normal stress, s. The latter may be altered by changes in
normal stress, s, and/or pore pressure, p. We adopt the
convention that tensor stress components like s11 and s22
are positive in tension, but take s and s as positive in
compression (i.e., s = �s22 for a fault with unit normal in
the x2 direction).
[3] While traditional earthquake models appealed to the

reduction of f from static to dynamic values [Brace and
Byerlee, 1966], it has since been suggested that a reduction
in s during spatially nonuniform slip between dissimilar
elastic solids might also be responsible for dynamic weak-
ening of faults during earthquakes [Weertman, 1980]. The

issue has generated considerable debate recently; some
authors argue that bimaterial weakening effects are impor-
tant during earthquakes [Ben-Zion, 2006a, 2006b], while
others claim they are not [Andrews and Harris, 2005;
Harris and Day, 2005]. Despite a lack of consensus on
whether or not the effect is important in earthquakes, it is
well established theoretically that Coulomb frictional slid-
ing (with constant f) between dissimilar elastic solids is
unstable for a wide range of material pairs and friction
coefficients, in particular those characterizing natural faults
[Renardy, 1992; Adams, 1995; Ranjith and Rice, 2001].
[4] When the across-fault shear wave speed contrast is

less than about 30% (contrasts in density and Poisson’s ratio
are less important), an interfacial wave known as the
generalized Rayleigh wave exists for frictionless contact
and no opening [Weertman, 1963; Achenbach and Epstein,
1967]. This level of material contrast is generally what
occurs across faults [Feng and McEvilly, 1983; Eberhart-
Phillips and Michael, 1998; Tanimoto and Sheldrake, 2002;
Fuis et al., 2003; McGuire and Ben-Zion, 2005] Perturba-
tions of a frictionless interface generate two generalized
Rayleigh waves, which propagate in opposite directions
with a phase velocity slightly less than the shear wave
speed of either material. Associated with these waves are
normal stress changes on the interface; the sign of the
change is determined by the propagation direction of the
wave. Adding an arbitrarily small amount of friction (as a
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constant f) couples shear and normal tractions on the
interface, causing the wave that reduces normal stress to
become unstable (and damping the other wave) [Ranjith and
Rice, 2001].
[5] Andrews and Ben-Zion [1997] and Ben-Zion and

Andrews [1998] demonstrated how this instability can
generate slip pulses, which typically propagate unilaterally
away from a localized nucleation region brought to insta-
bility by a transient decrease in effective normal stress. In
their models, slip occurred at constant f, and the remote
loading was such that the ratio of shear to effective normal
stress on the fault was less than f (except temporarily in the
nucleation zone). Harris and Day [1997] also modeled slip
between dissimilar elastic solids, but rather than keeping f
fixed, they allowed it to drop from static to dynamic values
with increasing slip. Ruptures were nucleated by an initially
forced bilateral expansion; after a short time, they propagated
spontaneously. In this case, the ruptures took the form of
bilaterally expanding cracks, rather than unilaterally propa-
gating slip pulses. The bimaterial effect manifested itself by
introducing asymmetry in both the rupture velocity of the two
crack tips and the amplitude of slip velocities there.
[6] Ranjith and Rice [2001] performed a stability analysis

of steady frictional sliding at constant f between two
dissimilar elastic half-spaces. The problem is linear and
they considered perturbations in the form of spatial Fourier
modes along the interface (i.e., sinusoidal variations in
fields along the fault, with sections of the fault sliding
slightly faster than the steady state slip velocity alternating
with portions of the fault sliding at slower velocities). They
found that when the material pair permits the existence of
generalized Rayleigh waves in frictionless contact, modes
of all wavelengths are unstable (i.e., the amplitude of the
perturbation grows exponentially in time) when f 6¼ 0. The
growth rate of the unstable Fourier modes is proportional to
their wave number (which can be argued on dimensional
grounds, since both the elastic response and friction law
lack characteristic length or timescales). It follows that a
general solution to the sliding problem, which can be
written as a superposition of modes with different wave
numbers, does not exist because the growth rate of the
highest wave number modes becomes unbounded. Mathe-
matically, the problem is said to be ill-posed. An important
consequence of this is that numerical solutions to bimaterial
problems in which at least some part of the sliding occurs at
constant f do not converge with mesh refinement. The set of
ill-posed models include ruptures on a bimaterial interface
with slip-weakening friction laws since such laws feature
sliding at a constant dynamic friction coefficient after slip
exceeds some critical distance.
[7] Practically speaking, this ill-posedness does not imply

that frictional sliding between dissimilar elastic solids
cannot occur in nature, but instead signifies that the math-
ematical model is pathological and that it must be modified
(or, to be more precise, regularized) in such a way that the
growth rate of Fourier modes is kept finite. (However, note
that it is not necessary to stabilize any modes.) Ranjith and
Rice [2001] showed that the bimaterial sliding problem with
Coulomb friction could be regularized by requiring t to
approach fs over some finite slip or timescale; in particular,
no instantaneous change of t with s is permitted. This type
of finite-slip evolution was observed in the high-speed

sliding experiments of Prakash and Clifton [1993] and
Prakash [1998]. However, other experiments [Linker and
Dieterich, 1992; Richardson and Marone, 1999; Boettcher
and Marone, 2004; Hong and Marone, 2005] at vastly
slower slip speeds do show at least some degree of
instantaneous coupling between t and s.
[8] Using a regularized Coulomb friction law, Cochard

and Rice [2000] repeated the cases studied by Andrews and
Ben-Zion [1997], finding convergent solutions that were
similar in character to the original, unregularized ones. They
also demonstrated that without regularization, numerical
solutions that appeared sensible at a coarse resolution
devolved into a sequence of short wavelength oscillations
with mesh refinement (which adds to the solution shorter
wavelength Fourier modes with larger growth rates). By
employing a fixed resolution, one effectively prevents the
introduction of any modes with wavelengths shorter than
the grid spacing. For this reason, the numerical solutions by
Andrews and Ben-Zion [1997] and others using the unregu-
larized Coulomb friction law revealed many features that
were later found to exist when the frictional response was
regularized.
[9] It is important to note that the regularization proce-

dure studied by Ranjith and Rice [2001] and Cochard and
Rice [2000] does not stabilize any modes, but instead forces
the growth rate to asymptotically vanish with decreasing
wavelength. The numerical simulations by Ben-Zion and
Huang [2002] suggest that solutions employing a regular-
ized frictional response exhibit a finite-time divergence due
to this instability; however, this divergence might be miti-
gated (or at least slowed) by permitting fault opening
instead of allowing normal stresses to become tensile
[Dalguer and Day, 2007]. Another process that apparently
prevents divergence is plastic deformation of the medium,
as demonstrated by Ben-Zion and Shi [2005]. Recent
laboratory experiments by Xia et al. [2005] on bimaterial
ruptures confirmed many of the phenomena described in the
earlier numerical studies. In particular, the laboratory rup-
tures took the form of bilaterally expanding cracks whose
tips traveled at different speeds, like those in the numerical
simulations of Harris and Day [1997] and, as regards speed,
the simulations of Cochard and Rice [2000]. It is not clear,
however, if all properties seen in the experiments (e.g.,
bilateral expansion) would occur in natural earthquakes due
to the artificial nucleation procedure employed in the
experiments (and in numerical simulations). Other bimate-
rial rupture experiments with foam rubber blocks exhibit
primarily unilateral propagation in the direction in which
normal stress is expected to be reduced [Anooshehpoor and
Brune, 1999].
[10] In this work, we study slip between dissimilar

poroelastic solids, and show that for a wide range of
material contrasts, steady frictional sliding (with a constant
friction coefficient) is unstable to perturbations. This insta-
bility arises from alterations in pore pressure on the fault
plane induced by the poroelastic response of fluid-saturated
fault-bordering materials to spatially inhomogeneous slip on
a permeable fault plane. This poroelastic effect (but not the
related stability issues) was recognized by Rudnicki and
Rice [2006], who studied it primarily in the context of slip
between fluid-saturated materials that are elastically identi-
cal but have dissimilarity in poroelastic properties, espe-
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cially permeability, within damage zones along the fault
walls. Those authors also explored the mixture of near-fault
poroelastic and far-field elastic dissimilarity in the context
of steady state ruptures. Because Rudnicki and Rice [2006]
focused solely on steady state solutions, it is impossible to
assess issues related to the stability of those solutions and to
frictional sliding problems in general. This prompted the
current study.
[11] Geologic studies of faults [Chester and Chester,

1998; Heermance et al., 2003; Wibberley and Shimamoto,
2003; Chester et al., 2004] provide a basis for the model we
develop (see Figure 1). Mature, well-slipped faults exhibit
an ultracataclastic fault core within which lies an extremely
localized slip surface. The fault core is several to tens of
centimeters wide, and is surrounded by a broader damage
zone of brecciated host rock (characterized by increased
permeability relative to the fault core). The degree of
damage decreases with increasing distance from the fault
core, extending tens to hundreds of meters from the core.
The damage zone is likely related to a region, hundreds of
meters wide (at least near the surface), of low seismic
velocities that has been inferred from seismic studies [Li
et al., 1990; Ben-Zion et al., 2003].
[12] A large permeability contrast occurs across the

transition between the fault core and the surrounding
damage zone. In-situ and laboratory studies [Lockner et
al., 2000; Wibberley, 2002; Wibberley and Shimamoto,
2003; Noda and Shimamoto, 2005] measure properties
consistent with hydraulic diffusivities of �mm2/s within the
fault core at confining pressures of �100 MPa appropriate
to the crustal seismogenic zone. These diffusivities are one
or more orders of magnitude less than in the damage zone.

Rice [2006] presents a compilation of these measurements
and notes that permeability within the fault core can be as
much as three orders of magnitude less than that in the
damage zone. The transition between the fault core and
damage zone is abrupt, and the slip surface often juxtaposes
these different materials [Chester and Chester, 1998;Chester
et al., 2004; Dor et al., 2006].
[13] We next consider the poroelastic response of such a

fault zone to stresses induced by slip during an earthquake.
The response of fluid-saturated elastic media to applied
stresses depends on the timescale of loading relative to the
hydraulic diffusion time over spatial scales of interest.
Compressional or extensional loads applied over times
shorter than the diffusion time instantaneously increase or
decrease the pore fluid pressure, respectively. This un-
drained response is followed by fluid flow driven by
pressure differences. In the long time limit, the response
is said to be drained. Fluid flow is negligible for seismic
wave propagation since hydraulic diffusion lengths over a
wave period are vastly smaller than the wavelength of
the wave. Consequently, it is appropriate to interpret seismic
inferences of elastic moduli as measurements of the
undrained moduli.
[14] The traditionally considered elastic bimaterial prob-

lem of slip between solids with different elastic properties
(density and elastic moduli) has neglected fluid effects.
Poroelastic effects during in-plane rupture propagation be-
tween identical elastic materials were considered byRudnicki
and Koutsibelas [1991]. Compression of one side of the fault
and extension of the other generates a pore pressure differ-
ence across the fault. Rudnicki and Koutsibelas [1991]
treated the case of an impermeable fault, arguing that the

Figure 1. Structure of a slip-perpendicular exposure of the Punchbowl fault from Chester and Chester
[1998]. Note that the prominent fracture surface in this case lies at the boundary between the
ultracataclastic fault core and cataclastic damage zone.

B09304 DUNHAM AND RICE: POROELASTIC BIMATERIAL EFFECTS

3 of 20

B09304



pore pressure increase on the compressive side of the fault
should be used in evaluating the effective stress used to
determine the fault strength. The more general problem of a
permeable fault has recently been investigated by Rudnicki
and Rice [2006]. They recognized that fluid diffusionmust be
considered in the immediate vicinity of the slip plane in order
to determine the pore pressure on the fault. The present work
continues this effort by addressing issues related to the
stability of frictional sliding and by exploring poroelastic
bimaterial effects in the context of spontaneously propagat-
ing ruptures.

2. Poroelastic Fault Zone Model

[15] In our analysis we shall be concerned with how slip
alters the stress, strain, and pore pressure fields within the
fault zone and the surrounding material. We adopt the
following notation: [sij] is the total stress tensor (positive
in tension), [�ij] is the strain tensor, and p is the pore
pressure. As mentioned before, t, s, and s are, respectively,
the shear stress, total normal stress, and effective normal
stress on the fault (the latter two being positive in compres-
sion). Both stresses and pore pressure are to be understood as
the sum of the initial, ambient fields existing prior to rupture
(denoted with a subscript or superscript 0, e.g., sij

0, s0) and the
changes due to slip (denoted by the symbol D, e.g., Dsij,
Dp). In contrast to this notation, �ij is the strain measured
from the initially stressed state existing prior to rupture.
[16] Following Rudnicki and Rice [2006] we consider a

poroelastic fault zone embedded in an elastic medium;
within the fault zone at x2 = 0 lies a planar slip surface
(Figure 2). The material properties within the fault zone take
on different values than those further away. It is well known

that fault zones are highly heterogeneous in terms of
material properties (e.g., elastic moduli and permeability);
ultracataclastic fault core material is quite different than the
bordering damaged material, and properties within this
damage zone gradually approach those of the undamaged
host rock with increasing distance from the fault. Our model
permits this heterogeneity, but only under the assumption
that the width of the fault zone (including the damage zone)
is much smaller than all length scales characterizing the
rupture (e.g., the extent of the cohesive zone or slip pulse).
However, the relevant material properties within the fault
zone are those confined to the narrow region surrounding
the slip surface over which hydraulic diffusion is nonnegli-
gible over the coseismic timescale. We refer to these
bordering regions as damage fringes.
[17] Our model fits within a more general class of

problems in which material properties vary with distance
from the fault, which includes the studies of Harris and Day
[1997] and Ben-Zion and Huang [2002] on how a low-
velocity zone of width comparable to the rupture scale
influences rupture propagation. In our work, the material
properties outside of the fault zone are taken to be spatially
uniform, with values termed in the following as the far-field
parameters (referring to material properties in the undam-
aged host rock surrounding the fault zone).
[18] In the case that the width of the fault zone (and

damage fringes) is far less than all characteristic lengths of
the rupture, certain components of the stress and strain
fields evaluated within the fault zone are identical to what
would have been calculated had the far-field elastic material
extended to the slip surface (i.e., if the fault zone had not
been present). Furthermore, the values of these stress and
strain components are effectively constant over the scale of
the fault zone, no matter the variation in material properties.
In particular, continuity of traction across planes parallel to
the slip surface implies that si2 (i = 1, 2, 3) is effectively
constant within the fault zone, and must furthermore be
continuous across any transition in material properties that
might occur at the boundary between the fault zone and far-
field elastic medium.
[19] Our approach, then, is to match a far-field solution of

the full elastodynamic equations (i.e., the solution to the
problem in the absence of the fault zone) to an inner
solution (valid only within the fault zone). The two sol-
utions are matched by continuity of s22, as discussed above,
and further by continuity of �11 and �33. The latter condition
on the fault-parallel strains follows from continuity of the
displacement field. (Note, however, that unlike s22, which
is continuous across the fault, slip introduces a discontinuity
of the fault-parallel strains across the slip surface.) Together
with the constitutive relation, these conditions imply that
certain other fields (such as s11, s33, and e22) are discon-
tinuous, or may vary rapidly, when crossing into the fault
zone and damage fringes. This is standard in the treatment
of discontinuities in continuum mechanics [Hill, 1962].
[20] We first present ourmodel in its full three-dimensional

form, and then make the appropriate simplifications to
specialize to the plane-strain case that comprises the re-
mainder of this work. Furthermore, we treat all materials as
isotropic. In the following, either superscripts + and � or,
equivalently, subscripts 1 and 2 will be used to denote the
x2 > 0 and x2 < 0 sides of the fault, respectively. The

Figure 2. Poroelastic fault zone embedded within an
elastic medium. The fault zone contains a planar slip surface
bordered by damaged material. Material properties, both
within the fault zone and in the far-field elastic medium,
may be discontinuous across the fault. Heterogeneity in
fault zone materials is permitted normal to the fault,
provided that the width of the fault zone is smaller than
all length scales characterizing the rupture (e.g., the extent
of the cohesive zone or slip pulse). However, only the
material properties sampled by hydraulic diffusion in the
immediate vicinity of the slip surface are relevant to
determining the poroelastic response.
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undrained pore pressure change, Dpu, in response to
stresses changes, Dsij, on the two sides of the fault is

Dpþu ¼ � 1

3
B1Dsþ

kk and Dp�u ¼ � 1

3
B2Ds�

kk ; ð2Þ

in which B is Skempton’s coefficient [Rice and Cleary,
1976; Wang, 2000], and summation is implied by repeated
indices. Note that Dpu is essentially uniform in the fault-
normal direction over the hydraulic diffusion length (i.e.,
the width of the damage fringes). It is convenient to
reformulate equation (2) in terms of the fields that are
continuous when entering the damage fringes from slightly
more distant locations on the same side of the slip surface
since these values can be obtained from solving the
elasticity problem in the absence of the fault zone. This is
accomplished using the stress–strain relation for undrained
conditions [Rice and Cleary, 1976]:

2mdmg�11 ¼ Ds11 �
nu

1þ nu
Dskk

2mdmg�33 ¼ Ds33 �
nu

1þ nu
Dskk ;

ð3Þ

in which vu is the undrained Poisson’s ratio within the
damage fringes and the superscript ‘‘dmg’’ is used to
distinguish the shear modulus within the damage fringes
from its value far away from the fault. All poroelastic
parameters (such as Skempton’s coefficient) are to be
understood as those measured within the damage fringes.
Adding these equations and using Ds11 + Ds33 = Dskk �
Ds22, we arrive at an expression for Dskk in terms of �11,
�33, and Ds22. Using this in equation (2), we obtain

Dpþu ¼ �Q1

2
2mdmg

1 �þ11 þ �þ33
� �

þDs22

h i

Dp�u ¼ �Q2

2
2mdmg

2 ��11 þ ��33
� �

þDs22

h i
;

ð4Þ

in which we have introduced the simplifying notation

Qi ¼
2 1þ nuið Þ
3 1� nuið ÞBi i ¼ 1; 2ð Þ: ð5Þ

The advantage of equation (4) over equation (2) is that
values of the fields appearing in equation (4) may be taken
directly from the far-field solution (i.e., the values of the
fields that would exist if the medium was uniform up to the
slip surface).
[21] The pressure difference across the fault induces flow

according to Darcy’s law:

q ¼ �
rf k

hf

@p

@x2
; ð6Þ

where q is the fluid flux, rf is the fluid mass density, k is the
permeability, and hf is the fluid viscosity. Together with
equation (6), fluid mass conservation implies that, at each
point on the fault, the difference in pore pressure from its
undrained value satisfies a homogeneous diffusion equation:

@

@t
� ahy

@2

@x22

� �
p x2; tð Þ � pu tð Þ½ 	 ¼ 0: ð7Þ

Here ahy = k/hf b is the hydraulic diffusivity and b is a
storage coefficient; these parameters are discussed further

when we consider representative parameter values. Note
that diffusion parallel to the fault is negligible during the
rupture process. Consider a rupture characterized by a
minimum length scale l over which along-fault gradients in
the stress fields induce gradients in pore pressure. Fluid
flow occurs only over the time that this spatial gradient
persists over some section of the fault. For a rupture moving
at speed vr, this time is l/vr. The diffusion length over this
timescale is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ahyl=vr

p
. If this diffusion length is much

smaller than l, then along-fault fluid flow is negligible.
Using vr � km/s and ahy � mm2/s, we estimate that only if
l is less than �nm is along-fault fluid flow significant. It
follows that variations in fields parallel to the fault influence
only the undrained poroelastic response.
[22] Rudnicki and Rice [2006] have shown that the

solution to this one-dimensional diffusion problem, subject
to continuity of pore pressure and fluid flux across the fault,
yields the resulting change in pore pressure on the fault:

Dp ¼ z1Dpþu þ z2Dp�u ; ð8Þ

where z i = Zi/(Z1 + Z2) and Zi =
ffiffiffiffiffiffiffiffi
kibi

p
for i = 1, 2. Note that

0 
 z i 
 1, with the limits of this range corresponding to
one side being far more permeable than the other. When
k1 � k2, then z1 = 0 and z2 = 1; conversely, if k1 � k2, then
z1 = 1 and z2 = 0. A schematic of the poroelastic response is
shown in Figure 3.
[23] Combining equations (4) and (8) yields

Dp ¼ �q0Ds22 � q1m1 �þ11 þ �þ33
� �

� q2m2 ��11 þ ��33
� �

; ð9Þ

where

q0 ¼
1

2
z1Q1 þ z2Q2ð Þ

qi ¼ z imiQi i ¼ 1; 2ð Þ
ð10Þ

Figure 3. Poroelastic response within the damage fringes
to the application of far-field stresses. In-plane slip causes
one side of the fault to be compressed and the other to be
extended. The immediate, undrained change in pore
pressure, Dpu, is consequently of opposite sign on either
side of the fault. The pressure difference induces fluid
diffusion, subject to continuity of pore pressure, p, and fluid
flux across the fault. Any contrast in material properties
across the fault results in a nonzero alteration of pore
pressure on the fault plane.
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and

mi ¼
mdmg
i

mi

i ¼ 1; 2ð Þ: ð11Þ

Note that, in equations (9) and (11), m1 and m2 are the far-
field shear moduli far outside the damage fringes.
[24] The various terms in equation (9) merit further

discussion. The first, proportional to Ds22, is the poroe-
lastic correction to the normal stress change resulting from
an elastic mismatch. Because 0 
 q0 < 1 (which follows
from the restriction that 0 
 B < 1), this correction always
decreases, by the factor 1 � q0, the magnitude of the
effective normal stress change that would be predicted if
poroelastic effects were ignored. The physical significance
of this term is straightforward. If a uniform compressive
normal stress is applied to a poroelastic fault zone, com-
pression of the pores increases the pressure of the fluid
within them. Conversely, extension of the fault zone
material generates a suction and decreases pore pressure.
The result is that any normal stress applied to the fault zone is
counteracted by a change in pore pressure, with a magnitude
equal to q0 times the applied normal stress change.
[25] The second and third terms in equation (9) depend on

the undrained pore pressure changes caused by fault-parallel
strains and subsequent fluid diffusion across the fault. There
are two cases to consider here, which we discuss in the two-
dimensional plane-strain limit (�33 = 0). First, if the fault is
not slipping but there is a gradient in the fault-parallel
displacement field (as occurs prior to the arrival of the
rupture front if there is an elastic mismatch across the fault),
then �11

+ = �11
� and the change in pore pressure from these

strains is of opposite sign to the strains themselves. The
reason for this is identical to that explaining the normal
stress changes. When the fault is slipping, then �11

+ and �11
�

have opposite signs, and the pore pressure response is
similar to that illustrated in Figure 3. Like the first term in
equation (9), the terms associated with fault-parallel strains
persist even if there is no poroelastic mismatch across the
fault, provided that a far-field elastic dissimilarity results in
unequal magnitudes of the fault-parallel strains.

[26] What are representative values of q0, q1, and q2? The
answer depends on the precise location of the slip surface
within the fault zone. Geologic studies suggest that it is not
uncommon for slip to localize at the interface between the
relatively impermeable fault core material and more perme-
able damaged rock [Chester and Chester, 1998; Chester et
al., 2004; Dor et al., 2006] An example of this is shown in
Figure 1. In addition, numerical simulations that permit slip
on any of a set of parallel surfaces having identical friction
coefficients indicate a tendency for slip to select a material
interface, when that interface is the one which most reduces
s [Brietzke and Ben-Zion, 2006]. It thus seems reasonable
to suppose a factor-of-ten permeability contrast across the
slip surface; in fact, permeabilities inside and outside the
fault core may be several orders of magnitude different
[Lockner et al., 2000; Wibberley, 2002; Wibberley and
Shimamoto, 2003; Noda and Shimamoto, 2005]. Accom-
panying the permeability contrast are contrasts in other
material properties, arising from a different degree of
damage across the fault or simply occurring when the fault
runs between two types of rock. Similar estimates of
poroelastic properties within a fault zone are given by
Cocco and Rice [2002]. On both sides of the fault, we
take an undrained Poisson’s ratio of 0.3. It is well known
that damage, in the form of distributed microcracks, leads
to a reduction in elastic moduli [O’Connell and Budiansky,
1974; Budiansky and O’Connell, 1976]. Seismic estimates
of wave speed in the low-velocity zone of faults indicate
about a 50% reduction in moduli, assuming no reduction in
density [Li et al., 1990; Ben-Zion et al., 2003]. Those
studies sample the fault structure over much longer scales
than those of the damage fringes considered here, and it
seems quite probable that elastic moduli might even be
further reduced within the portion of the damage zone
immediately adjacent to the fault core. Consequently, we
assume that the shear modulus is reduced to 50% and 25%
of its far-field value on the less and more damaged sides of
the fault, respectively.
[27] The storage factor, b, is more precisely written in

terms of the compressibility of the pore fluid, bf, the pore
space expansivity, bn, and the porosity, n, as b = n (bf + bn)
[Rice, 2006]. Rice presents a compilation of measurements
and deduces representative values of b for both damaged
and undamaged fault material; see his Tables 1 and 2. Just
as we have taken a factor-of-two contrast in shear moduli
across the fault, we also take a factor-of-two contrast in b.
[28] The final parameter that enters our model is

Skempton’s coefficient,B.Using a compilationofmeasurements

Table 1. Representative Poroelastic Parameters for a Fault

Dividing More and Less Damaged Materials Consistent With a

Factor-of-Ten Contrast in Permeabilitya

Parameter More Damaged Side Less Damaged Side

Permeability k k/10
(k1 or k2)
Storage factor b b/2
(b1 or b2)
Skempton’s coefficient 0.6 0.4
(B1 or B2)
Poisson’s ratio 0.3 0.3
(vu1 or vu2)
Shear modulus ratio 0.25 0.5
(m1

dmg/m1 or m2
dmg/m2)

q1 or q2 0.15 0.045
q0 0.35

ak and b are the permeability and storage factor of the more damaged side
of the fault; these values are left unspecified since only the contrast in these
properties across the fault is important. The three nondimensional parameters
determining the poroelastic bimaterial response (q0, q1, and q2) are defined in
equations (9) and (10).

Table 2. Model Parameters, Similar to Those Used in the Southern

California Earthquake Center Validation Tests [Harris and

Archuleta, 2004], but With the Initial Shear Stress Reduced to

Prevent Supershear Rupture Speeds

S-wave speed cs2 3.464 km/s
P-wave speed cp2 6 km/s
Shear modulus m2 32.04 GPa
Static friction coefficient Fs 0.677
Dynamic friction coefficient Fd 0.525
Slip-weakening distance Dc 0.4 m
Regularization timescale t* 0.01 s
Initial shear stress s21

0 67.56 MPa
Initial effective normal stress s0 120 MPa
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from the literature, Rice and Cleary [1976] estimate values
of B for rocks between 0.5 and 0.9. Recent laboratory
experiments have measured poroelastic properties of sand-
stone and limestone and their dependence on stress con-
ditions [Hart and Wang, 1995; Lockner and Stanchits,
2002; Lockner and Beeler, 2003]. Here we are concerned
primarily with the fault core materials in the immediate
vicinity of the slip surface. E. Templeton (personal com-
munication, 2007) evaluated B from data for ultracataclastic
fault gouge compiled by Rice [2006] and found typical
values around 0.6–0.8 at temperatures and pressures rep-
resentative of those at midseismogenic depth. We adopt
slightly more conservative values and use B = 0.6 and 0.4
for the more and less damaged sides, respectively. A
compilation of our parameter values is given in Table 1.
[29] We should also point out that, in selecting the value of

pore pressure to be used in the effective stress law equation (1)
to determine fault strength, we have chosen the value of p at
x2 = 0. This is consistent with our assumption that slip
occurs on a mathematical plane, and it should furthermore
be valid for finite-width shear zones provided that the width
of the shear zone is far smaller than the hydraulic diffusion
length over the timescales of interest. It remains an open
question as to how the effective stress law should be written
(i.e., what value of p should be used when evaluating fault
strength) if this condition is not met.

3. Stability of Frictional Sliding

[30] It is known that frictional sliding between dissimilar
elastic materials is unstable for a broad range of elastic
contrasts and friction coefficients [Ranjith and Rice,
2001], and the similar nature of the poroelastic bimaterial
response studied by Rudnicki and Rice [2006] suggests that
frictional sliding between dissimilar poroelastic materials
might also be unstable. However, the steady state analysis
of Rudnicki and Rice [2006] cannot be used to address
whether or not this is true. Additionally, the stability
analysis of Ranjith and Rice [2001] provided much insight
into the behavior of numerical simulations of elastic bima-
terial ruptures. Consequently, an appropriate starting point
for quantitatively analyzing poroelastic bimaterial effects
and their interaction with far-field elastic bimaterial effects
is a stability analysis of steady frictional sliding. This
analysis further permits us to identify interesting parameter
ranges to be investigated in later numerical studies of
spontaneously propagating ruptures.
[31] We address stability of steady frictional sliding by

considering the response to Fourier mode perturbations with
wave number k (not to be confused with the permeabilities
of the two sides of the fault, k1 and k2) about a constant slip
velocity V:

s21 x1; tð Þ ¼ s0
21 þ T1 tð Þeikx1

s22 x1; tð Þ ¼ s0
22 þ T2 tð Þeikx1

u1 x1; tð Þ ¼ Vt=2þ U
1 tð Þeikx1 ð12Þ

u2 x1; tð Þ ¼ U
2 tð Þeikx1

p x1; tð Þ ¼ p0 þ P tð Þeikx1 ;

where ui is the displacement field. The unperturbed state
corresponds to one of uniform stress in the medium and

constant pore pressure on the fault, subject to the constraint
that the fault slides at a constant friction coefficient f; i.e.,
s21
0 = f (�s22

0 � p0).

3.1. Slip Response to Shear Traction Perturbations

[32] After Laplace transforming time, using the notation

ĝ sð Þ ¼
Z 1

0

g tð Þe�stdt; ð13Þ

the following relationship exists between displacement and
stress perturbations on the fault [Geubelle and Rice, 1995;
Ranjith and Rice, 2001]:

Û
1

Û
2


 �
¼ Ĉ

11 Ĉ
12

Ĉ
21  Ĉ

22


 �
T̂1
T̂2


 �
ð14Þ

in which

Ĉ11 ¼ � 1

mjkj
as 1� a2

s

� �
R

Ĉ22 ¼ � 1

mjkj
ap 1� a2

s

� �
R

ð15Þ

Ĉ12 ¼ � 1

imk
2asap � 1þ a2

s

� �
R

¼ �Ĉ21:

The superscripts + and � in the above expressions for Ĉij

indicate that they are to be evaluated using far-field material
properties relevant to the positive or negative side of the
fault, respectively. A similar notation applies in later

‘expressions as well. We also define

ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2=k2c2p

q

as ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2=k2c2s

q
;

ð16Þ

in which cp and cs are the P- and S-wave speeds,
respectively.
[33] Slip and opening are defined as d1(x1, t) = u1

+(x1, t) �
u1
� (x1, t) and d2(x1, t) = u2

+(x1, t) � u2
� (x1, t), respectively.

With the notation d1(x1, t) = D1(t) expikx1 and d2(x1, t) =
D2(t) exp

ikx1, expressions from both sides of the fault may
be combined as

D̂1

D̂2


 �
¼ K̂11 K̂12

K̂21 K̂22


 �
T̂1
T̂2


 �
ð17Þ

with

K̂11 ¼ Ĉþ
11 þ Ĉ�

11

K̂22 ¼ Ĉþ
22 þ Ĉ�

22 ð18Þ
K̂12 ¼ Ĉþ

12 � Ĉ�
12 ¼ �K̂21:

The inverse of this expression is

T̂1
T̂2


 �
¼ M̂11 M̂12

M̂21 M̂22


 �
D̂1

D̂2


 �
; ð19Þ

in which

M̂11 ¼ K̂22=D

M̂22 ¼ K̂11=D ð20Þ
M̂12 ¼ �K̂12=D ¼ �M̂21
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and

D ¼ K̂22K̂11 � K̂12K̂21: ð21Þ

It will furthermore be necessary to have an expression for
the fault-parallel strain �11

± (x1, t) = E11
± (t) expikx1:

Ê
11 ¼ ik 0½ 	 Û

1

Û
2


 �
: ð22Þ

Combining equation (22) with equation (14) yields

mÊ
11 ¼ Ĵ1 Ĵ2

 � T̂1
T̂2


 �
; ð23Þ

where

Ĵ1 ¼ ikmĈ11 ¼ � ik

jkj
as 1� a2

s

� �
R

Ĵ2 ¼ ikmĈ12 ¼
1þ a2

s � 2asap

R
:

[34] At this point, we can write an expression for the
change in pore pressure as set by the undrained response
and its mitigation by diffusion within the damage fringes.
This is accomplished by substituting equation (23) into the
transform of equation (9) and using the plane strain condi-
tion �33

± = 0. The result is

P̂ ¼ � L̂1 L̂2 þ q0
 � T̂1

T̂2


 �
; ð25Þ

with

L̂1 ¼ q1Ĵ
þ
1 � q2Ĵ

�
1

L̂2 ¼ q1Ĵ
þ
2 þ q2Ĵ

�
2 :

[35] Now consider adding a perturbation, Q(t) expikx1, to
the shear stress s21(x1, t). This is achieved by replacing T̂1

in equations (19) and (25) with T̂1 � Q̂:

T̂1
T̂2


 �
¼ M̂11 M̂12

M̂21 M̂22


 �
D̂1

D̂2


 �
þ Q̂

0


 �
and ð27Þ

P̂ ¼ � L̂1 L̂2 þ q0
 � T̂1 � Q̂

T̂2


 �
: ð28Þ

These two equations, equations (27) and (28), complete the
description of the elastic and poroelastic response. In order
to solve for the slip response to the perturbation, we must
apply frictional boundary conditions.

3.2. Sliding With Coulomb Friction

[36] The relevant boundary conditions for sliding under a
constant coefficient of friction f and no opening are

T̂1 ¼ �f T̂2 þ P̂
� �

ð29Þ

D̂2 ¼ 0: ð30Þ

Using equations (27) and (28), and solving for slip, we
obtain

D̂1 ¼ � Q̂

1� f L̂1
� �

M̂11 þ f 1� L̂2 � q0
� �

M̂21

¼ � Q̂D

1� f L̂1
� �

K̂22 þ f 1� L̂2 � q0
� �

K̂12

¼ � Q̂D

K̂22 þ f 1� L̂2 � q0
� �

K̂12 � L̂1K̂22

 � ð31Þ

Note that when f = 0, the denominator is just K̂22, and K̂22 =
0 has as its solution the generalized Rayleigh wave [Ranjith
and Rice, 2001]. When B1 = B2 = 0, the poroelastic coupling
vanishes. In this limit, L̂1 = L̂2 = q0 = 0 and the denominator
becomes K̂22 + f K̂12, as determines the purely elastic
bimaterial response.

3.3. Instability When Generalized Rayleigh Wave
Exists

[37] In the following discussion, we view K̂ij and related
quantities as functions of S = s/k. (This is a slightly different
notation than that used by Ranjith and Rice [2001] who
wrote the perturbation as exp(ikx � pt) and defined s = p/k.
Our s corresponds to their p, and our S is their s.)
[38] When f = 0, K̂22(S0) = 0 for S0 = ±icGR. This root

corresponds to the generalized Rayleigh wave, and cGR is
the generalized Rayleigh speed. For small f, we expand the
root as S = S0 + f S1+ O(f 2), and identify

S1 ¼ � 1� L̂2 � q0
� �

K̂12=K̂
0
22jS¼S0

: ð32Þ

Ranjith and Rice [2001] have shown that both K̂12(S0)
and K̂22

0
(S0) are purely imaginary at S0; therefore S1 =

(1 � L̂2 � q0) � (purely real). Note that

L̂2 ¼ q1
1þ a2

s1 � 2as1 � ap1

R1

þ q2
1þ a2

s2 � 2as2ap2

R2

ð33Þ

is purely real at S0, as is q0. Ranjith and Rice [2001] have
also shown that

K̂12 icGRð Þ=K̂ 0
22 icGRð Þ ¼ K̂12 icGRð Þ=K̂ 0

22 icGRð Þ; ð34Þ

so that S1 is purely real and of opposite sign for S0 = ±icGR.
Hence as f increases from zero, the two poles move in
opposite directions parallel to the real S-axis, one into the
stable half plane and the other into the unstable half plane.
The poroelastic effect alters the elastic bimaterial stability
properties, at least in the context of this linearized expansion,
by either increasing or decreasing the growth rate by the
factor 1 � L̂2 � q0.
[39] To further explore the interactions between the poroe-

lastic and elasticmismatch effect requires a numerical solution
for the poles of equation (31). We consider two cases which
result from choosing the compliant side of the fault to be either
more or less permeable than the stiff side. The two effects
oppose each other if the stiff side is more permeable, and
enhance each other if the compliant side is more permeable.
[40] When the effects oppose each other, the question

arises as to which determines the propagation direction of

(26)

(24)
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the unstable waves. We consider here the case of a fixed
poroelastic mismatch (consistent with a factor of ten con-
trast in permeability; see Table 1) and vary the elastic
mismatch. The left panel of Figure 4 shows the growth rate
of the unstable mode as a function of wave speed ratio for
the case of no density contrast. With no wave speed
contrast, the poroelastic effect determines the propagation
direction of the unstable mode. As the wave speed contrast
increases, the elastic mismatch effect begins to oppose the
poroelastic effect, and at about a 5% contrast in wave
speeds, the two effects precisely balance each other. Further
increasing the elastic mismatch reverses the propagation
direction of the unstable mode. A plot of the growth rate for
enhancing effects is shown in the right panel of Figure 4.
[41] To summarize, when the generalized Rayleigh wave

exists in frictionless contact, sliding with an arbitrarily small
coefficient of friction is unstable, no matter the mismatch in
poroelastic properties. However, the growth rate of the
instability vanishes as f! 0 and also in the limit of identical
material properties.
3.3.1. Regions of Instability
[42] We numerically solved for the critical coefficient of

friction at which sliding destabilizes as a function of far-
field density ratio, far-field wave speed ratio, and degree of
poroelastic mismatch. Poisson’s ratio in the far-field elastic
material is 1/4 in all cases. The poroelastic mismatch is
specified in terms of the parameters q1 and q2 that are
defined in equation (10). The result for a density ratio of 1.2
is shown in Figure 5.
[43] As in the case of a purely elastic mismatch [Ranjith

and Rice, 2001], there exists a region of stability centered
around a wave speed contrast of about 50–100% for friction
coefficients less than about unity. Outside of this region,
steady sliding is unstable, with the instability taking the
form of exponentially growing propagating wave modes.
The edges of the stable region are delimited by instability
associated with different unstable modes (having different
phase velocities). This was investigated in detail by Ranjith
and Rice [2001], and we find that the same pattern exists
when poroelastic bimaterial effects are included. The pri-

mary effect of the poroelastic response, even in the absence
of any poroelastic contrast, is to increase the region of
stability (as is evident in the difference between the solid
and dashed black curves in Figure 5). This is simply a
manifestation of the difference between using normal stress
and effective normal stress when evaluating fault strength.
In the absence of any poroelastic contrast, the effective

Figure 4. Growth rate of the unstable mode for (left) opposing poroelastic and elastic effects with the
stiff side more permeable and (right) enhancing poroelastic and elastic effects with the compliant side
more permeable.

Figure 5. Regions of instability for a density ratio of 1.2.
The solid black line corresponds to the case of no
poroelastic response and the dashed black line is for the
case with the response included, assuming that poroelastic
properties are homogeneous. Adding the poroelastic effect
stabilizes sliding over a larger range of friction coefficients.
Cases for which one side is more permeable than the other
are shown by the solid gray and dashed gray lines. When
the stiff side is more permeable, the poroelastic effect
opposes the elastic bimaterial effect and the region of
stability expands (solid gray line). When the compliant side
is more permeable, the poroelastic and elastic bimaterial
effects act in concert and the region of stability diminishes
(dashed gray line).
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normal stress change is always smaller than the normal
stress change, according to the relation Ds = (1 � q0)Ds,
since q0 is positive for all values of Skempton’s coefficient.
Adding a contrast in poroelastic properties across the fault
alters the region of stability, but only mildly.
3.3.2. Limit of Identical Far-Field Elastic Properties
[44] When far-field elastic properties are identical, then

M̂21 = 0, and equation (31) reduces to

D̂1 ¼ � Q

1� f L̂1
� �

M̂11

; ð35Þ

indicating that bimaterial effects persist in this limit,
provided that there is a poroelastic dissimilarity. If the
poroelastic properties are also identical, then L̂1 = 0.
[45] For identical elastic materials,

M̂11 ¼ �mjkj
2

R

as 1� a2
s

� � ; ð36Þ

which vanishes at zero and at the Rayleigh speed. The other
pole in the slip response occurs when 1 � f L̂1 = 0. In the
limit of elastic similarity, L̂1 = (q1 � q2)Ĵ 1, such that the
stability equation is

jkjR ¼ �if q1 � q2ð Þkas 1� a2
s

� �
: ð37Þ

Now define w = f (q1 � q2). When w ! 0, then this has as a
solution the Rayleigh speed. Denote this solution S0 = ±icR,
where cR is the Rayleigh speed. For small w, expand the root
as S = S0 + wS1 + O(w2), and identify

S1 ¼ �
ikas 1� a2

s

� �
jkjR0

�����
S¼S0

; ð38Þ

which is real and satisfies S1(±icR) = ±S1(icR). Thus the term
w S1 is also real, such that the roots S move in opposite

directions from S0 = ±icR parallel to the real axis, one into the
unstable half plane and the other into the stable half plane.
[46] Sliding is consequently always ill-posed for arbitrarily

small w = f (q1 � q2) since the Rayleigh wave always exists.
The growth rate (which approaches zero asw! 0) and phase
velocity of this root are shown in Figure 6. Note that this
instability exists even if the elastic moduli within the damage
fringes have such extreme contrasts that no generalized
Rayleigh wave exists for those parameters. As w increases
from zero, the Rayleigh wave becomes unstable and its phase
velocity increases. After reaching a maximum growth rate at
w � 1, the growth rate decreases with increasing m. In the
limit that w ! 1, sliding becomes stable and the phase
velocity of the mode approaches the shear wave speed.

4. Spontaneous Ruptures With Regularized
Slip-Weakening Coulomb Friction

[47] We have also implemented the poroelastic fault zone
model into a spontaneous rupture code, which enables us to
explore the effects of poroelastic mismatch beyond the
constraints of the linear stability analysis. In particular, the
stability analysis of the previous section suggests that, in the
case of opposing poroelastic and elastic bimaterial effects, a
wave speed contrast of greater than �5% is necessary to
counteract the poroelastic bimaterial effect with a factor-of-
ten permeability contrast (Figure 4). More generally, we are
interested in exploring how the elastic and poroelastic
mismatch effects interact with one another. One objective
is to determine the range of parameters for which one effect
dominates the other. For simplicity in this initial study, and
for consistency with several previous studies, we address
these issues using a slip-weakening friction law (appropri-
ately regularized, as described below). We emphasize that
this approach is not likely to reveal a host of potentially
relevant bimaterial effects that might arise when considering
more realistic friction laws (e.g., the pulse-like rupture mode
[Ampuero and Ben-Zion, 2008]), but does suffice for the
purposes described above.
[48] The analysis of the previous section shows that for

parameter values of interest to us (wave speed contrasts of
less than 30%), sliding is unstable at any constant f.
Moreover, sliding at constant f is not only unstable, but it
is also ill-posed since the growth rate of the instability
diverges as the wavelength of the perturbation goes to zero.
Numerical solutions with an unregularized friction law will
not converge. Ranjith and Rice [2001] showed that the
response is regularized if, instead of evaluating the fault
strength as t = f s, the strength evolves toward this value
over some finite slip or timescale. This regularization
procedure does not stabilize any modes; it instead causes
the otherwise diverging growth rate of the shortest wave-
lengths to peak at a wavelength proportional to the regu-
larizing slip or timescale, and then to approach zero as the
wavelength approaches zero. Cochard and Rice [2000]
confirmed that this regularization procedure allows for
convergent numerical solutions.

4.1. Numerical Implementation of Poroelastic
Response

[49] We use the spectral boundary integral equation
method in the form that treats both half-spaces indepen-

Figure 6. Growth rate and phase velocity of the perturba-
tion for identical elastic properties, shown as a function of
f (q1 � q2), the product of the coefficient of friction and
the degree of poroelastic mismatch. For negative f (q1 � q2),
the root corresponding to the Rayleigh wave moving in the
opposite direction enters the unstable half plane (the
response is consequently obtained by replacing f (q1 � q2)
with�f (q1 � q2) and multiplying the phase velocity by�1).
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dently before coupling them with frictional interface con-
ditions [Breitenfeld and Geubelle, 1998; Cochard and Rice,
2000]. The important addition to existing methods required
to include the poroelastic effect is evaluation of pore
pressure. As equation (9) indicates, this requires knowledge
of the normal stress s22 on the fault (which is available in
the method) and the fault parallel strain �11 (and also �33
for the general three-dimensional problem). The spectral
method provides an easy route toward evaluating �11

± (x1, t) =
@u1

± (x1, t)/@x1 by multiplication of the Fourier coefficients of
the displacements (which are also available in the method) by
ik and subsequent inversion of the transforms.
[50] The numerical method is validated by comparison to

an analytical solution, similar to that presented by Harris
and Day [1997], for the response of a sliding interface to a
line force: Q(x1, t) = Fd(x1) H(t), where d(�) and H(�) are the
Dirac delta function and Heaviside step function, respec-
tively. The response is readily obtained from equation (31)
by taking a superposition of Fourier modes using the
appropriate Q̂ for each mode. The transforms are inverted
by the Cagniard–de Hoop method. Details of the method,
which requires numerical integration, are given by Dunham
[2007]. A comparison of the results is shown in Figure 7.
Note that we have selected parameters from the stable
region of parameter space, so that our numerical calculation
in this case requires no regularization.

4.2. Slip-Weakening Ruptures

[51] For our spontaneous rupture simulations, we employ
a time-regularized friction law of the form

dt
dt

¼ � 1

t*
t � f s � pð Þ½ 	; ð39Þ

in which t* is the regularizing timescale over which t
evolves toward f (s � p) and f is the coefficient of friction.

The friction coefficient depends on slip according to the
linear slip-weakening law [Ida, 1972; Andrews, 1976]:

fsw dð Þ ¼ fs � fs � fdð Þminfd;Dcg=Dc; ð40Þ

in combination with forced expansion for nucleation
purposes [Andrews, 1985]:

fe x1; tð Þ ¼ maxffd þ A jx1j � vetð Þ; fdg: ð41Þ

The friction coefficient used in equation (39) is taken as the
smaller of the two:

f ¼ minffsw; feg: ð42Þ

This method forces an expansion of the rupture at constant
speed ve during the initial portion of the simulation (when
slip is sufficiently small that fsw > fe). As the rupture
expands, the rate of weakening of friction with slip at the
crack tips increases. This increase occurs until the
weakening rate at a particular crack tip reaches the
weakening rate associated with the slip-weakening law, at
which time the slip-weakening process takes over (fsw < fe)
and the rupture propagates spontaneously. This is illustrated
in Figure 8 for the case of identical elastic and poroelastic
materials. In the limit that ve ! 0, this nucleation procedure
is equivalent to quasi-statically expanding an initial crack
on the fault until it becomes unstable. It is important to note

Figure 7. Validation of the numerical method against a
self-similar analytical solution for the slip velocity response
to the step function application of a line force on an
interface that slides at a constant coefficient of friction.
Parameters lie within the stable region of parameter space,
so no regularization is needed.

Figure 8. Nucleation of spontaneous ruptures by initially
forcing expansion at constant speed, illustrated by snapshots
of normalized shear stress, t/(s � p), (solid black lines) just
prior to, during, and after the transition to spontaneous
propagation. Early in the simulation, weakening at the
rupture front is forced by a moving pattern of fault strength
set by a friction coefficient, fe, that increases linearly with
distance along the fault from a point that expands at a
constant speed (dashed lines). Later in the simulation, the
fault strength is determined by a slip-weakening friction
coefficient, fsw (gray lines marked with cross). By setting
the fault strength equal to the minimum of fe and fsw times
the effective normal stress, the rupture smoothly transitions
from forced expansion to spontaneous propagation.
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that for dissimilar materials the transition to spontaneous
propagation occurs earlier for one crack tip than the other
since the effective normal stress changes are of opposite
sign for the two tips.
[52] While our simulations are conducted using nondi-

mensional parameters (implying that they are valid at any
scale of interest), we also provide dimensional values using
the parameters given in Table 2. These parameters are
similar to those used in the code validation tests of the
Southern California Earthquake Center (SCEC) [Harris and
Archuleta, 2004], but with the initial stress level decreased
to prevent ruptures from exceeding the shear wave speed (of
either side of the fault). The parameters, if used in three-
dimensional simulations, are appropriate for modeling
earthquakes with magnitudes �6–7. We use them despite
their unrealistic feature for slip on what is considered to be,
effectively, a mathematical plane: temperature changes,
ignored in the SCEC exercise, would then be so large that
melting would have to occur for realistic amounts of slip in
significant events. Our results are presented in both dimen-
sional and nondimensional forms, with the stress scale in
the latter taken as s0 (fs � fd); this quantity corresponds to
the strength drop in the absence of effective normal stress
changes. The slip-weakening law provides a displacement
scale in the slip-weakening distance, Dc. The distance scale,
m2Dc/s0 (fs � fd), is proportional to the critical nucleation
zone size under linear slip-weakening friction in the absence
of effective normal stress changes [Uenishi and Rice, 2003].
The scale is also identical, apart from a dimensionless
prefactor of 9p/32 (1 � v) (which is �1.2 for v = 1/4), to
R0
*, defined by Rice et al. [2005] as the extent of the slip-

weakening zone for quasi-static propagation of a slip pulse.
The wave speed scale is c

s2, and the (particle and slip)
velocity scale is cs2 s0 (fs � fd)/m2. The timescale is m2Dc/s0
(fs � fd) cs2, which measures how long it takes for a slip
equal to Dc to occur when sliding at the slip velocity scale.

Wave speeds are decreased on the x2 > 0 side with the
values on the other side held fixed. To obtain sufficient
numerical resolution of the rupture fronts, a grid spacing of
h = 12.5 m is used (which places 56.2 points within the
distance scale). The regularizing timescale is chosen to be t*

= 0.01 s, which is 20.7 times shorter than the characteristic
timescale; this provides a distinct separation of the two
evolution processes.
[53] We study ruptures with six parameter sets. The first

four (1a–1d) are for the case of opposing poroelastic and
elastic effects, as marked in the left panel of Figure 4. In
particular, there is no density contrast, a poroelastic mis-
match consistent with a factor-of-ten permeability contrast,
and four wave speed contrasts (0%, 10%, 20%, 30%). The
last two parameter sets (2a and 2b) are for enhancing
effects, as shown in the right panel of Figure 4. Again,
there is no density contrast, a poroelastic mismatch consis-
tent with a factor-of-ten permeability contrast, and wave
speed contrasts of 10% and 20%.
[54] We first study how the difference in nucleation

times for the two crack tips depends on ve for one of the
extreme limits (reinforcing poroelastic and elastic mismatch
effects with a wave speed contrast of 20%). This is shown in
Figure 9. As ve decreases, the difference in nucleation times
for the two crack tips increases, but in a manner that
suggests a finite time difference in the limit that ve ! 0.
In particular, no divergence in this limit is observed; had a
divergence been observed, it would have indicated purely
unilateral propagation after nucleation. A compromise be-
tween computational efficiency (which favors larger ve) and
the desired quasi-static nucleation is obtained by using ve =
0.5 km/s = 0.144 cs2. In all cases, we set the rate of increase
of friction with distance in the forced nucleation procedure
to A = 0.152 km�1 = 0.703 s0( fs � fd)

2/m2Dc. This value
was chosen such that a drop in friction coefficient equal to
fs � fd = 0.152 occurs over 1 km, which is roughly equal to
the distance scale m2Dc/s0 ( fs � fd).
[55] The results of our spontaneous rupture simulations

are presented in Figures 10–14. On the whole, the ruptures
behave as might have been predicted by the linear stability
analysis. While the ruptures take the form of expanding
cracks with this friction law, there is asymmetry in the
rupture process, with rupture speeds and slip rates being
higher in the direction in which the effective normal stress is
reduced.
[56] In contrast to the slip and slip velocity fields, there is

considerable complexity in the stress and pore pressure
fields. By far the easiest case to understand is Ex. 1a
(poroelastic mismatch, but no far-field elastic mismatch).
As seen in Figure 14, pore pressure changes only when the
fault is slipping. This is consistent with our expression for
the pore pressure change given in equation (9) since, in the
absence of an elastic mismatch, normal stress on the fault
remains constant. The only contribution to pore pressure
comes from the fault parallel strains, which are equal in
magnitude and opposite in sign across the fault. The pore
pressure change can consequently be written (assuming
plane strain conditions) in terms of the slip gradient as
Dp = � (1/2) (q1 � q2) mdd/dx1; in the absence of slip, the
pore pressure remains unaltered. The change in pore pres-
sure is the only contribution to the effective normal stress

Figure 9. Difference in time at which the two crack tips
become unstable as a function of forced crack expansion
speed, ve. No divergence as ve ! 0 is observed, so
quasistatic nucleation is expected to generate bilaterally
propagating ruptures.
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change, so the distribution of pore pressure appears also in
the plot of effective normal stress (Figure 13), but with the
sign reversed according to our convention. The effective
normal stress change influences the shear stress field
(Figure 12) by slightly altering the strength drop.
[57] Next, consider a mismatch in far-field elastic prop-

erties. For ruptures moving less than the generalized Ray-
leigh speed, the normal stress is reduced behind the rupture
front propagating in the direction of displacement of the
more compliant medium (and increased at the opposite
front). The sign of the normal stress change ahead of the
rupture front is opposite this, however. This is discussed, for
example, in the study of Rubin and Ampuero [2007] and can
be seen in our simulations with large elastic mismatches and
no competing poroelastic effects (e.g., the bottom panels of
Figure 13). In this case, the peak and residual strengths are
altered in opposite directions (Figure 12). In Ex. 2b, for
example, the strength drop at the right tip is enhanced by
both an increase in peak strength and a decrease in residual
strength (the opposite occurs at the left tip).
[58] The steady state analyses of Weertman [1980] and

Rudnicki and Rice [2006] predict that effective normal
stress changes are proportional to the local value of the slip

gradient, @d/@x1. It follows that effective normal stress is
altered only within the rupture, and not ahead of or behind
it. Interestingly, our numerical simulations, as discussed in
the previous paragraph, reveal substantial changes in effec-
tive normal stress outside the slipping region. Our bilater-
ally expanding ruptures differ from steady state slip pulses,
and it is likely the expansion process, which excites a
spectrum of waves with a variety of phase speeds along
the fault, that is responsible for changing the effective
normal stress outside of the crack. This major difference
from the steady state prediction highlights the complemen-
tary nature of our numerical simulations to simple analytical
models.
[59] When the poroelastic and elastic mismatch effects

oppose one another, then the alterations of pore pressure and
effective normal stress can be quite complex. In their model
of steadily propagating slip pulses, Rudnicki and Rice
[2006] found that, in the case of opposing effects, there
exists a critical propagation speed below which the poroe-
lastic effect dominates and above which the elastic mis-
match effect determines the sign of the effective normal
stress change. This critical speed exists only if the far-field
wave speed contrast exceeds about 5–10% (the specific

Figure 10. Snapshots of slip every 2 s(=9.86 m2 Dc/s0 (fs � fd) cs2) for the six cases (1a–1d, 2a, and 2b)
defined in Figure 4. Both nondimensional (bottom, left) and dimensional (top, right) scales are provided.
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value depends on the poroelastic mismatch and Skempton’s
coefficient); for smaller contrasts, the poroelastic effect
determines the sign of effective normal stress change at
all speeds. By evaluating the expressions given by Rudnicki
and Rice [2006], we can determine the rupture speed at
which the sign reversal occurs, as well as the minimum
elastic contrast required for elastic bimaterial effects to
dominate at high speeds. This is shown in Figure 15.
[60] The numerical simulations can be interpreted in the

context of the predictions of Rudnicki and Rice [2006]. At
low speeds, the poroelastic bimaterial effect determines the
sign of effective normal stress change at the rupture front.
As the rupture accelerates, the sign of the change will
reverse, but only if the elastic mismatch is sufficiently large.
Figure 15 indicates that this reversal should occur in
Ex. 1b–1d. Consider the pore pressure distribution for
Ex. 1b (opposing effects, 10% wave speed contrast). It is
quite similar to that in Ex. 1a, with the additional feature of
a nonzero pore pressure change ahead of the rupture fronts.
As discussed following equation (9), elastic dissimilarity
will induce both normal stress changes and fault-parallel
strains ahead of the rupture front; these alter the pore
pressure on the fault. The sign of the induced pore pressure
change reverses across the rupture front, as does the sign of
normal stress change, and these two fields contribute with

opposing signs to the effective normal stress change. The
magnitude of the pore pressure change is larger than that of
the normal stress change ahead of the rupture front, while
the opposite is true behind it. This leads to an effective
normal stress change distribution that retains the same sign
across the rupture front (and with the sign determined by the
pore pressure change). Because of this, both the peak and
residual strengths are altered in the same direction. The
observation that the sign of effective normal stress change is
set by the poroelastic effect indicates that the rupture speed
is less than the critical value from Figure 15 at all times that
are plotted here. Extending the simulation time beyond that
shown here does indeed reveal the predicted sign reversal.
[61] With the larger elastic mismatch of Ex. 1c (opposing

effects, 20% wave speed contrast), the sign reversal occurs
within the simulated time; this is illustrated in Figure 16. At
early times in this simulation, the situation is the same as
that described above for Ex. 1b (i.e., the sign of the effective
normal stress change is determined by the sign of the pore
pressure change behind the rupture front and, ahead of it, by
the sign of the normal stress change). After accelerating
above the critical rupture velocity, the normal stress change
exceeds that of the pore pressure change both ahead of and
behind the rupture front. This generates the reversal in the
sign of effective normal stress change across the rupture

Figure 11. Same as Figure 10, but for slip velocity.
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front that is evident in Figure 13. This reversal occurs for
higher wave speed contrasts as well (Ex. 1d).
[62] An important prediction from the model of Rudnicki

and Rice [2006] is that below a certain elastic mismatch
level, the poroelastic effect will always dominate, no matter
the rupture speed. To confirm this, we measured the
distance, Lreversal, that the crack tip moving in the +x1
direction must propagate before the sign reversal occurs.
Figure 15 suggests that Lreversal will diverge as the wave
speed contrast approaches 4% from above. This is indeed
what we find, as shown in Figure 17.
[63] Except in the most extreme case of enhancing

poroelastic and elastic bimaterial effects (Ex. 1d), the
effective normal stress change is a small fraction of the
absolute level of effective normal stress for the parameters
studied. We caution that this should not be interpreted as a
universal feature of bimaterial ruptures. The amplitude of
the effective normal stress change increases with propaga-
tion distance, and it appears inevitable in these calculations
that after propagating sufficiently far, the effective normal
stress will become tensile if one retains, unrealistically, the
assumption that the fault surfaces slide but do not open. The
required propagation distance for this to occur depends on
both the level of material contrast and the ratio of the
regularization timescale, t*, to the timescale characterizing
the slip-weakening response, m2Dc/s0 (fs � fd)cs2. We leave

an exploration of this phenomenon to later work employing
a more realistic friction law and regularization procedure.

5. Discussion

[64] While the diffusion of pore fluids over the duration
of an earthquake is negligible at most scales of interest, it
plays an important role in determining the pore pressure
distribution within narrow fault-bordering fringes within the
zone of damaged (densely cracked, granulated) material
hosting the fault slip surface. Since the shear strength of
faults is proportional to the effective normal stress on them,
reductions in effective normal stress (via decreases in
normal stress or increases in pore pressure) weaken the
fault. It has previously been noted that spatially nonuniform
slip between dissimilar elastic solids alters the normal stress
on faults. In this work, we explored the poroelastic fault
zone model developed by Rudnicki and Rice [2006], and
confirmed that a mismatch in poroelastic properties (e.g.,
permeability) across faults leads to a similar response. The
elastic and poroelastic responses can independently cause
either reductions of or increases in effective normal stress,
depending on which side of the fault is more compliant and/
or more permeable. The two effects enhance each other if
the compliant side is more permeable, and oppose each
other if the stiff side is more permeable. The two effects

Figure 12. Same as Figure 10, but for shear stress change.
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Figure 13. Same as Figure 10, but for effective normal stress change (positive in compression).
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Figure 14. Same as Figure 10, but for pore pressure change.
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have comparable magnitudes for parameters representative
of natural faults (a wave speed contrast of about 5–10% and
a factor-of-ten permeability contrast). Steady sliding of two
elastically identical half-spaces at any constant friction

coefficient is unstable to perturbations if a contrast in
poroelastic properties exists across the slip surface. When
both elastic and poroelastic properties are discontinuous
across the fault, sliding is stable only within a region of
parameter space centered about a wave speed contrast of
50–100% and for friction coefficients less than a value of
order unity; otherwise it is unstable. In particular, for wave
speed contrasts less than about 30%, the generalized Ray-
leigh wave exists in frictionless contact and frictional
sliding is unstable for arbitrarily small coefficients of friction.
The growth rate of the instability vanishes as f! 0, as well as
in the limit of identical materials.
[65] Since the sign of effective normal stress change is

different on either side of a patch of slip, these bimaterial
effects introduce asymmetry into the rupture process. Spon-
taneous rupture simulations employing a time-regularized
slip-weakening friction law reveal bilaterally propagating

Figure 15. Critical rupture velocity for sign reversal of
effective normal stress change, Ds. Below this velocity the
poroelastic effect determines the sign ofDs and above it the
elastic bimaterial effect does. Also shown is the generalized
Rayleigh speed, cGR, the maximum subshear rupture
velocity. The critical rupture velocity is shown for several
parameter sets. The lower dashed line corresponds to the
poroelastic parameters used in both the stability analysis
and numerical simulations (a factor-of-ten permeability
contrast and Skempton’s coefficients of B1 = 0.4 and B2 =
0.6). The upper dashed line (with q1 = 0) is for the same
parameters, but with an infinite permeability contrast. The
solid lines are similar to the dashed lines, but use the larger
values of Skempton’s coefficients (B1 = 0.6 and B2 = 0.8) that
were estimated by E. Templeton (personal communication,
2007) for ultracataclastic fault gouge from data compiled by
Rice [2006].

Figure 17. Divergence of the propagation distance
required for a reversal in the sign of effective normal stress
change at the rupture front, for the case of opposing
poroelastic and elastic bimaterial effects. The numerical
results are consistent with the theoretically predicted critical
wave speed contrast of 4%.

Figure 16. Sign reversal of effective normal stress change, Ds, as the rupture accelerates, from the sign
determined by the poroelastic mismatch to that determined by the far-field elastic match. Shown for Ex.
1c (opposing effects, 20% wave speed contrast). The effective normal stress (positive in compression)
is the difference between normal stress (positive in compression) and pore pressure (positive in tension):
s= s � p.
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crack-like ruptures, but rupture speeds and slip rates are
larger in the direction in which effective normal stress is
reduced. We caution that such results are likely sensitive to
the particular friction law, and that a variety of interesting
and important phenomena might result when coupling the
bimaterial response with friction laws more realistic than the
slip-weakening law used here. Further investigation of this
issue is a high priority, and the study of Ampuero and
Ben-Zion [2008] using a slip- and velocity-weakening
friction law reveals a variety of rupture modes (including
unilateral pulses). However, the regularized slip-weakening
law we employ suffices to demonstrate that the poroelastic
effect we study is just as important as that due to a far-field
elastic mismatch. This implies that rupture propagation
direction cannot be predicted solely by measuring the elastic
mismatch across a fault. Geologic observations are needed
to determine if there is a systematic tendency for the slip
surface to be located on one side or the other of the fault core.
[66] A further issue in evaluating the poroelastic response

is that hydraulic diffusivity is likely to be altered by
dynamically induced off-fault inelastic stresses near the
rupture front. The stress state depends on rupture propaga-
tion direction and prestress angle [Poliakov et al., 2002;
Rice et al., 2005]. In many circumstances, the prestress
direction favors inelastic response on the extensional side of
the rupture. Assuming that this response increases hydraulic
diffusivity (e.g., by opening fluid flow paths that were
sealed during the interseismic period) and that this dynam-
ically induced poroelastic contrast dominates any preexisting
contrasts, then the poroelastic bimaterial effect will always
oppose the elastic bimaterial effect. An important, but diffi-
cult, task is to quantify changes in hydraulic diffusivity
resulting from the inelastic material response.
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