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Abstract

This paper presents a machine-learning approach to
modeling human behavior in one-shot games. It pro-
vides a framework for representing and reasoning about
the social factors that affect people’s play. The model
predicts how a human player is likely to react to dif-
ferent actions of another player, and these predictions
are used to determine the best possible strategy for that
player. Data collection and evaluation of the model
were performed on a negotiation game in which humans
played against each other and against computer models
playing various strategies. A computer player trained
on human data outplayed Nash equilibrium and Nash
bargaining computer players as well as humans. It also
generalized to play people and game situations it had
not seen before.

Introduction
Technology is opening up vast opportunities for computer
agents to interact with people. In many of these settings,
agents need to make decisions that affect the other partici-
pants. Many human-computer interactions may be modeled
as games, in which human and computer players each have
their own choices of actions and their own goals. In AI,
game theory has often been used as a paradigm for model-
ing interaction in multi-agent systems; it prescribes rules-of-
behavior for all agents in the game.

However, traditional game theory cannot naturally cap-
ture the diversity of human behavior. People play quite
differently from game theoretic predictions and their play
varies considerably (Kagel & Roth 1995). A multitude
of social factors, such as altruism, selfishness and reci-
procity have been shown to mediate people’s play in
games (Camerer 2003). It has proven difficult to derive an-
alytically the extent to which these factors affect the play
of different people. To design computer agents that interact
successfully with humans and adapt to new situations, we
must represent these factors explicitly in our model and be
able to learn them.

In this paper, we use machine learning techniques to learn
models of how people play games. The model learns a utility
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function that players use, in which social factors are explic-
itly represented and defined in terms of players’ outcomes.

We explicitly model several types of social factors, rang-
ing from pure self-interest to altruism and including a notion
of fairness. The model assumes that people reason about the
same types of social factors, but that individuals weigh them
differently. The model learns the utility functions deployed
by different types of people; it also allows individuals to rea-
son about their preferences with some degree of error. Since
each utility function provides a guideline for behavior, learn-
ing the utility functions is key to developing a model that can
predict which action a player will take.

The learned models were incorporated into a computer
agent that interacted with humans and used to predict how
a human player would likely react to different actions of the
computer player. These predictions were then used to deter-
mine the best possible strategy for the computer player.

We implemented our model in a two-player negotiation
game that uses the Colored Trails framework, developed
by Grosz and Kraus (2004), an environment in which each
player has a goal and certain resources are needed to reach
it. The players can trade resources, leading to interestingne-
gotiation scenarios. We study a scenario in which one player
proposes a trade to the other, who then has the opportunity
to accept or reject. Our model learns to predict whether the
second player accepts or rejects the offer. This model is then
used by an agent taking the role of the first player to help it
decide which offer to make.

We tested our model in experiments involving human sub-
jects. In the first phase of the experiments, data consisting
of human play was collected. This data was used to learn a
model of human play. In the second phase, a “social” com-
puter player using the learned model was compared against
two other computer players and against the performance of
human players themselves. The social computer player was
able to perform better than all the other players. It exhibited
a variety of interesting behavior, depending on the resources
players started out with and their positions in the game. The
model generalized well to play people and game situations
it had not seen before.

Most of the work on learning in games (Fudenberg &
Levine 1998) has been on learning the strategy of a particu-
lar opponent from repeated play against that opponent. For
example, opponent modeling has been applied successfully



to poker (Davidsonet al. 2000).
Common to the techniques in this approach is that they

focus on learning and evolution within a single repeated
game, in which the agent keeps playing against the same
opponents. In contrast, our approach to learning has been
to generalize from the behavior of some human players to
the behavior of other players. We aim to develop agents that
interact well with human agents, even those they have never
seen before.

Work in AI with regard to learning utility functions
within MDPs (Ng & Russell 2000) and probabilistic frame-
works (Chajewska, Koller, & Ormoneit 2001) differs from
ours in fundamental ways. First, they learn a utility func-
tion directly in terms of outcomes of the game. No external
factors enter into the utility function, and there is no consid-
eration of behavioral aspects in their model. In contrast, we
learn utility functions that are influenced by the social pref-
erences that hold between players. Second, they assume that
players choose the pure strategy that maximizes their util-
ity function. We allow for the possibility that players’ ac-
tions will sometimes contradict their supposed utility func-
tion, enabling us to handle noise in people’s decisions.

Behavioral Decision-Making
Social factors play a crucial part in players’ reasoning, both
in repeated and in one-shot interactions. For example, recip-
rocal behavior has been shown to appear in the ultimatum
negotiation game (Guth, Schmittberger, & Schwarze 1982),
contradicting the predictions of traditional game theoretic
models. In this game, one player proposes a division of some
amount of good to another player. If the second player ac-
cepts, the good is divided as proposed, otherwise both play-
ers get nothing. The unique sub-game perfect Nash equi-
librium of the game is to offer the smallest amount possible
to the other player, and for the other player to agree to the
proposal. However, numerous experiments have shown that
individuals behave differently; most offers consist of half of
the goods, and most rejections occur for offers consisting of
less than a quarter of the goods.

A growing body of research in behavioral economics is
concerned withsocial preferencemodels. These models as-
sume that players consider others’ outcomes, as well as their
own, when they reason about the game. These models allow
players to follow a “social” utility function, exogenous to
the game description, in which factors such as the following
are explicitly represented.

Self Interest A key motivation for players is to maximize
their individual utility, as specified by the rules of the
game. This is the sole motivation considered by classi-
cal game theory.

Social Welfare Players concerned with social welfare are
interested in the welfare of the group as a whole, as well
as their own utility. Such players are willing to sacrifice
some individual utility to make others better off.

Inequity Aversion A player who cares about fairness is
concerned that the outcome be as equal as possible for
all players. Such a player is willing to sacrifice individual

utility, or to decrease others’ payoffs, in order to ensure a
more balanced outcome.

Social preference models that depend on these factors have
been formalized. Bolton (1991) provides a model that as-
sumes people care about inequity-aversion, in addition to
self-interest. Charness and Rabin (2002) propose a model
in which players also care about reciprocity; one player
is able to punish the other. Bolton and Ockenfels (2002)
compare models that measure fairness in terms of relative
payoff comparisons with models that use reciprocal mea-
sures. Lowenstein et.al (1989) compared several social util-
ity forms and found that a utility function including terms for
self-interest, as well as a separate term for positive and neg-
ative discrepancies between the parties’ payoffs, matched
data corresponding to one-shot dispute type negotiation.

Common to these approaches is that models were learned
and evaluated in simple scenarios; subjects in the labora-
tory were allowed to choose between two options, each of
them corresponding to a different social feature. These ap-
proaches did not attempt to model social preferences in a
more complex setting, such as a negotiation game which in-
cludes many possible deals. Moreover, they did not explic-
itly model different types of people interacting together.

There has been no work to date on building a computer
agent that learns social preferences through repeated obser-
vation of human play. If human behavior presents particu-
lar regularities such as described above, and if a model can
capture different types of players, then it should be possible
to identify the factors influencing people’s behavior through
the use of computational modeling. An agent based on such
a model would be able to generalize to playing new situa-
tions and examples of interaction it had not seen before.

Colored Trails
Our study used the game Colored Trails (CT), designed by
Grosz and Kraus. CT is played on a board of colored squares
with a set of tiles in colors chosen from the same palette as
the squares. One square is designated as the “goal square”
and each player has a piece on the board, initially located
in one of the non-goal squares. The players have a set of
colored tiles. To move a piece into an adjacent square a
player must turn in a chip of the same color as the square.
Tiles may be exchanged by the players, and the conditions of
exchange may be varied to model different decision-making
situations.

A player’s performance in CT is determined by a scoring
function. This function may depend on many factors, such
as the player’s distance from the goal-square, the number of
moves made, and the number of tiles the player possesses
at the end of the game. In addition, a player’s performance
in the game can be made to depend on the performance of
other players, by including the score of other players in her
own scoring function.

For our study, we use a version of CT in which two players
played on 4x4 boards with a palette consisting of 4 colors.
Each player has full view of the board as well as the other
player’s tiles. At the beginning of the game, the two players
are randomly placed at two locations on the CT board and



allocated four tiles at random, which could include any color
in the palette. The distribution of tiles is designed such that it
is likely that the game is “interesting”. A game is considered
to be interesting if (1) at least one of the players can reach
the goal after trading with the other player; (2) it is not the
case that both players can reach the goal without trading.

The scoring function for the players was set as follows.

• 150 points bonus for reaching the goal; otherwise, 50
points bonus.

• 10 points for each tile left in a player’s possession.

• 15 points deducted for any square in the path between the
player’s final position and the goal-square. This path is
computed by the Manhattan distance.

Note that 50 points were rewarded for players that did not
reach the goal square. The idea here was to keep the scores
from being negative: the maximum Manhattan distance of
a player from the goal square on a4 × 4 board game is 6.
In the worst case, the player cannot move from this position
because it does not possess the right chips. In this case, the
player’s score is50 + (4 × 10) − (6 × 15) = 0.

The parameters were chosen so that while getting to the
goal is by far the most important component, if a player can-
not get to the goal it is preferable to get as close to the goal
as possible. Furthermore, a player’s outcome is determined
solely by her own performance.

In each game, each player is designated one of two roles,
which determines the possible actions that are available dur-
ing the game. One player is theallocator, the other player
is thedeliberator. The allocator is allowed to propose an of-
fer for exchange of tiles to the deliberator. The deliberator
can either accept or reject the allocator’s offer. If the allo-
cator does not make an offer, then both players are left with
their initial allocation of tiles. The deliberator is not allowed
to counter the allocator’s offer with another proposal. The
score that each player receives if no offer is made is identi-
cal to the score each player receives if the offer is rejectedby
the deliberator. We refer to this event as theno negotiation
alternative. The score that each player receives if the offer
is accepted by the deliberator is referred to as theproposed
outcomescore.

Under the conditions specified above, each game consists
of a one-shot negotiation deal between the two players, and a
deliberator’s reply to the exchange proposed by the allocator
completely determines the final outcome of the game.

Model Construction
This work aims to model human deliberators in the CT
game. Our task is to predict whether a deliberator will ac-
cept a given proposal. The inputs to the model areNNA and
NND, the no-negotiation alternative scores for the allocator
and deliberator, andPOA andPOD, the proposed outcome
scores for the allocator and deliberator.

To develop the model, we introduce the following fea-
tures, which represent possible social factors that might af-
fect the deliberator for a given deal:

• Individual-benefit(IB) POD − NND

• Aggregate-utility(AU)

(POD + POA) − (NND + NNA)

• Advantage-of-outcome(AO) POD − POA

• Advantage-of-trade(AT )

(POD − NND) − (POA − NNA)

The features Individual-benefit and Aggregate-utility match
the social preferences self-interest and social-welfare that
have been shown to contribute to players’ reasoning in
the behavioral economics literature. We add features to
distinguish between two types of inequality. Advantage-
of-outcome measures inequality in the final outcomes.
Advantage-of-trade measures inequality in the gains re-
ceived from a trade. In both cases this means that the delib-
erator has a strict preferences to do better than the allocator.

Given any proposed exchangex, a particular deliberator’s
utility u is a weighted sum of features. The utility function is
determined by the weightsw =< wIB, wAU , wAO, wAT >.
The weights measure the relative importance of each of the
social preferences to the deliberator. The utility function is
normalized around 0, so a utility of 0 corresponds to indif-
ference between accepting the proposal and rejecting it. We
interpret the utility to be not only an indication of which de-
cision to make, but also the degree to which one decision
is preferred. Thus, accepting a proposal is more strongly
preferred when the utility is a large positive number than a
small positive number.

We could try to learn a single utility function representing
the preferences of all people, but this would be unlikely to
fit many deliberators well; it is not likely that all deliberators
behave the same way. On the other hand, if we try to learn a
separate utility function for each deliberator, we would need
to play against the same deliberator for many rounds before
we could learn about that person, and we would not be able
to generalize from one deliberator to another. Therefore we
assume that there are severaltypesof deliberators, where
each type has its own utility function. We use a mixture
model over types, with a probability distributionP (t) over
the set of types. Each typet is associated with its own set of
social preference weightswt, defining a utility functionut.

In addition, while a utility function corresponds to a de-
cision rule, we do not assume that deliberators implement
the decision rules perfectly, for two reasons. First, the de-
liberators’ play may be noisy; they may make mistakes and
act capriciously. Therefore, we expect noise in the data that
could not be explained if the deliberators played perfectly.
Second, even if a deliberator falls under a certain type, it is
unlikely that her utility function will exactly match that of
the type. Rather, it may differ in small ways, which cause
her to take decisions that are contrary to the type’s utility
function.

To capture the fact that a decision rule might be imple-
mented noisily, we use a sigmoid function. We define the
probability of acceptance for a particular exchangex by de-
liberator of typet to be

P (accept|x, t) =
1

1 + e−ut(x)



In particular, the probability of acceptance converges to 1
as the utility becomes large and positive, and to 0 as the
utility becomes large and negative. When the decision is less
clear-cut, i.e. the utility is close to zero, the probability of
acceptance is close to12 , meaning “mistakes”, or decisions
that are contrary to the utility function, are more likely to
happen.

Given that we have a model describing the deliberator’s
behavior, the next step is to incorporate this model into a
computer agent that plays with humans. In our framework,
the computer agent plays the allocator and a human is play-
ing the deliberator. The goal of this step is to maximize the
score of the allocator, by exploiting the model of how the de-
liberator acts. The strategy is to propose the deal that max-
imizes the expected utility to the allocator. The expected
utility is the sum of the allocator’s utility of the proposal
times the probability the proposal is accepted, and the allo-
cator’s no-negotiation alternative score times the probability
the proposal is rejected.

Given that we have a model describing the deliberator’s
behavior, the next step is to incorporate this model into a
computer agent that plays with humans. The goal of this step
is to maximize the score of the allocator, by exploiting the
model of how the deliberator acts. The strategy is to propose
the deal that maximizes the expected utility to the allocator.
The expected utility is the sum of the allocator’s utility of
the proposal times the probability the proposal is accepted,
and the allocator’s no-negotiation alternative score times the
probability the proposal is rejected.

We take the expectation of this sum with respect to all of
the deliberator utility functions. Formally, letE be the set of
all possible exchanges that are available to the allocator.Let
T be the set of deliberator types. The computer model will
choose exchangee s.t.

e = argmax
e∈E

∑

t∈T

P (t) · [P (accept|x, t) · POA(x)+

(1 − P (accept|x, t)) · NNA]

Learning
The goal of the learning task is to complete the model of
the deliberators by estimating the parameters from collected
data. Since we are learning a mixture model, the task is
two-fold; we must learn the distributionP (T ) over deliber-
ator types, and for each typet ∈ T , we must learn the fea-
ture weightsw =< wIB, wAU , wAO, wAT > , correspond-
ing to the contribution of each social preference. To solve
this problem, we interleaved two optimization procedures,
a version of the EM algorithm (Dempster, Laird, & Rubin
1977) and the gradient descent technique, as described in
the Results section. We began by placing an arbitrary distri-
bution over deliberator types and setting the feature weights
with particular parameter values. We varied the number of
types and the initial feature weights for each type.

Each observation d consists of inputs
x

d = (NNd
A, NNd

D, POd
A, POd

D), and response yd,
which equals 1 or 0 for “accept” or “reject”. To speed up
learning, the inputs are scaled to lie in the interval [-1,1], by

setting -1 to be the smallest value of the feature and 1 to be
the largest.

The deliberator typetd is unobserved, but we can com-
pute the probability of each type for each data case using the
current parameter settings:

P (td|d) =
1

Zd
P (yd|td, xd) · P (td)

whereZd is a normalizing factor. Note thatP (yd|td, xd) is
the likelihood of the deliberator’s response in the game at
data pointd, according to typetd. This can be computed by
plugging the social utility functionut for the observed game
into the sigmoid function.

Computing the new values of theP (t) parameters is
straightforward. We computeE(Nt|D) =

∑
d∈D P (td | d)

and normalize. The maximization for the feature weights for
each type is more interesting. The model for each type is a
simple sigmoid belief network (Neal 1992). (In fact, it is a
particularly simple sigmoid belief network, because it hasno
hidden layers.) The maximum likelihood problem for such
a network can be solved by gradient descent, using a delta
rule.

Since these networks participate in a mixture model, each
one makes a contribution to the final output ofP (t|d).
Therefore the gradient for the model associated with type
t is proportional toP (t|d). In other words, the degree to
which a training example can be used to learn the weights in
a network is proportional to the probability that the network
actually generated the data. In the delta rules for these net-
works, therefore, we multiply the learning rate byP (t|d).
We obtain the following delta rule for each featurej:

wt
j = wt

j + αP (t|d)
∑

d∈D

xd
j (1 − P (yd|t)).

The 1 − P (yd|t) error term comes from assuming that if
the network was a perfect predictor, it would have predicted
the outcomeyd with probability 1. The difference between
1 andP (yd|t) is the degree to which the network is not a
perfect predictor.

Experimental Setup
A total of 42 subjects participated in the experiment, 32 in
the data-collection phase and 10 in the evaluation phase.
Participants were given a 20 minute tutorial of the game,
consisting of an explanation of the rules, the scoring func-
tion and a practice game.

Each subject was identified by a serial number, and was
seated in front of the same terminal for the entire length
of the experiment, which was composed of a number of
rounds of Colored Trails. A central server was responsi-
ble for matching up the participants at each round and for
keeping the total score for each subject in all of the rounds
of the experiment. No subject was paired up with any other
subject more than once in the same role capacity. Subjects
could not observe the terminals of other subjects, and they
were not told about the identity of their partner.

Participants were paid in a manner consistent with the
scoring function in the game. For example, a score of 130



points gained in a round earned a $1.30 payment. We kept
a running score for each subject, revealed at the end of the
experiment.

The experiment consisted of two separate phases: data-
collection and evaluation. In the data-collection study, 16
subjects played consecutive CT games against each other.
Each subject played 12 CT rounds, making for a total of 96
games played. The initial settings (board layout, tile distri-
bution, goal and starting point positions) were different in
each game. For each round of the game, we recorded the
board and tile settings, as well as the proposal made by the
allocator, and the response of the deliberator. We ran two
instances of the data-collection phase, each one with differ-
ent subjects, collecting 192 games. The data obtained from
the data-collection phase was then used to learn a model of
human play.

The evaluation study consisted of two groups, each in-
volving 5 human subjects and 3 computer players. The
computer players, only playing allocators, were automatic
agents capable of mapping any CT game position to some
proposed exchange. AgentSP proposed the exchange with
the highest expected utility, according to our learned social
preferences model. AgentNE proposed the exchange cor-
responding to the Nash equilibrium strategy for the alloca-
tor. Agent NB proposed the exchange corresponding to
the Nash bargaining strategy for the allocator. Nash (1971),
who addressed the topic of bargaining, gave several axioms
which every reasonable bargaining solution must follow. He
then showed that the deal which maximized the product of
the agents’ utilities is the sole solution to the set of axioms.
An interesting point is that the Nash bargaining solution is
always Pareto optimal. In the context of CT, this means that
if there is no deal in which both parties do better than not
negotiating, this player will not propose an exchange.

At each round, eight concurrent games of CT were played
in which members of the same group played each other. The
set-up was as follows. One of the human subjects, desig-
nated as an allocator, played another human subject, desig-
nated as deliberator; each computer player, designated as an
allocator, played another human subject, designated as de-
liberator. The game settings, including board layout, start
and goal positions, and initial tile distributions, were the
same for all of the games played by members of the same
group. Therefore, at each round there were 4 matching CT
games being played by the eight members of each group.

Participants were given the same instructions and tuto-
rial as in the data-collection experiment. We expected that
telling the participants they would be playing computer
agents in some of the rounds would alter their behavior.
Therefore, participants were led to assume that they were
playing a human at each round.

As before, for each round of CT, we recorded the settings
of each game, the proposals being offered by the alloca-
tors, and the deliberators’ response. The first group played
7 games, and the second group played 14 games, for a total
of 21 games, where each game was replicated 4 times with
different allocators.

Results and discussion
We learned separate models for one, two and three possi-
ble types of deliberators, henceforth referred to as Model1,
Model2 and Model3 respectively. We set prior parameter
values for the models as follows. For all models, we used
random initial values for the distribution over deliberator
types. For Model1 we also set random values for the feature
weights. For Model2 and Model3, we assigned each delib-
erator type with initial feature values that corresponded to
different points in feature space, by “highlighting” some fea-
tures and giving them significantly higher initial value than
others. In Model2, one of the deliberator types highlighted
advantage-of-outcome and advantage-of-trade, while the
other highlighted aggregate-utility. In Model3, deliberator
types highlighted advantage-of-outcome, aggregate-utility,
and Advantage-of-trade separately.

We ran each model on the data from the data-collection
phase. We obtained the following posterior parameter val-
ues for each model. Model1, which had a single delib-
erator type, learned feature weights(7.00, 5.42, 0.40, 4.00)
for features individual-benefit, aggregate-utility, advantage-
of-outcome, advantage-of-trade, respectively. Model1 de-
scribed a highly competitive deliberator who only cares
about her own outcome and would hurt the other to
do better. In Model2, the distribution over deliber-
ator types was(0.36, 0.63) and feature weights were
(3.00, 5.13, 4.61, 0.46) and(3.13, 4.95, 0.47, 3.30) for each
type respectively. Model2 described two partially altruistic
deliberators. They both have high weights for social wel-
fare, while still being competitive; one of the types cares
more about advantage-of-outcome, and the other type cares
more about advantage-of-trade. In Model3, the distribution
over deliberator types assigned miniscule probability forthe
third type, and resembled Model2 in all other parameter val-
ues. We decided to use Model2 in the validation study.

The following table presents the results of the evaluation
phase for each of the models used in the experiment.

Model Total Reward Proposals Proposals No
Accepted Declined Offers

SP 2880 16 5 0
NE 2100 13 8 0
NB 2400 14 2 5
HU 2440 16 1 4

It lists the total monetary reward, the number of proposals
accepted, the number of proposals rejected, and the number
of times no offer was proposed. The computer allocator la-
beledNE always proposed the exchange that corresponded
to the allocator’s strategy in the (unique) sub-game perfect
Nash equilibrium of each CT game. In essence, this resulted
to offering the best exchange for the allocator, out of the set
of all of the exchanges that are not worse off to the delib-
erator. As a consequence, many of the exchanges proposed
by this agent were declined. We hypothesize this is because
they were not judged as fair by the deliberator. This result
closely follows the findings of behavioral game theory. The
performance ofNE was the worst of the four. The com-
puter allocator labeledNB always proposed the exchange
that corresponded to the allocator’s strategy in the Nash Bar-
gaining profile. This exchange consistently offered more to



the deliberator than theNE player did for the same game,
when the board and tile distribution enabled it. BecauseNB
tended to offer quite favorable deals to the deliberator, they
were accepted more than the other computer players, pro-
vided that an offer was made.

The allocator labeledHU combines the monetary rewards
for all of the human players. Human offers were almost al-
ways accepted, when they were made. The computer allo-
cator that followed our expected utility model, labeledSP ,
achieved a significantly higher reward thanNE and HU
(T-test comparison for mean reward wasp < .05, p < .1,
respectively). It also had the highest number of accepted
proposals, along with the allocations proposed by humans.
Interestingly, our model proposed the same offer as the hu-
man proposal in 4 of the games, whereas the Nash equilib-
rium player did not match a human proposal in any game,
and the Nash bargaining player matched human proposals in
2 games. This suggests that our computational model would
be perceived to be relatively more reasonable, or “human
like”, by other people.

Next, we describe some interesting behavior displayed by
our program. TheNNA heading in the following tables
represents the no-negotiation alternative situation. First, we
show a round in which SP proposed an exchange which was
accepted by an altruistic human deliberator. Interestingly,
there was only one observation in which an altruistic delib-
erator agreed to such an exchange, yet it was used 4 times
by the allocator in the evaluation phase. This behavior, of
asking for a favor when the other player is much better off,
was consistently accepted by the human player.

Model Allocator Deliberator
Score Score

NNA 45 170
SP 70 150

A second example, in which the proposed outcome of the
exchange proposed byNE, while beneficial for the delib-
erator, was lower than the exchange proposed bySP . The
NE exchange was rejected, while theSP exchange was ac-
cepted. This seems to indicate that the responders in this
game cared about the equality of outcomes. Note that in this
exchange, theSP exchange and the exchange proposed by
the human were equal.

Model Allocator Deliberator
Score Score

NNA 75 150
SP 170 170
NE 180 160
NB 150 190
HU 170 170

Conclusion and Future Work
We have presented a computational framework for repre-
senting and learning a social preference model of people
in one-shot games. The model successfully learns the fac-
tors that affect human play and can generalize to people and
game situations that were not seen before. We plan to model
additional social features, such as the regret that a player
might feel from accepting one trade when a more preferable
trade was available.

Our current model assumed that observations of play are
independent of each-other. We plan to constrain multiple ob-
servations from the same subject to originate from the same
type.

The CT framework provides a natural test-bed for learn-
ing in more complex scenarios, such as repeated games. In
repeated games, additional factors are at work, including dy-
namics of reciprocity and punishment. We also plan to study
games involving more than two allocators, where issues of
competition between the allocators arise.

While we have focused on one particular game for prac-
tical reasons, the learned models we use are cast in terms of
general social preferences and do not depend on the specific
features of the game. Therefore the learned models should
be immediately applicable to other games in which the same
social preferences play a role. It will be interesting to see
if the model learned for one type of negotiation game will
generalize to another type of game.

For our performance measure, we have used the score ob-
tained by our computational agent while playing against hu-
mans. One can also imagine setting the goal of trying to play
as much like humans as possible. Our learned models would
now be used to generate computer play, rather than simply as
predictors of human reaction. With the approach described
in this paper, it is conceivable that we could build a program
to pass a limited Turing test in a negotiation game, in the
spirit of the Caltech Turing Test competition1.

Acknowledgments
This work was supported by NSF grant IIS-0222892 and
NSF Career Award IIS-0091815. We thank Jacomo Corbo
and the Harvard AI research group for valuable discussions
and programming assistance.

References
Bolton, G., and Ockenfels, A. 2002. A stress test of fainess
measures in models of social utility. Technical report, Max
Plank Institute.

Bolton, G. 1991. A comparative model of bargaining.
American Economic Review(81):1096–1136.

Camerer, C. 2003.Behavioral Game Theory: Experiments
in Strategic Interaction. Princeton University Press.

Chajewska, U.; Koller, D.; and Ormoneit, D. 2001. Learn-
ing an agent’s utility function by observing behavior. In
ICML’01.

Charness, G., and Rabin, M. 2002. Understanding social
preferences with simple tests.Quarterly Journal of Eco-
nomics(117):817–869.

Davidson, A.; Billings, D.; Schaeffer, J.; and Szafron, D.
2000. Improved opponent modeling in poker. InInterna-
tional Conference on Artificial Intelligence(ICAI’00).

Dempster, A.; Laird, N.; and Rubin, D. 1977. Max-
imum likelihood from incomplete data via the EM algo-
rithm. Journal of the Royal Statistical Society39(1).

1http://turing.ssel.caltech.edu/



Fudenberg, D., and Levine, D. K. 1998.The Theory of
Learning in Games. MIT Press.
Grosz, B.; Kraus, S.; Talman, S.; and Stossel, B. 2004.
The influence of social dependencies on decision-making.
Initial investigations with a new game. InAAMAS’04.
Guth, W.; Schmittberger, R.; and Schwarze, B. 1982. An
experimental analysis of ultimatum bargaining.Journal of
Economic Behavior and Organization(3):367–388.
J.Nash. 1971. The bargaining problem.Econometrica
18:155–162.
Kagel, J., and Roth, A., eds. 1995.The hanbook of experi-
mental economics. Princeton University Press.
Loewenstein, G.; Bazerman, M.; and Thompson, L. 1989.
Social utility and decision making in interpersonal con-
texts. Journal of Personality and Social psychology
(57)(3):426–441.
Neal, R. 1992. Connectionist learning of belief networks.
Artificial Intelligence56:71–113.
Ng, A., and Russell, S. 2000. Algorithms for inverse rein-
forcement learning. InICML’00.


