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 Abstract. We obtain estimates for the best constant in the Rosenthal inequality  
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2( )max , ξ  for independent random variables nξξ ,...,1  

with  l  zero first odd moments, . The estimates are sharp in the extremal cases l=1 and l=m, 

that is, in the cases of random variables with zero mean and random variables with   m  zero first odd 

moments.  
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 Rosenthal (1970) proved the following inequality: 
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 2  
for all positive integers n and all independent random variables (r.v.’s) nξξ ,...,1  with ,E i 0=ξ  

,E t
i ∞<ξ  i=1,..., n, , where  is a constant depending only on t. A number of papers 

have focused on refinements and extensions of inequality (1) and related problems (see 

Prokhorov, 1962; Sazonov, 1974; Nagaev and Pinelis, 1977; Pinelis, 1980, 1994; Pinelis and Utev,  

1984; Johnson, Schechtman and Zinn, 1985; Utev, 1985; Hitczenko, 1990, 1994; Bestsennaya and 

Utev, 1991, Ibragimov and Sharakhmetov, 1995, 1997, 2001a, b; Figiel, Hitczenko, Johnson, 

Schechtman and Zinn, 1997; Ibragimov, 1997; de la Peña and Giné, 1999; and de la Peña, 

Ibragimov and Sharakhmetov, 2003). Figiel et al. (1997) and Ibragimov and Sharakhmetov 

(1995, 1997) derived the following expressions for the best constant   in inequality (1) 

for symmetric r.v.’s:  
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0
dx 1, θ2  are independent Poisson r.v.’s with parameter 0.5. The proof of 

the expressions for  in Ibragimov and Sharakhmetov (1995, 1997) relies on the work by 

Utev (1985), who obtained, among other results, sharp upper and lower bounds on 
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t≥4, where nξξ ,...,1  are independent symmetric r.v.’s with finite tth moment, in terms of 
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 and . Bestsennaya and Utev (1991) derived a similar upper bound on even 

moments of sums  independent mean-zero r.v.’s 
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nξξ ,...,1 ,  from which the best constant in general 

Rosenthal’s inequality (1) in the case t=2m can be deduced. Using a different proof technique, the 

expression for the best constant in general inequality (1) for even moments t=2m of sums of 
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mean-zero r.v.’s was independently obtained in Ibragimov and Sharakhmetov (2001a). Ibragimov 

and Sharakhmetov (2001b) obtained the best constant in the analogue of inequality (1) for 

nonnegative r.v.’s. The results in Ibragimov and Sharakhmetov (1995, 1997, 2001a, b) were also 

presented in Ibragimov (1997). de la Peña et al. derived sharp analogues of the Burkholder–

Rosenthal inequalities and related estimates for the expectations of functions of sums of 

dependent nonnegative r.v.’s and conditionally symmetric martingale differences with bounded 

conditional moments as well as for sums of multilinear forms. 

 

 The present paper deals with estimating the best constants in the Rosenthal’s inequality 

for r.v.’s with l zero first odd moments. Namely, let   denote the best constants in 

inequality (1) for all positive integers n and all independent r.v.'s 

)t(C *
l

nξξ ,...,1  with 012 =−s
iEξ , 

. Then the following theorem holds.   l...,,,s 21=

 Theorem 1. If  t=2m, m∈N, then   
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where the inner sum is taken over all natural m1>m2>...>mr and j1,...,jr satisfying the conditions 

m1j1+...+mrjr=2m ,  j1+...+jr =j, 12 −≠ sm i , r...,,,i 21= , l...,,,s 21= . 
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 Remark 1. The value ∑ ∑ ∑ ∏
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2  in inequality (2) has a simple 

combinatorial sense (e.g., Sachkov, 1996): it equals the number of partitions of a set consisting of  

2m  elements into parts the number of elements in which is not equal to  , . 12 −s l...,,,s 21=

 Remark 2. As follows from the results in Pinelis and Utev (1984), Bestsennaya and Utev 

(1991) and Ibragimov and Sharakhmetov (1997, 2001a), bounds (2) are sharp for l=1 and l=m; in 

addition, when l=m, the right-hand side of (2) equals to the best constant  in the 

Rosenthal’s inequality for symmetric r.v.’s. It is also interesting to note that, in the case l=0, the 

expression on the right-hand side of (2), with the inner sum taken over all natural m

)m(C *
sym 2

1>m2>...>mr 

and j1,...,jr satisfying the conditions m1j1+...+mrjr=2m ,  j1+...+jr =j, equals to the best constant 

the analogue of inequality (1) for nonnegative r.v.’s (see Ibragimov and Sharakhmetov, 2001b). 

Similar to Remark 1, the latter expression equals to the total number of partitions of a set 

consisting of  2m  elements (the 2m-th Bell number). 

 

 Let us formulate some auxiliary results needed for the proof of Theorem 1. The following 

lemma follows from Corollary 2 in Utev (1985) and the formula representing moments by semi 

invariants.  

 

 Lemma 1. Let n...,, ξξ 1  be independent r.v.’s with , . Set  

,  k=1, 2,..., 2m, .  The following inequality holds: 
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where the inner sum is taken over all natural m1>m2>...>mr and j1,...,jr, satisfying the conditions  

m1j1+...+mrjr=2m ,  j1+...+jr =j, 12 −≠ sm i , r...,,,i 21= , l...,,,s 21= . 

 Let A 2m, B, D>0. Denote  , where  sup  is taken over 

positive integers n and all independent r.v.’s 
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 The following lemma is well-known (see, e.g., Pinelis and Utev, 1984). 

 Lemma 2. For  2<s<2m 
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 Relation (5) and Lemma 2 imply the following 

  

 Lemma 3. For  A 2m , B>0 
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i=1,2, where the inner sum is taken over all natural m1>m2>...>mr and j1,...,jr, satisfying the 

conditions  m1j1+...+mrjr=2m ,  j1+...+jr =j, 12 −≠ sm i , r...,,,i 21= , . l...,,,s 21=

 

 Proof of Theorem 1. From Lemma 3 and the evident inequality  
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where the inner sum is taken over all natural m1>m2>...>mr and j1,..., jr, satisfying the conditions 

m1j1+...+mrjr=2m, j1+...+jr=j, 12 −≠ sm i , r...,,,i 21= , l...,,,s 21= . Since  
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