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THOU SHALL NOT DIVERSIFY: WHY “TWO OF EVERY SORT”?

Rustam Ibragimov1

Department of Economics, Harvard University

Abstract

This paper presents a study of intertemporal propagation of distributional properties of phenotypes in

general polygenic multi-gender inheritance models with sex- and time-dependent heritability. It further analyzes

the implications of these models under thick-tailedness of traits’ initial distributions. Our results suggest

the optimality of a flexible one-sex/two-sex mating system. The switching between the asexual and binary

inheritance mechanisms allows the population to achieve effectively a fast decline of negative traits or a quick

spread of positive traits, regardless of the distributional properties of the phenotypes in the initial period.

Keywords: Multi-sex mating systems, Genders, Multifactorial inheritance models; Phenotypic traits; Heri-

tability, Time series

2000 Mathematics Subject Classification: 60E05, 60G07, 92B05, 92D15

1 Introduction

1.1 Objectives and key results

In this paper, we study transmission of distributional properties of traits through generations in general polygenic

multi-sex inheritance models with time- and sex-dependent heritability. We further focus on the analysis of

implications of these models under heavy-tailedness of traits. We show that switching between the asexual

and binary modes of inheritance allows the organisms to prevent, immediately or in a relatively short time,

the spread of negative traits in the population (say, medical or behavioral disorders for which heritability is

significant) and to achieve wide spread of positive phenotypes (e.g., the trait of intelligence). Given the high

costs to population of species of developing and maintaining extra genders this makes the flexible asexual/binary

inheritance systems advantageous comparing to other mating mechanisms.
1Some of the results in this paper constitute a part of the author’s dissertation “New majorization theory in economics and

martingale convergence results in econometrics” presented to the faculty of the Graduate School of Yale University in candidacy
for the degree of Doctor of Philosophy in Economics in March, 2005, and were originally contained in the work circulated under
the title “A tale of two tails: peakedness properties in inheritance models of evolutionary theory”. I am indebted to my advisors,
Donald Andrews, Peter Phillips and Herbert Scarf, for all their support and guidance in all stages of the current project. I also
thank two anonymous referees, Donald Brown, Aydin Cecen, Gary Chamberlain, Joseph Chang, Brian Dineen, Darrell Duffie,
Xavier Gabaix, Philip Haile, Dale Jorgenson, Samuel Karlin, Alex Maynard, Ingram Olkin, Ben Polak, Gustavo Soares, Kevin
Song and the participants at seminars at the Departments of Economics at Yale University, University of British Columbia, the
University of California at San Diego, Harvard University, the London School of Economics and Political Science, Massachusetts
Institute of Technology, the Université de Montréal, McGill University and New York University, the Division of the Humanities
and Social Sciences at California Institute of Technology, Nuffield College, University of Oxford, the Department of Statistics at
Columbia University and the Department of Government at Harvard University as well as the participants at the 18th New England
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September 2004, for many helpful comments and discussions. The financial support from the Yale University Graduate Fellowship
and the Cowles Foundation Prize is gratefully acknowledged. Address for manuscript correspondence: Department of Economics,
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1.2 Multi-gender inheritance models

We focus on the analysis of the following multi-gender (more precisely, k−gender or k−sex) analogues of

multifactorial two-sex Galtonian inheritance models:

Xt+1(λ
(k)
t ) =

k∑

j=1

λjtXjt, t = 0, 1, ... (1)

where
∑k

j=1 λjt = 1, t ≥ 0.2 In models (1), similar to the case of k = 2 genders (e.g., Karlin, 1984, 1992,

Karlin and Lessard, 1986, and Ibragimov, 2004, 2005), Xt+1 is the offspring’s phenotype value; and, for j =

1, ..., k, Xjt, t = 0, 1, 2, ..., are the j−th sex parental contributions. The series λ
(k)
t = {(λ1s, ..., λks)}t

s=0 is a

sequence of k−dimensional vectors (λ1s, ..., λks) ∈ Rk
+ of sex-dependent heritability coefficients; it is assumed

that heritability can change with time.

Let the trait X0 have a sex-independent distribution in the population at time t = 0 (“the beginning of

time”).3 Throughout the paper, we assume that X1t, ..., Xkt are independent copies of Xt(λ
(k)
t ) : Xjt =d

Xt(λ
(k)
t ), j = 1, ..., k, t = 0, 1, 2, ..., that is, the trait contributions of all the existing k sexes are equally likely to

be inherited by the offspring (here and in what follows, the notation Y =d Z for two r.v.’s Y and Z means that

their distributions are the same).

Let λ
(k)

t = {(λ1s, ..., λks)}t
s=0, where λ1s = ... = λks = 1/k. Processes (1) with λ

(k)
t = λ

(k)

t for all t ≥ 0

(equivalently, with λjt = 1/k, j = 1, ..., k, t = 0, 1, 2, ...), model symmetric k−sex inheritance:

Xt+1(λ
(k)

t ) =
( k∑

j=1

Xjt

)
/k. (2)

Restricting the inheritance parameters λ in general multi-sex models (1) to lie in a given domain A: (λ1t, λ2t, ...,

λkt) ∈ A, t ≥ 0, delivers modeling of asexual, two-sex and multi-gender binary mating inheritance systems

observed in nature. In particular, the models reduce to time-series with asexual propagation (k = 1) for

A = {(1, 0, ..., 0)} and to binary two-sex (k = 2) mating systems for A = {(γ1, γ2, 0, ..., 0) ∈ Rk
+ : γ1 + γ2 = 1}.

Furthermore, time series (1) under the restriction

A = {(0, ..., 0, γi, γj , 0, ..., 0) ∈ Rk
+, 1 ≤ i < j ≤ k : γi + γj = 1} (3)

correspond to the multi-gender inheritance systems in which mating is allowed between any two different sexes.

Such inheritance mechanisms are exhibited by certain species of fungi and ciliates that have three or more

sexes (see Nanney, 1980, Iwasa and Sasaki, 1987, and references therein). Ciliates, for instance, typically have

several mating types and conjugation in them occurs between organisms with unlike types; mating does not

occur within the same type. In particular, Stylonychia spp. exhibits the mating system with as many as 48

sexes. One should that, even in species with more than two genders, the mating system is binary: the offspring

inherits genetic contributions from two parents only.
2Multi-gender inheritance models (1) represent purely parental transmission of traits over time. Most of the results in the paper

can be generalized to analogues of (1) that include independent environmental contributions εt: Xt+1(λ
(k)
t ) =

∑k
j=1 λjtXjt +

(
1−

∑k
j=1 λjt

)
εt,

∑k
j=1 λjt ≤ 1, t ≥ 0.

3All the results presented in the paper hold for inheritance models considered propagating into the future starting from a certain
initial period of interest.
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1.3 Discussion of the results

Theorem 1 shows that if the initial distribution of the trait X0 (say, a behavioral or medical disorder or an

ability for which heritability is significant) in model (1) is not extremely heavy-tailed and has a finite mean,

then switching to a mating system with more uniform heritability parameters at a given time always leads to

an increase in peakedness and concentration of the phenotype in the next period’s offspring. The situation is

reversed in the case of traits that have an extremely thick-tailed initial distribution with an infinite first moment

(say, a medical or behavioral disorder for which there is no strongly expressed risk group or a relatively equally

distributed ability with significant genetic influence): in such a setting, a decrease in diversity of heritability

coefficients at time t leads to a decrease in peakedness and concentration of the time-(t + 1) trait distribution

and to the phenotype’s even wider spread in the population.

Corollary 3 specializes the results to the case of multi-sex inheritance models (2). According to the corollary,

an increase in the number of genders under symmetric heritability increases peakedness and concentration

of traits with not extremely thick-tailed distributions. However, it increases the spread of phenotypes with

extremely thick-tailed initial distributions at any time given time. More precisely, the following conclusions

hold.

Let X0−µ have a not extremely heavy-tailed distribution with a finite first moment; e.g., let the distribution

of X0 − µ be a convolution of symmetric log-concave distributions and symmetric stable distributions with

characteristic exponents in the interval (1, 2). For all k ≥ 1 and all t ≥ 1, the time-t value of the phenotype

Xt(λ
(k+1)

t−1 ) in (k + 1)−gender symmetric heritability model (2) is strictly more peaked (concentrated) about µ

than is the time-t value of the trait Xt(λ
(k)

t−1) in the same model with k-sex mating. That is, P (|Xt(λ
(k+1)

t−1 )−µ| >
x) < P (|Xt(λ

(k)

t−1) − µ| > x) for all x > 0. These conclusions are reversed in the case of a phenotype that has

an extremely heavy-tailed initial distribution with an infinite first moment. For instance, suppose that the

distribution of X0 − µ is a convolution of symmetric stable distributions with indices of stability less than 1.

Then, for any k ≥ 1 and all t ≥ 1, the time-t value of the phenotype Xt(λ
(k+1)

t−1 ) in model (2) with (k+1)−mating

system is less peaked (less concentrated) about µ than is the value of the trait Xt(λ
(k)

t−1) with k-gender mode of

inheritance. That is, P (|Xt(λ
(k+1)

t−1 )− µ| > x) > P (|Xt(λ
(k)

t−1)− µ| > x) for all x > 0.

In other words, an increase in the number of genders is desirable for positive traits with extremely thick-tailed

distributions and for negative not extremely thick-tailed phenotypes.

These conclusions further imply (see Corollary 4) that switching to the one-sex mating system completely

stops sharp concentration and the decline of “good” traits with not extremely heavy-tailed distributions under

the multi-sex inheritance with more than one genders. Similarly, switching to the single-sex mode of propagation

stops the spread of an extremely heavy-tailed phenotype that negatively affects the fitness of a population under

the multi-sex mating system. Furthermore (see relations (9) and (11) in Corollary 5), any given (wide) spread

of positive extremely thick-tailed traits delivered at time t by a multi-sex mating system with k > 2 genders

is also achievable in a slightly longer time t′ > t under the binary mating mechanism. The same is the case

for negative phenotypes with not extremely heavy-tailed initial distributions: any (sharp) concentration of such

“bad” thick-tailed traits achievable at time t in the multi-sex inheritance models with more than two genders

3



is also achieved by the two-gender inheritance modes in a slightly longer time.4

1.4 Multiple genders: advantages vs. costs

The fitness advantage of outbreeding has been emphasized in a number of works in evolutionary biology as

the main explanation for the dominance of the binary mating system over the asexual one in modern species

(see, among others, Hurst, 1995, and Czárán and Hoekstra, 2004, and references therein). Negative effects of

inbreeding on population fitness and a possible increase in chances of mating has also been indicated as the

main reason for evolution of the binary mating systems with more than two genders in some organisms, e.g., in

some species of fungi and ciliates (e.g., Nanney, 1980, and Czárán and Hoekstra, 2004).

It is clear that switching to a mating system in which the offspring receives the genetical material from

more than two parents would further decrease the negative effects of inbreeding under the binary and asexual

mating systems. However, the evolution of additional genders places a high burden on a population because of

the complex logistics involved in the search and detection of multiple potential parents. In this regard, a two-

sex inheritance mechanism is already much more complicated than a one-sex system, and modern two-genders

species have developed various adaptations to increase the efficiency of mate findings.

The results in this paper add some new insights to the discussion of advantages vs. disadvantages of having

multiple genders. According to the discussion in the previous subsection, even in the absence of costs in the

evolution and maintenance of a mating system with more than two sexes, the switching between only the asexual

and the binary systems of mating allows a population to control the spread of “bad” and “good” traits over time.

The results thus suggest that an increase in the number of genders above two is unnecessary even in the absence

of burdens associated with them. On the other hand, it is striking that, although the (optimal in the sense of

traits’ propagation) systems that switch between asexuality (one-sex inheritance) and two-gender propagation

are fairly common, they are by no means universal since many modern species have only the two-sex system.

1.5 Organization of the paper

The paper is organized as follows: Section 2 contains notations and definitions of classes of distributions used

throughout the paper and reviews their basic properties. In Section 3, we present the main results on the

properties of polygenic multi-gender inheritance models under heavy-tailedness of traits’ distributions. Section

4 contains some remarks on extensions of the results and suggestions for further research. Appendix A1 reviews

peakedness properties of linear combinations of r.v.’s needed for the proof. In particular, the appendix discusses

peakedness and majorization phenomena for log-concavely distributed r.v.’s derived by Proschan (1965) and

their analogues for thick-tailed distributions obtained in Ibragimov (2004). Appendix A2 contains proofs of the

results obtained in the paper.
4“Slightly longer” refers to the fact that, by Remark 1, one can t′ being a linear transformation of t: t′ = t log2k + 1.
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2 Notations and classes of distributions

We say that a r.v. X with density f : R → R and the convex distribution support Ω = {x ∈ R : f(x) > 0}
is log-concavely distributed if log f(x) is concave in x ∈ Ω, that is, if for all x1, x2 ∈ Ω, and any λ ∈ [0, 1],

f(λx1 + (1− λ)x2) ≥ (f(x1))λ(f(x2))1−λ (see An, 1998). A distribution is said to be log-concave if its density

f satisfies the latter inequality. Examples of log-concave distributions include (see, for instance, Marshall and

Olkin, 1979, p. 493), the normal distribution N (µ, σ2), the uniform density U(θ1, θ2), the exponential density,

the logistic distribution, the Gamma distribution Γ(α, β) with the shape parameter α ≥ 1, the Beta distribution

B(a, b) with a ≥ 1 and b ≥ 1; the Weibull distribution W(γ, α) with the shape parameter α ≥ 1. If a r.v. X

is log-concavely distributed, then its density has at most an exponential tail, that is, f(x) = o(exp(−λx)) for

some λ > 0, as x →∞ and all the power moments E|X|γ , γ > 0, of the r.v. exist (see Corollary 1 in An, 1998).

This implies, in particular, that distributions with log-concave densities cannot be used to model heavy-tailed

phenomena. In what follows, LC stands for the class of symmetric log-concave distributions.5

For 0 < α ≤ 2, σ > 0, β ∈ [−1, 1] and µ ∈ R, we denote by Sα(σ, β, µ) the stable distribution with the

characteristic exponent (index of stability) α, the scale parameter σ, the symmetry index (skewness parameter)

β and the location parameter µ. That is, Sα(σ, β, µ) is the distribution of a r.v. X with the characteristic

function

E(eixX) =

{
exp {iµx− σα|x|α(1− iβsign(x)tan(πα/2))} , α 6= 1,

exp {iµx− σ|x|(1 + (2/π)iβsign(x)ln|x|} , α = 1,

x ∈ R, where i2 = −1 and sign(x) is the sign of x defined by sign(x) = 1 if x > 0, sign(0) = 0 and sign(x) = −1

otherwise. For a detailed review of properties of stable distributions the reader is referred to, e.g., the monograph

by Zolotarev (1986). We write X ∼ Sα(σ, β, µ), if the r.v. X has the stable distribution Sα(σ, β, µ).

A closed form expression for the density f(x) of the distribution Sα(σ, β, µ) is available in the following cases

(and only in those cases): α = 2 (Gaussian distributions); α = 1 and β = 0 (Cauchy distributions); α = 1/2

and β ± 1 (Lévy distributions).6 Degenerate distributions correspond to the limiting case α = 0.

The index of stability α characterizes the heaviness (the rate of decay) of the tails of stable distributions.

In particular, if X ∼ Sα(σ, β, µ), then there exists a constant C > 0 such that limx→+∞ xαP (|X| > x) = C.

This implies that the p−th absolute moments E|X|p of a r.v. X ∼ Sα(σ, β, µ), α ∈ (0, 2) are finite if p < α

and are infinite otherwise. The symmetry index β characterizes the skewness of the distribution. The stable

distributions with β = 0 are symmetric about the location parameter µ. In the case α > 1 the location parameter

µ is the mean of the distribution Sα(σ, β, µ). The scale parameter σ is a generalization of the concept of standard

deviation; it coincides with the standard deviation in the special case of Gaussian distributions (α = 2).

Distributions Sα(σ, β, µ) with µ = 0 for α 6= 1 and β 6= 0 for α = 1 are called strictly stable. If Xi ∼
Sα(σ, β, µ), α ∈ (0, 2], are i.i.d. strictly stable r.v.’s, then, for all ai ≥ 0, i = 1, ..., n,

∑n
i=1 ai 6= 0, one has

∑n
i=1 aiXi/

( ∑n
i=1 aα

i

)1/α

∼ Sα(σ, β, µ).

5LC stands for “log-concave”.
6The densities of Cauchy distributions are f(x) = σ/(π(σ2 + (x − µ)2)). Lévy distributions have densities f(x) =

(σ/(2π))1/2exp(−σ/(2x))x−3/2, x ≥ 0; f(x) = 0, x < 0, where σ > 0, and their shifted versions.
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Let CS stand for the class of distributions which are convolutions of symmetric stable distributions Sα(σ, 0, 0)

with characteristic exponents α ∈ (1, 2] and σ > 0.7 That is, CS consists of distributions of r.v.’s X such that,

for some k ≥ 1, X = Y1 + ... + Yk, where Yi, i = 1, ..., k, are independent r.v.’s, Yi ∼ Sαi
(σi, 0, 0), αi ∈ (1, 2],

σi > 0, i = 1, ..., k.

By CSLC, we denote the class of convolutions of distributions from the classes LC and CS. That is, CSLC
is the class of convolutions of symmetric distributions which are either log-concave or stable with characteristic

exponents greater than one.8 In other words, CSLC consists of distributions of r.v.’s X such that X = Y1 + Y2,

where Y1 and Y2 are independent r.v.’s with distributions belonging to LC or CS. The distributions of r.v.’s X

in CSLC are not extremely heavy-tailed in the sense that they have finite means: E|X| < ∞.

CS stands for the class of distributions which are convolutions of symmetric stable distributions Sα(σ, 0, 0)

with indices of stability α ∈ (0, 1) and σ > 0.9 That is, CS consists of distributions of r.v.’s X such that, for

some k ≥ 1, X = Y1 + ...+Yk, where Yi, i = 1, ..., k, are independent r.v.’s, Yi ∼ Sαi
(σi, 0, 0), αi ∈ (0, 1), σi > 0,

i = 1, ..., k. The distributions of r.v.’s X from the class CS are extremely thick-tailed in the sense that their

first moments are infinite: E|X| = ∞.

We note that the class CS of convolutions of symmetric stable distributions with different indices of stability

α ∈ (1, 2] is wider than the class of all symmetric stable distributions Sα(σ, 0, 0) with α ∈ (1, 2] and σ > 0.

Similarly, the class CS is wider than the class of all symmetric stable distributions Sα(σ, 0, 0) with α ∈ (0, 1)

and σ > 0. Clearly, one has LC ⊂ CSLC and CS ⊂ CSLC. Note also that the class CSLC is wider than the

class of (two-fold) convolutions of log-concave distributions with stable distributions Sα(σ, 0, 0) with α ∈ (1, 2]

and σ > 0. In some sense, symmetric (about 0) Cauchy distributions S1(σ, 0, 0) are at the dividing boundary

between the classes CS and CSLC.

In what follows, we write X ∼ LC (resp., X ∼ CSLC or X ∼ CS) if the distribution of the r.v. X belongs

to the class LC (resp., CSLC or CS).

3 Main results

The following concept of peakedness of r.v.’s was introduced by Birnbaum (1948).

Definition 1 (Birnbaum, 1948, see also Proschan, 1965, and Marshall and Olkin, 1979, p. 372). A r.v. X is

more peaked about µ ∈ R than is Y if P (|X − µ| > x) ≤ P (|Y − µ| > x) for all x ≥ 0. If these inequalities are

strict whenever the two probabilities are not both 0 or both 1, then the r.v. X is strictly more peaked about µ

than is Y. A r.v. X is said to be (strictly) less peaked about µ than is Y if Y is (strictly) more peaked about µ

than is X. In the case µ = 0, it is simply said that the r.v. X is (strictly) more or less peaked than Y.

7Here and below, CS stands for “convolutions of stable”; the overline indicates relation to stable distributions with indices of
stability greater than the threshold value 1.

8CSLC stands for “convolutions of stable and log-concave”.
9The underline indicates relation to stable distributions with indices of stability less than the threshold value 1.
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Roughly speaking, a r.v. X is more peaked about µ ∈ R than is Y, if the distribution of X is more

concentrated about µ than is that of Y.

For a vector a ∈ Rn, denote by a[1] ≥ . . . ≥ a[n] its components in decreasing order.

Definition 2 (Marshall and Olkin, 1979). Let a, b ∈ Rn. The vector a is said to be majorized by the vector b,

written a ≺ b, if
∑k

i=1 a[i] ≤
∑k

i=1 b[i], k = 1, ..., n− 1, and
∑n

i=1 a[i] =
∑n

i=1 b[i].

The relation a ≺ b implies that the components of the vector a are more diverse than those of b. In this

context, it is easy to see that, for all n ≥ 1 and a ∈ Rn
+, the following relations hold:

( n∑

i=1

ai/n, ...,

n∑

i=1

ai/n
) ≺ (a1, ..., an) ≺ ( n∑

i=1

ai, 0, ..., 0
)
, (4)

(1/(n + 1), ..., 1/(n + 1), 1/(n + 1)) ≺ (1/n, ..., 1/n, 0). (5)

Theorem 1 below provides general results on the peakedness properties of the distribution of the trait X in

k−sex inheritance models (1) with sex- and time-dependent heritability. According to the theorem, switching to

the reproduction mechanism with a more uniform inheritance structure (that is, the mechanism with less diverse

coefficients governing inheritance in the multi-sex model) at a given time increases peakedness and concentration

of traits with not extremely heavy-tailed distribution. However, it decreases peakedness and concentration of

phenotypes that have extremely thick-tailed distribution in the population at the moment of the switch.

Let µ ∈ R and let, as in the introduction, λ
(k)
t−1 stand for {(λ1s, ..., λks)}t−1

s=0. As before, Xt(λ
(k)
t−1) stands

for the trait value at time t. Let ξt = (ξ1t, ..., ξkt) and θt = (θ1t, ..., θkt) ∈ Rk
+ be two vectors of the time-t

heritability coefficients such that
∑k

i=1 ξit =
∑k

i=1 θit = 1, ξt ≺ θt and ξt is not a permutation of θt. Denote

by Yt+1(λ
(k)
t−1, ξt) =

∑k
i=1 ξitXit(λ

(k)
t−1) and Yt+1(λ

(k)
t−1, θt) =

∑k
i=1 θitXit(λ

(k)
t−1) the time-(t + 1) trait values

corresponding to ξt and θt.

Theorem 1 Consider model (1). If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2],

or X0 = µ + W, where W ∼ CSLC, then the r.v. Yt+1(λ
(k)
t−1, ξt) is strictly more peaked about µ than is

Yt+1(λ
(k)
t−1, θt). That is,

P (|Yt+1(λ
(k)
t−1, ξt)− µ| > x) < P (|Yt+1(λ

(k)
t−1, θt)− µ| > x), x > 0. (6)

If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (0, 1), or X0 = µ + W, where W ∼ CS, then the r.v.

Yt+1(λ
(k)
t−1, θt) is strictly less peaked about µ than is Yt+1(λ

(k)
t−1, ξt). That is,

P (|Yt+1(λ
(k)
t−1, θt)− µ| > x) < P (|Yt+1(λ

(k)
t−1, ξt)− µ| > x), x > 0. (7)

Denote by Ik = {(1, 0, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, 0, ..., 1)} the set of orthants in Rk. Let δt = (δ1t, ..., δkt)

∈ Rk
+ be an arbitrary vector of time-t heritability such that

∑k
i=1 δit = 1 and let Yt+1(λ

(k)
t−1, δt) =

∑k
i=1 δitXit(λ

(k)
t−1) be the corresponding time-(t + 1) trait value in model (1).
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Corollary 1 shows that peakedness and concentration of not extremely heavy-tailed traits in general multi-

sex inheritance model (1) increases with time. In contrast, phenotypes with extremely thick-tailed distributions

become less peaked with time and more spread in the population with the above mechanisms of inheritance.

Corollary 1 Consider model (1). Let δt /∈ Ik. If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2],

or X0 = µ+W, where W ∼ CSLC, then the r.v. Yt+1(λ
(k)
t−1, δt) is strictly more peaked about µ than is Xt(λ

(k)
t−1).

That is, P (|Yt+1(λ
(k)
t−1, δt) − µ| > x) < P (|Xt(λ

(k)
t−1) − µ| > x), x > 0. If X0 ∼ Sα(σ, β, µ) for some σ > 0,

β ∈ [−1, 1] and α ∈ (0, 1), or X0 = µ + W, where W ∼ CS, then the r.v. Yt+1(λ
(k)
t−1, δt) is strictly less peaked

about µ than is Xt(λ
(k)
t−1). That is, P (Xt(λ

(k)
t−1)− µ| > x) < P (|Yt+1(λ

(k)
t−1, δt)− µ| > x), x > 0.

Let δt = (δ1t, ..., δkt) = (1/k, ..., 1/k) ∈ Rk be the vector of time-t heritability coefficient corresponding to

symmetric inheritance and let Yt+1(λ
(k)
t−1, δt) = 1

k

∑k
i=1 Xit(λ

(k)
t−1) be the corresponding trait value at time t+1.

According to the results in Corollary 2, peakedness of phenotypes with not extremely thick-tailed distribu-

tions is maximal under the symmetric mode of inheritance. On the other hand, symmetric inheritance leads

to the smallest concentration of extremely heavy-tailed traits in the population exhibiting the general k−sex

mechanism of propagation.

Corollary 2 Consider model (1). Let δt 6= δt. If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or

X0 = µ+W, where W ∼ CSLC, then the r.v. Yt+1(λ
(k)
t−1, δt) is strictly more peaked about µ than is Yt+1(λ

(k)
t−1, δt).

That is, P (|Yt+1(λ
(k)
t−1, δt)− µ| > x) < P (|Yt+1(λ

(k)
t−1, δt)− µ| > x), x > 0. If X0 ∼ Sα(σ, β, µ) for some σ > 0,

β ∈ [−1, 1] and α ∈ (0, 1), or X0 = µ + W, where W ∼ CS, then the r.v. Yt+1(λ
(k)
t−1, δt) is strictly less peaked

about µ than is Yt+1(λ
(k)
t−1, δt). That is, P (|Yt+1(λ

(k)
t−1, δt)− µ| > x) < P (|Yt+1(λ

(k)
t−1, δt)− µ| > x), x > 0.

Let us now turn to the analysis of intertemporal distributional properties of traits under the symmetric

k−sex inheritance mechanism modeled by time series (2). The following results, which are counterparts of

Corollary 1 under symmetry, show that an increase in the number of genders in models (2) leads to an increase

in intertemporal peakedness and concentration of traits with not extremely thick-tailed initial distributions.

However, peakedness and concentration of extremely heavy-tailed phenotypes over time decreases with the

number of genders under such inheritance mechanisms.

Corollary 3 Consider model (2). If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or X0 = µ+W,

where W ∼ CSLC, then, for all k ≥ 1 and all t ≥ 1, the r.v. Xt(λ
(k+1)

t−1 ) is strictly more peaked about µ than is

Xt(λ
(k)

t−1). That is, P (|Xt(λ
(k+1)

t−1 )−µ| > x) < P (|Xt(λ
(k)

t−1)−µ| > x), x > 0. If X0 ∼ Sα(σ, β, µ) for some σ > 0,

β ∈ [−1, 1] and α ∈ (0, 1), or X0 = µ+W, where W ∼ CS, then, for all k ≥ 1 and all t ≥ 1, the r.v. Xt(λ
(k+1)

t−1 ) is

strictly less peaked about µ than is Xt(λ
(k)

t−1). That is, P (|Xt(λ
(k)

t−1)−µ| > x) < P (|Xt(λ
(k+1)

t−1 )−µ| > x), x > 0.

The following result is a particular case of Corollary 3 with k = 1. It indicates that the cloning mechanism of

inheritance delivers the most uniform concentration of not extremely heavy-tailed traits compared to inheritance

models with two or more genders. However, concentration of a trait that propagates by cloning is maximal

among all the multi-sex inheritance models if the initial distribution of the phenotype is extremely thick-tailed.
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Corollary 4 Consider time series (2). If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or

X0 = µ+W, where W ∼ CSLC, then, for all k ≥ 2 and all t ≥ 1, the r.v. Xt(λ
(k)

t−1) is strictly more peaked about

µ than is Xt(λ
(1)

t−1) ≡ X0. That is, P (|Xt(λ
(k)

t−1)− µ| > x) < P (|Xt(λ
(1)

t−1)− µ| > x) ≡ P (|X0 − µ| > x), x > 0.

If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (0, 1), or X0 = µ + W, where W ∼ CS, then, for

all k ≥ 2 and all t ≥ 1, the r.v. Xt(λ
(k)

t−1) is strictly less peaked about µ than is Xt(λ
(1)

t−1) ≡ X0. That is,

P (|X0 − µ| > x) ≡ P (|Xt(λ
(1)

t−1)− µ| > x) < P (|Xt(λ
(k)

t−1)− µ| > x), x > 0.

Corollary 5 concerns comparisons of peakedness properties of traits under the binary mating system with

those in populations with three or more genders.

Corollary 5 Consider model (2). If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or X0 = µ+W,

where W ∼ CSLC, then, for all k ≥ 3 and all t ≥ 1, the r.v. Xt(λ
(k)

t−1) is strictly more peaked about µ than is

Xt(λ
(2)

t−1). That is,

P (|Xt(λ
(k)

t−1)− µ| > x) < P (|Xt(λ
(2)

t−1)− µ| > x), x > 0. (8)

In addition, for any t ≥ 1, there exists t′ > t such that the r.v. Xt(λ
(k)

t−1) is strictly less peaked about µ than is

Xt′(λ
(2)

t′−1), that is,

P (|Xt′(λ
(2)

t′−1)− µ| > x) < P (|Xt(λ
(k)

t−1)− µ| > x), x > 0. (9)

If X0 ∼ Sα(σ, β, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (0, 1), or X0 = µ + W, where W ∼ CS, then, for all

k ≥ 3 and all t ≥ 1, the r.v. Xt(λ
(k)

t−1) is strictly less peaked about µ than is Xt(λ
(2)

t−1). That is,

P (|Xt(λ
(2)

t−1)− µ| > x) < P (|Xt(λ
(k)

t−1)− µ| > x), x > 0. (10)

In addition, for any t ≥ 1, there exists t′ > t such that the r.v. Xt(λ
(k)

t−1) is strictly more peaked about µ than

is Xt′(λ
(2)

t′−1), that is,

P (|Xt(λ
(k+1)

t−1 )− µ| > x) < P (|Xt′(λ
(2)

t′−1)− µ| > x), x > 0. (11)

Remark 1 As follows from the proof of Corollary 5, one can take t′ = t log2k + 1 in relations (9) and (11).

Relations (8) and (10) are consequences of Corollary 3 with k = 2. Similar to Corollary 4, these relations

show that the binary inheritance mechanism leads to a more pronounced peakedness and concentration of not

extremely heavy-tailed phenotypes compared to the mating systems with more than genders. In addition,

at any given time, peakedness and concentration of extremely thick-tailed traits in inheritance models with

three or more sexes is smaller that of traits with two-gender inheritance. However, according to peakedness

comparisons (9) and (11), there is a crucial difference between the distributional properties of traits under the

binary mating system and under the cloning inheritance. Peakedness comparisons between the traits in the

asexual and multigender inheritance models never reverse in the future. On the contrary, time-t peakedness

comparisons between the phenotypes in the binary and the k−gender inheritance models with k > 2 switch to

the opposite ones at some future date t′ > t.
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Remark 2 The results in this section have implications in the analysis of binary mating systems with more than

two sexes. As suggested by the discussion in Subsection 1.4, such systems should be preferred by populations to

their two-sex binary mating counterparts if the costs of evolution and maintenance of extra genders are low, due

to the fitness advantage of outbreeding. In addition, although all the distributional properties of the offspring’s

phenotypes in models (1) with k = 2 and in time series (1), (3) with k > 2 are the same for equally distributed

parental genetic contributions, it is not the case if the distributional properties of the contributions differ among

the genders. It is well-known that the tail index of a convolution of two heavy-tailed distributions equals to

the minimum of their tail indices. Therefore, the freedom in the choice of two contributing genders among the

existing k ones in model (1), (3) allows the population to regulate the propagation of distributional properties of

positive or negative traits through generations more effectively than under a two-sex mating system.

4 Extensions and suggestions for further research

Using the extensions of peakedness comparisons in Appendix A1 (see Ibragimov, 2004, 2005), one can obtain

generalizations of the results in this paper to the case of dependent and not necessarily identically distributed

parental contributions Xjt, including convolutions of random vectors with α−symmetric distributions.

The arguments used in this paper can be also applied in the study of multi-sex inheritance systems with

positive costs of developing extra genders. This approach may be applicable in the quantitative study of evolution

of a one-sex/two-sex system (rather than multi-gender inheritance mode) starting from a given condition. The

latter problems are of considerable interest and are left for further research.

Appendix A1: Majorization properties of log-concave and
heavy-tailed distributions

Proschan (1965) obtains the following seminal result concerning majorization and peakedness properties of tail

probabilities of linear combinations of log-concavely distributed r.v.’s:

Proposition 1 (Proschan, 1965). Let c = (c1, ..., cn) ∈ Rn
+ and d = (d1, ..., dn) ∈ Rn

+ be two vectors such that

c ≺ d and c is not a permutation of d. If X1, X2, ..., are i.i.d. r.v.’s such that X1 ∼ LC, then
∑n

i=1 ciXi is

strictly more peaked than
∑n

i=1 diXi, that is, P
(∣∣∣ ∑n

i=1 ciXi

∣∣∣ > x
)

< P
(∣∣∣ ∑n

i=1 diXi

∣∣∣ > x
)

for all x > 0.

The following results on majorization properties of convex combinations of heavy-tailed r.v.’s were obtained

in Ibragimov (2004) (see Theorems 4.3 and 4.4 and Remark 4.1 in that paper). According to Lemma 1,

peakedness properties of linear combinations of r.v.’s with not extremely heavy-tailed distributions are the

same as in the case of log-concave distributions in Proschan (1965).

Lemma 1 (Ibragimov, 2004). Proposition 1 continues to hold if X1, X2, ... are i.i.d r.v.’s such that X1 ∼
Sα(σ, β, 0) for some σ > 0, β ∈ [−1, 1] and α ∈ (1, 2], or X1 ∼ CSLC.
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According to Lemma 2, the peakedness properties given by Proposition 1 and Theorem 1 above are reversed

in the case of r.v.’s with extremely heavy-tailed distributions.

Lemma 2 (Ibragimov, 2004). Let c = (c1, ..., cn) ∈ Rn
+ and d = (d1, ..., dn) ∈ Rn

+ be two vectors such that

c ≺ d and c is not a permutation of d. If X1, X2, ..., are i.i.d. r.v.’s such that X1 ∼ Sα(σ, β, 0) for some

σ > 0, β ∈ [−1, 1] and α ∈ (0, 1), or X1 ∼ CS, then
∑n

i=1 ciXi is strictly less peaked than
∑n

i=1 diXi, that is,

P
(∣∣∣ ∑n

i=1 ciXi

∣∣∣ > x
)

< P
(∣∣∣ ∑n

i=1 diXi

∣∣∣ > x
)

for all x > 0.

Appendix A2: Proofs

In what follows, for two vectors a = (a1, ..., an) ∈ Rn and b = (b1, ..., bm) ∈ Rm, we denote by vec(ab) the vector

vec(ab) = (a1b1, ..., a1bm, a2b1, ..., a2bm, ..., anb1, ..., anbm) ∈ Rnm, that is, the vector formed by collecting the

entries of the matrix ab ∈ Rn×m in one long row. In addition, in what follows, {Vt}∞t=1 stands for a sequence of

independent copies of the r.v. X0 and, for t ≥ 1, V (t) denotes the random vector V (t) = (V1, ..., Vt). For m ≥ 1,

we denote by V m = (1/m)
∑m

s=1 Vs the sample mean of the r.v.’s Vs, s = 1, ..., m.

Proof of Theorem 1. Let X0 ∼ Sα(β, σ, µ) for some σ > 0, β ∈ [−1, 1] and α ∈ (0, 1), or X0 = µ + W, where

W ∼ CS. For k, t ≥ 1, denote Nkt = kt and Λ(k)
1 = (λ11, ..., λk1). Define recursively the following vectors:

Λ(k)
s = vec((λ1t, ..., λkt)Λ

(k)
s−1), s = 2, ..., t−1. Further, let Ξt = vec(ξtΛ

(k)
t−1), Θt = vec(θtΛ

(k)
t−1). It is not difficult

to see that Yt+1(λ
(k)
t−1, ξt) =d Ξt

(
V (Nk,t+1)

)′
and Yt+1(λ

(k)
t−1, θt) =d Θt

(
V (Nk,t+1)

)′
. According to Proposition

5.A.7 in Marshall and Olkin (1979), the relations x = (x1, ..., xn) ≺ y = (y1, ..., yn) and a = (a1, ..., am) ≺
b = (b1, ..., bm) imply (x, y) = (x1, ..., xn, a1, ..., am) ≺ (y1, ..., yn, b1, ..., bm). It is not difficult to see, using this

result, that from the assumption ξt ≺ θt in the theorem it follows that Ξt ≺ Θt. In addition, it is easy to see

that, under the assumption that ξt is not a permutation of θt, the vector Ξt is not permutation of the vector

Θt. Lemma 2 in Appendix A1 and the above relations thus imply that for all x > 0,

P (|Yt+1(λ
(k)
t−1, ξt)− µ| > x) = P (|Ξt

(
V (Nk,t+1)

)′
− µ| > x) <

P (|Θt

(
V (Nk,t+1)

)′
− µ| > x) = P (|Yt+1(λ

(k)
t−1, θt)− µ| > x).

Consequently, inequality (7) hold. Inequality (6) might be proven in a similar way, with the use of Lemma

1 instead of Lemma 2. ¥

Proof of Corollaries 1 and 2. Corollary 1 follows from Theorem 1 with ξt = δt and θt = (1, 0, ..., 0) ∈ Rk and

the relation δt ≺ (1, 0, ..., 0) implied by (5). Corollary 2 is a consequence of Theorem 1 with ξt = δt and θt = δt

and the fact that, by relations (4), δt ≺ δt. ¥

Proof of Corollary 3. The proof of Theorem 1 implies that Xt(λ
(k+1)

t−1 ) =d V Nk+1,t
and Xt(λ

k

t−1) =d V Nk,t
.

The conclusion of the theorem thus follows from the results in Lemmas 1 and 2 and comparisons (4). ¥

Proof of Corollaries 4 and 5. Corollary 4 and relations (8) and (10) in Corollary 5 are consequences of Corol-

lary 3 with k = 1 and k = 2, respectively. Let k ≥ 3, t ≥ 1 and let t′ be such that N2,t′ = 2t′ > kt = Nk,t.
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The proof of Theorem 1 implies, similar to the argument for Corollary 3, that Xt′(λ
(2)

t′−1) =d V N2,t′ and

Xt(λ
k

t ) =d V Nk,t
. From Lemmas 1 and 2, together with relations (4), it thus follows that comparisons (9) and

(11) indeed hold. ¥
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