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AUTOMORPHY FOR SOME l-ADIC LIFTS OF
AUTOMORPHIC MOD l GALOIS REPRESENTATIONS.

by LAURENT CLOZEL, MICHAEL HARRIS ? and RICHARD TAYLOR ??

ABSTRACT

We extend the methods of Wiles and of Taylor and Wiles from GL2 to higher rank unitary groups and
establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge-Tate numbers),
minimally ramified, l-adic lifts of certain automorphic mod l Galois representations of any dimension. We also
make a conjecture about the structure of mod l automorphic forms on definite unitary groups, which would
generalise a lemma of Ihara for GL2. Following Wiles’ method we show that this conjecture implies that our
automorphy lifting theorem could be extended to cover lifts that are not minimally ramified.

1. Introduction

In this paper we discuss the extension of the methods of Wiles [W] and
Taylor-Wiles [TW] from GL2 to unitary groups of any rank.

The method of [TW] does not extend to GLn as the basic numerical
coincidence on which the method depends (see corollary 2.43 and theorem
4.49 of [DDT]) breaks down. For the Taylor-Wiles method to work when
considering a representation

r : Gal (F/F ) ↪→ G(Ql)

one needs

[F : Q](dimG− dimB) =
∑
v|∞

H0(Gal (F v/Fv), ad 0r)

where B denotes a Borel subgroup of a (not necessarily connected) reductive
group G and ad 0 denotes the kernel of the map, ad → ad G, from ad to
its G-coinvariants. This is an ‘oddness’ condition, which can only hold if F
is totally real (or ad 0 = (0)) and r satisfies some sort of self-duality. For
instance one can expect positive results if G = GSp2n or G = GO(n), but
not if G = GLn for n > 2.

In this paper we work with a disconnected group Gn which we define
to be the semidirect product of GLn ×GL1 by the two element group {1, }
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with
(g, µ)−1 = (µtg−1, µ).

The advantage of this group is its close connection to GLn and the fact that
Galois representations valued in the l-adic points of this group should be
connected to automorphic forms on unitary groups, which are already quite
well understood. This choice can give us information about certain Galois
representations

r : Gal (F/F ) −→ GLn(Ql),

where F is a CM field. If c denotes complex conjugation then the representa-
tions r which arise all have the following property: There is a non-degenerate

symmetric pairing 〈 , 〉 on Q
n

l and a character χ : Gal (F/F ) → Q
×
l such

that
〈σx, cσc−1y〉 = χ(σ)〈x, y〉

for all σ ∈ Gal (F/F ). Let F+ denote the maximal totally real subfield of F .
By restriction this also gives us information about Galois representations

r : Gal (F/F+) −→ GLn(Ql)

for which there is a non-degenerate bilinear form ( , ) on Q
n

l and a character

χ : Gal (F/F+)→ Q
×
l such that

(y, x) = χ(c)(x, y)

and
(σx, σy) = χ(σ)(x, y)

for all σ ∈ Gal (F/F+).
In this setting the Taylor-Wiles argument carries over well, and we are

able to prove R = T theorems in the ‘minimal’ case. Here, as usual, R
denotes a universal deformation ring for certain Galois representations and T
denotes a Hecke algebra for a definite unitary group. By ‘minimal’ case, we
mean that we consider deformation problems where the lifts on the inertia
groups away from l are completely prescribed. (This is often achieved by
making them as unramified as possible, hence the word ‘minimal’.) That this
is possible may come as no surprise to experts. The key insights that allow
this to work are already in the literature:

1. The discovery by Diamond [Dia] and Fujiwara that Mazur’s ‘multi-
plicity one principle’ (or better ‘freeness principle’ - it states that a certain
natural module for a Hecke algebra is free) was not needed for the Taylor-
Wiles argument. In fact they show how the Taylor-Wiles argument can be
improved to give a new proof of this principle.
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2. The discovery by Skinner and Wiles [SW] of a beautiful trick using
base change to avoid the use of Ribet’s ‘lowering the level’ results.

3. The proof of the local Langlands conjecture for GLn and its compat-
ibility with the instances of the global correspondence studied by Kottwitz
and Clozel. (See [HT].)

Indeed a preliminary version of this manuscript has been available for many
years. One of us (R.T.) apologises for the delay in producing the final ver-
sion.

We will now state a sample of the sort of theorem we prove. (See corol-
lary 4.4.4.)

Theorem A Let n ∈ Z≥1 be even and let l > max{3, n} be a prime. Let S
be a finite non-empty set of rational primes such that if q ∈ S then q 6= l and
qi 6≡ 1 mod l for i = 1, ..., n. Also let

r : Gal (Q/Q) −→ GSpn(Zl)

be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes.
2. r|Gal (Ql/Ql)

is crystalline.

3. dimQl
gr i(r⊗Ql

BDR)Gal (Ql/Ql) = 0 unless i ∈ {0, 1, ..., n−1} in which
case it has dimension 1.

4. If q ∈ S then r|ssGQq
is unramified and r|ssGQq

(Frobq) has eigenvalues

{αqi : i = 0, 1, ..., n− 1} for some α.
5. If p 6∈ S ∪ {l} is a prime then r(IQp) is finite.
6. The image of r mod l contains Spn(Fl).
7. r mod l arises from a cuspidal automorphic representation π0 of

GLn(A) for which π0,∞ has trivial infinitesimal character and, for all q ∈ S
the representation π0,q is an unramified twist of the Steinberg representa-
tion.

Then r arises from a cuspidal automorphic representation π of GLn(A)
for which π∞ has trivial infinitesimal character and πq is an unramified twist
of the Steinberg representation.

We also remark that we actually prove a more general theorem which
among other things allows one to work over any totally real field, and with
any weight which is small compared to l, and with r with quite general
image. (See theorems 4.4.2 and 4.4.3.)

Let us comment on the conditions of this theorem. The sixth condi-
tion is used to make the Cebotarev argument in the Taylor-Wiles method
work. Much weaker conditions are possible. (See theorem 4.4.3.) One expects
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to need to assume that r is de Rham at l. The stronger assumption that
it be crystalline and that the Hodge-Tate numbers lie in a range which is
small compared to l is imposed so that one can use the theory of Fontaine
and Laffaille to calculate the relevant local deformation ring at l. The as-
sumptions that r is valued in the symplectic group and that the Hodge-
Tate numbers are different are needed so that the numerology behind the
Taylor-Wiles method works out. This is probably essential to the method.
The condition on r|GQq

for q ∈ S says that the representation looks as if
it could correspond under the local Langlands correspondence to a Steinberg
representation. The set S needs to be non-empty so that we can transfer
the relevant automorphic forms to and from unitary groups and so that we
can attach Galois representations to them. As the trace formula technology
improves one may be able to relax this condition. The condition that r(IQp)
is finite for p 6∈ S ∪ {l} reflects the fact that we are working in the minimal
case. It is a very serious restriction and seems to make this theorem nearly
useless for applications.

Our main aim in this paper was to remove this minimality condition.
Our strategy was to follow the arguments of Wiles in [W]. We were not able
to succeed in this. Rather we were able to reduce the non-minimal case to an
explicit conjecture about mod l modular forms on unitary groups, which gen-
eralises Ihara’s lemma on elliptic modular forms. We will explain this more
precisely in a moment. After we had made this paper public one of us (R.T.)
found a new approach to the non-minimal case, which bypasses Wiles’ level
raising arguments and treats the minimal and non-minimal cases simultane-
ously using a form of the Taylor-Wiles argument. Thus in some sense this
part of the present paper has been superseded by [Tay]. However we still be-
lieve that our present arguments have some value. For one thing they would
prove a stronger result. In [Tay] a Hecke algebra is identified with a universal
deformation ring modulo its nilradical. This does not suffice for special value
formulae for the associated adjoint L-function. However the method of the
present paper would provide this more detailed information and prove that
the relevant universal deformation ring is a complete intersection, if one as-
sumes our conjectural generalisation of Ihara’s lemma. In addition we believe
that our conjectural generalisation of Ihara’s lemma may prove important in
the further study of arithmetic automorphic forms on unitary groups.

To describe this conjecture we need some notation. Let F+ be a totally
real field and let G/F+ be a unitary group with G(F+

∞) compact. Then G
becomes an inner form of GLn over some totally imaginary quadratic exten-
sion F/F+. Let v be a place of F+ with G(F+

v ) ∼= GLn(F+
v ) and consider

an open compact subgroup U =
∏

w 6 |v∞ Uw ⊂ G(A∞,vF+ ). Let l be a prime not
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divisible by v. Then we will consider the space A(U,Fl) of locally constant
functions

G(F+)\G(A∞F+)/U −→ Fl.

It is naturally an admissible representation of GLn(F+
v ) and of the commu-

tative Hecke algebra

T = Im (
⊗
w

′
Fl[Uw\G(F+

w )/Uw] −→ End (A(U,Fl)),

with the restricted tensor product taken over places w 6= v for which the
isomorphism between G(F+

w ) and GLn(F+
w ) identified Uw with GLn(OF+,w).

Subject to some minor restrictions on G we can define what it means for a
maximal ideal m of T in the support of A(U,Fl) to be Eisenstein - the as-
sociated mod l Galois representation of Gal (F/F ) should be reducible. (See
section 3.4 for details.) Then we conjecture the following.

Conjecture B For any F+, G, U , v and l as above, and for any irreducible
G(F+

v )-submodule

π ⊂ A(U,Fl)

either π is generic or it has an Eisenstein prime of T in its support.

In fact a slightly weaker statement would suffice for our purposes. See
section 5.3 for details. For rank 2 unitary groups this conjecture follows from
the strong approximation theorem. There is another argument which uses the
geometry of quotients of the Drinfeld upper half plane. An analogous state-
ment for GL2/Q is equivalent to Ihara’s lemma (lemma 3.2 of [I]). This
can be proved in two ways. Ihara deduced it from the congruence subgroup
property for SL2(Z[1/v]). Diamond and Taylor [DT] found an arithmetic al-
gebraic geometry argument. The case of GL2 seems to be unusually easy as
non-generic irreducible representations of GL2(F+

v ) are one dimensional. We
have some partial results when n = 3, to which we hope to return in a future
paper. We stress the word ‘submodule’ in the conjecture. The conjecture is
not true for ‘subquotients’. The corresponding conjecture is often known to
be true in characteristic 0, where one can use trace formula arguments to
compare with GLn. (See section 5.3 for more details.)

An example of what we can prove assuming this conjecture is the fol-
lowing strengthening of theorem A.

Theorem C If we assume conjecture B then theorem A remains true without
the assumption 5.
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We remark that to prove this theorem we need conjecture B not just
for unitary groups defined over Q, but also over other totally real fields.

We go to considerable length to prove a similar theorem where instead
of assuming that r is automorphic one can assume that it is induced from
a character. (See theorems 5.6.1 and 5.6.2.) Along the way to the proof of
these latter theorems we prove an analogue of Ramakrishna’s lifting theorem
[Ra2] for Gn. (See theorem 2.6.3 and, for a simple special case which may
be easier to appreciate, corollary 2.6.4.)

One of the problems in writing this paper has been to decide exactly
what generality to work in. We could certainly have worked in greater gen-
erality, but in the interests of clarity we have usually worked in the minimal
generality which we believe will be useful. In particular we have restricted
ourselves to the ‘crystalline’ case. It would be useful, and not very difficult,
to include also the ordinary case. It would also be useful to clarify the more
general results that are available in the case n = 2.

In the first chapter of this paper we discuss deformation theory and Ga-
lois theory. We set up the Galois theoretic machinery needed for the Taylor-
Wiles method (see proposition 2.5.9) and also take the opportunity to give
an analogue (see theorem 2.6.3 and corollary 2.6.4) of Ramakrishna’s lifting
theorem [Ra2] for Gn. In the last section of this chapter we go to considerable
lengths to prove a version of this lifting theorem when the mod l represen-
tation we are lifting is induced from a character of a cyclic extension. This
strengthening is needed to prove modularity lifting theorems for these same
mod l representations. (It will be used to construct a lift whose restriction
to some decomposition group corresponds, under the local Langlands corre-
spondence, to a Steinberg representation.) This chapter was originally written
in the language of deformation rings, but at the referees’ suggestion we have
rewritten it in Kisin’s language of framed deformation rings to make it easier
to read in conjunction with [Tay].

In the second chapter we discuss automorphic forms on definite unitary
groups, their associated Hecke algebras, their associated Galois representations
and results about congruences between such automorphic forms. In the final
section of this chapter we put these results together to prove an R = T
theorem in the minimal case (see theorem 3.5.1). In the third chapter we
use base change arguments to deduce (minimal) modularity lifting theorems
for GLn (see theorems 4.4.2 and 4.4.3).

In the final chapter we discuss our conjectural generalisation of Ihara’s
lemma (conjecture I), and explain how it would imply a non-minimal R = T
theorem (theorem 5.4.1) and non-minimal modularity lifting theorems (see
theorems 5.5.1 and 5.5.2). In the last section we explain how to generalise
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these theorems to some cases where the residual representation has a small
image in the sense that it is induced from a character. This is where we use
the last section of chapter one. Some of the results in this chapter depend
on previously unpublished work of Marie-France Vignéras and of Russ Mann.
Marie-France has kindly written up her results in an appendix to this pa-
per. Russ has left academia and as it seems unlikely that he will ever fully
write up his results (see [Man2]) we have included an account of his work
in another appendix.

For the reader interested only in the main results of [Tay] and [HSBT],
there is no need to read chapter 4 or the appendices of this paper. These
other papers do not depend on them. (There is also no need to read sections
3.5 and 4.4.)

Finally we would like to express our great gratitude to the referees
who did a wonderful job. This paper is not only more accurate, but also
(we believe) much more readable thanks to their efforts.
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2. Galois deformation rings.

2.1. Some algebra. — As explained in the introduction we are going
to be concerned with homomorphisms from Galois groups to a certain dis-
connected group Gn. In this section we define Gn and make a general study
of homomorphisms from other groups to Gn.

For n a positive integer let Gn denote the group scheme over Z which is
the semi-direct product of GLn×GL1 by the group {1, } acting on GLn×GL1

by

(g, µ)−1 = (µtg−1, µ).

(If x is a matrix we write tx for its transpose.) There is a homomorphism
ν : Gn → GL1 which sends (g, µ) to µ and  to −1. Let G0

n denote the
connected component of Gn. Let gn denote LieGLn ⊂ LieGn and ad the
adjoint action of Gn on gn. Thus for x ∈ g we have

(ad (g, µ))(x) = gxg−1

and

(ad ())(x) = −tx.

We also write g0
n for the subspace of gn consisting of elements of trace zero.

Over Z[1/2] we have

gGnn = (0).

Suppose that Γ is a group, that ∆ is a subgroup of index 2. Whenever
we endow Γ with a topology we will assume that ∆ is closed (and hence
also open).

Lemma 2.1.1 Suppose that R is a ring and γ0 ∈ Γ − ∆. Then there is a
natural bijection between the following two sets.

1. Homomorphisms r : Γ → Gn(R) that induce isomorphisms Γ/∆
∼→

Gn/G0
n.

2. Triples (ρ, µ, 〈 , 〉), where ρ : ∆ → GLn(R) and µ : Γ → R× are
homomorphisms and

〈 , 〉 : Rn ×Rn −→ R

is a perfect R linear pairing such that for all x, y ∈ Rn and all δ ∈ ∆ we
have

– 〈x, ρ(γ2
0)y〉 = −µ(γ0)〈y, x〉, and

– µ(δ)〈x, y〉 = 〈ρ(δ)x, ρ(γ0δγ
−1
0 )y〉.
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Under this correspondence µ(γ) = (ν ◦ r)(γ) for all γ ∈ Γ , and

〈x, y〉 = txA−1y,

where r(γ0) = (A,−µ(γ0)). If Γ and R have topologies then under this cor-
respondence continuous r’s correspond to continuous ρ’s.

Note that in the special case γ2
0 = 1 the pairing 〈 , 〉 is either symmetric or

anti-symmetric.
If r : Γ → Gn(R), it will sometimes be convenient to abuse notation and

also use r to denote the homomorphism ∆→ GLn(R) obtained by composing
the restriction of r to ∆ with the natural projection G0

n → GLn.

Lemma 2.1.2 Suppose that R is a ring and that ( , ) is a perfect bilinear
pairing Rn ×Rn → R, which satisfies

(x, y) = (−1)a(y, x).

Say
(x, y) = txJy

for J ∈ Mn(R). Let δΓ/∆ : Γ/∆
∼→ {±1}. Suppose that µ : Γ → R× and

ρ : Γ → GLn(R) are homomorphisms satisfying

(ρ(γ)x, ρ(γ)y) = µ(γ)(x, y)

for all γ ∈ Γ and x, y ∈ Rn. Then there is a homomorphism

r : Γ −→ Gn(R)

defined by
r(δ) = (ρ(δ), µ(δ))

if δ ∈ ∆, and
r(γ) = (ρ(γ)J−1, (−1)aµ(γ))

if γ ∈ Γ −∆. Moreover
ν ◦ r = δa+1

Γ/∆µ.

Let us introduce induction in this setting. Suppose that Γ ′ is a finite
index subgroup of Γ not contained in ∆ and set ∆′ = ∆ ∩ Γ ′. Suppose also
that χ : Γ → R× is a homomorphism. Let r′ : Γ ′ → Gn(R) be a homomor-
phism with ν ◦ r′ = χ|Γ ′ and ∆′ = (r′)−1(GLn(R)×R×). Suppose γ0 ∈ Γ ′−∆′
and that r′ corresponds to a triple (ρ′, χ|Γ ′ , 〈 , 〉′) as in lemma 2.1.1. We
define

Ind Γ,∆,χ
Γ ′,∆′ r

′ : Γ → Gn[Γ :Γ ′](R)
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to be the homomorphism corresponding to the triple (ρ, χ, 〈 , 〉) where ρ
acts by right translation on the R-module of functions f : ∆→ Rn such that

f(δ′δ) = ρ′(δ′)f(δ)

for all δ′ ∈ ∆′ and δ ∈ ∆. We set

〈f, f ′〉 =
∑

δ∈∆′\∆

χ(δ)−1〈f(δ), f ′(γ0δγ
−1
0 )〉′.

This construction is independent of the choice of γ0 and we have

ν ◦ (Ind Γ,∆,χ
Γ ′,∆′ r

′) = χ.

We will sometimes write Ind Γ,χ
Γ ′ for Ind Γ,∆,χ

Γ ′,∆′ , although it depends essentially
on ∆ as well as Γ ′, Γ and χ.

Now we consider the case that R is a field.

Lemma 2.1.3 Suppose that k is a field of characteristic 6= 2 and that r :
Γ → Gn(k) such that ∆ = r−1(GLn ×GL1)(k). If c ∈ Γ −∆ and c2 = 1, then

dimk gc=ηn = n(n+ η(ν ◦ r)(c))/2

for η = 1 or −1.

Proof: We have r(c) = (A,−(ν ◦ r)(c)) where tA = −(ν ◦ r)(c)A. Then

gc=ηn = {g ∈Mn(k) : gA− η(ν ◦ r)(c)t(gA) = 0}.

The lemma follows. �

Lemma 2.1.4 Suppose that k is a field, that γ0 ∈ Γ −∆, that χ : Γ → k× is
a homomorphism and that

ρ : ∆ −→ GLn(k)

is absolutely irreducible and satisfies χρ∨ ∼= ργ0. Then there exists a homo-
morphism

r : Γ −→ Gn(k)

such that r|∆ = (ρ, χ|∆) and r(γ0) ∈ Gn(k)−GLn(k).
If α ∈ k× define

rα : Γ −→ Gn(k)

by rα|∆ = ρ and, if γ ∈ Γ −∆ and r(γ) = (A, µ), then

rα(γ) = (αA, µ).
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This sets up a bijection between GLn(k)-conjugacy classes of extensions of ρ
to Γ → Gn(k) and k×/(k×)2.

Note that ν ◦ rα = ν ◦ r. Also note that, if k is algebraically closed then
r is unique up to GLn(k)-conjugacy.

If Γ and R have topologies and ρ is continuous then so is r.

Proof: There exists a perfect pairing

〈 , 〉 : kn × kn −→ k

such that χ(δ)〈ρ(δ)−1x, y〉 = 〈x, ρ(γ0δγ
−1
0 )y〉 for all δ ∈ ∆ and all x, y ∈

kn. The absolute irreducibility of ρ implies that 〈 , 〉 is unique up to k×-
multiples. If we set

〈x, y〉′ = 〈y, ρ(γ2
0)x〉

then χ(δ)〈ρ(δ)−1x, y〉′ = 〈x, ρ(γ0δγ
−1
0 )y〉′ for all δ ∈ ∆ and all x, y ∈ kn. Thus

〈 , 〉′ = ε〈 , 〉

for some ε ∈ k×. As
〈 , 〉′′ = χ(γ2

0)〈 , 〉
we see that ε2 = χ(γ0)2. The first assertion now follows from lemma 2.1.1.
For the second assertion note that conjugation by α ∈ k× ⊂ GLn(k) leaves ρ
unchanged and replaces 〈 , 〉 by α2〈 , 〉. �

Lemma 2.1.5 Suppose that Γ is profinite and that

r : Γ −→ Gn(Qac
l )

is a continuous representation with ∆ = r−1(GLn × GL1)(Qac
l ). Then there

exists a finite extension K/Ql and a continuous representation

r′ : Γ −→ Gn(OK)

which is GLn(Qac
l )-conjugate to r.

Proof: By the Baire category theorem, the image r(Γ ) is a Baire space.
It is also a countable union of closed subgroups:

r(Γ ) =
⋃
K

(r(Γ ) ∩ Gn(K))

where K runs over finite extensions of Ql in Ql. Thus one of the groups
r(Γ ) ∩ Gn(K) contains a non-empty open subset of r(Γ ), and hence is of
finite index in r(Γ ). It follows that r(Γ ) ⊂ Gn(K) for some (possibly larger)
finite extension K/Ql. A standard argument using the compactness of ∆
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shows that there is a ∆-invariant OK-lattice Λ ⊂ Kn. (Choose any lattice and
add it to all its translates by elements of ∆.) We may further suppose that
the 〈 , 〉-dual lattice Λ∗ contains Λ. (If not replace Λ by a suitable scalar
multiple.) Choose a maximal ∆-invariant OK-lattice Λ∗ ⊃ M ⊃ Λ such that
M∗ ⊃M , and replace Λ by M . Then if Λ∗ ⊃ N ⊃ Λ is any ∆-invariant OK-
lattice with N/Λ simple, we must have N∗ ∩N = Λ. We conclude that Λ∗/Λ
must be a direct sum of simple OK [∆]-modules. Replacing K by a ramified
quadratic extension and repeating this procedure we get a ∆-invariant OK-
lattice Λ with Λ∗ = Λ. The lemma now follows from lemma 2.1.1. �

Deformation theory works well for absolutely irreducible representations
Γ → GLn(k). In the case of homomorphisms r : Γ → Gn(k) with ∆ =
r−1(GLn × GL1)(k), it works well if r|∆ is absolutely irreducible. However
it seems to work equally well in slightly greater generality. To express this
we make the following definition. For our applications to modularity lifting
theorems and to the Sato-Tate conjecture the case r|∆ absolutely irreducible
will suffice, so the reader who is only interested in these applications can
simply read “r|∆ absolutely irreducible” for “Schur”.

Definition 2.1.6 Suppose that k is a field and r : Γ → Gn(k) is a homomor-
phism with ∆ = r−1(GLn × GL1)(k). Let γ0 ∈ Γ − ∆. We will call r Schur
if all irreducible ∆-subquotients of kn are absolutely irreducible and if for all
∆-invariant subspaces kn ⊃ W1 ⊃ W2 with kn/W1 and W2 irreducible, we have

W∨
2 (ν ◦ r) 6∼= (kn/W1)γ0 .

This is independent of the choice of γ0.

Note that if r|∆ is absolutely irreducible then r is certainly Schur. Also
note that if k′/k is a field extension then r : Γ → Gn(k) is Schur if and only
if r : Γ → Gn(k′) is.

Lemma 2.1.7 Suppose that k is a field and r : Γ → Gn(k) is a homomor-
phism with ∆ = r−1(GLn×GL1)(k). If r is Schur then the following assertions
hold.

1. r|∆ is semisimple.
2. If r′ : Γ → Gn(k) is another representation with ∆ = (r′)−1(GLn ×

GL1)(k) and tr r|∆ = tr r′|∆, then r′ is GLn(kac)-conjugate to r.
3. If k does not have characteristic 2 then gΓn = (0).

Proof: We may suppose that k is algebraically closed.
Choose γ0 ∈ Γ −∆. Suppose that r corresponds to (r|∆, µ, 〈 , 〉) as in

lemma 2.1.1, and let V ⊂ kn be an irreducible ∆-submodule. Then (kn/V ⊥)γ0
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is isomorphic to V ∨(ν◦r), and so we can not have V ⊂ V ⊥. Thus kn ∼= V⊕V ⊥
as ∆-modules. Arguing recursively we see that we have a decomposition

kn ∼= V1 ⊕ ...⊕ Vr

and

〈 , 〉 = 〈 , 〉1 ⊥ ... ⊥ 〈 , 〉r,

where each Vi is an irreducible k[∆]-module and each 〈 , 〉i is a perfect
pairing on Vi. The first part of the lemma follows. Note also that for i 6= j
we have Vi 6∼= Vj as k[∆]-modules and V γ0

i
∼= V ∨i (ν ◦ r).

Note that if ρ and τ are representations ∆ → GLn(k) with ρ semi-
simple and multiplicity free and with tr ρ = tr τ , then the semisimplification
of τ is equivalent to ρ. Thus r′|∆ has the same Jordan-Holder factors as r|∆
(with multiplicity). Thus r′ satisfies the same hypothesis as r and so by part
one r′|∆ is also semisimple. Hence r′|∆ ∼= r|∆, and we may suppose that in
fact r′|∆ = r|∆. Then corresponding to our decomposition

kn ∼= V1 ⊕ ...⊕ Vr

we see that r corresponds to

(r|∆, µ, 〈 , 〉1 ⊥ ... ⊥ 〈 , 〉r)

while r′ corresponds to

(r|∆, µ, µ1〈 , 〉1 ⊥ ... ⊥ µr〈 , 〉r)

for some µi ∈ k×. Conjugation by the element of GLn(k) which acts on Vi
by
√
µi takes r to r′.
For the third part note that

g∆n = End k[∆](V1)⊕ ...⊕ End k[∆](Vr) = kr.

Then γ0 sends (α1, ..., αr) to (−α∗11 , ...,−α∗rr ) = (−α1, ...,−αr), where ∗i de-
notes the adjoint with respect to 〈 , 〉i. Thus gΓn = (0). �

We now turn to the case that R is a noetherian complete local ring.
We first recall the well known case of homomorphisms to GLn(R), before
studying homomorphisms to Gn(R).

Lemma 2.1.8 Let R be a noetherian complete local ring. Let ∆ be a profinite
group and ρ : ∆ −→ GLn(R) a continuous representation. Suppose that ρ mod
mR is absolutely irreducible. Then the centraliser in GLn(R) of the image of
ρ is R×.
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Proof: It suffices to consider the case that R is Artinian. We can then
argue by induction on the length of R. The case R is a field is well known.
So suppose that I is a non-zero ideal of R with mRI = (0). If z is an element
of ZGLn(R)(Im ρ) then we see by the inductive hypothesis that z ∈ R×(1 +
Mn(I)). With out loss of generality we can suppose z = 1 + y ∈ 1 + Mn(I).
Thus y ∈ (ad (ρ mod mR))∆ ⊗R/mR I = I, and the lemma is proved. �

Lemma 2.1.9 Let R ⊃ S be noetherian complete local rings with mR∩S = mS

and common residue field. Let ∆ be a profinite group and let ρ, ρ′ : ∆ −→
GLn(S) be continuous representations. Suppose that for all ideals I ⊂ J of R
we have

Z1+Mn(mR/I)(Im (ρ mod I))→→ Z1+Mn(mR/J)(Im (ρ mod J)).

(This will be satisfied if, for instance, ρ mod mS is absolutely irreducible.) If
ρ and ρ′ are conjugate in GLn(R) then they are conjugate in GLn(S).

Proof: It suffices to consider the case that R is Artinian (because S =
lim← S/I ∩S as I runs over open ideals of R). Again we argue by induction
on the length of R. If R is a field there is nothing to do. So suppose that
I is an ideal of R and mRI = (0). By the inductive hypothesis we may
suppose that ρ mod I ∩S = ρ′ mod I ∩S. Thus ρ′ = (1 +φ)ρ for some cocycle
φ ∈ Z1(∆, ad (ρ mod mS)) ⊗ (I ∩ S). As ρ and ρ′ are conjugate in R, our
assumption (on surjections of centralisers) tells us that they are conjugate
by an element of 1+Mn(I). Hence [φ] = 0 in H1(∆, ad (ρ mod mS))⊗I. Thus
[φ] = 0 in H1(∆, ad (ρ mod mS))⊗ (I ∩ S), so that ρ and ρ′ are conjugate by
an element of 1 +Mn(I ∩ S). �

Lemma 2.1.10 (Carayol) Let R ⊃ S be noetherian complete local rings with
mR ∩ S = mS and common residue field. Let ∆ be a profinite group and
ρ : ∆ −→ GLn(R) a continuous representation. Suppose that ρ mod mR is
absolutely irreducible and that tr ρ(∆) ⊂ S. If I is an ideal of R such that
ρ mod I has image in S/I ∩ S, then there is a 1n + Mn(I)-conjugate ρ′ of ρ
such that the image of ρ′ is contained in GLn(S). In particular there is always
a 1n + Mn(mR)-conjugate ρ′ of ρ such that the image of ρ′ is contained in
GLn(S).

Proof: A simple recursion allows one to reduce to the case that mRI =
(0) and dimR/mR I = 1. Replacing R by the set of elements in R which are

congruent mod I to an element of S we may further assume that S/I ∩S ∼→
R/I. If I ⊂ S then R = S and there is nothing to prove. Otherwise R = S⊕I
with multiplication

(s, i)(s′, i′) = (ss′, s′i+ si′).
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Note that mSR = mS, that R/mS
∼= (S/mS)[ε]/(ε2) and that an element r ∈ R

lies in S if and only if r mod mS lies in S/mS. Suppose we know the result
for S/mS ⊂ R/mS. Then we can find A ∈Mn(I) such that

(1n − A)ρ(1n + A) mod mS

is valued in GLn(S/mS) so that

(1n − A)ρ(1n + A)

is valued in S. Hence the result would follow for S ⊂ R.
Thus we are reduced to the case S = k is a field, R = k[ε]/(ε2) and

I = (ε). Extend ρ to a homomorphism

ρ : k[∆] −→Mn(R).

Note that ρ mod ε is surjective onto Mn(k), and write J for the kernel of
ρ mod ε. If δ ∈ k[∆] and γ ∈ J then

tr ρ(δ)(ρ(γ)/ε) = 0.

Thus
trMn(k)(ρ(γ)/ε) = (0)

and ρ(γ) = 0. We deduce that ρ factors through (ρ mod ε) : k[∆] → Mn(k),
i.e.

ρ(δ) = (ρ mod ε)(δ) + φ((ρ mod ε)(δ))ε

where
φ : Mn(k) −→Mn(k)

is a k-linear map satisfying

φ(ab) = aφ(b) + φ(a)b.

There is an element A ∈Mn(k) such that

φ(b) = Ab− bA.
(See for instance lemma 1 of [Ca]. Alternatively it is not hard to check that

A =
n∑
j=1

φ(ej,1)e1,j

will work, where ei,j denotes the matrix which has a 1 in the intersection of
the ith row and jth column, and zeros elsewhere.) Then

(1n − Aε)ρ(1 + Aε) = (ρ mod ε)

is valued in Mn(k), and the lemma follows. �

Finally in this section we turn to analogous results for homomorphisms
into Gn(R).
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Lemma 2.1.11 Let R be a complete local noetherian ring with maximal ideal
mR and residue field k = R/mR of characteristic l > 2. Let Γ be a group and
let r : Γ → Gn(R) be a homomorphism such that ∆ = r−1(GLn×GL1)(R) has
index 2 in Γ . Suppose moreover that r mod mR is Schur. (Which is true if,
for instance, r|∆ mod mR is absolutely irreducible.) Then the centraliser of r
in 1 +Mn(mR) is {1}.

Proof: This lemma is easily reduced to the case that R is Artinian. In
this case we argue by induction on the length of R, the case of length 1
(i.e. R = k) being immediate. In general we may choose an ideal I of R
such that I has length 1. By the inductive hypothesis any element of the
centraliser in 1 +Mn(mR) of the image of r lies in 1 +Mn(I). It follows from
lemma 2.1.7 that this centraliser is {1}. �

Lemma 2.1.12 Suppose that R ⊃ S are complete local noetherian rings with
mR ∩ S = mS and common residue field k of characteristic l > 2. Suppose
that Γ is a profinite group and that r : Γ → Gn(R) is a continuous represen-
tation with ∆ = r−1(GLn × GL1)(R). Suppose moreover that r|∆ mod mR is
absolutely irreducible and that tr r(∆) ⊂ S. Then r is GLn(R)-conjugate to a
homomorphism r′ : Γ → Gn(S).

Proof: By lemma 2.1.10 we may suppose that r(∆) ⊂ (GLn × GL1)(S).
Choose γ0 ∈ Γ −∆ and suppose r(γ0) = (A,−µ) with A ∈ GLn(R). Then

r|γ0

∆ = Ar|∨∆(ν ◦ r)A−1.

It follows from lemma 2.1.9 that we can find B ∈ GLn(S)-conjugate with

r|γ0

∆ = Br|∨∆(ν ◦ r)B−1.

It follows from lemma 2.1.8 that A = αB for some α ∈ R×. As R and S
have the same residue field we may choose B so that α ∈ 1 + mR. Then
α = β2 for some β ∈ R× and

(β1n, 1)r(γ0)(β1n, 1)−1 ∈ Gn(S).

Thus

(β1n, 1)r(β1n, 1)−1

is valued in Gn(S), as desired. �

We remark that this lemma does not remain true of the hypothesis that
r|∆ mod mR is absolutely irreducible is weakened to r mod mR is Schur.
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2.2. Deformation theory. — In this section we will discuss the de-
formation theory of homomorphisms into Gn. This closely mirrors Mazur’s
deformation theory of representations of Galois groups, but the section gives
us an opportunity both to generalise the results to Gn and to set things up
in a way that will be convenient in the sequel. At the referees’ suggestion we
include a discussion of Kisin’s framed deformations which originally appeared
in [Tay].

Let l be an odd prime. Let k denote an algebraic extension of the finite
field with l elements, let O denote the ring of integers of a finite totally
ramified extension K of the fraction field of the Witt vectors W (k), let λ

denote the maximal ideal of O, let CfO denote the category of Artinian local
O-algebras for which the structure map O → R induces an isomorphism
on residue fields, and let CO denote the full subcategory of the category
of topological O-algebras whose objects are inverse limits of objects of CfO.

The morphisms in CfO and CO are continuous homomorphisms of O-algebras
which induce isomorphisms on the residue fields. Also fix a profinite group
Γ together with a closed subgroup ∆ ⊂ Γ of index 2. Also fix a continuous
homomorphism

r : Γ −→ Gn(k)

and a homomorphism χ : Γ → O×, such that ∆ = r−1(GLn × GL1)(k) and
ν ◦ r = χ. Let S be a finite index set. For q ∈ S let ∆q be a topologically
finitely generated profinite group provided with a continuous homomorphism
∆q → ∆. In applications Γ will be a global Galois group and ∆q will be a
local Galois group. We will sometimes write r|∆q for the composite

∆q −→ ∆
r−→ G0

n(k)→→ GLn(k).

We will want to distinguish between ‘liftings’ of representations and con-
jugacy classes of liftings, which we will refer to as ‘deformations’.

Definition 2.2.1 By a lifting of r (resp. r|∆q) to an object R of CO we
shall mean a continuous homomorphism r : Γ → Gn(R) (resp. r : ∆q →
GLn(R)) with r mod mR = r (resp. = r|∆q) and (in the former case) ν◦r = χ.
We will call two liftings equivalent if they are conjugate by an element of
1 +Mn(mR) ⊂ GLn(R). By a deformation of r (resp. r|∆q) we shall mean an
equivalence class of liftings.

Let T ⊂ S. By a T -framed lifting of r to R we mean a tuple (r;αq)q∈T
where r is a lifting of r and αq ∈ 1 + Mn(mR). We call two framed liftings
(r;αq)q∈T and (r′;α′q)q∈T are called equivalent if there is an element β ∈
1n + Mn(mR) with r′ = βrβ−1 and α′q = βαq. By a T -framed deformation of
r we shall mean an equivalence class of framed liftings. If T = S we shall
simply refer to framed liftings and framed deformations.
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Note that we can associate to a T -framed deformation [(r;αq)q∈T ] of r
both a deformation [r] of r and, for q ∈ T , a lifting α−1

q r|∆qαq of r|∆q . (Here
we define r|∆q in the same manner we defined r|∆q above.)

For q ∈ S there is a universal lifting (not deformation)

runiv
q : ∆q −→ GLn(Rloc

q )

of r|∆q over an object Rloc
q of CO. As ∆q is topologically finitely gener-

ated, Rloc
q is noetherian. (A lifting is determined by the images of a set of

topological generators for ∆q.) Note that Rloc
q has a natural (left) action of

1n+Mn(mRloc
q

). (An element g ∈ 1n+Mn(mRloc
q

) acts via the map Rloc
q → Rloc

q

under which runiv
q pulls back to gruniv

q g−1.) There are natural isomorphisms

Hom k(mRloc
q
/(m2

Rloc
q
, λ), k) ∼= Hom CO(Rloc

q , k[ε]/(ε2)) ∼= Z1(∆q, ad r).

The first is standard. Under the second a cocycle φ ∈ Z1(∆q, ad r) corre-
sponds to the homomorphism arising from the lifting

(1 + φε)r|∆q

of r|∆q . The action of Mn(mRloc
q
/(m2

Rloc
q
, λ)) on Rloc

q /(m2
Rloc
q
, λ) gives an action

on Z1(∆q, ad r) which can be described as follows. Recall that we have an
exact sequence

(0)→ H0(∆q, ad r)→ ad r → Z1(∆q, ad r)→ H1(∆q, ad r)→ (0).

If ψ ∈ Hom k(mRloc
q
/(m2

Rloc
q
, λ), k) corresponds to z ∈ Z1(∆q, ad r), then B ∈

Mn(mRloc
q
/(m2

Rloc
q
, λ)) takes z to z plus the image of ψ(B) ∈ ad r. In partic-

ular there is a bijection between Mn(mRloc
q
/(m2

Rloc
q
, λ)) invariant subspaces of

Z1(∆q, ad r) and subspaces of H1(∆q, ad r).
Let R be an object of CO and I be a closed ideal of R with mRI = (0).

Suppose that r1 and r2 are two liftings of r|∆q with the same reduction
mod I. Then

γ 7−→ r2(γ)r1(γ)−1 − 1

defines an element of H1(∆q, ad r)⊗k I which we shall denote [r2−r1]. In fact
this sets up a bijection between H1(∆q, ad r)⊗k I and (1 +Mn(I))-conjugacy
classes of lifts which agree with r1 modulo I. Now suppose that r is a lift

of r|∆q , to R/I. For each γ ∈ ∆q choose a lifting r̃(γ) to GLn(R) of r(γ).
Then

(γ, δ) 7−→ r̃(γδ)r̃(δ)
−1
r̃(γ)

−1
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defines a class obsR,I(r) ∈ H2(∆q, ad r) ⊗k I which is independent of the
choices made and vanishes if and only if r lifts to R.

Now suppose that rq is a lifting of r|∆q to O corresponding to a ho-
momorphism α : Rloc

q → O. There is also a natural identification

HomO(kerα/(kerα)2, K/O) ∼= Z1(∆q, ad rq ⊗K/O).

This may be described as follows. Consider the topological O-algebra O ⊕
K/Oε where ε2 = 0. Although O ⊕ K/Oε is not an object of CO, it still
makes sense to talk about liftings of rq to O ⊕K/Oε. One can then check
that such liftings are parametrised by Z1(∆q, ad rq⊗K/O). (Any such lifting
arises from a lifting to some O⊕λ−NO/Oε.) On the other hand such liftings
correspond to homomorphisms Rloc

q → O ⊕ K/Oε lifting α and such liftings

correspond to HomO(kerα/(kerα)2, K/O).

Definition 2.2.2 If q ∈ S then by a local deformation problem at q we mean
a collection Dq of liftings of r|∆q to objects of CO satisfying the following
conditions.

1. (k, r|∆q) ∈ Dq.
2. If (R, r) ∈ Dq and if f : R→ S is a morphism in CO then (S, f◦r) ∈

Dq.
3. Suppose that (R1, r1) and (R2, r2) ∈ Dq, that I1 (resp. I2) is a closed

ideal of R1 (resp. R2) and that f : R1/I1
∼→ R2/I2 is an isomorphism

in CO such that f(r1 mod I1) = (r2,modI2). Let R3 denote the subring of

R1 ⊕ R2 consisting of pairs with the same image in R1/I1
∼→ R2/I2. Then

(R3, r1 ⊕ r2) ∈ Dq.
4. If (Rj, rj) is an inverse system of elements of Dq then

(lim
←
Rj, lim←

rj) ∈ Dq.

5. Dq is closed under equivalence.
6. If R ↪→ S is an injective morphism in CO and if r : ∆q → GLn(R)

is a lifting of r|∆q such that (S, r) ∈ Dq then (R, r) ∈ Dq.

(Compare with section 23 of [Maz].)

Lemma 2.2.3 If I is a 1n + Mn(mRloc
q

) invariant ideal of Rloc
q then the col-

lection of all liftings r over rings R such that the kernel of the induced map
Rloc
q → R contains I is a local deformation problem. Moreover every local de-

formation problem Dq arises in this way from some 1n +Mn(mRloc
q

) invariant

ideal Iq of Rloc
q .
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Proof: The first assertion is clear. Consider the second assertion. Let I
denote the set of ideals I of Rloc

q such that (Rloc
q /I, runiv

q ) ∈ Dq. The second
and sixth conditions on Dq tell us that a lifting (R, r) of r|∆q lies in Dq if
and only if the kernel of the corresponding map Rloc

q → R lies in I. The first
condition on Dq tells us that I is non-empty, the third condition tells us it
is closed under finite intersections and the fourth condition tells us that it is
closed under arbitrary nested intersections. Thus I contains a minimal ele-
ment Iq which is contained in all other elements of I. The second condition
on Dq tells us that any ideal of Rloc

q containing Iq lies in Iq and the second
assertion follows. �

Definition 2.2.4 Suppose Dq is a local deformation problem corresponding to
an ideal Iq of Rloc

q . We will write Lq = Lq(Dq) for the image in H1(∆q, ad r)

of the annihilator L1
q in Z1(∆q, ad r) of Iq/(Iq ∩ (m2

Rloc
q
, λ)) ⊂ mRloc

q
/(m2

Rloc
q
, λ)

under the isomorphism

Hom k(mRloc
q
/(m2

Rloc
q
, λ), k) ∼= Z1(∆q, ad r).

Because Iq is 1n +Mn(mRloc
q

) invariant we see that L1
q is the preimage of Lq

in Z1(∆q, ad r).

We remark that

Hom k(mRloc
q
/(m2

Rloc
q
, Iq, λ), k) ∼= L1

q

and the exact sequence in the paragraph after definition 2.2.1 shows that

dimk L
1
q = n2 + dimk Lq − dimkH

0(∆q, ad r).

Lemma 2.2.5 Keep the above notation and assumptions. Suppose that R is
an object of CO and I is a closed ideal of R with mRI = (0). Suppose also that
r1 and r2 are two liftings of r|∆q with the same reduction mod I. Suppose
finally that r1 is in Dq. Then r2 is in Dq if and only if [r2 − r1] ∈ Lq.

Proof: Suppose that rj corresponds to αj : Rloc
q → R. Then α2 = α1 + β

where

β : Rloc
q −→ I

satisfies

– β(x+ y) = β(x) + β(y);
– β(xy) = β(x)α1(y) + α1(x)β(y);
– and β|O = 0.
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Thus β is determined by β|m
Rloc
q

and β is trivial on (m2
Rloc
q
, λ). Hence β gives

rise to and is determined by an O-linear map:

β : mRloc
q
/(m2

Rloc
q
, λ) −→ I.

A straightforward calculation shows that

[r2 − r1] ∈ H1(∆q, ad r)

is the image of

β ∈ Hom (mRloc
q
/(m2

Rloc
q
, λ), I) ∼= Z1(∆q, ad r)⊗k I.

The homomorphism α1 vanishes on Iq. Thus we must show that β van-
ishes on Iq if and only if β maps to Lq ⊗k I, i.e. if and only if

β ∈ Hom (mRloc
q
/(m2

Rloc
q
, λ, Iq), k)⊗k I.

This is tautological. �

Again let rq be a lift of r|∆q to O corresponding to a homomorphism
α : Rloc

q → O. Suppose that rq is in Dq. We will call a lift of rq to O ⊕
K/Oε of type Dq if it arises by extension of scalars from a lift to some
O ⊕ λ−NO/Oε which is in Dq. Such liftings correspond to homomorphisms
Rloc
q /Iq → O ⊕ K/Oε which lift α. Because Iq is 1n + Mn(mRloc

q
) invariant,

the subspace of Z1(∆q, ad rq ⊗K/O) corresponding to

HomO(kerα/((kerα)2, Iq), K/O) ⊂ HomO(kerα/(kerα)2, K/O)

is the inverse image of a sub-O-module

Lq(rq) ⊂ H1(∆q, ad rq ⊗K/O).

Thus a lift of rq to O ⊕ K/Oε is of type Dq if and only if its class in
Z1(∆q, ad rq ⊗K/O) maps to an element of Lq(rq).

Definition 2.2.6 We will call Dq liftable if for each object R of CO, for each
ideal I of R with mRI = (0) and for each lifting r to R/I in Dq there is a
lifting of r to R. This is equivalent to Rloc

q /Iq being a power series ring over
O.

We now turn to deformations of r : Γ → Gn(k).
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Definition 2.2.7 Let S be a collection of deformation problems Dq for each
q ∈ S and let T ⊂ S. We call a T -framed lifting (R, r;αq)q∈T of r of type S
if for all q ∈ S the restriction (R, r|∆q) ∈ Dq. For q ∈ T this is equivalent to
requiring (R,α−1

q r|∆qαq) to lie in Dq. If a T -framed lifting is of type S, so
is any equivalent T -framed lifting. We say that a T -framed deformation is of
type S if some (or equivalently, every) element is of type S. We let Def�T

S
denote the functor from CO to sets which sends R to the set of T -framed
deformations of r to R of type S. If T = S we shall refer simply to framed
deformations and write Def�

S . If T = ∅ we shall refer simply to deformations
and write DefS .

We need to introduce a variant of the cohomology groups H i(Γ, ad r).
More specifically we will denote by H i

S,T (Γ, ad r) the cohomology of the com-
plex

Ci
S,T (Γ, ad r) = Ci(Γ, ad r)⊕

⊕
q∈S

Ci−1(∆q, ad r)/M i−1
q ,

where M i
q = (0) unless q ∈ S − T and i = 0 in which case

M0
q = C0(∆q, ad r),

or q ∈ S − T and i = 1, in which case M1
q = L1

q denotes the preimage of Lq
in C1(∆q, ad r). The boundary map is

Ci
S,T (Γ, ad r) −→ Ci+1

S,T (Γ, ad r)
(φ, (ψq)) 7−→ (∂φ, (φ|∆q − ∂ψq)).

If T = ∅ we will drop it from the notation. If T = S we will drop the S
from the notation.

We have a long exact sequence

(0) →
→ H0

S,T (Γ, ad r)→ H0(Γ, ad r)→
⊕

q∈T H
0(∆q, ad r) →

→ H1
S,T (Γ, ad r)→ H1(Γ, ad r)→

(⊕
q∈S−T H

1(∆q, ad r)/Lq

)
⊕
(⊕

q∈T H
1(∆q, ad r)

)
→

→ H2
S,T (Γ, ad r)→ H2(Γ, ad r)→

⊕
q∈S H

2(∆q, ad r) →
→ H3

S,T (Γ, ad r)→ H3(Γ, ad r)→ ...

Note that the dimensions of H i(Γ, ad r) and H i
S,T (Γ, ad r) are either both

finite or both infinite.
(At least one of the authors thinks it is helpful to write that this is a

special case of a ‘cone construction’.)
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Lemma 2.2.8 Suppose that all the groups H i(Γ, ad r) and H i(∆q, ad r) are
finite and that they all vanish for i sufficiently large. Set

χ(Γ, ad r) =
∑
i

(−1)i dimkH
i(Γ, ad r),

and

χ(∆q, ad r) =
∑
i

(−1)i dimkH
i(∆q, ad r),

and

χS,T (Γ, ad r) =
∑
i

(−1)i dimkH
i
S,T (Γ, ad r).

Then

χS,T (Γ, ad r) = χ(Γ, ad r)−
∑
q∈S

χ(∆q, ad r)+
∑
q∈S−T

(dimk Lq−dimkH
0(∆q, ad r)).

The next result is a variant of well known results for GLn.

Proposition 2.2.9 Keep the above notation and assumptions, and also as-
sume that r is Schur. Then Def�T

S is represented by an object R�T
S of CO. (If

T = ∅ we will denote it Runiv
S , while if T = S then we will denote it R�

S .)

1. There is a tautological morphism⊗̂
q∈T

Rloc
q /Iq −→ R�T

S

and a canonical isomorphism

Hom cts(mR
�T
S
/(m2

R
�T
S
, λ,mRloc

q
)q∈T , k) ∼= H1

S,T (Γ, ad r).

If H1(Γ, ad r) is finite dimensional then R�T
S is a complete local noetherian

O-algebra.
2. The choice of a universal lifting runiv

S : Γ → Gn(Runiv
S ) determines

an extension of the tautological map

Runiv
S −→ R�T

S

to an isomorphism

Runiv
S [[Xq,i,j]]q∈T ; i,j=1,...,n

∼−→ R�T
S .
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Proof: First we consider representability. By properties 1, 2, 3 and 4
of Dq we see that the functor sending R to the set of all T -framed lifts

of r to R of type S is representable. By property 5 we see that Def�T
S

is the quotient of this functor by the smooth group valued functor R 7→
ker(GLn(R)→ GLn(k)). Thus by [Dic] it suffices to check that if φ : R→→ R′

in CO, if (r;αq)q∈T is a T -framed lift of r to R, and if g ∈ 1 + Mn(mR′)
takes φ(r;αq)q∈T to itself, then there is a lift g̃ of g in 1 + Mn(mR) which
takes (r;αq)q∈T to itself. In the case T 6= ∅ this is clear, in the case T = ∅
it follows from lemma 2.1.11.

Recall that

Hom cts(mR
�T
S
/(m2

R
�T
S
, λ,mRloc

q
)q∈T , k) ∼= Hom (R�T

S /(mRloc
q

)q∈T , k[ε]/(ε2))

is isomorphic to the subspace of Def�T
S (k[ε]/(ε2)) consisting of elements giving

trivial liftings of r|∆q for q ∈ T . Any T -framed lifting of r is of the form

((1n + φε)r; 1n + aqε)q∈T

with φ ∈ Z1(Γ, ad r). It is of type S if φ|∆q ∈ L1
q for q ∈ S. For q ∈ T , it

gives rise to a trivial lifting of r|∆q if and only if

(1n − aqε)(1n + φ|∆qε)r|∆q(1n + aqε) = r|∆q .
Thus

Hom cts(mR
�T
S
/(m2

R
�T
S
, λ,mRloc

q
)q∈T , k)

is in bijection with the set of equivalence classes of tuples

(φ; aq)q∈T

where φ ∈ Z1(Γ, ad r); aq ∈ ad r;

φ|∆q = (ad r|∆q − 1n)aq

for all q ∈ T ; and φ|∆q ∈ L1
q for q ∈ S − T . Two tuples (φ; aq)q∈T and

(φ′; a′q)q∈T are equivalent if there exists b ∈ ad r with

φ′ = φ+ (1n − ad r)b

and
a′q = aq + b

for all q ∈ T . The first part of the proposition follows.
Note that by lemma 2.1.11 the centraliser in 1n +Mn(mRuniv

S
) of runiv

S is

{1n}. Thus
(runiv
S ; 1n + (Xq,i,j)i,j=1,...,n)q∈S

is a universal framed deformation of r over Runiv
S [[Xq,i,j]]q∈S; i,j=1,...,n. The sec-

ond part of the proposition follows. �



Title Suppressed Due to Excessive Length 25

Definition 2.2.10 We will use the following abreviations:

Rloc
S,T =

⊗̂
q∈T

Rloc
q /Iq

and

TT = O[[Xq,i,j]]q∈T ; i,j=1,...,n.

Thus we have a canonical map

Rloc
S,T −→ R�T

S

and the choice of a universal lifting runiv
S : Γ → Gn(Runiv

S ) determines a map

TT −→ R�T
S

such that

Runiv
S = R�T

S /(Xq,i,j)q∈T ; i,j=1,...,n.

Lemma 2.2.11 Suppose that R is an object of CO and that I is a closed
ideal of R with mRI = (0). Suppose that (r;αq)q∈T is a T -framed lifting of r
to R/I of type S. Suppose moreover that for each q ∈ T (resp. q ∈ S−T ) we
are given a lifting r̂q of α−1

q r|∆qαq (resp. r|∆q) to R in Dq. For each γ ∈ Γ
pick a lifting r̃(γ) of r(γ) to Gn(R). For each q ∈ T pick a lifting α̃q of aq
to 1n +Mn(mR). Set

φ(γ, δ) = r̃(γδ)r̃(δ)
−1
r̃(γ)

−1
− 1n

For q ∈ T (resp. q ∈ S − T ) and δ ∈ ∆q, set

ψq(δ) = α̃−1
q r̃(δ)α̃qr̂(δ)

−1 − 1n

(resp.

ψq(δ) = r̃(δ)r̂(δ)−1 − 1n).

Then (φ, (ψq))q∈S defines a class obsS,R,I(r;αq)q∈T ∈ H2
S,T (Γ, ad r)⊗ I which is

independent of the various choices and vanishes if and only if (r, αq)q∈T has
a T -framed lifting (r̃, α̃q)q∈T of type S to R with

α̃−1
q r̃|∆q α̃q = r̂q

for all q ∈ T .

Proof: We leave the proof to the reader. �
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Corollary 2.2.12 Suppose that r is Schur and H i(Γ, ad r) is finite dimen-

sional for i ≤ 2. Then R�T
S is the quotient of a power series ring in

dimkH
1
S,T (Γ, ad r)

variables over Rloc
S,T . If Dq is liftable for q ∈ S − T then it will suffice to

quotient out by
dimkH

2
S,T (Γ, ad r)

relations and so R�T
S has Krull dimension at least

dimkH
1
S,T (Γ, ad r)− dimkH

2
S,T (Γ, ad r) + 1 +

∑
q∈T

(dimRloc
q /Iq − 1).

Moreover Runiv
S has Krull dimension at least

dimkH
1
S(Γ, ad r)− dimkH

2
S(Γ, ad r) + 1 +

∑
q∈S

(dimRloc
q /Iq − n2 − 1).

Corollary 2.2.13 Suppose that r is Schur, that H2
S,T (Γ, ad r) = (0) and that

each Dq is liftable for q ∈ S − T . Then R�T
S is a power series ring in

dimkH
1
S,T (Γ, ad r) variables over Rloc

S,T .

Finally in this section we turn to a slightly different type of result.
Suppose that that r is Schur and α : Runiv

S →→ O corresponds to a deformation
[r] of r to O. Let H1

S(Γ, ad r ⊗K/O) denote the kernel of

H1(Γ, ad r ⊗K/O) −→
⊕
q∈S

H1(∆q, ad r ⊗K/O)/Lq(rq).

The next lemma is immediate.

Lemma 2.2.14 Keep the notation and assumptions of the previous paragraph.
Then there is a natural isomorphism

HomO(kerα/(kerα)2, K/O) ∼= H1
S(Γ, ad r ⊗O K/O).

2.3. Galois deformation theory. — In this section we specialise some
of the results of the previous section to the case of Galois groups.

Let l, k, K, O and λ be as at the start of the previous section. We will
let ε denote the l-adic cyclotomic character and write M(n) for M⊗Zl Zl(ε

n).
Also let ζm denote a primitive mth root of unity. We will consider a totally
real field F+ and a totally imaginary quadratic extension F/F+ split at all
places above l. Let S denote a finite set of finite places of F+ which split
in F , and let F (S)/F denote the maximal extension unramified outside S
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(and infinity). We will suppose that S contains all the primes of F+ above
l. For Γ we will consider the group GF+,S = Gal (F (S)/F+) and for ∆ the
group GF,S = Gal (F (S)/F ). Note that F (S)/F+ may ramify at some places
outside S which ramify in F/F+. If v|∞ is a place of F+ we will write cv for
some element of the corresponding conjugacy class of complex conjugations

in GF+,S. For each v ∈ S choose a place ṽ of F above v and let S̃ denote

the set of ṽ for v ∈ S. (Thus S̃ and S are in bijection with each other.) If
v ∈ S then for ∆v we will consider

GFev = Gal (F ev/Fev) −→ GF,S.

(Note that GFev ∼= Gal (F
+

v /F
+
v ), but the GF,S conjugacy class of the map to

GF,S depends on the choice of ṽ|v.) We will write IFev for the inertia subgroup
of GFev and Frobev for the geometric Frobenius in GFev/IFev .

Let
r : GF+,S −→ Gn(k)

be a continuous homomorphism such that GF,S = r−1(GLn × GL1)(k). Let
χ : GF+,S → O× a continuous lift of ν ◦ r. For v ∈ S let Dv be a local
deformation problem for r|GFev . To it we have associated a subspace Lv ⊂
H1(GFev , ad r) and an ideal Iv of Rloc

v . Together this data defines a global
deformation problem for r which we will denote

S = (F/F+, S, S̃,O, r, χ, {Dv}v∈S).

We will write L⊥v for the annihilator in H1(GFev , ad r(1)) of the subspace
Lv of H1(GFev , ad r) under the local duality induced by the pairing

ad r × (ad r)(1) −→ k(1)
(x, y) 7−→ tr (xy).

If T ⊂ S will also write H1
L⊥,T (GF+,S, ad r(1)) for the kernel of the map

H1(GF+,S, ad r(1)) −→
⊕
v∈S−T

H1(GFvad r(1))/L⊥v .

The next lemma is immediate.

Lemma 2.3.1 Suppose that

S = (F/F+, S, S̃,O, r, χ, {Dv}v∈S)

is a deformation problem as above. Suppose also that S ′ ⊃ S is a finite set

of primes of F+ which split in F and that S̃ ′ ⊃ S̃ consists of one prime of
F above each element of S ′. Define a deformation problem

S ′ = (F/F+, S ′,O, r, χ, {D′v}v∈S)
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where, for v ∈ S we have D′v = Dv, and for v ∈ S ′ − S the set Dv con-

sists of all unramified (i.e. minimal) lifts. If T ⊂ S then Def�T
S is naturally

isomorphic to Def�T
S′ . If r is Schur then R�T

S = R�T
S′ .

Lemma 2.3.2 Suppose that

S = (F/F+, S, S̃,O, r, χ, {Dv}v∈S)

is a deformation problem as above. Suppose that R ⊂ S contains only primes
v for which

– v 6 |l,
– r is unramified at v,
– Dv consists of all unramified (i.e. minimal) lifts of r|GFev .

Define a new deformation problem

S ′ = (F/F+, S, S̃,O, r, χ, {D′v}v∈S)

where for v ∈ S−R we set D′ev = Dev, and for v ∈ R we let D′ev consists of all
liftings of r|GFev .

Suppose that φ : Runiv
S → O and let φR denote the composite of φ with

the natural map Runiv
S′ →→ Runiv

S . Also let rφ denote φ(runiv
S ). Then

lgO kerφR/(kerφR)2 ≤ lgO kerφ/(kerφ)2 +
∑
v∈R

lgOH
0(GFev , (ad rφ)(ε−1)).

Proof: As described at the end of section 2.2 a class

[ψ] ∈ H1
S′(GF+,S, ad rφ ⊗ λ−N/O)

corresponds to a deformation (1 +ψε)rφ of rφ mod λN . This deformation cor-
responds to an element of H1

S(GF+,S, ad rφ⊗λ−N/O) if and only if (1+ψε)rφ
is unramified at all v ∈ R if and only if ψ(IFev) = 0 for all v ∈ R. Note that,
for v ∈ R, we have

H1(IFev , ad rφ ⊗O λ−N/O) = Hom (IFev , ad rφ ⊗O λ−N/O)
= (ad rφ)⊗O λ−N/O(ε−1).

Thus we have an exact sequence

(0) −→ H1
S(GF+,S, ad rφ ⊗ λ−N/O) −→ H1

S′(GF+,S, ad rφ ⊗ λ−N/O) −→
−→

⊕
v∈RH

0(GFev , (ad rφ)⊗O (λ−N/O)(ε−1)).

Taking a direct limit and applying lemma 2.2.14 we then get an exact se-
quence

(0) −→ Hom (kerφ/(kerφ)2, K/O) −→ Hom (kerφR/(kerφR)2, K/O) −→
−→

⊕
v∈RH

0(GFev , (ad rφ)⊗O K/O(ε−1))
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and the lemma follows. �

We will require a lemma from algebraic number theory, which may be
known, but for which we do not know a reference.

Lemma 2.3.3 Let l be a prime, k an algebraic extension of Fl and O the
ring of integers of a finite totally ramified extension of the field of fractions of
W (k). Let λ denote the maximal ideal of O. Let E/D be a Galois extension
of number fields with l 6 |[E : D]. Let S be a finite set of finite places of D
containing all places dividing l, and let E(S)/E be the maximal extension
unramified outside S. Thus E(S)/D is Galois. Let M be a finite length O-
module with a continuous action of Gal (E(S)/D). Then

lgOH
1(Gal (E(S)/D),M)− lgOH

0(Gal (E(S)/D),M)
− lgOH

2(Gal (E(S)/D),M) +
∑

v|∞ lgOH
0(Gal (Dv/Dv),M)

= [D : Q] lgOM.

Proof: Note that places outside S may ramify in E/D and hence in
E(S)/D. Nonetheless, as l 6 |[E : D], the lemma may be proved in exactly the
same way as the usual global Euler characteristic formula. We sketch the
argument.

Firstly one shows that if there is a short exact sequence

(0)→M1 →M2 →M3 → (0)

and the theorem is true for two of the terms, then it is also true for the
third. To do this one considers the long exact sequences for the cohomol-
ogy groups H i(Gal (E(S)/D),Mj) and H i(Gal (Dv/Dv),Mj). The key point
is that

coker (H2(Gal (E(S)/D),M2) −→ H2(Gal (E(S)/D),M3))

is isomorphic to

coker (
⊕
v|∞

H0(Gal (Dv/Dv),M2) −→
⊕
v|∞

H0(Gal (Dv/Dv),M3)).

This follows from the equalities

H3(Gal (E(S)/D),Mi) = H3(Gal (E(S)/E),Mi)
Gal (E/D)

∼= (
⊕

w|∞H
3(Gal (Ew/Ew),Mi))

Gal (E/D)

=
⊕

v|∞H
3(Gal (Dv/Dv),Mi)

∼=
⊕

v|∞H
1(Gal (Dv/Dv),Mi).

(See for instance (8.6.13)(ii) of [NSW] for the second isomorphism.) Thus we
are reduced to the case that M is a k-module.
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Next choose a subfield L of E(S) which contains E(ζl), which is to-
tally imaginary and which is finite and Galois over D. Suppose that M is a
Gal (L/D)-module. Let L ⊃ K ⊃ D and let Rk(Gal (L/K)) denote the rep-
resentation ring for Gal (L/K) acting on finite dimensional k-vector spaces.
Define a homomorphism

χK : Rk(Gal (L/K))⊗Z Q −→ Q

by

χK [M ]
= dimkH

1(Gal (E(S)/K),M)− dimkH
0(Gal (E(S)/K),M)

− dimkH
2(Gal (E(S)/K),M) +

∑
v|∞ dimkH

0(Gal (Kv/Kv),M).

This is well defined by the observation of the previous paragraph. We need
to show that

χD = [D : Q] dimk .

It is easy to check that

χD ◦ Ind
Gal (L/D)
Gal (L/K) = χK .

As Rk(Gal (L/D)) ⊗ Q is spanned by Ind
Gal (L/D)
Gal (L/K)Rk(Gal (L/K)) as K runs

over intermediate fields with L/K cyclic of degree prime to l, it suffices to
prove that χK = [K : Q] dimk when K is an intermediate field with L/K
cyclic of degree prime to l.

Now assume that L ⊃ K ⊃ D with L/K cyclic of degree prime to l.
Define

χ̃K : Rk(Gal (L/K)) −→ Rk(Gal (L/K))

by

χ̃K [M ] =
∑

v|∞[M ⊗ Ind
Gal (L/K)
Gal (Lw/Kv)k] + [H1(Gal (E(S)/L),M)]

−[H0(Gal (E(S)/L),M)]− [H2(Gal (E(S)/L),M)],

where w denotes a place of L above v. This is well defined because L totally
imaginary implies H3(Gal (E(S)/L),M) = (0) (see for instance (8.6.13)(ii) of
[NSW]). Note that χ̃K([M ]) = [M(−1)] ⊗ χ̃K([k(1)]). Moreover as l 6 |[L : K]
we see that

χK = H0(Gal (L/K), ) ◦ χ̃K ,
so that

χK([M ]) = H0(Gal (L/K), [M(−1)]⊗ χ̃K([k(1)])).

Thus it suffices to prove that

χ̃K([k(1)]) = [K : Q][Ind
Gal (L/K)
{1} k].
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As E(S) is the maximal extension of L unramified outside S one has
the standard formulae

[H0(Gal (E(S)/L), k(1))] = [k(1)]

and

[H1(Gal (E(S)/L), k(1))] = [OL[1/S]× ⊗ k(1)] + [ClS(L)[l]⊗Fl k]

and

[H2(Gal (E(S)/L), k(1))] = [ClS(L)⊗ k]− [k] +
∑
v∈S

[
⊕
w|v

Br (Lw)[l]⊗Fl k],

where ClS(L) denotes the S-class group of L (i.e. the quotient of the class
group by classes of ideals supported over S) and Br (Lw) denotes the Brauer
group of Lw. Using these formulae the proof is easily completed, just as in
the case of the usual global Euler characteristic formula. �

Lemma 2.3.4 Keep the notation and assumptions of the start of this section.

1. H i
S,T (GF+,S, ad r) = (0) for i > 3.

2. H0
S,T (GF+,S, ad r) = H0(GF+,S, ad r) if T = ∅ and = (0) otherwise.

3. dimkH
3
S,T (GF+,S, ad r) = dimkH

0(GF+,S, ad r(1)).

4. dimkH
2
S,T (GF+,S, ad r) = dimkH

1
L⊥,T (GF+,S, ad r(1)).

5. χS,T (GF+,S, ad r) =∑
v|∞ n(n+ χ(cv))/2 +

∑
v∈S−T (dimkH

0(GFv , ad r)− dimk Lv).
6.

dimkH
1
S,T (GF+,S, ad r)

= dimkH
0(GF+,S, ad r) + dimkH

1
L⊥,T (GF+,S, ad r(1))

− dimkH
0(GF+,S, ad r(1))−

∑
v|∞ n(n+ χ(cv))/2

+
∑

v∈S−T (dimk Lv − dimkH
0(GFv , ad r))

where we drop the term dimkH
0(GF+,S, ad r) if T 6= ∅.

Proof: For the first part we use the long exact sequences before lemma
2.2.8, and also the vanishing of H i(GF+,S, ad r) = H i(GF,S, ad r)Gal (F/F+) and
H i(GFv , ad r) for v ∈ S and i > 2. For the second part we use the long exact
sequences before lemma 2.2.8.

For the third and fourth parts one compares the exact sequences

H1(GF+,S, ad r)→
(⊕

v∈S−T H
1(GFev , ad r)/Lev)

⊕
(⊕

v∈T H
1(GFev , ad r)

)
↓⊕

v∈S H
2(GFev , ad r)← H2(GF+,S, ad r)← H2

S,T (GF+,S, ad r)
↓

H3
S,T (GF+,S, ad r) → (0)
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and

H1(GF+,S, ad r)→
(⊕

v∈S−T H
1(GFev , ad r)/Lev)

⊕
(⊕

v∈T H
1(GFev , ad r)

)
↓⊕

v∈S H
2(GFev , ad r)← H2(GF+,S, ad r)← H1

L⊥,T (GF+,S, ad r(1))∨

↓
H0(GF+,S, ad r(1))∨→ (0).

(The latter exact sequence is a consequence of Poitou-Tate global duality
and the identifications H i(GF+,S, ad r) = H i(GF,S, ad r)Gal (F/F+) for i = 1, 2

and H i(GF+,S, (ad r)(1)) = H i(GF,S, (ad r)(1))Gal (F/F+) for i = 0, 1.)
The fifth and sixth parts follow from lemma 2.2.8, lemma 2.3.3, the

local Euler characteristic formula and lemma 2.1.3. (We remark that by the
local Euler characteristic formula we have∑

v∈S

χ(GFv , ad r) = n2[F+ : Q].)

The final part follows from the previous parts. �

Combining this with lemma 2.2.12 we get the following corollary.

Corollary 2.3.5 Keep the notation and assumptions of the start of this sec-
tion. Suppose also that r is Schur. Then R�T

S is the quotient of a power series
ring in

dimkH
1
L⊥,T (GF+,S, ad r(1)) +

∑
v∈S−T (dimk Lv − dimkH

0(GFev , ad r))

− dimkH
0(GF+,S, ad r(1))−

∑
v|∞ n(n+ χ(cv))/2

variables over Rloc
S,T . If one further assumes that Dv is liftable for v ∈ S − T

then it will suffice to quotient by

dimkH
1
L⊥,T (GF+,S, ad r(1))

relations and so R�
S has Krull dimension at least

1 +
∑

v∈T (dimRloc
v /Iv − 1) +

∑
v∈S−T (dimk Lv − dimkH

0(GFev , ad r))
− dimkH

0(GF+,S, ad r(1))−
∑

v|∞ n(n+ χ(cv))/2.

Thus Runiv
S has Krull dimension at least

1 +
∑
v∈S

(dimRloc
v /Iv − n2 − 1)− dimkH

0(GF+,S, ad r(1))−
∑
v|∞

n(n+ χ(cv))/2.
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Corollary 2.3.6 Keep the notation and assumptions of the start of this sec-
tion. Suppose also that r is Schur, that H1

L⊥(GF+,S, ad r(1)) = (0) and that
each Dv is liftable for all v ∈ S. Suppose moreover that for v ∈ S not dividing
l we have

dimk Lv = dimkH
0(GFv , ad r),

while for v|l we have

dimk Lv = [F+
v : Ql]n(n− 1)/2 + dimkH

0(GFv , ad r).

Then χ(cv) = −1 for all v|∞, the cohomology group H0(GF+,S, ad r(1)) = (0)
and Runiv

S = O.

2.4. Some Galois Local Deformation Problems. — In this section we
specialise the discussion still further by considering some explicit local defor-
mation problems Dv for r|GFev . We will continue to use Iv to denote the ideal

of Rloc
v corresponding to Dv and Lv to denote the subspace of H1(GFev , ad r)

corresponding to deformations of r to k[ε]/(ε2) of type Dv.

2.4.1. Crystalline deformations. — In this section we suppose that l =
p and that Fev is unramified over Qp = Ql. We will also suppose that K
contains the image of all Ql-linear embeddings of fields Fev ↪→ K.

We first recall a (covariant) version of the theory of Fontaine and Laf-
faille [FL], which will play the key role in this section. Let Fr : OFev → OFev
denote the arithmetic Frobenius. Let MFO,ev denote the category of finite
OFev ⊗Zl O-modules M together with

– a decreasing filtration Fil iM by OFev⊗ZlO-submodules which are OFev
direct summands with Fil 0M = M and Fil l−1M = (0);

– and Fr ⊗ 1-linear maps Φi : Fil iM → M with Φi|Fil i+1M = lΦi+1 and∑
i Φ

iFil iM = M .

Let MFk,ev denote the full subcategory of objects killed by λ. There is an
exact, fully faithful, covariant functor of O-linear categories Gev from MFO,ev
to the category of finite O-modules with a continuous action of GFev . Its
essential image is closed under taking sub-objects and quotients. The length
of M as an O-module is [k(ṽ) : Fl] times the length of Gev(M) as an O-
module. (Here k(ṽ) denotes the residue field of ṽ.) For any objects M and
N of MFO,ev (resp. MFk,ev), the map

Ext 1
MFO,ev(M,N) −→ Ext 1

O[GFev ](Gev(M),Gev(N))

(resp.
Ext 1

MFk,ev(M,N) −→ Ext 1
k[GFev ](Gev(M),Gev(N))

∼= H1(GFev ,Hom k(Gev(M),Gev(N))))
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is an injection. Moreover

HomMFO,ev(M,N)
∼−→ H0(GFev ,HomO(Gev(M),Gev(N))).

We explain how to define Gev in terms of the functor US of [FL]. First
we define a contravariant functor

Hom ( , Fev/OF,ev{l − 2})

from MFO,ev to itself. Then we set

Gev(M) = US(Hom (M,Fev/OF,ev{l − 2})))(2− l).

If M is an object of MFO,ev we define Hom (M,Fev/OF,ev{l − 2})) ∈ MFO,ev
as follows.

– The underlying O-module is HomOF,ev(M,Fev/OF,ev).
– Fil aHom (M,Fev/OF,ev{l − 2})) = HomOF,ev(M/Fil l−1−aM,Fev/OF,ev).
– If f ∈ HomOF,ev(M/Fil l−1−aM,Fev/OF,ev) and if m ∈ ΦbFil bM set

Φa(f)(m) = ll−2−a−bFrf(Φb)−1(m)).

To check that Φaf is well defined one uses the exact sequence

(0)→
⊕l−2

i=1 Fil iM →
⊕l−2

i=0 Fil iM → M → (0)
(mi) 7→ (lmi −mi+1)i

(mi) 7→
∑
Φimi.

To check that

HomOF,ev(M,Fev/OF,ev) =
∑
a

ΦaHomOF,ev(M/Fil l−1−aM,Fev/OF,ev)
it suffices to check that

HomOF,ev(M [l], Fev/OF,ev) =
∑
a

ΦaHomOF,ev(M [l]/Fil l−1−aM [l], Fev/OF,ev).
But M [l] =

⊕
i Φ

igr iM [l] and ΦaHomOF,ev(M [l]/Fil l−1−aM [l], Fev/OF,ev) =

HomOF,ev(Φl−2−agr l−2−aM [l], Fev/OF,ev).
In this section we will assume that r is in the image of Gev and that

for each i and each τ̃ : Fev ↪→ K we have

dimk(gr iG−1ev (r|GFev ))⊗OFev ,eτ O ≤ 1.

We will let Dev consist of all lifts r : GFev → GLn(R) of r|GFev such

that, for each Artinian quotient R′ of R, r ⊗R R′ is in the essential image
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of Gev. It is easy to verify that this is a local deformation problem and that
Lev = Lev(Dev) will be the image of

Ext 1
MFk,ev(G−1ev (r),G−1ev (r)) ↪→ H1(GFev , ad r).

(This was first observed by Ramakrishna [Ra1].)

Lemma 2.4.1 Dev is liftable.

Proof: Suppose that R is an Artinian object of CO and I is an ideal of
R with mRI = (0). Suppose also that r is a deformation in Dev of r|GFev to

R/I. Write M = G−1ev (r) and for τ̃ : Fev ↪→ K write Meτ = M ⊗OF,ev⊗Zl
O,eτ⊗1 O.

Then Fil iM =
⊕eτ Fil iMeτ for all i. Let meτ ,0 < ... < meτ ,n−1 denote the indices

i for which Fil iMeτ 6= Fil i+1Meτ . Also set meτ ,n =∞ and meτ ,−1 = −∞.
As M/mRM = G−1ev (r) we see that we can find a surjection (R/I)n →

→ Meτ such that (R/I)i →→ Filmeτ,n−iMeτ for all i (where (R/I)i ⊂ (R/I)n

consists of vectors whose last n − i entries are zero). Counting orders we

see that (R/I)n
∼→ Meτ , and hence (R/I)i

∼→ Filmeτ,n−iMeτ for all i. Define
an object N =

⊕eτ Neτ of MFO,ev with an action of R as follows. We take
Neτ = Rn with an OF,ev-action via τ̃ . We set Fil jNeτ = Ri where meτ ,n−i ≥ j >
meτ ,n−1−i. Then N/I ∼= M as filtered OF,ev ⊗Zl R-modules. Finally we define
Φmeτ,i : Filmeτ,iNeτ → Neτ◦Frobl by reverse recursion on i. For i = n − 1 we
take any lift of Φmeτ,n−1 : Filmeτ,n−1Meτ → Meτ◦Frobl . In general we choose any
lift of Φmeτ,i : Filmeτ,iMeτ → Meτ◦Frobl which restricts to lmeτ,i+1−meτ,iΦmeτ,i+1 on
Filmeτ,i+1Neτ . This is possible as Filmeτ,i+1Meτ is a direct summand of Filmeτ,iMeτ .
Nakayama’s lemma tells us that

∑
i Φ

meτ,iFilmeτ,iNeτ = Neτ◦Frobl , so that N is
an object of MFO,ev. As our lifting of r we take Gev(N). �

We will need to calculate dimk Lev. To this end we have the following
lemma.

Lemma 2.4.2 Suppose that M and N are objects of MFk,ev. Then there is
an exact sequence

(0)→ HomMFk,ev(M,N)→ Fil 0HomOF,ev⊗Zl
O(M,N)→

→ HomOF,ev⊗Zl
O,Fr⊗1(grM,N)→ Ext 1

MFk,ev(M,N)→ (0),

where Fil iHomOF,ev⊗Zl
O(M,N) denotes the subset of HomOF,ev⊗Zl

O(M,N) con-

sisting of elements which take Fil jM to Fil i+jN for all j and where grM =⊕
i gr iM . The central map sends β to (βΦiM − ΦiNβ).

Proof: Any extension

(0) −→ N −→ E −→M −→ (0)
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in MFk,ev can be written E = N ⊕ M such that Fil iE = Fil iN ⊕ Fil iM
(and such that N → E is the natural inclusion and E → M is the natural
projection). Then

ΦiE =

(
ΦiN αi
0 ΦiM

)
with αi ∈ HomOF,ev⊗Zl

O,Fr⊗1(gr iM,N). Conversely, any

α = (αi) ∈ HomOF,ev⊗Zl
O,Fr⊗1(grM,N)

gives rise to such an extension. Two such extensions corresponding to α and
α′ are isomorphic if there is a β ∈ HomOF,ev⊗Zl

O(M,N) which preserves the
filtrations and such that for all i(

1 β
0 1

)(
ΦiN αi
0 ΦiM

)
=

(
ΦiN α′i
0 ΦiM

)(
1 β|gr iM

0 1

)
.

The lemma now follows easily. �

Corollary 2.4.3 Keep the above notation. We have

dimk Lev − dimkH
0(GFev , ad r) = [Fev : Ql]n(n− 1)/2.

Hence Rloc
v /Iv is a power series ring over O in

n2 + [Fev : Ql]n(n− 1)/2

variables.

Proof: If M is an object of MFO,ev and if τ̃ : Fev ↪→ K set

Meτ = M ⊗OF,ev⊗Zl
O,τ⊗1 O.

Thus Fil iM =
⊕eτ Fil iMeτ and Φi : Fil iMeτ →Meτ◦Fr−1 . We have

Fil 0HomOF,ev⊗Zl
O(M,N) ∼=

⊕
eτ Fil 0HomO(Meτ , Neτ )

and
HomOF,ev⊗Zl

O,Fr⊗1(grM,N) ∼=
⊕

eτ HomO(grMeτ , Neτ◦Fr−1).

Note that dimk Fil 0Hom k(G
−1ev (r)eτ ,G−1ev (r)eτ ) = n(n + 1)/2 and that

dimk Hom k(gr G−1ev (r)eτ ,G−1ev (r)eτ◦Fr−1) = n2. The first part of the corollary fol-
lows. The second part follows from the first part, lemma 2.4.1 and the dis-
cussion immediately following definition 2.2.2. �
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Corollary 2.4.4 If n = 1 then

Lev = H1(GFev/IFev , ad r).

Proof: One checks that Lev ⊃ H1(GFev/IFev , ad r) and then uses the equal-
ity of dimensions. �

The next lemma is clear.

Lemma 2.4.5 If r|GFev = ⊕isi then

H1(GFev , ad r) = ⊕i,jH1(GFev ,Hom (si, sj))

and Lev = ⊕i,j(Lev)i,j, where (Lev)i,j denotes the image of

Ext 1
MFk,ev(G−1ev (si),G

−1ev (sj)) −→ H1(GFev ,Hom (si, sj)).

2.4.2. Ordinary deformations. — This section is not required for our
applications to modularity lifting theorems and the Sato-Tate conjecture, and
can be skipped by those readers whose only interest is in these applications.
Our discussion is rather unsatisfactory as we were unable to find the right
degree of generality in which to work. In the first version of this manuscript
we worked in greater generality, but the result was so complicated that some
of the referees urged us to remove the section all together. Rather than do
so we have restricted ourselves to the easiest possible case. We hope that the
result is more readable. We also hope that future investigators will either not
need to rediscover our messy but more complete results, or that they will be
able to find a more transparent approach.

A referee has reminded us of previous work of Tilouine [Ti] and Mauger
[Mau] along similar lines.

We again assume that p = l. For i = 0, . . . , n − 1 choose characters
χv,i : GFev → O× with the following properties.

1. r has a decreasing filtration {Fil
i} by k[GFev ]-submodules such that

for i = 0, ..., n− 1 we have an isomorphism gr ir ∼= k(χv,i).
2. If χv,i denotes the reduction of χv,i modulo λ then for i < j the

ratio χv,i/χv,j is neither trivial nor the cyclotomic character.

The second of these two conditions can be weakened, but we have not been
able to determine exactly how far. Note that the second condition implies

that the filtration {Fil
i} is unique.

We will take Dv to be the set of all lifts r of r to objects R of CO
such that Rn has a decreasing filtration {Fil i} by R[GFev ]-submodules such
that
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1. Fil i ⊗R k
∼→ Fil

i
for all i, and

2. IFev acts on gr iRn by χv,i.

It follows from the first of these properties that the Fil i are free over R
and direct summands of Rn. Moreover for i = 0, ..., n − 1 the graded piece
gr iRn ∼= R(χ′i) where χ′i is an unramified twist of χv,i which reduces modulo
mR to χv,i mod λ.

Lemma 2.4.6 1. If such a filtration {Fil i} exists then it is unique.
2. Suppose that R ↪→ S is an injective morphism in CO and that

r : GFev → GLn(R) is a lift of r|GFev . If (S, r) ∈ Dv and {Fil iS} is the
corresponding filtration of Sn then

(Fil iS ∩Rn)⊗R S
∼−→ Fil iS.

3. Dv is a local deformation problem.

Proof: The third part follows from the first two. For the first two parts,
arguing inductively it suffices to treat the case of Fil n−1. For i = 0, ..., n− 2
choose σi ∈ GFev with χv,i(σi) 6= χv,n−1(σi). Let Pi(X) denote the characteristic
polynomial of r(σi). Modulo mR we have a factorisation

Pi(X) ≡ (X − χv,n−1(σi))
aiQi(X) mod mR

with Qi(χv,n−1(σi)) 6≡ 0 mod mR. By Hensel’s lemma we may lift this to a
factorisation

Pi(X) = Ri(X)Qi(X)

where Qi lifts Qi and Ri lifts (X − χv,n−1(σi))
ai . Let

e =
n−2∏
i=0

Qi(r(σi)).

Then e acts as zero on gr iRn (resp. gr iSS
n) for i = 0, ..., n − 2 (because

Qi(r(σi)) does). On the other hand e is an isomorphism on Fil n−1Rn (resp.
Fil n−1

S Sn), so that Fil n−1Rn = eRn (resp. Fil n−1
S Sn = eSn). The first part

follows immediately. In the case of the second part note that ekn 6= (0).
Choose y ∈ Rn such that the image of ey in kn is non-zero. Then Fil n−1

S Sn =
Sey so that Fil n−1

S ∩Rn = Rey. The second part of the lemma follows. �

Lemma 2.4.7 Dv is liftable.
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Proof: Suppose that R is an object of CO and I is a closed ideal of
R with mRI = (0). Suppose also that r is a deformation in Dv of r to
R/I. Let {Fil i} be the corresponding filtration of (R/I)n. We will show by

reverse induction on i that we can find a lifting F̃il
i

of Fil ir to R such that

F̃il
i+1

↪→ F̃il
i

compatibly with Fil i+1r ↪→ Fil ir and F̃il
i
/F̃il

i+1 ∼= R(χv,i|IFev )

as a R[IFev ]-module.

The case i = n− 1 is trivial. Suppose that F̃il
i+1

has been constructed.
Also choose a lifting g̃r i of gr ir such that IFev acts by χv,i. We will choose

F̃il
i

to be an extension of g̃r i by F̃il
i−1

which lifts Fil ir. Such extensions
are parametrised by some fibre of the map

H1(GFev ,Hom R(g̃r i, F̃il
i+1

)) −→ H1(GFev ,Hom R/I(gr ir,Fil i+1r)).

Thus it suffices to show that this map is surjective. This would follow if

H2(GFev ,Hom k(gr ir,Fil i+1r))⊗k I = (0).

However locally duality tells us that H2(GFev ,Hom k(gr ir,Fil i+1r)) is dual to
H0(GFev ,Hom k(Fil i+1r, gr ir)(1)), and this latter group vanishes, because, for
j > i,

χv,iε/χv,j 6= 1.

�

Lemma 2.4.8 Rloc
v /Iv is a power series ring in

n2 + [Fev : Ql]n(n− 1)/2

variables over O. Moreover

dimk Lv − dimkH
0(GFev , ad r) = [Fev : Ql]n(n− 1)/2.

Proof: From the previous lemma and discussion immediately following
definition 2.2.2, we see that the two assertions are equivalent. Moreover they
are both equivalent to the space of liftings of type Dv of r to k[ε]/(ε2) having
dimension n2 + [Fev : Ql]n(n− 1)/2.

Let Bn denote the Borel subgroup of GLn consisting of upper triangular
matrices. Without loss of generality we may suppose that r maps GFev to
Bn(k) so that the diagonal entries of r(σ) reading from the top left are
(χv,n−1(σ), ..., χv,0(σ)). The space of liftings of type Dv of r to k[ε]/(ε2) maps

surjectively to the space of filtrations {Fil i} of k[ε]/(ε2) lifting {Fil
i} with

kernel the space of liftings of r to Bn(k[ε]/(ε2)) such that for σ ∈ IFev the
element r(σ) has diagonal entries (χv,n−1(σ), ..., χv,0(σ)) reading from the top
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left. For the rest of this proof, we will call such a lift suitable. Thus it
suffices to show the space of suitable lifts to Bn(k[ε]/(ε2)) has dimension
n(n+ 1)/2 + [Fev : Ql]n(n− 1)/2.

We will prove this by induction on n. The case n = 1 is clear. (A
lift is specified by specifying a lift of any element lying over Frobenius.) For
general n write

r =

(
r′ χv,0ψ
0 χv,0

)
.

By the argument in the proof of the last lemma we see that the space
of suitable lifts of r to Bn(k[ε]/(ε2)) maps surjectively to the sum of the
space of suitable lifts of r′ to Bn−1(k[ε]/(ε2)) and the space of lifts of χv,0 to
(k[ε]/(ε2))× which agree with χv,0 on IFev . Thus by the inductive hypothesis
it suffices to show that the set of lifts of r to Bn(k[ε]/(ε2)) of the form(

r′ χv,0ψ
0 χv,0

)
has dimension (1 + [Fev : Ql])(n− 1).

However the latter space can be identified with a fibre of the surjective
linear map:

Z1(GFev , χ−1
v,0r

′ ⊗k k[ε]/(ε2))→→ Z1(GFev , χ−1
v,0r

′).

This map has kernel Z1(GFev , χ−1
v,0r

′)ε, which has dimension

n− 1 + dimkH
1(GFev , χ−1

v,0r
′)− dimkH

0(GFev , χ−1
v,0r

′)

which (by the local Euler characteristic formula) equals

n− 1 + [Fev : Ql](n− 1) + dimkH
2(GFev , χ−1

v,0r
′).

As we saw in the proof of the last lemma H2(GFev , χ−1
v,0r

′) = (0) and this
lemma follows. �

2.4.3. Unrestricted deformations. — Suppose now that l 6= p. We can
take Dv to consist of all lifts of r in which case Lv = H1(GFev , ad r). In this
case, by the local Euler characteristic formula,

dimk Lv − dimkH
0(GFev , ad r) = dimkH

0(GFev , (ad r)(1)).

Lemma 2.4.9 If H0(GFev , (ad r)(1)) = (0) then H2(GFev , ad r) = (0), Dv is
liftable, and Rloc

v is a power series ring in n2 variables over O.

(In fact these four conditions are probably all equivalent.)
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2.4.4. Minimal deformations. — Again suppose that p 6= l. In this
section we will describe certain lifts of r which can be considered ‘minimally’
ramified. We will show that these lifts constitute a liftable, local deformation
problem and calculate the dimension of the corresponding Rloc

v /Iv. However
first we must discuss a general classification of lifts of r.

If q ∈ Z>0 is not divisible by l, we will write Tq for the semidirect

product of Zl = 〈σq〉 by Ẑ = 〈φq〉 where φq acts on Zl by multiplication by
q.

Let PFev denote the kernel of any (and hence every) surjection IFev →→ Zl.
Then PFev has pro-order prime to l. Also set TFev = GFev/PFev ∼= TNev.
Lemma 2.4.10 The exact sequence

(0) −→ PFev −→ GFev −→ TFev −→ (0)

splits, so that GFev becomes the semidirect product of PFev by TFev . We will fix
one such splitting.

Proof: Let S denote a Sylow pro-l-subgroup of IFev so that S
∼→ Zl. Let φ

denote a lift to GFev of Frob−1ev ∈ GFev/IFev . The conjugate φSφ−1 is another
Sylow pro-l-subgroup of IFev and hence an IFev -conjugate of S. Thus premul-
tiplying φ by an element of IFev we may suppose that φ normalises S. The
group topologically generated by S and φ maps isomorphically to TFev and
we have our desired splitting. �

Suppose that τ is an irreducible representation of PFev over k. We will
write Gτ for the group of σ ∈ GFτ with τσ ∼ τ . We will also write Tτ =
Gτ/PFev ⊂ TFev . Then Tτ ∼= T

(Nev)
[GFev :Gτ IFev ] and the splitting TFev ↪→ GFev re-

stricts to a splitting Tτ ↪→ Gτ .
The proof of the next lemma uses standard techniques of what is some-

times called Clifford theory (see section 11 of [CR]).

Lemma 2.4.11 1. l 6 | dimk τ and τ has a unique deformation to a rep-
resentation τ̃ of PFev over O.

2. τ has a unique (up to equivalence) extension to Gτ ∩ IFev . Moreover
τ̃ has a unique extension Gτ ∩ IFev with determinant of order prime to l.

3. τ̃ has an extension to Gτ with det τ̃(Gτ ∩ IFev) having order prime
to l. Choose such an extension, which we will also denote τ̃ , and let τ
also denote its reduction modulo λ.

Proof: The first part is true because PFev has pro-order prime to l.
Any Sylow pro-l-subgroup of Gτ ∩ IFev maps isomorphically to Gτ/(Gτ ∩

IFev). Let στ denote a topological generator of a Sylow pro-l-subgroup of
Gτ ∩ IFev . The kernel of τ is normal in Gτ . The conjugation action of some
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power σl
b

of στ on the image τPFev is trivial. Because στ ∈ Gτ , there is an
automorphism A of the vector space underlying τ such that τ(στgσ

−1
τ ) =

Aτ(g)A−1 for all g ∈ PFev . Then we see that z = Al
b

lies in the centraliser
Zτ of the image of τ . As τ is irreducible we see that Zτ is the multiplica-
tive group of a finite extension of k and so is a torsion abelian group with
order prime to l. Moreover Z/lbZ acts on Zτ by letting 1 act by conju-
gation by A. As H2(Z/lbZ, Zτ ) = (0) we see that there is w ∈ Zτ with

z−1 = w(AwA−1)(A2wA−2)...(Al
b−1wA1−lb) = (wA)l

b
A−l

b
. We can extend τ to

Gτ ∩ IFev by sending στ to wA. Now write A for wA. Any other extension

sends στ to uA for some u ∈ Zτ with u(AuA−1)...(Al
b−1uA1−lb) equalling an

element of Zτ of l-power order, i.e. equalling 1. As H1(Z/lbZ, Zτ ) = (0) we
see that u = v−1AvA−1 for some v ∈ Zτ . Hence our second extension of τ |PFev
is v−1τv, i.e. our extension is unique up to equivalence. Similarly the lifting
τ̃ has a unique extension to Gτ ∩ IFev with determinant of order prime to l.
(Argue as before but choose A with detA having order prime to l, which
is possible as for z ∈ O× we have det(zA) = zdim τ det(A). Then take Zτ to
be the set of elements of the centraliser of τ̃(PFev) with order prime to l.
The same argument shows the existence of one extension with determinant
of order prime to l and also its uniqueness.)

Let φτ ∈ Gτ lift a generator of Gτ/(Gτ ∩ IFev). As τ̃ and τ̃φτ are equiv-
alent as representations of Gτ ∩ IFev , the representation τ̃ extends to Gτ . �

If M is a finite O-module with a continuous action of GFev then we set

Mτ = Hom PFev (τ̃ ,M).

It is naturally a continuous Tτ -module.

Lemma 2.4.12 Suppose that M is a finite O-module with a continuous ac-
tion of GFev . Then there is a natural isomorphism

M ∼=
⊕
[τ ]

Ind
GFev
Gτ

(τ̃ ⊗OMτ ),

where [τ ] runs over GFev-conjugacy classes of irreducible k[PFev ]-modules. More-
over

Hom GFev (M,M ′) ∼=
⊕
[τ ]

Hom Tτ (Mτ ,M
′
τ ).

Proof: We have a decomposition

M ∼=
⊕
[τ ]

τ̃ ⊗OMτ ,
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where [τ ] runs over isomorphism classes of irreducible k[PFev ]-modules. The
embedding τ̃ ⊗O Mτ ↪→ M is Gτ -equivariant and the image is the biggest
submodule all whose simple O[PFev ]-subquotients are isomorphic to τ . More-
over σ ∈ GFev takes the image of τ̃ ⊗OMτ to τ̃σ ⊗OMτσ . The lemma follows.
�

Corollary 2.4.13 Suppose R is an object of CfO. The map

r 7−→ (rτ )[τ ]

sets up a bijection between deformations r of r (as a GFev-representation) to
R, and tuples (rτ )[τ ] of deformations of rτ (as Tτ -representations) to R, where
[τ ] runs over GFev-conjugacy classes of irreducible k[PFev ]-modules.

Definition 2.4.14 Let ρ be an m dimensional representation of Tq over k,

and let ρ denote a lifting of ρ to an object R of CfO. We will call r minimally
ramified if for all i the natural map

ker(ρ(σq)− 1m)i ⊗R k −→ ker(ρ(σq)− 1m)i

is an isomorphism.
We call a lifting r of r to a representation of GFev over an object R of

CfO minimally ramified if, for all irreducible k[PFev ]-modules τ , the deformation
rτ of rτ is minimally ramified (as a representation of Tτ).

For this definition to make sense we need to make two remarks. Firstly,
for any g ∈ 1m + Mm(mR) a lifting ρ (resp. r) is minimally ramified if and
only if gρg−1 (resp. grg−1) is. Secondly, in the case of Tq, the definition
of minimally ramified does not depend on the choice of generator σq of Zl.
(Indeed if σ′q is another generator of Zl then ρ(σ′q) = ρ(σq)

a for some a ∈ Z>0

not divisible by l. Then ρ(σ′q)−1m = (ρ(σq)−1m)(1m+ρ(σq)+ ...+ρ(σq)
a−1) so

that ker(ρ(σ′q)−1m)i ⊃ ker(ρ(σq)−1m)i. Similarly ker(ρ(σq)−1m)i ⊃ ker(ρ(σ′q)−
1m)i, so the two kernels are in fact equal.)

We remark that if r|GFev is unramified then minimally ramified lifts are
just unramified lifts.

Lemma 2.4.15 Suppose that R is an object of CO. Let A ∈Mm1×m2(R) and
let A denote its image in Mm1×m2(k). We can find bases e1, ..., em2 of Rm2

and f1, ..., fm1 of Rm1 such that Aei = fi for i = 1, ..., r and Aei ∈ mRfr+1 ⊕
...⊕mRfm1 for i = r + 1, ...,m2. Moreover the following are equivalent.

1. Aei = 0 for i = r + 1, ...,m2.
2. (kerA)⊗R k

∼→ kerA.
3. (kerA)⊗R k →→ kerA.
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4. (ImA)⊗R k
∼→ ImA.

5. (ImA)⊗R k ↪→ ImA.

Proof: Choose a basis e1, ..., em2 of km2 so that er+1, ..., em2 is a basis of
kerA. Let f i = Aei for i = 1, ..., r and extend f 1, ..., f r to a basis f 1, ..., fm1

of

km1 . Lift e1, ..., em2 to a basis e1, ..., er, e
′
r+1, ..., e

′
m2

of Rm2 . Also lift f 1, ..., fm1

to a basis f1 = Ae1, ..., fr = Aer, fr+1, ..., fm1 of Rm1 . For i = r+1, ...,m2 write
Ae′i =

∑m1

j=1 aijfj with each aij ∈ mR and set

ei = e′i −
r∑
j=1

aijej.

Then e1, ..., em2 is a basis of Rm2 with Aei = fi for i = 1, ..., r, while Aei ∈
mRfr+1 ⊕ ...⊕mRfm1 for i = r + 1, ...m2.

Now consider the second part of the lemma. The first condition implies
the second, which implies the third. Suppose the third condition is satisfied.
Then kerA is a submodule of Rer+1⊕...⊕Rem2 which surjects under reduction
modulo mR onto ker+1⊕ ...⊕ em2 . We deduce that kerA = Rer+1⊕ ...⊕Rem2 ,
and the first condition follows.

Similarly the first condition implies the fourth which implies the fifth.
Suppose the fifth condition is satisfied. Let X = A(Rer+1 ⊕ ... ⊕ Rem2), so
that ImA = Rf1⊕ ...⊕Rfr⊕X. We deduce that X⊗R k = (0), so that X = 0
and the first condition follows. �

Corollary 2.4.16 Suppose that R → S is a morphism in CfO and that A ∈
Mm1×m2(R) satisfies the conditions of the equivalent conditions of the lemma.
Then so does the image of A in Mm1×m2(S).

Corollary 2.4.17 Suppose that R ↪→ S is an injective morphism in CfO and
that A ∈ Mm1×m2(R). Suppose that the image of A in Mm1×m2(S) satisfies
the equivalent conditions of the lemma, then so does A ∈Mm1×m2(R).

Corollary 2.4.18 Minimally ramified lifts in the case of Tq (resp. GFev) define
a local deformation problem DTv (resp. Dv) in the sense of definition 2.2.2.

We claim that a lifting ρ of an m-dimensional representation ρ of Tq
over k to R an object of CfO is minimally ramified if and only if there is an
increasing filtration {Fil i} of ρ by Tq-invariant direct summands such that
ρ(σq) acts trivially on each gr iρ = Fil iρ/Fil i−1ρ and

Fil i ⊗R k
∼−→ ker(ρ(σq)− 1m)i

under the natural map Fil i⊗Rk → ρ. Moreover in this case there is a unique
such filtration, namely Fil i = ker(ρ(σq)−1m)i. To see this first note that if ρ
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is minimally ramified then it follows from Nakayama’s lemma that ker(ρ(σq)−
1m)i is a direct summand of ρ for all i. Conversely if {Fil i} is a filtration
as above then ker(ρ(σq) − 1m)i ⊃ Fil iρ. On the other hand, as the rank of
(ρ(σq)− 1m)i equals m minus the R-rank of Fil iρ, we see that we must have
equality ker(ρ(σq)− 1m)i = Fil iρ and our claim follows.

Lemma 2.4.19 Suppose that ρ : Tq −→ GLm(k) is a continuous represen-
tation. The universal minimally ramified lifting ring Rmin

ρ for ρ is a power

series ring in m2 variables over O.

Proof: The filtration ker(ρ(σq) − 1m)i of km defines a closed point of
some flag scheme over k. Let the formal completion of this flag scheme at
this closed point be Spf R∞ and let {Fil iunivR

m
∞} denote the universal lifting

of {ker(ρ(σq)− 1m)i} to a filtration by direct summands of Rm
∞. If we set

mi = dimk ker(ρ(σq)− 1m)i/ ker(ρ(σq)− 1m)i−1

then

R∞ ∼= O[[X1, ..., X(m(m−1)−
P
imi(mi−1))/2]].

Also let P ⊂ GLm/R∞ be the parabolic subgroup consisting of elements
which stabilise {Fil iuniv}. Note that ρ : Tq → P (k). Also note that we have a
natural map

R∞ −→ Rmin
ρ

determined by {ker(ρ(σq)− 1m)i}.
For i a positive integer let Pi the subgroup of GLmi+1+mi+2+.../R∞ which

preserves the filtration {Fil juniv/Fil iuniv} of Rm
∞/Fil iunivR

m
∞. Thus P0 = P and

there are natural maps Pi → Pi+1. Let ρi denote the composite

Tq
ρ−→ P (k)→→ Pi(k).

Consider the following functor from Artinian local R∞-algebras to sets. It
sends R∞ → R to the set of continuous homomorphisms ρi : Tq → Pi(R)

which lift ρi : Tq → Pi(k) and for which ρi(σq) acts trivially on each gr junivR
m

for j > i. We shall call such lifts ρi minimally ramified. This functor is
represented by

ρuniv
i : Tq −→ Pi(Ri),

for some complete noetherian local R∞-algebra Ri. There are natural maps

Ri −→ Ri−1.

Moreover R0
∼→ Rmin

ρ and for i >> 0 we have R∞
∼→ Ri.
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It suffices to prove that for all i the ring Ri−1 is a power series ring
over Ri in mi(mi +mi+1 + ...) variables. Write

ρuniv
i−1 (σq) =

(
1mi X
0 ρuniv

i (σq)

)
ρuniv
i−1 (φq) =

(
A B
0 ρuniv

i (φq)

)
.

We require only one relation

(A B)

(
X

ρuniv
i (σq)− 1

)
= X(1 + ρuniv

i (σq) + ...+ ρuniv
i (σq)

q−1)ρuniv
i (φq).

The reduction modulo mRi−1
of the matrix

Y =

(
X

ρuniv
i (σq)− 1

)
has the same rank as ρi−1(σq)− 1, which is mi+1 +mi+2 + .... Choose mi+1 +
mi+2 + ... linearly independent rows of Y mod mRi−1

. Then the liftings of
X and the mi columns of (A B) not corresponding to the selected rows
of Y mod mRi−1

are arbitrary, and the liftings of the remaining columns of
(A B) are then completely determined. Thus Ri−1 is indeed a power series
ring in

mi(mi+1 +mi+2 + ...) +m2
i

variables over Ri, and the lemma follows. �

Corollary 2.4.20 Keep the notation and assumptions of the lemma. Mini-
mally ramified liftings are liftable. Moreover

dimk Lv(DTv ) = dimkH
0(Tq, ad ρ).

(See definition 2.2.4 for the definition of Lv(DTv ) ⊂ H1(Tq, ad ρ).)
Proof: The first assertion is immediate. The second follows from the dis-

cussion immediately following definition 2.2.4. �

Corollary 2.4.21 Suppose that r : GFev → GLn(k) is a continuous repre-
sentation. Define a local deformation problem Dv to consist of all minimally
ramified lifts of r.

1. Dv is liftable.
2. The space Lv of deformations of r to k[ε]/(ε2) has dimension equal

to dimkH
0(GFev , ad r).

3. The corresponding quotient Rloc
v /Iv is a power series ring in n2

variables over O.
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Proof: The first two parts follow from the previous corollary using the
equivalence of categories of corollary 2.4.13 and the equality

dimkH
0(GFev , ad r) =

∑
[τ ]

dimkH
0(Tτ , ad rτ )

(see lemma 2.4.12). The third part follows from the first two. �

Lemma 2.4.22 Suppose that l 6 |#r(IFev) and that Dv consists of all minimal
lifts of r. Then Lv = H1(GFev/IFev , (ad r)IFev ).

Proof: A lifting of r is minimal if and only if it vanishes on ker r|IFev .
Thus

Lv = H1(GFev/(ker r|IFev ), ad r).

However H1(r(IFev), ad r) = (0) so that

H1(GFev/IFev , (ad r)IFev )
∼−→ H1(GFev/(ker r|IFev ), ad r)

and the lemma follows. �

2.4.5. Discrete series deformations. — Let n = md be a factorisation
and let

r̃v : GFev −→ GLd(O)

be a continuous representation such that

1. r̃v ⊗ k is absolutely irreducible,
2. every irreducible subquotient of (r̃v ⊗ k)|IFev is absolutely irreducible,

3. and r̃v ⊗ k 6∼= r̃v ⊗ k(i) for i = 1, ...,m.

The second condition is probably unnecessary, but it is harmless for applica-
tions and simplifies this section, so we include it. Note that in particular we
have

k(i) 6∼= k

for i = 1, ...,m.

Lemma 2.4.23 1. There is a factorisation d = d1d2 and a represen-
tation

sv : GF ′ev −→ GLd2(O),

where F ′ev/Fev is the unramified extension of degree d1, such that sv|IFev ⊗O k
is absolutely irreducible and not isomorphic to its conjugate by any element
of GFev −GF ′ev , and such that

r̃v ∼= Ind
GFev
GF ′ev sv.
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2. If R is an object of CfO and ρ : GFev → GLd(R) satisfies

ρ|IFev ∼= r̃v|IFev ⊗O R
then

ρ ∼= Ind
GFev
GF ′ev (sv ⊗O R(χ))

for some uniquely determined unramified character χ : GF ′ev → R×. In par-
ticular

ρ 6∼= ρ(i)

for i = 1, ...,m.
3. If R is an object of CfO and I is an ideal of R then

ZGLd(R)(r̃v(IFev))→→ ZGLd(R/I)(r̃v(IFev)).
Proof: Let r1 be an irreducible (and hence absolutely irreducible) sub-

representation of r̃v|IFev ⊗ k. Let H ⊂ GFev denote the group of σ ∈ GFev such

that rσ1
∼= r1. Because H/IFev is pro-cyclic we can extend r1 to a representa-

tion of H. Then there is an H-equivariant embedding

r1 ⊗ Hom IFev (r1, r̃v ⊗O k) ↪→ r̃v ⊗O k,

and the image is the biggest IFev -submodule of r̃v⊗O k isomorphic to a direct
sum of copies of r1. Because r̃v⊗O k is absolutely irreducible we see that the
map

Ind
GFev
H (r1 ⊗ Hom IFev (r1, r̃v ⊗O k)) −→ r̃v|IFev ⊗ k

is an isomorphism and that Hom IFev (r1, r̃v ⊗O k) is an absolutely irreducible

H/IFev -module, which must therefore be one dimensional. Twisting r1 by a
character of H/IFev we may assume that

r̃v ⊗ k = Ind
GFev
H r1

where r1|IFev is absolutely irreducible. Thus

r̃v|IFev ⊗ k = r1 ⊕ ...⊕ rd1

where each ri is irreducible, where ri 6∼= rj if i 6= j, and where d1 = [GFev : H]
and d1 dimk r1 = d. Note that H is nothing else than GF ′ev .

We claim that r̃v|IFev = r1⊕ ...⊕ rd1 where ri is a lifting of ri. We prove

this modulo λt by induction on t, the case t = 1 being immediate. So suppose
this is true modulo λt. As IFev has cohomological dimension 1 we see that we
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may lift ri to a continuous representation r′i : IFev → GLdim r1(O/λt+1). Then
r̃v|IFev mod λt+1 differs from r′1 ⊕ ...⊕ r′d1

by an element of

H1(IFev , ad r̃v ⊗ k) =
⊕
i,j

H1(IFev ,Hom (ri, rj)).

For i 6= j we have Hom (ri, rj)IFev = (0) so

H1(IFev , ad r̃v ⊗ k) =
⊕
i

H1(IFev , ad ri).

Hence r̃v|IFev mod λt+1 = r1 ⊕ ...⊕ rd1 , as desired.
The group H must stabilise the subspace r1 and so we can extend r1

to a representation sv of H which embeds into r̃v|H and lifts r1. The first
part of the lemma follows.

For the second part we are assuming that we have a decomposition

ρ|IFev ∼= (r1 ⊗O R)⊕ ...⊕ (rd1 ⊗O R).

The submodule r1 ⊗O R of ρ is stable by H and so we can extend r1 ⊗O R
to a representation ρ1 of H which embeds into ρ|H . We see that

Ind
GFev
H ρ1

∼−→ ρ.

Let φH denote the lift to H of a topological generator of the pro-cyclic group
H/IFev . As r1|IFev is absolutely irreducible, it follows from lemma 2.1.8 that

(sv ⊗O R)(φH) and ρ1(φH) differ by multiplication by an element of R×, i.e.
that ρ1

∼= sv ⊗O R(χ) for some character χ : H/IFev → R×.
If

Ind
GFev
GF ′ev (sv ⊗O R(χ)) ∼= Ind

GFev
GF ′ev (sv ⊗O R(χ′))

for two characters χ, χ′ : H/IFev → R× then

sv ⊗O R(χ) ∼= sv ⊗O R(χ′).

But

HomH(sv ⊗O R(χ), sv ⊗O R(χ′)) ∼= Hom IFev (sv, sv)(χ
′χ−1)H ∼= R(χ′χ−1)H

by lemma 2.1.8. Thus we see that χ = χ′, and the second part of the lemma
follows.

For the third part simply note that by lemma 2.1.8

ZGLd(R)(r̃v(IFev)) = (R×)d1 .

�
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Definition 2.4.24 Suppose that R is an object CfO and

ρ : GFev −→ GLn(R)

is a continuous representation. We will say that ρ is r̃v-discrete series if there
is a decreasing filtration {Fil i} of ρ by R-direct summands such that

1. gr iρ ∼= (gr 0ρ)(i) for i = 1, ...,m− 1, and
2. (gr 0ρ)|IFev ∼= (r̃v|IFev ⊗O R).

Lemma 2.4.25 If ρ is r̃v-discrete series then the filtration {Fil i} as in the
definition is unique.

Proof: Suppose that {Fil i1} and {Fil i2} are two such filtrations. Suppose
also that

gr 0
jρ
∼= Ind

GFev
GF ′ev (sv ⊗ χj).

From our assumptions on r̃v we see that

ε|iGF ′ev mod λ 6= 1

for i = 1, ...,m. However

{χ1ε
i mod mR}i=0,...,m−1 = {χ2ε

i mod mR}i=0,...,m−1.

Thus

χ2 ≡ χ1ε
i0 mod mR

for some 0 ≤ i0 < m. If i0 > 1 then

χ1ε
m ∼= χ2ε

m−i0 ∼= χ1ε
i1 mod mR

for some 0 ≤ i1 < m, which would give a contradiction. Thus χ1 ≡ χ2 mod mR

and

gr 0
1ρ⊗R k ∼= gr 0

1ρ⊗R k.

Note that gr ijρ is the maximal submodule of ρ/Fil i+1
j ρ all whose simple

R[GFev ]-subquotients are isomorphic to gr 0
jρ⊗k(εi). Thus by reverse induction

on i we see that Fil i1ρ = Fil i2ρ. �

Lemma 2.4.26 If r is r̃v-discrete series then the set Dv of r̃v discrete series
liftings of r form a local deformation problem.
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Proof: The first two conditions of definition 2.2.2 are immediate. The
third and fourth follow from lemma 2.1.8, the third part of lemma 2.4.23
and lemma 2.4.25. The fifth condition is also immediate. Let us verify the
sixth condition. Suppose that R ↪→ S is an injective morphism in CfO and
that ρ : GFev → GLn(R) is a continuous representation such that ρ thought
of as valued in GLn(S) is r̃v-discrete series. Let {Fil iS} be the corresponding
filtration of Sn and set Fil iR = Fil iS ∩ Rn. Note that all simple R[GFev ] sub-
quotients of gr iS are isomorphic to gr 0

S⊗S k(i). Thus the same is true for all
simple subquotients of gr iR and hence for 〈Fil iR〉S/〈Fil i+1

R 〉S. By part two of
lemma 2.4.23 we see that the gr 0

S⊗Sk(i) are non-isomorphic for i = 0, ...,m−1
and hence 〈Fil iR〉S = Fil iS. In particular the reduction map gives a surjection
Fil iR →→ Fil iS⊗S k ⊂ kn. Choose a basis e1, ..., en of kn adapted to {Fil iS⊗S k}.
We now see that we can lift it to a basis e1, ..., en of Rn so that ei ∈ Fil jR
whenever ei ∈ Fil iS⊗S k. Then each Fil jS has a basis consisting of a subset of

the {ei}, so that the same is true of Fil jR. Thus each Fil jR is a direct sum-

mand of Rn and gr jR⊗RS
∼→ gr jS. The sixth condition of definition 2.2.2 now

follows from lemma 2.1.9, lemma 2.1.8 and the third part of lemma 2.4.23.
�

For the rest of this section we will assume that r is r̃v-discrete series
and let Dv denote the set of r̃v-discrete series lifts.

Lemma 2.4.27 Dv is liftable.

Proof: We will argue by induction on m. The result for m = 1 follows
from part 2 of lemma 2.4.23.

Let R be an object of CfO and let I be an ideal of R with mRI = (0).
Suppose that r is a r̃v-discrete series lifting of r to R/I. Let {Fil i} be the
corresponding filtration of r. By the inductive hypothesis we may choose a
r̃v-discrete series lifting r′ of r/Film−1r to R. It will suffice to show that the
natural map

H1(GFev ,Hom R(r′, (gr 0r′)(m− 1)))
↓

H1(GFev ,Hom R(r/Film−1r, (gr 0r)(m− 1)))

is surjective. The cokernel of this map equals the kernel of

H2(GFev ,Hom k(r/Film−1r, (gr 0r)(m− 1)))⊗k I
↓

H2(GFev ,Hom R(r′, (gr 0r′)(m− 1))).

Using local duality we see that it will suffice to show that

H0(GFev ,Hom R(gr 0r′, r′/Film−1r′)(2−m))⊗R R∨
↓

H0(GFev ,Hom k(gr 0r, r/Film−1r)(2−m))⊗k I∨
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is surjective, where M∨ denotes the Pontriagin dual of M . However the com-
posites

k
∼−→ H0(GFev ,Hom k(gr 0r, grm−2r)(2−m))
↪→ H0(GFev ,Hom k(gr 0r, r/Film−1r)(2−m))

and
R
∼→ H0(GFev ,Hom R(gr 0r′, grm−2r′)(2−m))
↪→ H0(GFev ,Hom R(gr 0r′, r′/Film−1r′)(2−m))

are isomorphisms, because

H0(GFev ,Hom R(gr 0r′, gr ir′)(2−m)) = (0)

and
H0(GFev ,Hom k(gr 0r, gr ir)(2−m)) = (0)

for i = 0, ...,m− 3. The lemma follows. �

Lemma 2.4.28 Rloc
v /Iv is a power series ring in n2 variables over O.

Proof: We will prove by induction on m that the dimension of the space
of r̃v-discrete series liftings of r to k[ε]/(ε2) is n2. The lemma will follow
because r̃v-discrete series lifts are liftable.

If m = 1 then it follows from part 2 of lemma 2.4.23 that the space
of r̃v-discrete series deformations of r to k[ε]/(ε2) has dimension 1. Thus the
space of r̃v-discrete series liftings has dimension:

1 + n2 − dimkH
0(GFev , ad r) = n2.

Now suppose that m > 1. To choose an r̃v-discrete series lifting of r to
k[ε]/(ε2) is equivalent to choosing

– a lift F̃il
m−1

of Film−1r to (k[ε]/(ε2))n;
– an r̃v-discrete series lift r1 of r/Film−1r to k[ε]/(ε2);
– a lifting r2 of Film−1r to k[ε]/(ε2) such that r2

∼= gr 0r1(m− 1);
– an element of a specific fibre of

Z1(GFev ,Hom k[ε]/(ε2)(r1, r2)) −→ Z1(GFev ,Hom k(r/Film−1r,Film−1r)).

The space of choices for F̃il
m−1

has dimension m(n−m). The space of choices
for r1 has dimension (n−m)2 by inductive hypothesis. The space of choices
for r2 then has dimension

m2 − dimkH
0(GFev , ad gr 0r) = m2 − 1.

Finally as in the proof of the last lemma, we see that

Z1(GFev ,Hom k[ε]/(ε2)(r1, r2)) −→ Z1(GFev ,Hom k(r/Film−1r,Film−1r))
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is surjective with kernel Z1(GFev ,Hom k(r/Film−1r,Film−1r)). Thus any fibre
has dimension

dimk Z
1(GFev ,Hom k(r/Film−1r,Film−1r))

= m(n−m)− dimkH
0(GFev ,Hom k(r/Film−1r,Film−1r))

+ dimkH
1(GFev ,Hom k(r/Film−1r,Film−1r))

= m(n−m) + dimkH
2(GFev ,Hom k(r/Film−1r,Film−1r))

= m(n−m) + dimkH
0(GFev ,Hom k(Film−1r, r/Film−1r)(1)).

(We are using the exact sequence in the paragraph following definition 2.2.1,
the local Euler characteristic formula and local duality.) As in the proof of
the last lemma we see that

k ∼= H0(GFev ,Hom k(Film−1r, r/Film−1r)(1)).

Thus the space of r̃v-discrete series liftings of r to k[ε]/(ε2) has dimension

m(n−m) + (n−m)2 + (m2 − 1) + (m(n−m) + 1) = n2.

The lemma follows. �

Corollary 2.4.29 Keep the notation of the lemma. Then

dimk Lv = dimkH
0(GFev , ad r).

The next lemma is self-explanatory.

Lemma 2.4.30 Suppose that d = 1 and m = n. Define Fil 1ad r to be the set
of x in ad r such that xFil ir ⊂ Fil i+1r for all i. If Dv is the set of discrete
series lifts of r|GFev then

Lv = H1(GFev/IFev , k1n)⊕ ker(H1(GFev , ad 0r)→ H1(GFev , ad r/Fil 1ad r).

2.4.6. Taylor-Wiles deformations. — Suppose that Nṽ ≡ 1 mod l, that
r is unramified at ṽ and that r|GFev = ψv⊕ sv where dimk ψv = 1 and sv does

not contain ψv as a sub-quotient. Take Dv to consist of all lifts of r|GFev
which are (1 + Mn(mR))-conjugate to one of the form ψ ⊕ s where ψ lifts
ψv, and where s lifts sv and is unramified. Then Dv is a local deformation
problem and

Lv = Lv(Dv) = H1(GFev/IFev , ad sv)⊕H1(GFev , adψv).

Note that in this case

lgO Lv − lgOH
0(GFev , ad r) = lgOH

1(IFev , adψv)
GFev = 1.
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We will write ∆v for the maximal l-power quotient of the inertia subgroup
of Gab

Fev . It is cyclic of order the maximal power of l dividing Nṽ− 1. If r is
any deformation of r|GFev in Dv over a ring R then det r : ∆v → R× and so

R becomes an O[∆v]-algebra. If av denotes the augmentation ideal of O[∆v]
then R/avR is the maximal quotient of R over which r becomes unramified
at v.

2.4.7. Ramakrishna deformations. — Suppose that (Nṽ) 6≡ 1 mod l and
that r|GFev = ψvε⊕ ψv ⊕ sv, where ψv and sv are unramified and sv contains

neither ψv nor ψvε as a sub-quotient. Take Dv to consist of the set of lifts
of r|GFev which are (1 +Mn(mR))-conjugate to a lift of the formψε ∗ 0

0 ψ 0
0 0 s


with ψ an unramified lift of ψv and s an unramified lift of sv. Then Dv is
a local deformation problem and Lv = Lv(Dv) is

H1(GFev/IFev , k
(

12 0
0 0

)
)⊕H1(GFev ,Hom (ψv, ψvε))⊕H1(GFev/IFev , ad sv).

Then
dimk Lv

= 2 + dimkH
1(GFev/IFev , ad sv)

= 2 + dimkH
0(GFev , ad sv)

= dimkH
0(GFev , ad r).

Moreover Dv is liftable. (Because if R is an object of CO and if I is a closed
ideal of R then

H1(GFev , R(ε))→→ H1(GFev , (R/I)(ε)).)

2.4.8. One more local deformation problem. — Suppose again that
(Nṽ) 6≡ 1 mod l and that r|GFev = ψvε ⊕ ψv ⊕ sv, where ψv and sv are un-

ramified and sv contains neither ψv nor ψvε as a sub-quotient. Take Dv to
consist of the set of lifts of r|GFev which are (1 +Mn(mR))-conjugate to a lift
of the form ψ1 ∗ 0

0 ψ2 0
0 0 s
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with ψ1 (resp. ψ2) an unramified lift of ψvε (resp. ψv) and s an unramified
lift of sv. Note that Dv includes all unramified lifts and all Ramakrishna lifts
(see section 2.4.7). It is a local deformation problem and Lv = Lv(Dv) is

H1(GFev/IFev ,Hom (ψvε, ψvε)⊕ Hom (ψv, ψv))⊕H1(GFev ,Hom (ψv, ψvε))⊕
⊕H1(GFev/IFev , ad sv).

Then dimk Lv = 3 + dimkH
1(GFev/IFev , ad sv) = 3 + dimkH

0(GFev , ad sv) = 1 +
dimkH

0(GFev , ad r).
We remark that this deformation problem is only used in the proof of

theorem 2.6.3, where its function is to compare unramified deformations with
Ramakrishna deformations.

2.5. An application of the Cebotarev Density Theorem. — We will keep
the notation and assumptions established at the start of section 2.3. In this
section we will lay the groundwork for the Taylor-Wiles arguments we will
use to prove our modularity lifting theorems. More specifically we will use
the Cebotarev density theorem and our Galois cohomology calculations to
construct the sets of auxiliary primes on which the method relies. To be
able to do this we will need to put some restrictions on the image of r.
The condition we will need to impose we have called ‘big’. This condition is
somewhat ugly, but we failed to find a more natural formulation. It is how-
ever usually easy to verify in specific cases. The terminology ‘big’ is perhaps
unfortunate. If the cardinality of a subgroup H ⊂ Gn(k) is large compared
to the cardinality of Gn(k) then the H is often ‘big’ in our technical sense.
However there are also many subgroups H ⊂ Gn(k) whose cardinality is not
large which are also ‘big’ in our technical sense. We apologise for our lack
of imagination in nomenclature.

Definition 2.5.1 We will call a subgroup H ⊂ Gn(k) big if the following
conditions are satisfied.

– H ∩ G0
n(k) has no l-power order quotient.

– H0(H, gn(k)) = (0).
– H1(H, gn(k)) = (0).
– For all irreducible k[H]-submodules W of gn(k) we can find h ∈ H∩

G0
n(k) and α ∈ k with the following properties. The α generalised eigenspace
Vh,α of h in kn is one dimensional. Let πh,α : kn → Vh,α (resp. ih,α) denote
the h-equivariant projection of kn to Vh,α (resp. h-equivariant injection of
Vh,α into kn). Then πh,α ◦W ◦ ih,α 6= (0).

Similarly we call a subgroup H ⊂ GLn(k) big if the following conditions
are satisfied.
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– H has no l-power order quotient.
– H0(H, g0

n(k)) = (0).
– H1(H, g0

n(k)) = (0).
– For all irreducible k[H]-submodules W of g0

n(k) we can find h ∈ H
and α ∈ k with the following properties. The α generalised eigenspace Vh,α
of h in kn is one dimensional. Let πh,α : kn → Vh,α (resp. ih,α) denote the
h-equivariant projection of kn to Vh,α (resp. h-equivariant injection of Vh,α
into kn). Then πh,α ◦W ◦ ih,α 6= (0).

(Recall that g0
n denotes the trace zero subspace of LieGLn ⊂ LieGn.)

We note that the fourth property will also hold for any non-zero Fl[H]-
subspace W of gn(k). (Because it holds for W if and only if it holds for its
k-linear span.) Also note that, if H ⊂ Gn(k) surjects onto Gn(k)/G0

n(k) and
if H ∩ G0

n(k) is big, then H is big.
At the referee’s suggestion, we will digress here to give some examples

of big subgroups H ⊂ Gn(k), which will be needed later.

Lemma 2.5.2 Suppose that l > 2n − 1 is a prime; that k is an algebraic
extension of Fl; and that H ⊂ GLn(k). Suppose that

– H has no l-power order quotient,
– H contains Symm n−1SL2(Fl), and
– H1(H, g0

n(k)) = (0).

Then H is big.

Proof: As a SL2(Fl)-module we have

ad Symm n−1 ∼= 1⊕ Symm 2 ⊕ Symm 4 ⊕ ...⊕ Symm 2n−2.

(That ad Symm n−1 is semi-simple follows for instance from [Se2].) As 2n−2 ≤
l − 1 each factor in this decomposition is irreducible. In particular

H0(H, g0
n(k)) = (0).

Let T denote the torus of diagonal elements in SL2(Fl) and let t denote
a generator of T . Let D = (ad r)T . As n < l we can decompose

Symm n−1|T = V0 ⊕ V1 ⊕ ...⊕ Vn−1

where the Vi are the eigenspaces of t and each is one dimensional. Let it,j
denote the injection Vj ↪→ Symm n−1 and πt,j denote the t-equivariant projec-
tion Symm n−1 →→ Vj. Thus πt,jit,j = 1. As 2n < l + 1 we see that

D =
n−1⊕
j=0

Hom (Vj, Vj)
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has dimension n and that, for i = 0, ..., n− 1

dimD ∩ Symm 2i = 1.

For each i = 0, ..., n − 1 choose j such that the projection of D ∩ Symm 2i

onto Hom (Vj, Vj) is non-trivial. Then

πt,j(D ∩ Symm 2i)it,j 6= (0).

�

Corollary 2.5.3 Fix positive integers m and n. There is a constant C(mn2)
such that for any prime l > C(mn2) and any finite extension k/Fl of degree
at most m the group GLn(k) has the following property. Any subgroup H ⊂
GLn(k) which contains Symm n−1SL2(Fl), but has no l-power order quotient,
is big.

Proof: Using the lemma one just needs to check that H1(H, g0
n(k)) = (0).

However [Se2] tells us that gn(k) is semi-simple as an H-module. The result
then follows from theorem E of [N]. �

Corollary 2.5.4 Suppose that l > 2n − 1 is a prime; that k is an algebraic
extension of Fl; that k′ ⊂ k is a finite field and that H ⊂ GLn(k). Suppose
that

k×Symm n−1GL2(k′) ⊃ H ⊃ Symm n−1SL2(k′).

Then H is big.

Proof: It follows from the lemma that it suffices to show that

H1(SL2(k′), ad Symm n−1) = (0).

(Note that l 6 |[H : Symm n−1SL2(k′)].) As in the proof of the lemma we have
a decomposition

ad Symm n−1 ∼= 1⊕ Symm 2 ⊕ Symm 4 ⊕ ...⊕ Symm 2n−2.

Let B (resp. T ) denote the subgroup of SL2(k′) consisting of upper triangular
(resp. diagonal) matrices and let U denote the Sylow l-subgroup of B. Thus

H1(SL2(k′), ad Symm n−1) ↪→
n−1⊕
i=0

H1(U, Symm 2i)B.

As l > n+ 1 it follows from lemma (2.7) c) of [CPS] that for i = 0, ..., n− 1
we have

H1(U, Symm 2i)B = (0).

The lemma follows. �
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Lemma 2.5.5 Suppose that n is even; that l > max{3, n} is a prime; that
k is an algebraic extension of Fl; that k′ ⊂ k is a finite field; and that
H ⊂ GLn(k). Suppose that

k×GSpn(k′) ⊃ H ⊃ Spn(k′).

Then H is big.

Proof: For definiteness we suppose that Spn is defined by the skew-
symmetric matrix

J =

(
0 1n/2
−1n/2 0

)
,

i.e. Spn = {g ∈ GLn : gJ tg = J}. Define H-submodules R0, R1 and R2 of
gn(k) as follows. R0 consists of scalar matrices. R1 consists of matrices A
such that AJ+J tA = 0. Finally R2 consists of matrices A such that trA = 0
and AJ − J tA = 0. Each is preserved by H0. As l > n we see that

ad = R0 ⊕R1 ⊕R2

and each Ri is an irreducible Spn(Fl)-module. (The latter fact is because each
Ri is a Weyl module with l-restricted highest weight.) Thus H0(H, g0

n(k)) =
(0).

Choose α ∈ F×l with α2 6= 1 and take h to be the diagonal matrix

diag(α, 1, ..., 1, α−1, 1, ..., 1)

in Spn(Fl). If iα (resp. πα) denotes the injection of (resp. projection onto)
the α eigenspace in kn then

παRjiα 6= (0)

for j = 0, 1 and 2.
Finally it will suffice to check that

H1(Spn(k′), gn(k)) = (0),

or simply that H1(Spn(k′), g0
n(k)) = (0). (Because Spn(k′) has no quotient of

l-power order.) Let Bn denote the Borel subgroup of elements of Spn of the
form (

a b
0 ta−1

)
with a upper triangular. Then (ad r)Bn(Fl) = R0. Also let Tn denote the sub-
group of Spn consisting of diagonal elements. Identify the character group
X∗(Tn) with Zn/2 by

(a1, ..., an/2)diag(t1, ..., tn/2, t
−1
1 , ..., t−1

n/2) = ta1
1 ...t

an/2
n/2 .
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Corollary 2.9 of [CPS] tells us that H1(Spn(k′), g0
n(k)) = (0). (According to

footnote (23) on page 182 of [CPS], because l > 3, we may take ψ of corollary
2.9 of [CPS] to consist of (1,−1, 0, ..., 0), (0, 1,−1, ..., 0), ..., (0, 0, ..., 1,−1),
and (0, 0, ..., 0, 2). Then that corollary tells us that

dimH1(Spn(k′), g0
n(k)) = 2(n/2− 1) + 1− (n− 1) = 0.)

�

Lemma 2.5.6 Suppose that l > n is a prime; that k is an algebraic extension
of Fl; that k′ ⊂ k is a finite field; and that H ⊂ GLn(k). If n = 2 suppose
further that l > 3 and #k′ > 5. Suppose that

k×GLn(k′) ⊃ H ⊃ SLn(k′).

Then H is big.

Proof: As l > n we see that

gn(k) = g0
n(k)⊕ k1n

as H-modules and that g0
n(k) is an irreducible SLn(Fl)-module. We deduce

that H0(H, g0
n(k)) = (0).

Choose α ∈ F×l with α2 6= 1 and take h to be the diagonal matrix

diag(α, α−1, ..., 1)

in SLn(Fl). If iα (resp. πα) denotes the injection of (resp. projection onto)
the α eigenspace in kn then

παg
0
n(k)iα 6= (0)

and
παk1niα 6= (0).

Finally it will suffice to check that

H1(SLn(k′), gn(k)) = (0),

or simply that H1(SLn(k′), g0
n(k)) = (0). (Because SLn(k′) has no quotient of

l-power order.) But this follows from table (4.5) of [CPS]. �

These examples are by no means exhaustive. We will discuss another
example later (see lemma 2.7.5). We wonder whether in any irreducible com-
patible system of de Rham λ-adic representations from the absolute Galois
group of a number field into Gn with distinct Hodge-Tate numbers, the im-
age of the corresponding mod λ representation will be big for all but finitely
many λ.

We now turn to the Galois theoretic part of the Taylor-Wiles argument
in this context.
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Definition 2.5.7 Suppose that

S = (F/F+, S, S̃,O, r, χ, {Dv}v∈S)

is a global deformation problem and that T ⊂ S. Let Q be a finite set of
primes v 6∈ S of F+ which split in F and for which

Nv ≡ 1 mod l.

Let Q̃ denote the set consisting of one choice ṽ of a prime of F above each
element of Q. For v ∈ Q suppose also that r|GFev = ψv ⊕ sv where dimk ψ = 1

and s does not contain ψ as a sub-quotient. Then we define a second global
deformation problem

S(Q) = S(Q, {ψv}v∈Q) = (F/F+, S ∪Q, S̃ ∪ Q̃,O, r, χ, {Dv}v∈S∪Q),

where for v ∈ Q we take Dev to consist of all lifts of r|GFev which are (1 +

Mn(mR))-conjugate to one of the form ψ ⊕ s where ψ lifts ψv, and where s
lifts s and is unramified. (See section 2.4.6.)

If v ∈ Q then we will write ∆v for the maximal l-power order quotient
of the inertia subgroup of Gab

Fev . We will also write

∆Q =
∏
v∈Q

∆v,

and aT,Q for the ideal of TT [∆Q] generated by the Xv,i,j (for v ∈ T and
i, j = 1, ..., n) and the δ − 1 for δ ∈ ∆Q. If r is Schur we have

R�T
S(Q)/aT,Q = Runiv

S .

The next lemma follows immediately from corollary 2.3.5.

Lemma 2.5.8 Keep the notation and assumptions of the start of section 2.3.
Also suppose that r is Schur and that for v ∈ S − T we have

dimk Lv − dimkH
0(GFev , ad r) =

{
[F+
v : Ql]n(n− 1)/2 if v|l

0 if v 6 |l.

Let (Q, {ψv}v∈Q) be as in definition 2.5.7. Then R�T
S(Q,{ψv})

can be topologically

generated over Rloc
S,T = Rloc

S(Q),T by

dimkH
1
L(Q)⊥,T (GF+,S, ad r(1)) + #Q−

∑
v∈T, v|l[F

+
v : Ql]n(n− 1)/2−

− dimkH
0(GF+,S, ad r(1))− n

∑
v|∞(1 + χ(cv))/2

elements.
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Proposition 2.5.9 Keep the notation and assumptions of the start of section
2.3. Let q0 ∈ Z≥0. Suppose that r is Schur and that the group r(GF+(ζl)) is
big. Suppose also that for v ∈ S − T we have

dimk Lv − dimkH
0(GFev , ad r) =

{
[F+
v : Ql]n(n− 1)/2 if v|l

0 if v 6 |l.

Set q to be the larger of dimkH
1
L⊥,T (GF+,S, ad r(1)) and q0. For any posi-

tive integer N we can find (Q, Q̃, {ψv}v∈Q) as in definition 2.5.7, with the
following properties.

– #Q = q ≥ q0.
– If v ∈ Q then Nv ≡ 1 mod lN .
– R�T

S(Q,{ψv})
can be topologically generated over Rloc

S,T = Rloc
S(Q),T by

#Q−
∑

v∈T, v|l

[F+
v : Ql]n(n− 1)/2− n

∑
v|∞

(1 + χ(cv))/2

elements.

Proof: Suppose that (Q, {ψv}v∈Q) is as in definition 2.5.7. We have a
left exact sequence

(0) −→ H1(GF+,S, (ad r)(ε)) −→ H1(GF+,S∪Q, (ad r)(ε)) −→
−→

⊕
v∈QH

1(IFev , (ad r)(ε))GFev .
As

H1(IFev ,Hom (ψv, sv)(ε))
GFev = Hom (ψv, sv)GFev = (0)

and
H1(IFev ,Hom (sv, ψv)(ε))

GFev = Hom (sv, ψv)GFev = (0)

we have a left exact sequence

(0) −→ H1(GF+,S, (ad r)(ε)) −→ H1(GF+,S∪Q, (ad r)(ε)) −→
−→

⊕
v∈Q(H1(IFev , (ad sv)(ε))

GFev ⊕H1(IFev , (adψv)(ε))
GFev ),

and hence a left exact sequence

(0) −→ H1
L(Q)⊥(GF+,S∪Q, (ad r)(ε)) −→ H1

L⊥(GF+,S, (ad r)(ε)) −→
−→

⊕
v∈QH

1(GFev/IFev , (adψv)(ε)) =
⊕

v∈Q k.

The latter map sends the class of a cocycle φ ∈ Z1(GF+,S, (ad r)(ε)) to

(πFrobev ,ψv(Frobev) ◦ φ(Frobev) ◦ iFrobev ,ψv(Frobev))v∈Q.

(We are using πh,α (resp. ih,α) to denote the h-equivariant projection onto
(resp. injection of) the α eigenspace of h.)

By lemma 2.5.8 it suffices to find a set Q of primes of F+ disjoint from
S with #Q ≥ q0 and such that
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– if v ∈ Q then v splits completely in F (ζlN );
– if v ∈ Q then r(Frobv) has an eigenvalue ψv(Frobev) whose generalised

eigenspace has dimension 1;
– H1

L⊥(GF+,S, (ad r)(ε)) ↪→
⊕

v∈QH
1(GFev/IFev , (adψv)(ε)).

(If necessary we can then shrink Q to a set of cardinality q with the same
properties.) By the Cebotarev density theorem it suffices to show that if
φ is an element of the group Z1(GF+,S, (ad r)(ε)) with non-zero image in
H1(GF+,S, (ad r)(ε)), then we can find σ ∈ GF (ζ

lN
) such that

– r(σ) has an eigenvalue α whose generalised eigenspace has dimension
1;

– πσ,α ◦ φ(σ) ◦ iσ,α 6= 0.

Let L/F (ζlN ) be the extension cut out by ad r. If σ′ ∈ GL then r(σ′σ) ∈
k×r(σ) and φ(σ′σ) = φ(σ′) + φ(σ). Thus it suffices to find σ ∈ GF (ζ

lN
) such

that

– r(σ) has an eigenvalue α whose generalised eigenspace has dimension
1;

– πσ,α ◦ (φ(GL) + φ(σ)) ◦ iσ,α 6= 0.

It even suffices to find σ ∈ Gal (L/F (ζlN )) such that

– r(σ) has an eigenvalue α whose generalised eigenspace has dimension
1;

– πσ,α ◦ φ(GL) ◦ iσ,α 6= 0.

As r(GF+(ζl)) is big, so is r(GF+(ζ
lN

)). Thus H1(Gal (L/F (ζlN )), ad r) = (0).

We deduce that [φ] 6= 0 implies that φ(GL) 6= (0). Then the existence of a
suitable σ follows from our assumptions. �

2.6. Lifting Galois representations. — In this section we will prove
a generalisation of Ramakrishna’s lifting theorem for Galois representations
[Ra2]. We keep the notation and assumptions at the start of section 2.3.

Definition 2.6.1 Suppose that ad r is a semisimple k[GF+ ]-module. If W ⊂
ad r is a k[GF+ ]-submodule we will define

H1
S(GF+,S,W )

= H1(GF+,S,W ) ∩H1
S(GF+,S, ad r)

= ker(H1(GF+,S,W ) −→
⊕ev∈eS H1(GFev ,W )/(Lev ∩H1(GFev ,W )))

and

H1
L⊥(GF+,S,W (1))

= H1(GF+,S,W (1)) ∩H1
L⊥(GF+,S, ad r(1))

= ker(H1(GF+,S,W (1)) −→
⊕

v∈S H
1(GFev ,W )/(L⊥v ∩H1(GFev ,W (1)))).
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We will call W (resp. W (1)) insubstantial if H1
S(GF+,S,W ) = (0) (resp.

H1
L⊥(GF+,S,W (1)) = (0)).

Definition 2.6.2 Suppose that

S = (F/F+, S, S̃,O, r, χ, {Dv}v∈S)

is a global deformation problem. Let Q be a finite set of primes v 6∈ S of F+

which split in F and for which

Nv 6≡ 1 mod l.

Also let Q̃ denote a set consisting of one choice of a prime ṽ of F above each
element v of Q. For v ∈ Q suppose also that r|GFev = tv⊕sv with tv = ψv⊕ψvε
where dimk ψv = 1 and sv does not contain ψv or ψvε as a sub-quotient. Then
we define a global deformation problem

S[Q] = S[Q, {ψv}v∈Q] = (F/F+, S ∪Q, S̃ ∪ Q̃,O, r, χ, {Dv}v∈S∪Q),

where for v ∈ Q we take Dv to consist of all lifts of r|GFev which are (1 +

Mn(mR))-conjugate to one of the form t ⊕ s where t is an extension of an
unramified lift ψ of ψv by ψε, and where s is an unramified lift of s. (See
section 2.4.7.) We also define a second new global deformation

S[Q]′ = S[Q, {ψv}v∈Q]′ = (F/F+, S ∪Q, S̃ ∪ Q̃,O, r, χ, {Dv}v∈S ∪ {D′v}v∈Q),

where for v ∈ Q we take D′v to consist of all lifts of r|GFev which are (1 +

Mn(mR))-conjugate to one of the form t ⊕ s where t is an extension of an
unramified lift of ψv by an unramified lift of ψvε, and where s is an unramified
lift of s. (See section 2.4.8.)

If v ∈ Q we will let πψv (resp. iψv , resp. πψvε, resp. iψvε) denote the

GFev-equivariant projection r →→ ψv (resp. inclusion ψv ↪→ r, resp. projection

r →→ ψvε, resp. inclusion ψvε ↪→ r).

We now state our main lifting theorem for Galois representations. We
believe such theorems have some intrinsic interest. In addition we will need to
apply this theorem in the following situation. We will have a mod l represen-
tation which is induced from a character (and hence provably automorphic).
We will need to find an l-adic lift whose restriction to the decomposition
group at some prime corresponds (under the local Langlands correspondence)
to a Steinberg representation. (Such a lift will never itself be induced from
a character.)

The conditions of the following theorem are unfortunately rather compli-
cated. We apologise for this. They deserve clarification. However the theorem
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does suffice for our purposes. The reason for introducing the submodules W0

and W1 of ad r is that Ramakrishna’s method [Ra2] may not work to kill
cohomology classes on all of ad r. However sometimes in applications we will
know for other reasons that there are no cohomology classes supported on
these parts of ad r.

Theorem 2.6.3 Keep the notation and assumptions of the start of section
2.4. In addition make the following assumptions.

– For all v ∈ S the local deformation problem Dv is liftable and

dimk Lv − dimkH
0(GFev , ad r) =

{
[F+
v : Ql]n(n− 1)/2 if v|l

0 if v 6 |l.

– For each infinite place v of F+ we have χ(cv) = −1.
– ad r and (ad r)(1) are semisimple k[GF+ ]-modules and have no irre-

ducible constituent in common.
– H i(r(GF+(ζl)), gn(k)) = (0) for i = 0 and 1.

Suppose that W0 and W1 are GF+-submodules of ad r with W0 and W1(1)
insubstantial. Suppose moreover that for all irreducible k[GF+,S]-submodules
W and W ′ of gn(k) with W ′ 6⊂ W0 and W 6⊂ W1 we can find σ ∈ GF,S and
α ∈ k× with the following properties:

– ε(σ) 6≡ 1 mod l.
– The α generalised eigenspace Vσ,α of r(σ) and the αε(σ) generalised

eigenspace Vσ,αε(σ) of r(σ) are one dimensional. Let iσ,α (resp. iσ,αε(σ)) de-
note the inclusions Vσ,α ↪→ kn (resp. Vσ,αε(σ) ↪→ kn). Let πσ,α : kn → Vσ,α
(resp. πσ,αε(σ) : kn → Vσ,αε(σ)) denote the σ-equivariant projections.

– iσ,αε(σ)πσα 6∈ W0.
– (iσ,αε(σ)πσ,αε(σ) − iσ,απσ,α) 6∈ W1.
– πσ,α ◦W ◦ iσ,αε(σ) 6= (0).
– πσ,α ◦ w′ ◦ iσ,α 6= πσ,αε(σ) ◦ w′ ◦ iσ,αε(σ) for some w′ ∈ W ′.

(We note that this property will also hold for any non-zero Fl[GF+,S]-subspaces
W and W ′ of gn(k) with W ′ 6⊂ W0 and W 6⊂ W1. Because it holds for W
and W ′ if and only if it holds for their k-linear spans.)

Then we can find (Q, {ψv}v∈Q) as in definition 2.6.2 such that

Runiv
S[Q] = O.

In particular there is a lifting r : GF+,S∪Q → Gn(O) of r unramified at
all but finitely many primes, with ν ◦ r = χ and such that for all v ∈ S the
restriction r|GFev lies in Dev.
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Proof: We will continue to use the notation of definition 2.6.2. If the
cohomology group H1

L⊥(GF+,S, ad r(1)) = (0) then the proposition follows at
once from corollary 2.3.6 (with Q = ∅). In the general case we need only
show that we can find a prime v 6∈ S of F+ which splits in F such that

– Nv 6≡ 1 mod l.
– r|GFev = tv ⊕ sv where tv = ψv ⊕ ψvε and neither ψv nor ψvε is a

subquotient of sv.
–

dimkH
1
(L[{v}])⊥(GF+,S∪{v}, (ad r)(1)) < dimkH

1
L⊥(GF+,S, (ad r)(1)).

– H1
S[{v}](GF+,S∪{v},W0) = (0) and H1

(L[{v}])⊥(GF+,S∪{v},W1(1)) = (0), i.e.

W0 and W1(1) remain insubstantial for S[{v}].

(Then one can add primes v as above to S recursively until

H1
(L[Q])⊥(GF+,S∪Q, (ad r)(1)) = (0).)

So let v 6∈ S be a prime of F+ which splits in F such that

– Nv 6≡ 1 mod l.
– r|GFev = tv ⊕ sv where tv = ψv ⊕ ψvε and neither ψv nor ψvε is a

subquotient of sv.
– iψvεπψv 6∈ W0 and iψvεπψvε − iψvπψv 6∈ W1.

Note that there are left exact sequences

(0)→ H1
S(GF+,S, ad r)→ H1

S[{v}]′(GF+,S∪{v}, ad r)→ H1(IFev , k(iψvεπψv))

and
(0)→ H1

S[{v}](GF+,S∪{v}, ad r)→ H1
S[{v}]′(GF+,S∪{v}, ad r)→

→ H1(GFev/IFev , k(iψvεπψvε − iψvπψv))

and

(0)→ H1
(L[{v}]′)⊥(GF+,S∪{v}, (ad r)(1))→ H1

L⊥(GF+,S, (ad r)(1))→
→ H1(GFev/IFev , ((ad t)/k(iψvεπψv))(1)).

It follows from lemma 2.3.4 (and the discussions of sections 2.4.7 and 2.4.8)
that

dimkH
1
L⊥(GF+,S, (ad r)(1))− dimkH

1
(L[{v}]′)⊥(GF+,S∪{v}, (ad r)(1))

= dimkH
1
S(GF+,S, ad r)− dimkH

1
S[{v}]′(GF+,S∪{v}, ad r)+

+ dimk L
′
v − dimH0(GFev , ad r)

= dimkH
1
S(GF+,S, ad r)− dimkH

1
S[{v}]′(GF+,S∪{v}, ad r) + 1.
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Moreover because iψvεπψv 6∈ W0 we see that H1(GFev ,W0)∩Lv is contained in

H1(GFev/IFev ,W0) and so

H1
S[{v}](GF+,S∪{v},W0) ⊂ H1

S(GF+,S,W0) = (0).

Similarly because (iψvεπψvε − iψvπψv) 6∈ W1 we see that

H1(GFev ,W1(1)) ∩ L⊥v ⊂ H1(GFev/IFev ,W1(1))

and so
H1
L[{v}]⊥(GF+,S∪{v},W1(1)) ⊂ H1

L⊥(GF+,S,W1(1)) = (0).

Thus the prime v will have the desired properties if

H1
L⊥(GF+,S, (ad r)(1))→ H1(GFev/IFev , ((ad t)/k(iψvεπψv))(1))

and

H1
S(GF+,S, ad r) ↪→ H1

S[{v}]′(GF+,S∪{v}, ad r)→ H1(GFev/IFev , k(iψvεπψvε − iψvπψv))

are both non-trivial. (From the non-triviality of the first map we would then
deduce that

dimkH
1
L⊥(GF+,S, (ad r)(1)) ≥ dimkH

1
(L[{v}]′)⊥(GF+,S∪{v}, (ad r)(1)) + 1,

so that
dimkH

1
S(GF+,S, ad r) ≥ dimkH

1
S[{v}]′(GF+,S∪{v}, ad r)

and, in fact,

H1
S(GF+,S, ad r)

∼−→ H1
S[{v}]′(GF+,S∪{v}, ad r).)

Suppose that H1
L⊥(GF+,S, (ad r)(1)) 6= (0). It follows from lemma 2.3.4

that
dimH1

S(GF+,S, ad r) = dimH1
L⊥(GF+,S, (ad r)(1)) > 0.

Choose a non-zero class [ϕ] ∈ H1
L⊥(GF+,S, (ad r)(1)) and a non-zero class

[ϕ′′] ∈ H1
S(GF+,S, ad r). By the Cebotarev density theorem it suffices to show

that we can choose σ ∈ GF and α ∈ k with the following properties.

– σ|F (ζl) 6= 1.
– r(σ) has eigenvalues α and αε(σ) and the corresponding generalised

eigenspaces U and U ′ have dimension 1. Let i (resp. i′) denote the inclu-
sion of U (resp. U ′) into kn and let π (resp. π′) denote the σ-equivariant
projection of kn onto U (resp. U ′).

– i′π 6∈ W0.
– i′π′ − iπ 6∈ W1.
– π ◦ ϕ(σ) ◦ i′ 6= 0.
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– π ◦ ϕ′′(σ) ◦ i 6= π′ ◦ ϕ′′(σ) ◦ i′.

Let L denote the extension of F (ζl) cut out by ad r. Replacing σ by
σ′σ with σ′ ∈ GL we need only show that we can find σ ∈ GF and α ∈ k
with the following properties.

– σ|F (ζl) 6= 1.
– r(σ) has eigenvalues α and αε(σ) and the corresponding generalised

eigenspaces U and U ′ have dimension 1. Let i (resp. i′) denote the inclu-
sion of U (resp. U ′) into kn and let π (resp. π′) denote the σ-equivariant
projection of kn onto U (resp. U ′).

– i′π 6∈ W0.
– i′π′ − iπ 6∈ W1.
– π ◦ ϕ(GL) ◦ i′ 6= 0.
– σ′ 7→ π ◦ ϕ′′(σ′) ◦ i− π′ ◦ ϕ′′(σ′) ◦ i′ is not identically zero on GL.

Note that ϕ(GL) 6⊂ W0 and ϕ′′(GL) 6⊂ W1 (because H1
S(GF+,S,W0) = (0)

and H1
L⊥(GF+,S,W1(1)) = (0)). Hence the existence of σ follows from the

assumptions of the theorem. �

Because the hypotheses of this theorem are so complicated we give a
concrete illustration of the theorem. It will not be needed in the sequel. We
will write Cl(F ) for the class group of a number field F .

Corollary 2.6.4 Suppose that n > 1 is an integer, that F+ is a totally real
field and that F is a totally imaginary quadratic extension of F+. Suppose
also that l > n is a prime with the following properties.

– l is unramified in F+.
– All primes of F+ above l split in F .
– l 6 |#Cl(F )Gal (F/F+), the order of the Gal (F/F+)-coinvariants Cl(F ).

Suppose finally that

r : GF+ →→ Gn(Fl)

is a continuous, surjective homomorphism such that

– r−1(GLn(Fl)×GL1(Fl)) = GF ;
– r|GF only ramifies at primes which are split over F+;
– ν ◦ r(c) = −1 for any complex conjugation c;
– for any place w of F above l then r|GFw is in the image of Gw and

for each i = 0, ..., l − 2 we have

dimk(w) gr iG−1
w r|GFw ≤ 1.
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Then there is a finite extension k/Fl such that r lifts to a continuous
homomorphism

r : GF+ −→ Gn(W (k))

which ramifies at only finitely many primes and which is crystalline at all
primes of F above l (with Hodge-Tate numbers all between 0 and l − 2).

Proof: We apply the theorem. We take O = W (k) for a suitably large
finite extension k/Fl. We take S to be the set of places above l or below
a prime of F at which r|GF is ramified. For v|l we take Dv as in section
2.4.1. For v ∈ S with v 6 |l we take Dv as in section 2.4.4. As l > n we
have ad r = k1n ⊕ ad 0r and both summands are irreducible GF -modules.
As F+(ζl) is linearly disjoint from F over F+ (look at ramification above
l) we have that H0(r(GF+(ζl)), k1n) = (0) and H1(r(GF+(ζl)), k1n) = (0).
Clearly H0(r(GF+(ζl)), g

0
n(k)) = (0). By [CPS] (see table (4.5)) we have that

H1(SLn(Fl),Mn(Fl)
tr =0) = (0), and so H1(r(GF+(ζl)), g

0
n(k)) = (0). We take

W0 = k1n and W1 = (k1n)(1). Then

H1
S(GF+,S,W0) = ker(H1(GF+ , k1n) −→

⊕
vH

1(IFev , k1n))
= ker(H1(GF+ , k1n) −→

⊕
vH

1(IF+ev , k1n))

= ker(H1(GF , k1n) −→
⊕evH1(IFev , k1n))Gal (F/F+)

= Hom (Cl(F )/(c− 1)Cl(F ), k) = (0).

(Note that if ṽ is a prime of F ramified over F+ then H1(IF+ev , k1n) ↪→
H1(IFev , k1n).) Also

H1
L⊥(GF+,S,W1) = ker(H1(GF+ , (k1n)(1)) −→

⊕
v

H1(IF+
v
, (k1n)(1))).

(Note that if ṽ is a prime of F ramified over F+ then H1(IF+ev , (k1n)(1)) ↪→
H1(IFev , (k1n)(1)).) By, for instance, theorem 2.19 of [DDT] we see that

H1
L⊥(GF+,S,W1) = (0).

The rest of the hypotheses of the theorem are easy to verify and the corollary
follows. �

2.7. An example. — In this section we will specialise the theorem of
the last section to the case where we will require it: r will be induced from
a character and we will be looking for a lift r with the property that the
restriction to some decomposition group corresponds (under the local Lang-
lands correspondence) to a Steinberg representation.
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Fix a positive even integer n and choose a second positive integer κn
greater than (n− 1)((n + 2)n/2 − (n− 2)n/2)/2n+1. (This number is too large
for its precise value to matter, what matters is that there is some constant
κn which depends only on n which will suffice.)

In this section we will consider the following situation.

– M/Q is a Galois imaginary CM field of degree n with Gal (M/Q)
cyclic generated by an element τ .

– l > 1+4κn is a prime which splits completely in M and is ≡ 1 mod n.
– Q 63 l is a finite set of rational primes, such that if q ∈ Q then q

splits completely in M and qi 6≡ 1 mod l for i = 1, ..., n.

– θ : Gal (Q/M) −→ F
×
l is a continuous character such that

– θθc = ε1−n;
– there exists a prime w|l of M such that for i = 0, ...., n/2 − 1 we

have θ|Iτiw = ε−i;

– if v1, ..., vn are the primes of M above q ∈ Q then {θ(Frobvi)} =

{αqq−j : j = 0, ..., n− 1} for some αq ∈ F
×
l ;

Let S(θ) denote the set of rational primes above which M or θ is ramified.
It includes l.

– E/Q is an imaginary quadratic field linearly disjoint from the normal

closure of M
ker θ

(ζl)/Q in which every element of S(θ)∪Q splits; and such
that the class number of E is not divisible by l.

The referee asks the good question: are there any examples where all
these conditions are met? The answer is ‘yes’. One example is given in the
proof of theorem 3.1 of [HSBT]. We remark that the primes in Q will be
those at which the lift we construct will correspond (under the local Lang-
lands correspondence) to a Steinberg representation.

Set L/Q equal to the normal closure over Q of the composite of E and

M
ker θ

(ζl). Also let (EM)+ denote the maximal totally real subfield of EM .
Then θ|Gal (L/EM) extends to a homomorphism, which we will also denote θ,

θ : Gal (L/(EM)+) −→ G1(Fl)

such that θ(c) = (1, 1, ) and ν ◦ θ = ε1−n. Let r : Gal (L/Q) → Gn(Fl)
denote the induction with multiplier ε1−n from (Gal (L/(EM)+),Gal (L/EM))
to (Gal (L/Q),Gal (L/E)) of θ. (See section 2.1.)

We have an embedding

Gal (L/EM) ↪→ (F
×
l )n/2 × F×l

α 7−→ (θ(α), θ
τ
(α), ..., θ

τn/2−1

(α); ε(α)).
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Fix a primitive nth root of unity ζn ∈ Fl. Suppose α = (α0, ..., αn/2−1) ∈
(F
×
l )n/2 and β ∈ F

×
l satisfy β2 = α0...αn/2−1. If n/2 ≤ i ≤ n−1 set αi = α−1

i−n/2.

Let Γα,β = Γ denote the group generated by (F
×
l )n/2 ×F×l and two elements

C and T satisfying

– C2 = 1 and T n = 1;
– CTCT−1 = (α0, ..., αn/2−1; 1);
– T (a0, ..., an/2−1; b)T−1 = (a1, ..., an/2−1, b

1−na−1
0 ; b);

– and C(a0, ..., an/2−1; b)C = (b1−na−1
0 , ..., b1−na−1

n/2−1; b).

Define characters Ξ : Γ → F×l by

– Ξ(T ) = ζn,
– Ξ(C) = −1,
– and Ξ(a0, ..., an/2−1; b) = b;

and Θ : 〈(F×l × F×l , CT
n/2〉 → F

×
l such that

– Θ(a0, ..., an/2−1; b) = a0,

– and Θ(CT n/2) = β.

Note that

– Θ(CT iCT−i) = α0...αi−1 (because (CTCT−1)T (CT iCT−i)T−1 =
CT i+1CT−(i+1)), and

– Θ(T iCT n/2T−i) = β(α0...αi−1)−1 (because (CT iCT−i)T i(CT n/2)T−i =
CT n/2).

Let Γ0 = Γα,β,0 denote the subgroup generated by ((F×l )κn)⊕n/2+1 and by C
and T . The next lemma tells us that for many calculations we can replace
the group Gal (L/Q) by the more concrete groups Γ and Γ0.

Lemma 2.7.1 There exist α and β such that the embedding

Gal (L/EM) ↪→ (F
×
l )n/2 × F×l

extends to an embedding
j : Gal (L/Q) ↪→ Γ

satisfying

– Ξ ◦ j = ε;
– Θ ◦ j = θ;
– the image of j contains Γ0;
– some complex conjugation maps to C;
– and some lifting τ̃ ∈ Gal (L/E) of the generator τ of Gal (EM/E)

∼→
Gal (M/Q) maps to T .
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If such an embedding exists for some α it also exists for any element of
α((F×l )2κn)⊕n/2.

Proof: Note that EM and Q(ζl) are linearly disjoint over Q. Thus we

may choose a lifting τ̃ ∈ Gal (L/E) of the generator τ of Gal (EM/E)
∼→

Gal (M/Q) with ε(τ̃) = ζn. Also choose a complex conjugation c ∈ Gal (Q/Q).
Then ε(cτ̃n/2) = 1 and so

θ(τ̃n) = θ(c(cτ̃n/2)c(cτ̃n/2))

= (θθ
c
)(cτ̃n/2)

= ε(cτ̃n/2)1−n

= 1.

Also note that ε(cτ̃ cτ̃−1) = 1. Setting αi = θ
τ i

(cτ̃ cτ̃−1) we get a homomor-
phism

j : Gal (L/Q) ↪→ Γ

extending the embedding Gal (L/EM) ↪→ (F
×
l )n/2×F×l and which sends τ̃ to

T and c to C. We have Ξ ◦ j = ε. Note that

θ(cτ̃n/2)2 = θ(cτ̃n/2cτ̃−n/2) = θ(cτ̃ cτ̃−1)θ
τ
(cτ̃ cτ̃−1)...θ

τn/2−1

(cτ̃ cτ̃−1),

and so for some choice of β we have Θ ◦ j = θ.
Choose a place u of E above l. Let A denote the subgroup of the image

of Ind
Gal (E/E)

Gal (E/EM)
θ generated by the decomposition groups above u. Let w be

a place of EM above u. For any integer i define βi to be

– −i0 if i ≡ i0 mod n and 0 ≤ i0 ≤ n/2− 1, and
– i0 + 1− 3n/2 if i ≡ i0 mod n and n/2 ≤ i0 ≤ n− 1.

Note that βi + βi+n/2 = 1− n. We have

n−1∏
i=0

IMσiw
→→

n−1∏
i=0

F×l →→ A ↪→ (F
×
l )n/2+1.

The composite map
n−1∏
i=0

F×l −→ (F
×
l )n/2+1

sends

(ai)i 7−→ (
n−1∏
i=0

aβii ,
n−1∏
i=0

a
βi−1

i , ...,
n−1∏
i=0

a
βi+1−n/2
i , (

n−1∏
i=0

ai)
1−n).
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Moreover by part three of lemma 2.7.2 below we see that the image has
index dividing κn. Thus the image of j contains Γ0.

Finally note that

((a0, ..., an/2−1; 1)T )n = 1

and

C(a0, ..., an/2−1; 1)TC((a0, ..., an/2−1; 1)T )−1 = (α0a
−2
0 , ..., αn/2−1a

−2
n/2−1; 1).

(These two equalities follow directly from the relations defining Γ :

((a0, ..., an/2−1; 1)T )n

= (a0, ..., an/2−1; 1)(a1, ..., an/2−1, a
−1
0 ; 1)...(a−1

0 , ..., a−1
n/2−1; 1)...

...(a−1
1 , ..., a−1

n/2−1, a0; 1)T n

= 1;

and
C(a0, ..., an/2−1; 1)C−1(CTCT−1)(a0, ..., an/2−1; 1)−1

= (a0, ..., an/2−1; 1)−1(α0, ..., αn/2−1; 1)(a0, ..., an/2−1; 1)−1.)

�

Here is the evaluation of a determinant that was used in the proof of
the last lemma. The first two parts are only needed to help prove the third
part.

Lemma 2.7.2 We have the following evaluations of determinants.

1. For an n× n determinant:

det



1 b 0 0 0 0
1 c b 0 . . . 0 0
1 c c b 0 0

...
. . .

...
1 c c c c b
1 c c c . . . c c

 = (c− b)n−1.

2. For an n× n determinant:

det



a b b b b b
c a b b . . . b b
c c a b b b

...
. . .

...
c c c c a b
c c c c . . . c a

 = (c(a− b)n − b(a− c)n)/(c− b).
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3. For an (n+ 1)× (n+ 1) determinant:

det



0 1 2 3 n− 2 n− 1 2n− 1
n 0 1 2 . . . n− 3 n− 2 2n− 1

n+ 1 n 0 1 n− 4 n− 3 2n− 1
...

. . .
...

2n− 3 2n− 4 2n− 5 2n− 6 0 1 2n− 1
2n− 2 2n− 3 2n− 4 2n− 5 . . . n 0 2n− 1
2n− 1 2n− 1 2n− 1 2n− 1 2n− 1 2n− 1 2(2n− 1)


= (−1)n(2n− 1)((n+ 1)n + (n− 1)n)/2.

Proof: For the first part subtract the penultimate row from the last row,
then the three from last row from the penultimate row and so on finally sub-
tracting the first row from the second. One ends up with an upper triangular
matrix.

For the second matrix let ∆n denote the determinant. Subtract the first
row from each of the others and expand down the last column. Using the
first part, we obtain

∆n = b(a− c)n−1 + (a− b) det


a b b b b

c− a a− b 0 0 . . . 0
c− a c− b a− b 0 0

...
. . .

...
c− a c− b c− b c− b . . . a− b


= b(a− c)n−1 + (a− b)∆n−1.

The second assertion follows easily by induction.
For the third matrix subtract the second row from the first, the third

from the second and so on, finally subtracting the penultimate row from the
two from last row. One obtains

det



−n 1 1 1 1 1 0
−1 −n 1 1 . . . 1 1 0
−1 −1 −n 1 1 1 0

...
. . .

...
−1 −1 −1 −1 −n 1 0

2n− 2 2n− 3 2n− 4 2n− 5 . . . n 0 2n− 1
2n− 1 2n− 1 2n− 1 2n− 1 2n− 1 2n− 1 2(2n− 1)


.

Then add half the sum of the first n−1 rows to the penultimate row making
it

n− 1 n− 1 n− 1 n− 1 . . . n− 1 (n− 1)/2 2n− 1.
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Now subtract 1/2 of the last column from each of the first n columns. This
leaves the first n− 1 rows unchanged and the last two rows become

−1/2 −1/2 −1/2 −1/2 . . . −1/2 −n/2 2n− 2
0 0 0 0 . . . 0 0 2(2n− 1).

Thus the determinant becomes

(2n− 1) det



−n 1 1 1 1 1
−1 −n 1 1 . . . 1 1
−1 −1 −n 1 1 1

...
. . .

...
−1 −1 −1 −1 −n 1
−1 −1 −1 −1 . . . −1 −n

 .

The result follows on applying the second part. �

There is a homomorphism

Θ̃ : 〈(F×l )n/2 × F×l , C〉 −→ G1(F
×
l )

extending Θ|
(F
×
l )n/2×F×l

and with ν◦Θ̃ = Ξ1−n. It takes C to (1, 1, ). Consider

I, the induction of Θ̃ from (〈(F×l )n/2×F×l , C〉, (F
×
l )n/2×F×l ) to (Γ, 〈(F×l )n/2×

F×l , T 〉) with multiplier Ξ1−n. (See section 2.1.) Then I has a basis consisting
of functions ei for i = 0, ..., n − 1 with ei(T

j) = δij for j = 0, ..., n − 1. Let

f0, ..., fn−1 be the dual basis of I∨. If (a0, ..., an/2−1; b) ∈ (F
×
l )n/2 × F×l set

ai = b1−na−1
i−n/2 for i = n/2, ..., n− 1. Then we have

– Tei = ei−1 (with e−1 = en−1);
– (a0, ..., an/2−1; b)ei = aiei for i = 0, ..., n− 1;
– Tfi = fi−1;
– and (a0, ..., an/2−1; b)fi = a−1

i fi for i = 0, ..., n− 1.

Moreover
〈ei, ej〉 = ζ inα0...αi−1δij.

We have r = I ◦ j.
Then Γ acts on ad I via

– Tei ⊗ fj = ei−1 ⊗ fj−1;
– (a0, ..., an/2−1; b)ei ⊗ fj = ai/ajei ⊗ fj;
– Cei ⊗ fj = −ζ i−jn αj...αi−1ej ⊗ fi if 0 ≤ j ≤ i ≤ n− 1;
– and Cei ⊗ fj = −ζ i−jn (αi...αj−1)−1ej ⊗ fi if 0 ≤ i ≤ j ≤ n− 1.

Hence if 0 ≤ i ≤ j ≤ n/2− 1 then
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– CT n/2ei ⊗ fj = −ζ i−jn αi...αj−1ej+n/2 ⊗ fi+n/2;

– CT n/2ej+n/2 ⊗ fi+n/2 = −ζj−in αi...αj−1ei ⊗ fj;
– CT n/2ej ⊗ fi = −ζj−in α−1

i ...α−1
j−1ei+n/2 ⊗ fj+n/2;

– CT n/2ei+n/2 ⊗ fj+n/2 = −ζ i−jn α−1
i ...α−1

j−1ej ⊗ fi;
– CT n/2ei ⊗ fj+n/2 = ζ i−jn α−1

0 ...α−1
i−1αj...αn/2−1ej ⊗ fi+n/2;

– CT n/2ej ⊗ fi+n/2 = ζj−in α−1
0 ...α−1

i−1αj...αn/2−1ei ⊗ fj+n/2;

– CT n/2ei+n/2 ⊗ fj = ζ i−jn α0...αi−1α
−1
j ...α−1

n/2−1ej+n/2 ⊗ fi;
– and CT n/2ej+n/2 ⊗ fi = ζj−in α0...αi−1α

−1
j ...α−1

n/2−1ei+n/2 ⊗ fj.

For j = 1, ..., n/2− 1 let W±
j denote the span of the vectors

ei ⊗ fi+j ∓ ζ−jn en/2+i+j ⊗ fn/2+i

for i = 0, ..., n − 1 (and where we consider the subscripts modulo n). Then
W±
j is a Γ -invariant subspace of ad I. The space W+

j is isomorphic to the

induction from 〈(F×l )n/2 × F×l , CT
n/2〉 to Γ of Θ/ΘT j . The space W−

j is iso-

morphic to the induction from 〈(F×l )n/2 × F×l , CT
n/2〉 to Γ of Θ/ΘT j times

the order two character with kernel (F
×
l )n/2 × F×l .

If χ is a character of Γ/((F
×
l )n/2×F×l ) with χ(C) = −1 let Wχ denote

the span of

e0 ⊗ f0 + χ(T )e1 ⊗ f1 + ...+ χ(T )n−1en−1 ⊗ fn−1.

Then Wχ is an Γ -invariant subspace of ad I on which Γ acts via χ.
Let Wn/2 denote the span of the vectors ei ⊗ fi+n/2 for i = 0, ..., n − 1

(with the subscripts taken modulo n). Then Wn/2 is a Γ -invariant subspace of

ad I isomorphic to the induction from 〈(F×l )n/2×F×l , CT
n/2〉 to Γ of Θ/ΘTn/2 .

We have

ad I = Wn/2 ⊕ (
⊕
χ

Wχ)⊕ (

n/2−1⊕
j=1

W+
j )⊕ (

n/2−1⊕
j=1

W−
j ).

Lemma 2.7.3 The restrictions to ΓΞ=1
0 of the 2n − 1 representations Wn/2,

W±
j (for j = 1, ..., n/2−1) and Wχ are all irreducible, non-trivial and pairwise

non-isomorphic.

Proof: It suffices to show the following:

– If 1 ≤ j ≤ n/2 then Θ 6= ΘT j on ((F
×
l )κn)⊕n/2 × {1}.

– If 1 ≤ j, j′ ≤ n/2 and 0 ≤ k ≤ n− 1 then

Θ/ΘT j 6= ΘTk/ΘT j
′+k

on ((F
×
l )κn)⊕n/2 × {1} unless j = j′ and k = 0.
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These facts are easily checked because (l − 1)/κn > 4. �

Proposition 2.7.4 Keep the notation and assumptions listed at the start of
this section. There is a continuous homomorphism

r : GQ −→ Gn(OQl
)

such that

– r lifts r;
– ν ◦ r = ε1−n;
– r is ramified at only finitely many primes, all of which split in E;
– for all places v|l of E, r|Gal (Ev/Ev) is crystalline;

– for all τ ∈ Hom (E,Ql) above a prime v|l of E;

dimQl
gr i(r ⊗τ,Ev BDR)Gal (Ev/Ev) = 1

for i = 0, ..., n− 1 and = 0 otherwise;
– for any place v of E above a rational prime q ∈ Q, the restriction

r|ss
Gal (Ev/Ev)

is unramified and r|ss
Gal (Ev/Ev)

(Frobv) has eigenvalues {αq−j :

j = 0, ..., n− 1} for some α ∈ Q
×
l .

Proof: Consider the following deformation problem for r

S1 = (E/Q, S1, S̃1,O, r, ε1−n, {Dv}v∈S1),

where S1 = Q ∪ S(θ) and O denotes the Witt vectors of Fl. For v ∈ S1 we
define Dv (and Lv) as follows.

– If v = l the choice of Dv is described in section 2.4.1.
– If v ∈ Q then Dv is as in section 2.4.5 with m = n and r̃v = 1.
– If v ∈ S(θ)− {l} then Dv is as in section 2.4.4.

Also set W0 =
⊕

χWχ ⊂ ad r and δE/Q : GQ →→ Gal (E/Q) ∼= {±1}.
Then H1

S1
(GQ,S1 ,W0) is the kernel of the map from H1(GQ,W0) to

⊕
v 6∈Q

H1(IQv ,W0)⊕
⊕
v∈Q

H1(IQv ,WδE/Q)⊕
⊕

χ 6=δE/Q

H1(GQv ,Wχ)

 .

(To calculate the local condition at l use lemma 2.4.5 and corollary 2.4.4. To
calculate the local condition at v ∈ S(θ)−{l} use lemma 2.4.22. To calculate
the local condition at v ∈ Q use lemma 2.4.30.) Because l does not divide
the order of the class group of E we see that

ker

(
H1(GQ,WδE/Q) −→

⊕
v

H1(IQv ,WδE/Q)

)
= (0).
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On the other hand if χ 6= δE/Q then

ker

(
H1(GQ,Wχ) −→

⊕
v 6∈Q

H1(IQv ,Wχ)⊕
⊕
v∈Q

H1(GQv ,Wχ)

)

is contained in Hom (ClQ(EM), k), where ClQ(EM) denotes the quotient of
the class group of EM by the subgroup generated by the classes of primes
above elements of Q. Because the maximal elementary l extension of EM
unramified everywhere is linearly disjoint from L over EM , the Cebotarev
density theorem implies that we can enlarge Q so that Hom (ClQ(EM), k) =
(0). Make such an enlargement. Then H1

L1
(GQ,S1 ,W0) = (0).

Moreover H1
L⊥1

(GQ,WδE/Q(1)) is the kernel of the restriction map from

H1(GQ,WδE/Q(1)) to(
H1(GQl

,WδE/Q(1))/H1(GQl
/IQl

,WδE/Q)⊥
)
⊕
⊕
v 6=l

H1(IQv ,W0).

From theorem 2.19 of [DDT] we deduce that

#H1
L⊥1

(GQ,S1 ,WδE/Q(1)) = #H1
L1

(GQ,S1 ,WδE/Q) = 1,

i.e. H1
L⊥1

(GQ,S1 ,WδE/Q(1)) = (0).

Now consider a second deformation problem

S2 = (E/Q, S2, S̃2,O, r, ε1−n, {Dv}v∈S2).

Here S2 = S1 ∪ Q′, where Q′ will be a set of primes disjoint from S1 such
that if q′ ∈ Q′ then

j(Frobq′) = T (a0(q′), ..., an/2−1(q′); b(q′))

with b(q′)n = 1 and ζnb(q
′) 6= 1. Thus the eigenvalues of r(Frobq′) are the nth

roots of b(q′)n/2 each with multiplicity 1, and ε(Frobq′) 6= 1. Set ai+n/2(q′) =
b(q′)1−nai(q

′)−1 for i = 0, ..., n/2−1. For v ∈ Q′ choose an unramified character
χv of GEev with χv(Frobev)n = b(q′)n/2, and let Dv and Lv be as in section
2.4.7 with χ = χv. Let πv (resp. iv, resp. π′v, resp. i′v) denote the projection
onto the χv(Frobev) (resp. inclusion of the χv(Frobev), resp. projection onto the
b(q′)ζnχv(Frobv), resp. inclusion of the b(q′)ζnχv(Frobev)) eigenspace of Frobev
in r. Then i′vπv is in the k-span of

n−1∑
i,j=0

b(q′)iζ inχv(Frobev)i−j(a1(q′)...ai(q
′))−1a1(q′)...aj(q

′)ei ⊗ fj.
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Thus i′vπv 6∈ W0 and so H1
S2

(GQ,S2 ,W0) ⊂ H1
S1

(GQ,S1 ,W0) = (0).
On the other hand i′vπ

′
v − ivπv is in the k-linear span of

n−1∑
i,j=0

((b(q′)ζn)i−j − 1)χv(Frobv)
i−j(a1(q′)...ai(q

′))−1a1(q′)...aj(q
′)ei ⊗ fj

and so i′vπ
′
v − ivπv 6∈ W0 (because b(q′)ζn 6= 1). Thus

H1
L⊥2

(GQ,S2 ,W0(1)) = ker

(
H1
L⊥1

(GQ,S1 ,W0(1)) −→
⊕
q′∈Q′

H1(GQq′
/IQq′

, k)

)
,

where the map onto the factor H1(GQq′
/IQq′

, k) is induced by A 7−→ πvAi
′
v

for v ∈ S̃2 with v|q′, i.e. by

n−1∑
i=0

xiei ⊗ fi 7−→
n−1∑
i=0

xi(b(q
′)ζn)i.

If [φ] ∈ H1
L⊥1

(GQ,S1 ,W0(1)) then the extension Pφ of EM cut out by φ

is nontrivial and l-power order and hence linearly disjoint from L over EM .
Because H1

L⊥1
(GQ,S1 ,WδE/Q(1)) = (0) we see that φ(Gal (Pφ/EM)) 6⊂ WδE/Q(1).

Thus we can choose b 6= ζ−1
n so that

n−1∑
i=0

xiei ⊗ fi 7−→
n−1∑
i=0

xi(bζn)i

is not identically zero on φ(Gal (Pφ/EM)). Then choose a0, ..., an/2−1 ∈ F
×
l

and σ ∈ Gal (LPφ/Q) such that j(σ) = T (a0, ..., an/2−1; b) and, if

φ(σ) =
n−1∑
i=0

φi(σ)ei ⊗ fi

then
n−1∑
i=0

(bζn)iφi(σ) 6= 0.

Let q′ 6∈ S1 be a rational prime unramified in LPφ with Frobq′ = σ ∈
Gal (LPφ/Q). Then if q′ ∈ Q′ and b(q′) = b then [φ] 6∈ H1

L⊥2
(GQ,S2 ,W0(1)).

Thus we can choose Q′ and the b(q′) for q′ ∈ Q′ such that

H1
L⊥2

(GQ,S2 ,W0(1)) = (0).
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Make such a choice.
Finally we will apply theorem 2.6.3 with W1 = W0 to complete the

proof of the lemma. In the notation of theorem 2.6.3, given W and W ′,
each equal to Wn/2 or some W±

j , we will show that the conditions of theorem
2.6.3 can be verified with σ a lift of T (a0, ..., an/2−1; b) ∈ Γ0 for a suitable
a0, ..., an/2−1, b. We shall suppose that bn = 1 but that b 6= ζ−1

n , so that
ε(σ)n = 1 but ε(σ) 6= 1. For i = 0, ..., n/2− 1 write ai+n/2 = b1−na−1

i . There is
a decomposition

r =
⊕

µn=bn/2

Vµ

into σ-eigenspaces, where σ acts on Vµ as µ and where Vµ is the span of

e0 + µa−1
1 e1 + ...+ µn−1a−1

1 ...a−1
n−1en−1.

Let iµ denote the inclusion Vµ ↪→ r and let πµ denote the σ-equivariant
projection r →→ Vµ, so that πµiµ = IdVµ . Note that

– iµε(σ)πµ =
∑n−1

i,j=0 a1...aj(a1...ai)
−1µi−jε(σ)iei ⊗ fj 6∈ W0

– and iµε(σ)πµε(σ) − iµπµ =
∑n−1

i,j=0 a1...aj(a1...ai)
−1µi−j(ε(σ)i−j − 1) 6∈ W0.

Moreover

– πµ(ei ⊗ fi+n/2)iµε(σ) = ε(σ)i+n/2µn/2(ai+1...ai+n/2)−1;
– πµ(ei ⊗ fi+j ∓ ζ−jn en/2+i+j ⊗ fn/2+i)iµε(σ) = (ai+1...ai+j)

−1µjε(σ)i+j(1 ±
bn/2(µζn)−2j);

– πµε(σ)(ei ⊗ fi+n/2)iµε(σ) − πµ(ei ⊗ fi+n/2)iµ = (ε(σ)n/2 − 1)µn/2

(ai+1...ai+n/2)−1;
– and πµε(σ)(ei⊗fi+j∓ζ−jn en/2+i+j⊗fn/2+i)iµε(σ)−πµ(ei⊗fi+j∓ζ−jn en/2+i+j⊗

fn/2+i)iµ = (1± (ζnµ)−2j)(ε(σ)j − 1)µj(ai+1...ai+j)
−1.

Let β (resp. γ) denote a primitive (n/2)th (resp. (2n)th) root of 1. Then we
have:

– In the cases W,W ′ ∈ {Wn/2,W
−
1 , ...,W

−
n/2−1} taking b = µ = 1 will

satisfy the conditions of theorem 2.6.3.
– In the cases W,W ′ ∈ {Wn/2,W

+
1 , ...,W

+
n/2−1} taking b = 1 and µ = ζ−1

n

will satisfy the conditions of theorem 2.6.3.
– If W,W ′ ∈ {W±

1 , ...,W
±
n/2−1} taking b = ζ−1

n β and µ = ζ−1
n γ will satisfy

the conditions of theorem 2.6.3.

�

Lemma 2.7.5 Keep the notation and the assumptions of the beginning of this
section. Then r(GF+(ζl)) is big.
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Proof: This follows from lemmas 2.7.1 and 2.7.3, the fact that l does
not divide #r0(GQ) and the following calculations.

– Take a0 ∈ (F×l )κn with a2
0 6= 1 and take σ ∈ GF (ζl) with j(σ) =

(a0, 1, ..., 1; 1) ∈ ∆0. Then

πσ,a0Wχiσ,a0 6= (0).

– Take (a0, ..., an/2−1) ∈ (F×l )⊕n/2 and σ ∈ GF (ζl) with j(σ) =
T (a0, ..., an/2−1; ζ−1

n ). Also take µ to be the product of ζ−1
n with a primitive

(2n)th root of 1. Set ai+n/2 = ζ−1
n ai for i = 0, ..., n/2− 1. Then

πσ,µei ⊗ fi+n/2iσ,µ = µn/2(ai+1...ai+n/2)−1

and

πσ,µ(ei ⊗ fi+j ∓ ζ−jn en/2+i+j ⊗ fn/2+i)iσ,µ = (1∓ (µζn)−2j)µj(ai+1...ai+j)
−1.

Thus πσ,µWn/2iσ,µ 6= (0) and πσ,µW
±
j iσ,µ 6= (0).

�
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3. Hecke algebras.

3.1. GLn over a local field: characteristic zero theory.. — In this sec-
tion let p be a rational prime and let Fw be a finite extension of Qp. Let
OFw denote the maximal order in Fw, let ℘w denote the maximal ideal in
OFw , let k(w) = OFW /℘w and let qw = #k(w). We will use $w to denote a
generator of ℘w in situations where the particular choice of generator does
not matter. Fix a set X = X(Fw) of representatives in OFw for k(w) such
that 0 ∈ X. Also let K denote an algebraic closure of Ql. Also fix a pos-
itive integer n. We will write Bn for the Borel subgroup of GLn consisting
of upper triangular matrices.

We will use some, mostly standard, notation from [HT] without com-
ment. For instance n-Ind , �, Spm, JL , rec and Rl. On the other hand, if
π is an irreducible smooth representation of GLn(Fw) over K we will use
the notation rl(π) for the l-adic representation associated (as in [Tat]) to the
Weil-Deligne representation

recl(π
∨ ⊗ | |(1−n)/2),

when it exists (i.e. when the eigenvalues of rec(π∨ ⊗ | |(1−n)/2)(φw) are l-adic
units for some lift φw of Frobw). In [HT] we used rl(π) for the semisimplifi-
cation of this representation.

For any integer m ≥ 0 we will let U0(wm) (resp. U1(wm)) denote the
subgroup of GLn(OFw) consisting of matices whose last row is congruent to
(0, ..., 0, ∗) (resp. (0, ..., 0, 1)) modulo ℘mw . Thus U1(wm) is a normal subgroup
of U0(wm) and we have a natural identification

U0(wm)/U1(wm) ∼= (OFw/℘mw )×

by projection to the lower right entry of a matrix. We will also denote by
Iw(w) the subgroup of GLn(OFw) consisting of matrices which are upper tri-
angular modulo ℘w and by Iw1(w) the subgroup of Iw(w) consisting of matri-
ces whose diagonal entries are all congruent to one modulo ℘w. Thus Iw1(w)
is a normal subgroup of Iw(w) and we have a natural identification

Iw(w)/Iw1(w) ∼= (k(w)×)n,

under which diag(α1, ..., αn) maps to (α1 mod ℘w, ..., αn mod ℘w).
We will let ςw,j denote the matrix(

$w1j 0
0 1n−j

)
.
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We will also let wm denote the m×m-matrix with (wm)ij = 1 if i+j = m+1
and (wm)ij = 0 otherwise. Finally we will let wn,i denote the matrix(

1i−1 0
0 wn+1−i

)
.

For j = 1, ..., n let T
(j)
w denote the Hecke operator

[GLn(OFw)ςw,jGLn(OFw)].

For j = 1, ..., n− 1 and for m > 0 let U
(j)
w denote the Hecke operator

[U0(wm)ςw,jU0(wm)]

or

[U1(wm)ςw,jU1(wm)].

If W is a smooth representation of GLn(Fw) and if m1 > m2 > 0 then the

action of U
(j)
w is compatible with the inclusions

WU0(wm2 ) ⊂ WU1(wm2 ) ⊂ WU1(wm1 ).

(This follows easily from the coset decompositions

U1(wm)ςw,jU1(wm) =
∐
I,b

bU1(wm)

and

U0(wm)ςw,jU0(wm) =
∐
I,b

bU0(wm)

where I runs over j element subsets of {1, ..., n−1} and b runs over elements
of Bn(Fw) with

– brr = $w if r ∈ I and = 1 otherwise,
– brs ∈ X if s > r, and = 0 unless r ∈ I and s 6∈ I.

See [Man1].)
If α ∈ F×w has non-negative valuation we will write Vα for the Hecke

operators

[U0(w)

(
1n−1 0

0 α

)
U0(w)]

and

[U1(w)

(
1n−1 0

0 α

)
U1(w)].
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If W is a smooth representation of GLn(Fw) then the action of Vα is com-
patible with the inclusion

WU0(w) ⊂ WU1(w).

(This follows from the easily verified equalities

U1(w)

(
U0(w) ∩

(
1n−1 0

0 α

)
U0(w)

(
1n−1 0

0 α−1

))
= U0(w)

and

U1(w) ∩
(

1n−1 0
0 α

)
U0(w)

(
1n−1 0

0 α−1

)
= U1(w) ∩

(
1n−1 0

0 α

)
U1(w)

(
1n−1 0

0 α−1

)
.)

It is well known that there is an isomorphism

Z[GLn(OFw)\GLn(Fw)/GLn(OFw)] ∼= Z[T1, T2, ..., Tn, T
−1
n ],

under which Tj corresponds to T
(j)
w . (The latter ring is the polynomial algebra

in the given variables.) Alternatively we have the Satake isomorphism

Z[1/qw][GLn(OFw)\GLn(Fw)/GLn(OFw)] ∼= Z[1/qw][X±1
1 , ..., X±1

n ]Sn ,

under which T
(j)
w corresponds to q

j(1−j)/2
w sj(X1, ..., Xn), where sj is the jth

elementary symmetric function (i.e. the sum of all square free monomials of
degree j). This is not the standard normalisation of the Satake isomorphism.

The next lemma is well known. We include a proof partly to establish
notation and partly as a warm up for later calculations of a similar nature.

Lemma 3.1.1 Suppose that χ1, ..., χn are unramified characters of F×w . Then

(n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))GLn(OFw ) is one dimensional and T

(j)
w acts on it by

q
j(n−j)/2
w sj(χ1($w), ..., χn($w)), where sj is the jth elementary symmetric func-

tion (i.e. the sum of all square free monomials of degree j). If

T ∈ Z[GLn(OFw)\GLn(Fw)/GLn(OFw)]

has Satake transform P (X1, ..., Xn) then the eigenvalue of T on

(n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))GLn(OFw )

is P (q
(n−1)/2
w χ1($w), ..., q

(n−1)/2
w χn($w)).
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Proof: The fixed space (n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))GLn(OFw ) is spanned by

the function ϕ0 where

ϕ0(bu) =
n∏
i=1

χi(bii)|bii|(n+1)/2−i

for b ∈ Bn(Fw) and u ∈ GLn(OFw). Then (T
(j)
w ϕ0)(1) equals the eigenvalue of

T
(j)
w on (n-Ind

GLn(Fw)
Bn(Fw) (χ1, ..., χn))GLn(OFw ). But

(T (j)
w ϕ0)(1) =

∑
I

∑
b

ϕ0(b)

where I runs over j element subsets of {1, ..., n} and b runs over elements
of Bn(Fw) with

– brr = $w if r ∈ I and brr = 1 otherwise;
– if s > r, r ∈ I and s 6∈ I then brs ∈ X;
– if s > r and either r 6∈ I or s ∈ I then brs = 0.

Thus

(T
(j)
w ϕ0)(1) =

∑
I q

Pj
k=1(n−j+k−ik)

w

∏
i∈I χi($w)q

i−(n+1)/2
w

= q
j(n−j)/2
w

∑
I

∏
i∈I χi($w),

where I = {i1 < ... < ij} runs over j element subsets of {1, ..., n}. The lemma
follows. �

Corollary 3.1.2 Suppose that π is an unramified irreducible admissible rep-

resentation of GLn(Fw) over K. Let t
(j)
π denote the eigenvalue of T

(j)
w on

πGLn(OFw ). Then rl(π)∨(1− n)(Frobw) has characteristic polynomial

Xn − t(1)
π Xn−1 + ...+ (−1)jqj(j−1)/2

w t(j)π Xn−j + ...+ (−1)nqn(n−1)/2
w t(n)

π .

Proof: Suppose that π = χ1 � ...� χn. Then

rl(π)∨(1− n) =
⊕
i

(χi| |(1−n)/2) ◦ Art −1,

so that rl(π)∨(1− n)(Frobw) has characteristic polynomial

(X − χ1($w)q(n−1)/2
w )...(X − χn($w)q(n−1)/2

w ).

�
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Lemma 3.1.3 Suppose that π is an unramified irreducible admissible rep-

resentation of GLn(Fw) over K. Let t
(j)
π denote the eigenvalue of T

(j)
w on

πGLn(OFw ). Then πU0(w) = πU1(w) and the characteristic polynomial of V$w on
πU0(w) divides

Xn − t(1)
π Xn−1 + ...+ (−1)jqj(j−1)/2

w t(j)π Xn−j + ...+ (−1)nqn(n−1)/2
w t(n)

π .

Proof: The first assertion is immediate because the central character of

π is unramified. Choose unramified characters χi : F×w → K
×

for i = 1, .., n

such that the q
(n−1)/2
w χi($w) are the roots of

Xn − t(1)
π Xn−1 + ...+ (−1)jqj(j−1)/2

w t(j)π Xn−j + ...+ (−1)nqn(n−1)/2
w t(n)

π

with multiplicities. From the last lemma we see that π is a subquotient of

n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn). Thus it suffices to show that the eigenvalues of V$ on

n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn)U0(w) are {q(n−1)/2

w χi($w)}, with multiplicities (as roots

of the characteristic polynomial).

The space n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn)U0(w) has a basis of functions ϕi for

i = 1, ..., n where the support of ϕi is contained in Bn(Fw)wn,iU0(w) and
ϕi(wn,i) = 1. We have

V$wϕi =
∑
j

(V$wϕi)(wn,j)ϕj.

But

(V$wϕi)(wn,j) =
∑

x∈Xn−1 ϕi

(
wn,j

(
1n−1 0
$wx $w

))
=
∑

x∈Xj−1

∑
y∈Xn−j ϕi

 1j−1 0 0
$wx $wy $w

0 wn−j 0


= qn−jw q

j−(n+1)/2
w χj($w)

∑
x∈Xj−1 ϕi

1j−1 0 0
x 0 1
0 wn−j 0


A matrix g ∈ GLn(OFw) lies in Bn(OFw)wn,iU0(w) if and only if i is the
largest integer such that (0, ..., 0, 1) lies in the k(w) span of the reduction
modulo ℘w of the last n+ 1− i rows of g. Thus

(V$wϕi)(wn,j)

is

– 0 if i > j,
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– q
(n−1)/2
w χj($w) if i = j, and

– (qw − 1)qj−i−1
w q

(n−1)/2
w χj($w) if i < j.

Thus the matrix of V$w with respect to the basis {ϕi} of the space

n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn)U0(w) is triangular with diagonal entries q

(n−1)/2
w χj($w).

The lemma follows. �

Lemma 3.1.4 Suppose that we have a partition n = n1+n2 and that π1 (resp.
π2) is a smooth representation of GLn1(Fw) (resp. GLn2(Fw)). Let P ⊃ Bn

denote the parabolic corresponding to the partition n = n1 + n2. Set π =

n-Ind
GLn(Fw)
P (Fw) (π1 ⊗ π2). Then

πU1(w) ∼= (π
GLn1 (OFw )
1 ⊗ πU1(w)

2 )⊕ (π
U1(w)
1 ⊗ πGLn2 (OFw )

2 ).

Moreover U
(j)
w acts as (

A 0
∗ B

)
where

A =
∑

j1+j2=j

q(n1j2+n2j1)/2−j1j2
w (T (j1)

w ⊗ U (j2)
w )

and
B =

∑
j=j1+j2

q(n1j2+n2j1)/2−j1j2
w (U (j1)

w ⊗ T (j2)
w )

and if α ∈ F×w has positive valuation then Vα acts as(
|α|−n1/2(1⊗ Vα) ∗

0 |α|−n2/2(Vα ⊗ 1)

)
.

Proof: Let

ω =

1n1−1 0 0
0 0 1
0 1n2 0

 .

Then, by the Bruhat decomposition,

GLn(Fw) = P (Fw)U1(w)
∐

P (Fw)ωU1(w)

so that
(n-Ind

GLn(Fw)
P (Fw) π1 ⊗ π2)U1(w)

= (π1 ⊗ π2)P (Fw)∩U1(w) ⊕ (π1 ⊗ π2)P (Fw)∩ωU1(w)ω−1

= π
GLn1 (OFw )
1 ⊗ πU1(w)

2 ⊕ πU1(w)
1 ⊗ πGLn2 (OFw )

2 .
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Specifically x ∈ π
GLn1 (OFw )
1 ⊗ π

U1(w)
2 corresponds to a function ϕx supported

on P (Fw)U1(w) with ϕx(1) = x, and y ∈ πU1(w)
1 ⊗ πGLn2 (OFw )

2 corresponds to a
function ϕ′y supported on P (Fw)ωU1(w) with ϕ′y(ω) = y.

If ϕ ∈ (n-Ind
GLn(Fw)
P (Fw) π1 ⊗ π2)U1(w) then

(U (j)
w ϕ)(a) =

∑
I

∑
b

ϕ(ab)

where I runs over j element subsets of {1, ..., n− 1} and where b runs over
elements of Bn(Fw) with

– brr = $w if r ∈ I and = 1 otherwise,
– brs ∈ X if s > r, and = 0 unless r ∈ I and s 6∈ I.

Thus
(U (j)

w ϕ′y)(1) =
∑
I

∑
b

ϕ′y(b) = 0

and

(U (j)
w ϕx)(1) =

∑
I1,I2

∑
a,b,c

(
a b
0 c

)
x

where I1 runs over subsets of {1, ..., n1}, I2 runs over subsets of {1, ..., n2−1},
a ∈ Bn1(Fw), b ∈Mn1×n2(Fw) and c ∈ Bn2(Fw) such that

– #I1 + #I2 = j,
– arr = $w if r ∈ I1 and = 1 otherwise,
– crr = $w if r ∈ I2 and = 1 otherwise,
– if s > r then ars ∈ X and = 0 unless r ∈ I1 and s 6∈ I1,
– if s > r then crs ∈ X and = 0 unless r ∈ I2 and s 6∈ I2,
– brs ∈ X and = 0 unless r ∈ I1 and s 6∈ I2.

Equivalently

(U (j)
w ϕx)(1) =

∑
j1+j2=j

q(n1j2+n2j1)/2−j1j2
w (T (j1)

w ⊗ U (j2)
w )x.

Similarly

(U (j)
w ϕ′y)(ω) =

∑
I1,I2

∑
a,b,c,d,e

ϕ′y(

a c b
0 1 0
0 e d

ω),

where I1 ⊂ {1, ..., n1 − 1}, I2 ⊂ {1, ..., n2}, a ∈ Bn1−1(Fw), b ∈ M(n1−1)×n2(Fw),
c ∈ F n1−1

w , d ∈ Bn2(Fw) and e ∈ F n2
w with

– #I1 + #I2 = j,
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– arr = $w if r ∈ I1 and = 1 otherwise,
– drr = $w if r ∈ I2 and = 1 otherwise,
– if s > r then ars ∈ X and = 0 unless r ∈ I1 and s 6∈ I1,
– if s > r then drs ∈ X and = 0 unless r ∈ I2 and s 6∈ I2,
– brs ∈ X and = 0 unless r ∈ I1 and s 6∈ I2,
– cr ∈ X and = 0 unless r ∈ I1,
– er ∈ X and = 0 unless r ∈ I2.

The matrix a c b
0 1 0
0 e d

ω ∈ P (Fw)ωU1(w)

if and only if a c b
0 1 0
0 d−1e 1n2

 ∈ P (Fw)ωU1(w)ω−1

if and only if e = 0. Thus

(U (j)
w ϕ′y)(ω) =

∑
j=j1+j2

q(n1j2+n2j1)/2−j1j2
w (U (j1)

w ⊗ T (j2)
w )y.

Now suppose α ∈ F×w has non-negative valuation. If ϕ is an element of

(n-Ind
GLn(Fw)
P (Fw) π1 ⊗ π2)U1(w) then

(Vαϕ)(a) =
∑

b∈(OFw/(α))n−1

ϕ(a

(
1n−1 0
$wb α

)
).

Thus

(Vαϕx)(1) =
∑

b∈(OFw/(α))n1

∑
c∈(OFw/(α))n2−1

ϕx

 1n1 0 0
0 1n2−1 0

$wb $wc α

 .

However  1n1 0 0
0 1n2−1 0

$wb $wc α

 ∈ P (Fw)U1(w)

if and only if  1n1 0 0
0 1n2−1 0

α−1$wb 0 1

 ∈ P (Fw)U1(w)
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if and only if b = 0. Hence

(Vαϕx)(1) =
∑

c∈(OFw/(α))n2−1 ϕx

1n1 0 0
0 1n2−1 0
0 $wc α


= |α|−n1/2(1⊗ Vα)x.

On the other hand

(Vαϕx)(ω) =
∑

b∈(OFw/(α))n1−1

∑
c∈(OFw/(α))n2

ϕx

1n1−1 0 0
$wb α $wc

0 0 1n2

ω

 = 0.

Similarly

(Vαϕ
′
y)(ω) =

∑
b∈(OFw/(α))n1−1

∑
c∈(OFw/(α))n2 ϕ

′
y

1n1−1 0 0
$wb α $wc

0 0 1n2

ω


= |α|−n2/2(Vα ⊗ 1)y.

The lemma follows. �

Lemma 3.1.5 Suppose that π is an irreducible admissible representation of
GLn(Fw) over K with a U1(w) fixed vector but no GLn(OFw)-fixed vector.

Then dimπU1(w) = 1 and there is a character with open kernel, Vπ : F×w → K
×

such that Vπ(α) is the eigenvalue of Vα on πU1(w) for all α ∈ F×w with non-

negative valuation. For j = 1, ..., n − 1, let u
(j)
π denote the eigenvalue of U

(j)
w

on πU1(w) and define Qnr
π (X) ∈ K[X] to be

Xn−1 − u(1)
π Xn−2 + ...+ (−1)jqj(j−1)/2

w u(j)
π Xn−1−j + ...+ (−1)nq(n−1)(n−2)/2

w u(n−1)
π .

Then there is an exact sequence

(0)→ s→ rl(π)∨(1− n)→ Vπ ◦ Art −1
Fw
→ (0)

where s is unramified and s(Frobw) has characteristic polynomial P nr
π (X). If

πU0(w) 6= (0) then q−1
w Vπ($w) is a root of P nr

π (X). If, on the other hand,
πU0(w) = (0) then rl(π)∨(1− n)(Gal (Fw/Fw)) is abelian.

Proof: If π is an irreducible, cuspidal, smooth representation of GLm(Fw)
then the conductor of rec(π) ≥ m unless m = 1 and π is unramified. If π is
an irreducible, square integrable, smooth representation of GLm(Fw) then the
conductor of rec(π) ≥ m unless π = Spm(χ) for some unramified character
χ, in which case the conductor is m − 1. As any irreducible, square inte-
grable, smooth representation π of GLm(Fw) is generic we see from [JPSS]
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that πU1(w) 6= (0) if and only if either m = 1 and π has conductor ≤ 1, or
m = 2 and π = Sp 2(χ) for some unramified character χ of F×w .

Now suppose that n = n1+...+nr is a partition of n and let P ⊃ Bn de-
note the corresponding parabolic. Let πi be an irreducible, square integrable,
smooth representation of GLni(Fw). If

(n-Ind
GLn(Fw)
P (Fw) π1 ⊗ ...⊗ πr)U1(w) 6= (0)

then by the last lemma there must exist an index i0 such that:

– For i 6= i0 we have ni = 1 and πi unramified.
– Either ni0 = 1 and πi0 has conductor ≤ 1 or ni0 = 2 and πi0 = Sp 2(χ)

for some unramified character χ of F×w .

Thus if π is an irreducible smooth representation of GLn(Fw) with a
U1(w) fixed vector but no GLn(OFw) fixed vector then

1. either π = χ1 � ... � χn with χi an unramified character of F×w for
i = 1, ..., n− 1 and with χn a character of F×w with conductor 1,

2. or π = χ1 � ...�χn−2 � Sp 2(χn−1) with χi an unramified character of
F×w for i = 1, ..., n− 1.

Consider first the first of these two cases. Let π′ = χ1�...�χn−1, an un-
ramified representation of GLn−1(Fw). Also let P ⊃ Bn denote the parabolic

corresponding to the partition n = (n−1)+1. As (n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))U1(w)

and (n-Ind
GLn(Fw)
P (Fw) π′ ⊗ χn)U1(w) are one dimensional we must have

πU1(w) = (n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn))U1(w)

= (n-Ind
GLn(Fw)
P (Fw) π′ ⊗ χn)U1(w)

= (π′)GLn−1(OFw ) ⊗ χn.

From the last lemma we see that Vπ = χn| |(1−n)/2 and that U
(j)
w acts as

q
j/2
w T

(j)
w ⊗ 1. In particular π has no U0(w) fixed vector. Because

rl(π
′ � χn)∨(1− n) = rl(π

′)∨(2− n)|Art −1
Fw
|−1/2 ⊕ (Vπ ◦ Art −1

Fw
)

the lemma follows.
Consider now the second of our two cases. Let π′ = χ1 � ...� χn−2, an

unramified representation of GLn−2(Fw). Also let P ⊃ Bn (resp. P ′ ⊃ Bn)
denote the parabolic corresponding to the partition n = (n − 2) + 2 (resp.

n = 1+ ...+1+2). Because dim(n-Ind
GLn(Fw)
P ′(Fw) χ1⊗ ...⊗χn−2⊗Sp 2(χn))U1(w) = 1
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and dim(n-Ind
GLn(Fw)
P (Fw) π′ ⊗ Sp 2(χn))U1(w) = 1 we must have

πU1(w) = (n-Ind
GLn(Fw)
P ′(Fw) χ1 ⊗ ...⊗ χn−2 ⊗ Sp 2(χn))U1(w)

= (n-Ind
GLn(Fw)
P (Fw) π′ ⊗ Sp 2(χn))U1(w)

= (π′)GLn−2(OFw ) ⊗ Sp 2(χn)U1(w).

Moreover Vα acts as |α|(2−n)/2(1⊗ Vα) and U
(j)
w acts as

qjw(T (j)
w ⊗ 1) + qn/2−1

w (T (j−1)
w ⊗ U (1)

w ).

The induced representation n-Ind
GL2(Fw)
B2(Fw) (χn, χn| |) has two irreducible

constituents (χn| |1/2) ◦ det and Sp 2(χn). On n-Ind
GL2(Fw)
B2(Fw) (χn, χn| |)U1(w) we

have

Vα =

(
|α|1/2χn(α) ∗

0 |α|−1/2χn(α)

)
and

U (1)
w =

(
q

1/2
w χn($w) 0

∗ q
−1/2
w χn($w)

)
.

On (χn| |1/2) ◦ det we have

Vα = |α|1/2χn(α)

and
U (1)
w = q1/2

w χn($w).

Thus on Sp 2(χn)U1(w) we have

Vα = |α|−1/2χn(α)

and
U (1)
w = q−1/2

w χn($w).

Hence on πU1(w) we have

Vα = |α|(1−n)/2χn(α)

and
U (j)
w = qjw(T (j)

w ⊗ 1) + q(n−3)/2
w (T (j−1)

w ⊗ χn($w)).

On the other hand

(0)→ (rl(π
′)∨(3− n)|Art −1

Fw
|−1 ⊕ (χn| |(3−n)/2) ◦ Art −1

Fw
)→

→ rl(π
′ � Sp 2(χn))∨(1− n)→ (χn| |(1−n)/2) ◦ Art −1

Fw
→ (0).
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This is a short exact sequence of the desired form and s(Frobw) has charac-

teristic polynomial (X − q(n−3)/2
w χn($w)) times

Xn−2 − qwt(1)Xn−3 + ...+ (−1)jqj+j(j−1)
w t(j)Xn−2−j + ...+ (−1)nqn

2−4n+4
w t(n−2),

where t(j) is the eigenvalue of T
(j)
w on (π′)GLn−2(OFw ). From the above formula

for the U
(j)
w ’s, we see that this product equals P nr

π (X) and the lemma follows.
�

Lemma 3.1.6 Let π be an irreducible smooth representation of GLn(Fw) over
K.

1. If πIw1(w) 6= (0) then rl(π)∨(1 − n)ss is a direct sum of one dimen-
sional representations.

2. Suppose

χ = (χ1, ..., χn) : (k(w)×)n → K
×
.

If πIw0(w),χ 6= (0) then

r(π)∨(1− n)|ssIFw = (χ1 ◦ Art −1
Fw

)⊕ ...⊕ (χn ◦ Art −1
Fw

).

(Here we think of χi as a character of O×Fw →→ k(w)×.) Moreover if χi 6= χj
whenever i 6= j then r(π)∨(1− n)|IFw is semisimple.

Proof: The key point is that πIw1(w) 6= (0) if and only if π is a sub-

quotient of a principal series representation n-Ind
GLn(Fw)
Bn(Fw) (χ′1, ..., χ

′
n) with each

χ′i tamely ramified. More precisely πIw0(w),χ 6= (0) if and only if π is a sub-

quotient of a principal series representation n-Ind
GLn(Fw)
Bn(Fw) (χ′1, ..., χ

′
n) with each

χ′i|O×Fw = χi. (See theorem 7.7 of [Ro]. In section 4 of that article some

restrictions were placed on the characteristic of OFw/℘w. However it is ex-
plained in remark 4.14 how these restrictions can be avoided in the case of
GLn. More precisely it is explained how to avoid these restrictions in the
proof of theorem 6.3. The proof of theorem 7.7 relies only on lemma 3.6
and, via lemma 7.6, on lemma 6.2 and theorem 6.3. Lemmas 3.6 and 6.2
have no restrictions on the characteristic.) �

3.2. GLn over a local field: finite characteristic theory.. — We will
keep the notation and assumptions of the last section. Let l 6 |qw be a rational
prime, K a finite extension of the field of fractions of the Witt vectors of an
algebraic extension of Fl, O the ring of integers of K, λ the maximal ideal
of O and k = O/λ.
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Lemma 3.2.1 Suppose that l > n and l|(qw − 1). Suppose also that π is
an unramified irreducible smooth representation of GLn(Fw) over Fl. Then

dim πGLn(OFw ) = 1. Let t
(j)
π denote the eigenvalue of T

(j)
w on πGLn(OFw ). Set

Pπ(X) = Xn − t(1)
π Xn−1 + ...+ (−1)jqj(j−1)/2

w t(j)π Xn−j + ...+ (−1)nqn(n−1)/2
w t(n)

π .

(Of course in Fl we have qw = 1 so we could have dropped it from this
definition.) Suppose that Pπ(X) = (X − a)mQ(X) with m > 0 and Q(a) 6= 0.
Then

Q(V$w)πGLn(OFw ) 6= (0).

(Considered in πU0(w).)

Proof: According to assertion VI.3 of [V2] we can find a partition n =
n1 + ... + nr corresponding to a parabolic P ⊃ Bn and distinct, unramified

characters χ1, ..., χr : F×w → F
×
l such that π = n-Ind

GLn(Fw)
P (Fw) (χ1◦det, ..., χr◦det).

Then

Pπ(X) =
r∏
i=1

(X − χi($w))ni .

Suppose without loss of generality that a = χ1($w).
For i = 1, ..., r set w′i = wn,n1+...+ni (in the notation established in the

fourth paragraph of section 3.1). Then n-Ind
GLn(Fw)
P (Fw) (χ1 ◦ det, ..., χr ◦ det)U0(w)

has a basis consisting of functions ϕi for i = 1, ..., r, where the support of ϕi
is P (Fw)w′iU0(w) and ϕi(w

′
i) = 1. Note that

n-Ind
GLn(Fw)
P (Fw) (χ1 ◦ det, ..., χr ◦ det)GLn(OFw )

is spanned by ϕ1 + ...+ ϕr.
We have

V$wϕi =
∑
j

(V$wϕi)(w
′
j)ϕj.

But, as in the proof of lemma 3.1.3, we also have

(V$wϕi)(w
′
j) = χj($w)

∑
x∈Xn1+...+nj−1

ϕi

1n1+...+nj−1 0 0
x 0 1
0 wnj+1+...+nr 0

 .

A matrix g ∈ GLn(OFw) lies in P (OFw)w′iU0(w) if and only if i is the largest
integer such that (0, ..., 0, 1) lies in the k(w) span of the reduction modulo
℘w of the last ni + ...+ nr rows of g. Thus

(V$wϕi)(w
′
j)

is



94 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

– 0 if i > j,
– qni−1

w χj($w) = χj($w) if i = j, and

– (qniw − 1)q
ni+1+...+nj−1
w χj($w) = 0 if i < j.

Thus, for i = 1, ..., r, we have

V$wϕi = χi($w)ϕi

and
Q(V$w)(ϕ1 + ...+ ϕr) = Q(χ1($w))ϕ1

and the lemma follows. �

Lemma 3.2.2 Suppose that l > n and l|(qw − 1). Let R be a complete local
O-algebra. Let M be an R-module with a smooth action of GLn(Fw) such that
for all open compact subgroups U ⊂ GLn(Fw) the module of invariants MU

is finite and free over O. Suppose also that for j = 1, .., n there are elements

tj ∈ R with T
(j)
w = tj on MGLn(OFw ). Set

P (X) = Xn +
n∑
j=1

(−1)jqj(j−1)/2
w tjX

n−j ∈ R[X].

Suppose that in R[X] we have a factorisation P (X) = (X − a)Q(X) with
Q(a) ∈ R×. Suppose finally that M ⊗O K is semi-simple over the ring (R⊗O
K)[GLn(Fw)] and that, if π is an R-invariant irreducible GLn(Fw)-constituent
of M ⊗O K with a U0(w)-fixed vector, then either π is unramified or

P (X) = (X − V$w)(Xn−1 − U (1)
w Xn−2 + ...+ (−1)jq

j(j−1)/2
w U

(j)
w Xn−1−j+

+...+ (−1)nq
(n−1)(n−2)/2
w U

(n−1)
w )

on πU0(w) (i.e. for j = 1, ..., n the coefficient of Xn−j on the right hand side

acts on the one dimensional space πU0(w) by (−1)jq
j(j−1)/2
w tj). Then Q(V$)

gives an isomorphism

Q(V$w) : MGLn(OFw ) ∼−→MU0(w),V$w=a.

Proof: Lemma 3.1.3 tells us that

Q(V$w) : MGLn(OFw ) −→MU0(w),V$w=a.

Let π be an R-invariant irreducible GLn(Fw)-constituent of M ⊗O K with
πU0(w),V$w=a 6= (0). If π is ramified then lemma 3.1.5 tells us that

(q−1
w a)n−1 − U (1)

w (q−1
w a)n−2...+ (−1)jq

j(j−1)/2
w U

(j)
w (q−1

w a)n−1−j+

+...+ (−1)nq
(n−1)(n−2)/2
w U

(n−1)
w = 0
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on πU0(w). Thus Q(a) ∈ mR, which contradicts our hypothesis. Thus π is
unramified. By lemma 3.1.3 and the assumption that a is a simple root of
P (X), we see that dimπU0(w),V$w=a ≤ 1 = dim πGLn(OFw ). Thus

dim(M ⊗O K)U0(w),V$w=a ≤ dim(M ⊗O K)GLn(OFw ).

Hence it suffices to show that Q(Vϕw) ⊗ k is injective. Suppose not.

Choose a non-zero vector x ∈ ker(Q(Vϕw) ⊗ k) such that mRx = (0). Let N ′

denote the k[GLn(Fw)]-submodule of M ⊗O k generated by x. Let N denote
an irreducible quotient of N ′. Then by lemma 3.2.1

Q(V$w)NGLn(OFw ) 6= (0),

a contradiction and the lemma is proved. �

3.3. Automorphic forms on unitary groups.. — Fix a positive integer
n ≥ 2 and a prime l > n.

Fix an imaginary quadratic field E in which l splits and a totally real
field F+. Set F = F+E. Fix a finite non-empty set of places S(B) of places
of F+ with the following properties:

– Every element of S(B) splits in F .
– S(B) contains no place above l.
– If n is even then

n[F+ : Q]/2 + #S(B) ≡ 0 mod 2.

Choose a division algebra B with centre F with the following properties:

– dimF B = n2.
– Bop ∼= B ⊗E,c E.
– B splits outside S(B).
– If w is a prime of F above an element of S(B), then Bw is a division

algebra.

If ‡ is an involution on B with ‡|F = c then we can define a reductive
algebraic group G‡/F

+ by setting

G‡(R) = {g ∈ B ⊗F+ R : g‡⊗1g = 1}

for any F+-algebra R. Fix an involution ‡ on B such that

– ‡|F = c,
– for a place v|∞ of F+ we have G‡(F

+
v ) ∼= U(n), and

– for a finite place v 6∈ S(B) of F+ the group G‡(F
+
v ) is quasi-split.
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Because either n is odd or

n[F+ : Q]/2 + #S(B) ≡ 0 mod 2,

this is always possible. (The argument is exactly analogous to the proof of
lemma 1.7.1 of [HT].) From now on we will write G for G‡.

We can choose an order OB in B such that O‡B = OB and OB,w is max-
imal for all primes w of F which are split over F+. (Start with any order.
Replacing it by its intersection with its image under ‡ gives an order O′B
with (O′B)‡ = O′B. For all but finitely many primes v of F+ the completion
O′B,v will be a maximal order in Bv. Let R denote the finite set of primes
which split in F and for which O′B,v is not maximal. For v ∈ R choose a

maximal order O′′B,v of Bv with (O′′B,v)‡ = O′′B,v (e.g. OB,w ⊕ O‡B,w where w
is a prime of F above v and OB,w is a maximal order in Bw). Let OB be
the unique order with OB,v = O′′B,v if v ∈ R and OB,v = O′B,v otherwise.)
This choice gives a model of G over OF+ . (This model may be very bad at
primes v which do not split in F , but this will not concern us.)

Let v be a place of F+ which splits in F . If v 6∈ S(B) choose an

isomorphism iv : OB,v
∼→ Mn(OFv) such that iv(x

‡) = tiv(x)c. The choice of a
prime w of F above v then gives us an identification

iw : G(F+
v )

∼−→ GLn(Fw)
i−1
v (x, tx−c) 7−→ x

with iwG(OF+,v) = GLn(OF,w) and iwc = t(c ◦ iw)−1. If v ∈ S(B) and w is a
prime of F above v we get an isomorphism

iw : G(F+
v )

∼−→ B×w

with iwG(OF+,v) = O×B,w and iwc(x) = (iw(x)‡)−1.
Let Sl denote the primes of F+ above l. Suppose that R is a finite set

of primes of F+ which split in F such that R is disjoint from Sl∪S(B). Let
T ⊃ Sl ∪R ∪ S(B) denote a finite set of primes of F+ which split in F . Fix

a set T̃ of primes of F such that T̃
∐

cT̃ is the set of all primes of F above

T . If S ⊂ T write S̃ for the preimage of S in T̃ . If v ∈ T we will write ṽ

for the element of T̃ above v. Write S∞ for the set of infinite places of F+.
Let k be an algebraic extension of Fl and K a finite, totally ramified

extension of the fraction field of the Witt vectors of k such that K contains
the image of every embedding F ↪→ K. Let O denote the ring of integers of
K and let λ denote its maximal ideal. Let Il denote the set of embeddings

F+ ↪→ K, so that there is a natural surjection Il →→ Sl. Let Ĩl denote the

set of embeddings F ↪→ K which give rise to a prime of S̃l. Thus there is a

natural bijection Ĩl
∼→ Il.
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For an n-tuple of integers a = (a1, ..., an) with a1 ≥ ... ≥ an there is an
irreducible representation defined over Q:

ξa : GLn −→ GL(Wa)

with highest weight

diag(t1, ..., tn) 7−→
n∏
i=1

taii .

(N.B. This is not the same convention used in [HT].) We can choose a model

ξa : GLn −→ GL(Ma)

of ξa over Z. (So Ma is a Z-lattice in Wa.)

Let Wtn denote the subset of (Zn)Hom (F,Ql) consisting of elements a
which satisfy

– aτc,i = −aτ,n+1−i and
– aτ,1 ≥ ... ≥ aτ,n.

If a ∈Wtn then we get a K-vector space Wa and irreducible representation

ξa : G(F+
l ) −→ GL(Wa)
g 7−→ ⊗τ∈eIlξaτ (τiτg).

The representation ξa contains a G(OF+,l)-invariant O-lattice Ma.
For v ∈ S(B), let ρv : G(F+

v ) → GL(Mρv) denote a representation of
G(F+

v ) on a finite free O-module such that ρv has open kernel and Mρv⊗OK
is irreducible. If JL (ρv ◦ i−1ev ) = Spmv(πev) then set

r̃ev = rl(πev| |(n/mv−2)(1−mv)/2).

We will suppose that

r̃ev : Gal (F ev/Fev) −→ GLn/mv(O).

(This is a condition on K. A priori this representation is into GLn/mv(K),
but if K is sufficiently large it can be replaced by a conjugate valued in
GLn/mv(O). Because r̃ev is absolutely irreducible it suffices to check that det r̃ev
takes unit values, and this follows because v does not lie above l and because
the central character of ρv takes unit values.)

For v ∈ R let U0,v be an open compact subgroup of G(F+
v ) and let

χv : U0,v −→ O×

be a homomorphism with open kernel.
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We will call an open compact subgroup U ⊂ G(A∞F+) sufficiently small
if for some place v its projection to G(F+

v ) contains only one element of
finite order, namely 1.

Let A denote an O-algebra.
Suppose that U is an open compact subgroup of G(A∞F+) for which the

projection to G(F+
v ) is contained in U0,v for all v ∈ R. Suppose also that

a ∈Wtn and that for v ∈ S(B), ρv is as in the last paragraph but two. Set

Ma,{ρv},{χv} = Ma ⊗

 ⊗
v∈S(B)

Mρv

⊗(⊗
v∈R

O(χv)

)
.

Suppose that either A is a K-algebra or that the projection of U to G(F+
l )

is contained in G(OF+,l). Then we define a space of automorphic forms

Sa,{ρv},{χv}(U,A)

to be the space of functions

f : G(F+)\G(A∞F+) −→ A⊗OMa,{ρv},{χv}

such that
f(gu) = u−1

Sl∪S(B)∪Rf(g)

for all u ∈ U and g ∈ G(A∞F+). Here uSl∪S(B)∪R denotes the projection of u
to
∏

v∈Sl∪S(B)∪RG(F+
v ). If V is any compact subgroup of G(A∞F+) for which

the projection to G(F+
v ) is contained in U0,v for all v ∈ R, then we define

Sa,{ρv},{χv}(V,A) to be the union of the Sa,{ρv},{χv}(U,A) as U runs over open
compact subgroups containing V which have projection to G(F+

v ) is contained
in U0,v for all v ∈ R.

If g ∈ G(AR,∞
F+ ) ×

∏
v∈R U0,v (and either A is a K-algebra or gl ∈

G(OF+,l)) and if V ⊂ gUg−1 then there is a natural map

g : Sa,{ρv},{χv}(U,A) −→ Sa,{ρv},{χv}(V,A)

defined by
(gf)(h) = gSl∪S(B)∪Rf(hg).

We see that if V is a normal subgroup of U then

Sa,{ρv},{χv}(U,A) = Sa,{ρv},{χv}(V,A)U .

If U is open then the A-module Sa,{ρv}(U,A) is finitely generated. If U is
open and sufficiently small then it is free of rank #G(F+)\G(A∞F+)/U . If A
is flat over O or if U is sufficiently small then

Sa,{ρv},{χv}(U,A) = Sa,{ρv},{χv}(U,O)⊗O A.
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Suppose that U1 and U2 are compact subgroups whose projections to G(F+
v )

are contained in U0,v for all v ∈ R and that g ∈ G(AR,∞
F+ ) ×

∏
v∈R U0,v. If A

is not a K-algebra suppose that gl ∈ G(OF+,l) and that ul ∈ G(OF+,l) for all
u ∈ U1 ∪ U2. Suppose also that #U1gU2/U2 < ∞. (This will be automatic if
U1 and U2 are open.) Then we define a linear map

[U1gU2] : Sa,{ρv},{χv}(U2, A) −→ Sa,{ρv},{χv}(U1, A)

by

([U1gU2]f)(h) =
∑
i

(gi)Sl∪S(B)∪Rf(hgi)

if U1gU2 =
∐

i giU2.

Lemma 3.3.1 Let U ⊂ G(AR,∞
F+ )×

∏
v∈R U0,v be a sufficiently small open com-

pact subgroup and let V ⊂ U be a normal open subgroup. Let A be an O-
algebra. Suppose that either A is a K-algebra or the projection of U to G(F+

l )
is contained in G(OF+,l). Then Sa,{ρv},{χv}(V,A) is a finite free A[U/V ]-module
and tr U/V gives an isomorphism from the coinvariants Sa,{ρv},{χv}(V,A)U/V to
Sa,{ρv},{χv}(U,A).

Proof: Suppose that

G(A∞F+) =
∐
j∈J

G(F+)gjU.

For all j ∈ J we have g−1
j G(F+)gj ∩ U = {1}. (Because this intersection is

finite and U is sufficiently small.) Thus

G(A∞F+) =
∐
j∈J

∐
u∈U/V

G(F+)gjuV.

Moreover
Sa,{ρv},{χv}(U,A)

∼−→
⊕

j∈JMa,{ρv},{χv} ⊗O A
f 7−→ (f(gj))j

and
Sa,{ρv},{χv}(V,A)

∼−→
⊕

j∈J
⊕

u∈U/V Ma,{ρv},{χv} ⊗O A
f 7−→ (f(gju))j,u.

Alternatively we get an isomorphism of A[U/V ]-modules

Sa,{ρv},{χv}(V,A)
∼−→
⊕

j∈JMa,{ρv},{χv} ⊗O A[U/V ]
f 7−→ (

∑
u∈U/V uSl∪R∪S(B)f(gju)⊗ u−1)j.
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Then
Sa,{ρv},{χv}(V,A)U/V

∼−→
⊕

j∈JMa,{ρv},{χv} ⊗O A
f 7−→ (

∑
u∈U/V uSl∪R∪S(B)f(gju))j.

In fact we have a commutative diagram

Sa,{ρv},{χv}(V,A)U/V
trU/V−→ Sa,{ρv},{χv}(U,A)

↓ ↓⊕
j∈JMa,{ρv},{χv} ⊗O A =

⊕
j∈JMa,{ρv},{χv} ⊗O A

where the vertical maps are the above isomorphisms. The lemma follows. �

Proposition 3.3.2 Fix ι : K ↪→ C.

1. Sa,{ρv},∅({1},C) is a semi-simple admissible G(A∞F+)-module.
2. If S(B) 6= ∅ and π = ⊗vπv is an irreducible constituent of the

space Sa,{ρv},∅({1},C) then there is an automorphic representation BC ι(π)
of (B ⊗A)× with the following properties.

– BC ι(π) ◦ (−‡) = BC ι(π).
– If a prime v of F+ splits as wwc in F then BC ι(π)w ∼= πv ◦ i−1

w .
– If v is an infinite place of F+ and τ : F ↪→ C lies above v then

BC ι(π)v is cohomological for (ξaι−1τ
◦ τ)⊗ (ξaι−1τc

◦ τc).
– If v is a prime of F+ which is unramified, inert in F and if πv

has a fixed vector for a hyperspecial maximal compact subgroup of G(Fv)
then BC ι(π)v has a GLn(OF,v)-fixed vector.

– If v ∈ S(B) and πv has a G(OF,v) fixed vector and w is a prime
of F above v then BC ι(π)w is an unramified twist of (ιρ∨v ) ◦ i−1

w .
3. If S(B) 6= ∅ and π = ⊗vπv is an irreducible constituent of the

space Sa,{ρv},∅({1},C) such that for v ∈ S(B) the representation πv has a
G(OF+,v)-fixed vector, then there is a positive integer m|n and there is a
cuspidal automorphic representation Π of GLn/m(AF ) with the following
properties.

– Π∨ ◦ c = Π| |m−1.
– If a prime v 6∈ S(B) of F+ splits as wwc in F then Πw �Πw| |�

...�Πw| |m−1 ∼= πv ◦ i−1
w .

– If v is an infinite place of F+ and τ : F ↪→ C lies above v then
Πv| |n(m−1)/(2m) is cohomological for (ξbτ ◦ τ) ⊗ (ξbτc ◦ τc) and bτ,i =
aτ,m(i−1)+j + (m− 1)(i− 1) for every j = 1, ...,m.

– If v is a prime of F+ which is unramified, inert in F and if πv
has a fixed vector for a hyperspecial maximal compact subgroup of G(Fv)
then Πv has a GLn/m(OF,v)-fixed vector.

– If m > 1 and w is a prime of F above a prime v ∈ S(B) then Πw

is cuspidal.
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– If v ∈ S(B) and w is a prime of F above v then JL (ιρv ◦ i−1
w )∨

is an unramified twist of Spm(Πw). (In the case m = 1 and Πw is not
cuspidal we interpret Spm(Πw) as Πw.)

If for one place v0 6∈ S(B) of F+, which splits in F , the representation
πv0 is generic, then for all places v 6∈ S(B) of F+, which split in F , the
representation πv is generic.

4. Suppose Π is a cuspidal automorphic representation of GLn(AF )
with the following properties.

– Π∨ ◦ c = Π.
– If v is an infinite place of F+ and τ : F ↪→ C lies above v then

Πv is cohomological for (ξaι−1τ
◦ τ)⊗ (ξaι−1τc

◦ τc).
– If v ∈ S(B) and w is a prime of F above v then Πw is an un-

ramified twist of JL ((ιρ∨v ) ◦ i−1
w ).

Then there is an irreducible constituent π of Sa,{ρv},∅({1},C) with the fol-
lowing properties.

– For v ∈ S(B) the representation πv has a G(OF+,v)-fixed vector.
– If a prime v 6∈ S(B) of F+ splits as wwc in F then πv ∼= Πw ◦ iw.
– If v is a prime of F+ which is inert and unramified in F and if

Πw is unramified then πv has a fixed vector for a hyperspecial maximal
compact subgroup of G(Fv).

Proof: If τ ∈ Ĩl then ιτ : F → C and hence F∞ → C. Then Wa ⊗K,ι C
is naturally a continuous G(F+

∞)-module:

g 7−→ ⊗τ∈eIlξaτ (ιτg).

Denote this action by ξa,ι. Similarly Ma,{ρv},∅ ⊗O,ι C becomes a continuous
G(F+

∞)×
∏

v∈S(B)G(Fv)-module and hence (via projection) also a continuous

G(AF+)-module, which we will denote (Ma,{ρv},∅⊗O,ιC)∞ to make clear which
action is being considered. Let A denote the space of automorphic forms on
G(F+)\G(AF+). We have an isomorphism

i : Sa,{ρv},∅(U,C)
∼−→ Hom U×G(F+

∞)((Ma,{ρv},∅ ⊗O,ι C)∨∞,A)

given by
i(f)(α)(g) = α(ξa,ι(g∞)−1(ξa(gl)f(g∞))).

(We remark that the elements of Sa,{ρv},∅(U,C) are not continuous functions,
because our definition of Sa,{ρv},∅(U,A) was designed to give continuous func-
tions when A is a topological O-algebra. The map ι makes C an O-algebra,
but is not continuous.)

The first part now becomes a standard fact. The second part follows
from theorem A.5.2 of [CL], except that theorem A.5.2 of [CL] only identifies
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BC ι(π)v for all but finitely many v. We can easily adapt the argument to
identify BC ι(π)v at all split places, as is described in the proof of theorem
VI.2.1 of [HT] (page 202). It is equally easy to control BC ι(π)v at places
where πv has a fixed vector for a hyperspecial maximal compact subgroup.
One just chooses the set S in the proof of theorem A.5.2 of [CL] not contain-
ing v. The third part follows from the second, theorem VI.1.1 of [HT] and
the main result of [MW]. As for the fourth part, the existence of some de-
scent (controlled at all but finitely many places) follows from theorem VI.1.1
of [HT] and the argument for proposition 2.3 of [Cl] as completed by the-
orem A.3.1 of [CL]. That this descent has all the stated properties follows
from the earlier parts of this proposition. �

Corollary 3.3.3 Sa,{ρv},{χv}({1}, K) is a semi-simple admissible G(AR,∞
F+ ) ×∏

v∈R U0,v-module.

Proof: This reduces to the case R = ∅ which follows from proposition
3.3.2. �

Combining the above proposition with theorem VII.1.9 of [HT] we ob-
tain the following result.

Proposition 3.3.4 Let K
0

denote the algebraic closure of Ql in K. Suppose
that π = ⊗v 6∈Rπv is an irreducible constituent of Sa,{ρv},{χv}(

∏
v∈R U0,v, K) then

there is a continuous semi-simple representation

rπ : Gal (F/F ) −→ GLn(K
0
)

with the following properties.

1. If v 6∈ R ∪ S(B) ∪ Sl is a prime of F+ which splits v = wwc in F ,
then

rπ|ssGFw = (rl(πw ◦ i−1
w )∨(1− n))ss.

2. rcπ
∼= r∨π ε

1−n.
3. If v ∈ S(B) splits v = wwc in F then

rπ|ssGFw = (rl(JL (πw ◦ i−1
w ))∨(1− n))ss.

4. If v is a prime of F+ which is inert and unramified in F and if πv
has a fixed vector for a hyperspecial maximal compact subgroup of G(F+

v )
then rπ|WFv

is unramified.
5. If w is a prime of F above l then rπ is potentially semi-stable at

w. If moreover πw|F+ is unramified then rπ is crystalline at w.
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6. If τ : F ↪→ K gives rise to a prime w of F then

dim
K

0 gr i(rπ ⊗τ,Fw BDR)Gal (Fw/Fw) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dim
K

0 gr i(rπ ⊗τ,Fw BDR)Gal (Fw/Fw) = 1.

7. If for some place v 6∈ S(B) ∪R of F+ which splits in F the repre-
sentation πv is not generic then rπ is reducible.

Proof: Let m and Π be as in part 3 of proposition 3.3.2. Let S ′ ⊃ Sl
be any finite set of finite places of F+ which are unramified in F . Choose a
character ψ : A×F → C× such that

– ψ−1 = ψc;
– ψ is unramified above S ′; and
– if τ : F ↪→ C gives rise to an infinite place v of F then

ψv : z 7−→ (τz/|τz|)δτ

where |z|2 = zzc and δτ = 0 if either m or n/m is odd and δτ = ±1
otherwise.

The existence of such a character is proved as in the proof of lemma VII.2.8
of [HT]. Then

rπ = Rl(Π⊗ψ| |(m−1)/2)∨(1−n)⊗Rl(ψ
−1| |(n/m−1)(m−1)/2)∨⊗(1⊕ε−1⊕...⊕ε1−m)

is independent of the choice of S ′ and ψ and satisfies the requirements of
the proposition. (See theorem VII.1.9 of [HT]. We use the freedom to vary
S ′ to verify property 4. Note that if m = 1 then we simply have rπ =
Rl(Π)∨(1− n).) �

3.4. Unitary group Hecke algebras.. — Keep the notation and assump-
tions of the last section. Further suppose that T ⊃ Q ∪ R ∪ S(B) ∪ Sl is a
finite set of places of F+ and that

U =
∏
v

Uv ⊂ G(A∞F+)

is a sufficiently small open compact subgroup such that

1. if v 6∈ T splits in F then Uv = G(OF+,v),
2. if v ∈ R then Uv = i−1ev Iw(ṽ),
3. and if v ∈ Q then Uv = i−1ev U1(ṽ).
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If v ∈ S(B) also suppose that the representation

r̃ev : GFev −→ GLn/mv(O)

has the following properties:

1. r̃ev ⊗ k is absolutely irreducible,
2. every irreducible subquotient of (r̃ev ⊗ k)|IFev is absolutely irreducible,

3. and r̃ev ⊗ k 6∼= r̃ev ⊗ k(i) for i = 1, ...,mv.

By the first of these properties we see that the realisation over O we chose
for r̃ev⊗K is in fact unique up to equivalence. If v ∈ R also suppose that χv
is a character of Iw(ṽ)/Iw1(ṽ) and hence of the form

g 7−→
n∏
i=1

χv,i(gii)

where χv,i : k(ṽ)× → O×.
We will denote by

TT
a,{ρv},{χv}(U)

the O-subalgebra of End (Sa,{ρv},{χv}(U,O)) generated by the Hecke operators

T
(j)
w (or strictly speaking i−1

w (T
(j)
w ) × U v) and (T

(n)
w )−1 for j = 1, ..., n and

for w a place of F which is split over a place v 6∈ T of F+. (Note that

T
(j)
wc = (T

(n)
w )−1T

(n−j)
w , so we need only consider one place w above a given

place v of F+.) If X is a TT
a,{ρv}(U)-stable subspace of Sa,{ρv},{χv}(U,K) then

we will write
TT (X)

for the image of TT
a,{ρv},{χv}(U) in EndK(X).

Note that TT (X) is finite and free as a O-module. Also by corollary
3.3.3 we see that it is reduced.

If v ∈ Q and α ∈ F×ev write

Vα = i−1ev
(
U1(ṽ)

(
1n−1 0

0 α

)
U1(ṽ)

)
× U v.

Lemma 3.4.1 Suppose that for all v ∈ R the O×-valued characters χv and
χ′v of Iw(ṽ)/Iw1(ṽ) are congruent modulo λ. Set V = UR ×

∏
v∈R(i−1ev Iw1(ṽ)).

Then
Sa,{ρv},{χv}(U, k) = Sa,{ρv},{χ′v}(U, k)

as TT
a,{ρv},∅(V )-modules. In particular if m is a maximal ideal of TT

a,{ρv},∅(V ),
then

Sa,{ρv},{χv}(U,K)m 6= (0)

if and only if
Sa,{ρv},{χ′v}(U,K)m 6= (0).
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Proof: The first part is immediate from the definitions. The second part
follows because Sa,{ρv},{χv}(U,K)m 6= (0) if and only if Sa,{ρv},{χv}(U, k)m 6= (0).
(The second step uses the assumption that U is sufficiently small so that
Sa,{ρv},{χv}(U,O)m is O-torsion free and

Sa,{ρv},{χv}(U,K)m = Sa,{ρv},{χv}(U,O)m ⊗O K

and
Sa,{ρv},{χv}(U, k)m = Sa,{ρv},{χv}(U,O)m ⊗O k.)

�

Proposition 3.4.2 Suppose that m is a maximal ideal of TT
a,{ρv},{χv}(U).

Then there is a unique continuous semisimple representation

rm : Gal (F/F ) −→ GLn(TT
a,{ρv},{χv}(U)/m)

with the following properties. The first two of these properties already charac-
terise rm uniquely.

1. rm is unramified at all but finitely many places.
2. If a place v 6∈ T of F+ splits as wwc in F then rm is unramified

at w and rm(Frobw) has characteristic polynomial

Xn − T (1)
w Xn−1 + ...+ (−1)j(Nw)j(j−1)/2T

(j)
w Xn−j+

+...+ (−1)n(Nw)n(n−1)/2T
(n)
w .

3. If a place v of F+ is inert and unramified in F and if Uv is a
hyperspecial maximal compact subgroup of G(F+

v ), then rm is unramified
above v.

4. rcm
∼= r∨m ⊗ ε1−n.

5. If v ∈ S(B) and Uv = G(OF+
v

) then rm|Gal (F ev/Fev) is r̃ev-discrete se-

ries. (See definition 2.4.24.)

6. Suppose that w ∈ S̃l is unramified over l, that Uw|F+ = G(OF+,w)

and that for each τ ∈ Ĩl above w we have

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0.

Then
rm|Gal (Fw/Fw) = Gw(Mm,w)

for some object Mm,w of MFTT
a,{ρv},{χv}

(U)/m,w. Moreover for all τ ∈ Ĩl over

w we have
dimTT

a,{ρv},{χv}
(U)/m(gr iMm,w)⊗τ⊗1 O = 1

if i = aτ,j + n− j for some j = 1, ..., n and = 0 otherwise.
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Proof: Choose a minimal prime ideal ℘ ⊂ m and an irreducible con-
stituent π of Sa,{ρv},{χv}({1}, K) such that πU 6= (0) and TT

a,{ρv},{χv}(U) acts

on πU via the quotient TT
a,{ρv},{χv}(U)/℘. Choosing an invariant lattice in rπ,

reducing and semisimplifying gives us the desired representation rm, except
that it is defined over the algebraic closure of TT

a,{ρv},{χv}(U)/m. However, as
the characteristic polynomial of every element of the image of rm is rational
over TT

a,{ρv},{χv}(U)/m and as TT
a,{ρv},{χv}(U)/m is a finite field we see that

(after conjugation) we may assume that

rm : Gal (F/F ) −→ GLn(TT
a,{ρv},{χv}(U)/m).

�

Definition 3.4.3 We will call m Eisenstein if rm is absolutely reducible.

Proposition 3.4.4 Suppose that m is a non-Eisenstein maximal ideal of the
Hecke algebra TT

a,{ρv},{χv}(U) with residue field k. Then rm has an extension
to a continuous homomorphism

rm : Gal (F/F+) −→ Gn(k).

Pick such an extension. There is a unique continuous lifting

rm : Gal (F/F+) −→ Gn(TT
a,{ρv},{χv}(U)m)

of rm with the following properties. The first two of these properties already
characterise the lifting rm uniquely.

1. rm is unramified at all but finitely many places.
2. If a place v 6∈ T of F+ splits as wwc in F then rm is unramified

at w and rm(Frobw) has characteristic polynomial

Xn−T (1)
w Xn−1 + ...+(−1)j(Nw)j(j−1)/2T (j)

w Xn−j+ ...+(−1)n(Nw)n(n−1)/2T (n)
w .

3. If a place v of F+ such that v is inert and unramified in F and
if Uv is a hyperspecial maximal compact subgroup of G(F+

v ) then rm is
unramified at v.

4. ν ◦ rm = ε1−nδµm

F/F+, where δF/F+ denotes the nontrivial character of

Gal (F/F+) and where µm ∈ Z/2Z.

5. Suppose that w ∈ S̃l is unramified over l, that Uw|F+ = G(OF+,w)

and that for each τ ∈ Ĩl above w we have

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0.

Then for each open ideal I ⊂ TT
a,{ρv},{χv}(U)m

(rm ⊗TT
a,{ρv},{χv}

(U)m
TT
a,{ρv},{χv}(U)m/I)|Gal (Fw/Fw) = Gw(Mm,I,w)

for some object Mm,I,w of MFO,w.
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6. If v ∈ S(B) and Uv = G(OF+,v) then rm|Gal (F ev/Fev) is r̃ev-discrete

series. (See definition 2.4.24.)
7. If v ∈ R and σ ∈ IFev then rm(σ) has characteristic polynomial

n∏
j=1

(X − χ−1
v,j(Art −1

Fev σ)).

8. Suppose that v ∈ Q. Let φev be a lift of Frobev to Gal (F ev/Fev) and let
$ev be an element of F×ev such that Art Fev$ev = φev on the maximal abelien
extension of Fev. Suppose that α ∈ k is a simple root of the characteristic
polynomial of rm(φev). Then there is a unique root α̃ ∈ TT

a,{ρv},{χv}(U)m of

the characteristic polynomial of rm(φev) which lifts α.
Suppose further that Y is a TT

a,{ρv},{χv}(U)[V$ev ]-invariant subspace of the

space Sa,{ρv},{χv}(U,K)m such that V$ev − α is topologically nilpotent on Y .
Then for each β ∈ F×ev with non-negative valuation the element Vβ (in
EndK(Y )) lies in TT (Y ). Moreover β 7→ Vβ extends to a continuous char-
acter V : F×ev → TT (Y )×. Further (X − V$ev) divides the characteristic
polynomial of rm(φev) over TT (Y ).
If Nv ≡ 1 mod l then

rm|Gal (F ev/Fev) = s⊕ (V ◦ Art −1
Fev ),

where s is unramified.

Proof: By lemma 2.1.4 we can extend rm to a homomorphism

rm : Gal (F/F+) −→ Gn(k)

with ν ◦ rm = εn−1δµm

F/F+ and rm(cv) 6∈ GLn(k) for any infinite place v of

F+. Moreover, up to GLn(k)-conjugation, the choices of such extensions are
parametrised by k×/(k×)2.

Similarly, for any minimal primes ℘ ⊂ m we have a continuous homo-
morphism r℘ from Gal (F/F+) to the points of Gn over the algebraic closure
of Ql in the algebraic closure of the field of fractions of TT

a,{ρv},{χv}(U)/℘
such that

– r℘ is unramified almost everywhere;
– r−1

℘ GLn = Gal (F/F ); and
– for all places v 6∈ T of F+ which split v = wwc in F the characteristic

polynomial of rm(Frobw) is

Xn−T (1)
w Xn−1 + ...+(−1)j(Nw)j(j−1)/2T (j)

w Xn−j+ ...+(−1)n(Nw)n(n−1)/2T (n)
w .
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According to lemma 2.1.5 we may assume that r℘ is actually valued in
Gn(O℘) where O℘ is the ring of integers of some finite extension of the field
of fractions of TT

a,{ρv},{χv}(U)/℘. Then by lemma 2.1.4 again we may assume

that the reduction of r℘ modulo the maximal ideal of O℘ equals rm. (Not
simply conjugate to rm.) Let A denote the subring of k ⊕

⊕
℘⊂mO℘ consist-

ing of elements (am, a℘) such that for all ℘ the reduction of a℘ modulo the
maximal ideal of O℘ is am. Then

rm ⊕
⊕
℘

r℘ : Gal (F/F+) −→ Gn(A).

Moreover the natural map

TT
a,{ρv},{χv}(U)m −→ A

is an injection. (Because TT
a,{ρv},{χv}(U)m is reduced.) Thus by lemma 2.1.12

we see that rm ⊕
⊕

℘ r℘ is GLn(A) conjugate to a representation

rm : Gal (F/F+) −→ Gn(TT
a,{ρv},{χv}(U)m)

such that:

– If a place v 6∈ T of F+ splits as wwc in F then rm is unramified at
w and rm(Frobw) has characteristic polynomial

Xn−T (1)
w Xn−1 + ...+(−1)j(Nw)j(j−1)/2T (j)

w Xn−j+ ...+(−1)n(Nw)n(n−1)/2T (n)
w .

– If a place v of F+ is inert and unramified in F and if Uv is a
hyperspecial maximal compact subgroup of G(F+

v ) then rm is unramified
at v.

It is easy to verify that rm also satisfies properties 4 and 5 of the proposition.
We next turn to part 6. After base changing to an algebraically closed

field each r℘|Gal (F ev/Fev) has a unique filtration such that gr 0r℘|IFev ∼= r̃ev|IFev ,
and

gr ir℘|Gal (F ev/Fev)
∼= (gr 0r℘|Gal (F ev/Fev))(ε

i)

for i = 0, ...,mv − 1 (and = (0) otherwise). Enlarging O℘ if need be we may
assume that this filtration is defined over the field of fractions of O℘. As
r̃ev ⊗O k is irreducible, such a filtration also exists over O℘. Because of the

uniqueness of the filtration Fil
i

on the base change of rm to the residue
field of O℘ we see that these filtrations piece together to give a filtration of
rm ⊕

⊕
℘ r℘ over A. As the isomorphisms gr irm

∼= (gr 0rm)(εi) are unique up
to scalar multiples we get isomorphisms

gr i(rm ⊕
⊕
℘

r℘) ∼= (gr 0(rm ⊕
⊕
℘

r℘))(εi)
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over A[Gal (F ev/Fev)] which are compatible with the chosen isomorphism be-
tween gr irm and (gr 0rm)(εi). As

ZGLn/mv (O℘)(gr 0r℘(IFev))→→ ZGLn/mv (O℘/mO℘ )(gr 0rm(IFev))
(see lemma 2.4.23), we see that we get an isomorphism

gr 0(rm ⊕
⊕
℘

r℘) ∼= r̃ev ⊗O A
over A[IFw ] compatible with the chosen isomorphism gr 0rm

∼= r̃ev ⊗O k. Thus
rm⊕

⊕
℘ r℘ is r̃ev-discrete series. It follows that rm|Gal (F ev/Fev) is also r̃ev-discrete

series.
Part 7 follows from proposition 3.3.4 and lemma 3.1.6. (Note that the

space Sa,{ρv},{χv}(U,K) equals the subspace of Sa,{ρv},∅(U
R×
∏

v∈R i
−1ev Iw1(ṽ), K)

on which Iw(ṽ)/Iw1(ṽ) acts by χ−1
v .)

Finally we turn to part 8 of the proposition. The existence of α̃ fol-
lows at once from Hensel’s lemma. Let P (X) ∈ TT

a,{ρv},{χv}(U)m[X] denote

the characteristic polynomial of rm(φev). Thus P (X) = (X − α̃)Q(X) where
Q(α̃) ∈ TT

a,{ρv},{χv}(U)×m.

Write Y ⊗K K =
⊕

((Y ⊗ K) ∩ π) as π runs over irreducible smooth
representations of G(A∞F+). From lemmas 3.1.3 and 3.1.5 and the fact that

V$ev − α is topologically nilpotent we see that dim((Y ⊗K) ∩ π) ≤ 1 for all
π. Let φ′ev be any lift of Frobev to Gal (F ev/Fev) and let Art Fev$′ev = φ′ev. Let P ′

denote the characteristic polynomial of rm(φ′ev) and let α̃′ be its unique root
in TT (Y ) over α. As V$ev and V$′ev commute, each (Y ⊗K) ∩ π is invariant

under V$′ev . By lemma 3.1.5 V$′evV −1
$ev is topologically unipotent on (Y ⊗K)∩π.

Lemmas 3.1.3 and 3.1.5 imply that P ′(V$′ev) = 0 on (Y ⊗K)∩π. Thus V$′ev =

α̃′ on (Y ⊗ K) ∩ π. Hence V$′ev = α̃′ ∈ TT (Y ) ⊂ EndK(Y ). It follows that

Vβ ∈ TT (Y ) for all β ∈ F×ev with non-negative valuation and that β 7→ Vβ
extends to a continuous character V : F×ev → TT (Y )×.

Now suppose that Nv ≡ 1 mod l. From lemma 3.1.5 we see that if
(Y ⊗K) ∩ π 6= (0) then either π is unramified or πU0(ev) = (0) (otherwise V$ev
would be a multiple root of the characteristic polynomial of rm(φev)). Thus
(rm ⊗TT (Y ))(Gal (F ev/Fev)) is abelian. We have a decomposition

TT (Y )n = Q(φev)TT (Y )n ⊕ (φev − α̃)TT (Y )n.

As (rm ⊗ TT (Y ))(Gal (F ev/Fev)) is abelian we see that this decomposition is
preserved by Gal (F ev/Fev). By lemma 3.1.5 we see that after projection to
any π ∩ (Y ⊗K), Gal (F ev/Fev) acts on Q(φev)TT (Y )n by Vπ ◦ Art −1

Fwev and its

action on (φev − α̃)TT (Y )n is unramified. We conclude that Gal (F ev/Fev) acts
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on Q(φev)TT (Y )n by V and that its action on (φev − α̃)TT (Y )n is unramified.
This completes the proof of part 8 of the proposition. �

Corollary 3.4.5 Suppose that m is a non-Eisenstein maximal ideal of the
Hecke algebra TT

a,{ρv},{χv}(U). Suppose also that v ∈ T − (S(B) ∪ Sl) and that

Uv = G(OF+,v). If w is a prime of F above v then for j = 1, ..., n we have

T (j)
w ∈ TT

a,{ρv},{χv}(U)m ⊂ End (Sa,{ρv},{χv}(U,K)m).

Proof: One need only remark that

T (j)
w = (Nw)j(1−j)/2tr ∧j rm(Frobw).

�

3.5. R = T theorems: the minimal case. — In this section we will
prove the quality of certain global Galois deformation rings and certain Hecke
algebras in the so called ‘minimal case’. The results of this section are not
required for the proofs of the main theorems in [Tay] and [HSBT]. It could
be skipped by those only interested in these applications, but it might serve
as a good warm up for understanding the arguments of [Tay].

We must first establish some notation and assumptions. In the interests
of clarity we recapitulate all running assumptions made in previous sections.

Fix a positive integer n ≥ 2 and a prime l > n.
Fix an imaginary quadratic field E in which l splits and a totally real

field F+ such that

– F = F+E/F+ is unramified at all finite primes, and
– F+/Q is unramified at l.

Fix a finite non-empty set of places S(B) of places of F+ with the
following properties:

– Every element of S(B) splits in F .
– S(B) contains no place above l.
– If n is even then

n[F+ : Q]/2 + #S(B) ≡ 0 mod 2.

Choose a division algebra B with centre F with the following properties:

– dimF B = n2.
– Bop ∼= B ⊗E,c E.
– B splits outside S(B).
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– If w is a prime of F above an element of S(B), then Bw is a division
algebra.

Fix an involution ‡ on B and define an algebraic group G/F+ by

G(A) = {g ∈ B ⊗F+ A : g‡⊗1g = 1},

such that

– ‡|F = c,
– for a place v|∞ of F+ we have G(F+

v ) ∼= U(n), and
– for a finite place v 6∈ S(B) of F+ the group G(F+

v ) is quasi-split.

The purpose of the assumption that S(B) 6= ∅ is to simplify the use of the
trace formula in relating automorphic forms on G to automorphic forms on
GLn/F and in attaching Galois representations to automorphic forms on G.

Choose an order OB in B such that O‡B = OB and OB,w is maximal
for all primes w of F which are split over F+. This gives a model of G over
OF+ . If v 6∈ S(B) is a prime of F+ which splits in F choose an isomorphism

iv : OB,v
∼→Mn(OF,v) such that iv(x

‡) = tiv(x)c. If w is a prime of F above v

this gives rise to an isomorphism iw : G(F+
v )

∼→ GLn(Fw) as in section 3.3. If

v ∈ S(B) and w is a prime of F above v choose isomorphisms iw : G(F+
v )

∼→
B×w such that iwc = i−‡w and iwG(OF+,v) = O×B,w.

Let Sl denote the set of primes of F+ above l. Let Sa denote a non-
empty set, disjoint from Sl ∪ S(B), of primes of F+ such that

– if v ∈ Sa then v splits in F , and
– if v ∈ Sa lies above a rational prime p then [F (ζp) : F ] > n.

Let T = S(B) ∪ Sl ∪ Sa. Let T̃ denote a set of primes of F above T such

that T̃
∐
T̃ c is the set of all primes of F above T . If v ∈ T we will let ṽ

denote the prime of T̃ above v. If S ⊂ T we will let S̃ denote the set of ṽ
for v ∈ S.

Let U =
∏

v Uv denote an open compact subgroup of G(A∞F+) such that

– if v is not split in F then Uv is a hyperspecial maximal compact
subgroup of G(F+

v ),
– if v 6∈ Sa splits in F then Uv = G(OF+,v),
– if v ∈ Sa then Uv = i−1ev ker(GLn(OF,ev)→ GLn(OF,ev/($ev))).

Then U is sufficiently small. (The purpose of the non-empty set Sa is to
ensure this.)

Let K/Ql be a finite extension which contains the image of every em-
bedding F+ ↪→ K. Let O denote its ring of integers, λ the maximal ideal of
O and k the residue field O/λ.

For each τ : F ↪→ K choose integers aτ,1, ..., aτ,n such that
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– aτc,i = −aτ,n+1−i, and

– if τ gives rise to a place in S̃l then

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0.

For each v ∈ S(B) let ρv : G(F+
v ) −→ GL(Mρv) denote a representation

of G(F+
v ) on a finite free O-module such that ρv has open kernel and Mρv⊗O

K is irreducible. For v ∈ S(B), define mv, πev and r̃ev by

JL (ρv ◦ i−1ev ) = Spmv(πev)
and

r̃ev = rl(πev| |(n/mev−1)(1−mev)/2).

We will suppose that

r̃ev : Gal (F ev/Fev) −→ GLn/mev(O)

(as opposed to GLn/mev(K)), that the reduction of r̃ev mod λ is absolutely
irreducible, that every irreducible subquotient of r̃ev|IFev mod λ is absolutely
irreducible, and that for i = 1, ...,mv we have

r̃ev ⊗O k 6∼= r̃ev ⊗O k(εi).

Let m be a non-Eisenstein maximal ideal of TT
a,{ρv},∅(U) with residue

field k and let

rm : Gal (F/F+) −→ Gn(k)

be a continuous homomorphism associated to m as in propositions 3.4.2 and
3.4.4. Note that

ν ◦ rm = ε1−nδµm

F/F+

where δF/F+ is the non-trivial character of Gal (F/F+) and where µm ∈ Z/2Z.
We will assume that rm has the following properties.

– rm(Gal (F/F+(ζl))) is big in the sense of section 2.5.
– If v ∈ Sa then rm is unramified at v and

H0(Gal (F ev/Fev), (ad rm)(1)) = (0).

We will write Tm for the localisation TT
a,{ρv},∅(U)m and Xm for the lo-

calisation Sa,{ρv},∅(U,O)m. Thus Tm is a local, commutative subalgebra of
EndO(Xm). It is reduced and finite, free as an O-module. Let

rm : Gal (F/F+) −→ Gn(Tm)
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denote the continuous lifting of rm provided by proposition 3.4.4. Then Tm is
generated as an O-algebra by the coefficients of the characteristic polynomials
of rm(σ) for σ ∈ Gal (F/F ).

Consider the deformation problem S given by

(F/F+, T, T̃ ,O, rm, ε
1−nδµm

F/F+ , {Dv}v∈T )

where:

– For v ∈ Sa, Dv will consist of all lifts of rm|Gal (F ev/Fev) and so

Lv = H1(Gal (F ev/Fev), ad rm) = H1(Gal (F ev/Fev)/IFev , ad rm).

– For v ∈ Sl, Dv and Lv are as described in section 2.4.1 (i.e. consists
of crystalline deformations).

– For v ∈ S(B), Dv consists of lifts which are r̃ev-discrete series as de-
scribed in section 2.4.5.

Also let
runiv
S : Gal (F/F+) −→ Gn(Runiv

S )

denote the universal deformation of rm of type S. By proposition 3.4.4 there
is a natural surjection

Runiv
S →→ Tm

such that runiv
S pushes forward to rm.

We can now state and prove our main result.

Theorem 3.5.1 Keep the notation and assumptions of the start of this sec-
tion. Then

Runiv
S

∼−→ Tm

is an isomorphism of complete intersections and Xm is free over Tm. Moreover
µm ≡ n mod 2.

Proof: To prove this we will appeal to Diamond’s and Fujiwara’s im-
provement to Faltings’ understanding of the method of [TW]. More precisely
we will appeal to theorem 2.1 of [Dia]. We remark that one may easily
weaken the hypotheses of this theorem in the following minor ways. The
theorem with the weaker hypotheses is easily deduced from the theorem as
it is stated in [Dia]. In the notation of [Dia] one can take B = k[[X1, ..., Xr′ ]]
with r′ ≤ r. Also in place of his assumption (c) one need only assume that
Hn is free over A/nn, where {nn} is a family of open ideals contained in
n with the property that

⋂
n nn = (0). We also remark with these weakened

hypotheses one may also deduce from the proof of theorem 2.1 of [Dia] that
in fact r = r′.
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Choose an integer q as in proposition 2.5.9. Set

q′ = q − n[F+ : Q](1 + (−1)n−1+µm)/2.

For each N ∈ Z≥1 choose (QN , Q̃N , {ψ
(N)

v }v∈QN ) as in proposition 2.5.9 and
definition 2.5.7. We will use the notations S(QN), ∆v, ∆QN and a∅,QN as in
definition 2.5.7. Recall that

(Runiv
S(QN ))∆QN = Runiv

S .

By proposition 2.5.9 there is a surjection

O[[Y1, ..., Yq′ ]]→→ Runiv
S(QN ).

Let ψN denote the composite

ψN : O[[Y1, ..., Yq′ ]]→→ Runiv
S(QN ) →→ Runiv

S .

There is a surjection

O[[Z1, ..., Zq]]→→ O[∆QN ]

such that, if nN denotes the kernel, then
⋂
N nN = (0). We can lift the map

O[[Z1, ..., Zq]]→→ O[∆QN ] −→ Runiv
S(QN )

to a map
φN : O[[Z1, ..., Zq]] −→ O[[Y1, ..., Yq′ ]].

Then the composite

O[[Z1, ..., Zq]]
ψN◦φN−→ Runiv

S /λ

has kernel (λ, Z1, ..., Zq).
Note that Xm is a Runiv

S -module via Runiv
S →→ Tm.

Define open compact subgroups U1(QN) =
∏

v U1(QN)v and U0(QN) =∏
v U0(QN)v of G(A∞F+) by

– U1(QN)v = U0(QN)v = Uv if v 6∈ QN ,
– U1(QN)v = i−1ev U1(ṽ) if v ∈ QN , and
– U0(QN)v = i−1ev U0(ṽ) if v ∈ QN .

By corollary 3.4.5 we see that we have

TT∪QN
a,{ρv},∅(U1(QN))m →→ TT∪QN

a,{ρv},∅(U0(QN))m →→ TT∪QN
a,{ρv},∅(U)m = TT

a,{ρv},∅(U)m.

For v ∈ QN choose φev ∈ Gal (F ev/Fev) lifting Frobev and $ev ∈ F×ev with
φev = Art Fev$ev on the maximal abelian extension of Fev. Let

Pev ∈ TT∪QN
a,{ρv},∅(U1(QN))m[X]
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denote the characteristic polynomial of rm(φev). By Hensel’s lemma we have
a unique factorisation

Pev(X) = (X − Aev)Qev(X)

over TT∪QN
a,{ρv},∅(U1(QN))m, where Aev lifts ψ

(N)

v (Frobev) and where Qev(Aev) is a

unit in TT∪QN
a,{ρv},∅(U1(QN))m. By lemmas 3.1.3 and 3.1.5 we see that Pev(V$ev) =

0 on Sa,{ρv},∅(U1(QN),O)m. Set

H1,QN = (
∏
v∈QN

Qev(V$ev))Sa,{ρv},∅(U1(QN),O)m

and
H0,QN = (

∏
v∈QN

Qev(V$ev))Sa,{ρv},∅(U0(QN),O)m.

We see that H1,QN is a TT∪QN
a,{ρv},∅(U1(QN))-direct summand of the larger mod-

ule Sa,{ρv},∅(U1(QN),O), and hence by lemma 3.3.1

tr U0(QN )/U1(QN ) : (H1,QN )U0(QN )/U1(QN )
∼−→ H0,QN .

Moreover for all v ∈ QN , V$ev = Aev on H1,QN . By part 7 of proposition 3.4.4
we see that for each v ∈ QN there is a character

Vev : F×ev −→ TT∪QN (H1,QN )×

such that

– if α ∈ F×ev ∩ OF,ev then Vev(α) = Vα on H1,QN , and
– rm|WFev = s⊕ (Vev ◦ Art −1

Fev ) where s is unramified.

Thus rm gives rise to a surjection

Runiv
S(QN ) →→ TT∪QN (HQN ).

The composite∏
v∈QN

O×F,ev →→ ∆QN −→ (Runiv
S(QN ))

× −→ TT∪QN (HQN )×

is just
∏

v Vev. As H1,QN is a direct summand of Sa,{ρv},∅(U1(QN),O) over

TT∪QN
a,{ρv},∅(U1(QN)), lemma 3.3.1 now tells us that H1,QN is a free O[∆QN ]-

module and that
(H1,QN )∆QN

∼−→ H0,QN .

Also lemma 3.2.2, combined with lemma 3.1.5, tells us that

(
∏
v∈QN

Qev(V$tv)) : Xm
∼−→ H0,QN .
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Now we apply theorem 2.1 of [Dia] (as reformulated in the first para-
graph of this proof) to A = k[[Z1, ..., Zq]], B = k[[Y1, ..., Yq′ ]], R = Runiv

S /λ,
H = Xm/λ and HN = H1,QN/λ. We deduce that r = r′, that Xm/λ is free
over Runiv

S /λ via Runiv
S /λ →→ Tm/λ and that Runiv

S /λ is a complete inter-
section. As Xm is free over O we see that Xm is also free over Runiv

S via

Runiv
S →→ Tm. Thus Runiv

S
∼→ Tm is free over O and hence a complete inter-

section. The equality q = q′ tells us that µm ≡ n mod 2. �
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4. Automorphic forms on GLn.

In this chapter we will recall some general facts about the relationship
between automorphic forms on GLn and Galois representations. We will then
combine theorem 3.5.1 with some instances of base change to obtain modu-
larity lifting theorems for GLn.

4.1. Characters.. — The first three lemmas are well known.

Lemma 4.1.1 Suppose that F is a number field and that S is a finite set of
places of F . Suppose also that

χS :
∏
v∈S

F×v −→ Q
×

is a continuous character of finite order. Then there is a continuous character

χ : F×\A×F −→ Q
×

such that χ|Q
v∈S F

×
v

= χS.

Proof: One may suppose that S contains all infinite places. Then we
choose an open subgroup U ⊂ (AS

F )× such that χS is trivial on U ∩ F×.
(This is possible as any finite index subgroup of O×F is a congruence sub-
group.) Then we can extend χS to U

∏
v∈S F

×
v /(U ∩ F×) by setting it to

one on U . Finally we can extend this character to A×F/F
× (which contains

U
∏

v∈S F
×
v /(U ∩ F×) as an open subgroup). �

Lemma 4.1.2 Suppose that F is a number field, D/F is a finite Galois ex-
tension and S is a finite set of places of F . For v ∈ S let E ′v/Fv be a finite
Galois extension. Then we can find a finite, soluble Galois extension E/F
linearly disjoint from D such that for each v ∈ S and each prime w of E
above v, the extension Ew/Fv is isomorphic to E ′v/Fv.

Proof: For each D ⊃ Di ⊃ F with Di/F Galois with a simple Galois
group, choose a prime vi 6∈ S of F which does not split completely in Di.
Add the vi to S along with E ′vi = Fvi . Then we can drop the condition that
E/F is disjoint from D/F - it will be automatically satisfied.

Using induction on the maximum of the degrees [E ′v : Fv] we may reduce
to the case that each E ′v/Fv is cyclic. Then we can choose a continuous finite
order character

χS :
∏
v∈S

F×v −→ Q
×
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such that kerχS|F×v corresponds (under local class field theory) to E ′v/Fv for
all v ∈ S. According to the previous lemma we can extend χ to a continuous
character

χ : F×\A×F −→ Q
×
.

Let E/F correspond, under global class field theory, to kerχ. �

Let F be a number field. A character

χ : A×F/F
× −→ C×

is called algebraic if for τ ∈ Hom (F,C) there exist mτ ∈ Z such that

χ|(F×∞)0(x) =
∏

τ∈Hom (F,C)

τ(x)−mτ .

A set of integers {mτ} arises from some algebraic character if and only if
there is an integer d and a CM subfield E ⊂ F such that if τ1|E = (τ2|E) ◦ c
then d = mτ1 +mτ2 . For this and the proof of the next lemma see [Se1].

We will call a continuous character

χ : Gal (F/F ) −→ Q
×
l

algebraic if it is de Rham at all places above l.

Lemma 4.1.3 Let ı : Ql
∼→ C. Let F be a number field. Let

χ : A×F/F
× −→ C×

be an algebraic character and for τ ∈ Hom (F,C) let mτ ∈ Z satisfy

χ|(F×∞)0(x) =
∏

τ∈Hom (F,C)

τ(x)−mτ .

Then there is a continuous character

rl,ı(χ) : Gal (F/F ) −→ Q
×
l

with the following properties.

1. For every prime v 6 |l of F we have

rl,ı(χ)|Gal (F v/Fv) = χv ◦ Art −1
Fv
.

2. If v|l is a prime of F then rl,ı(χ)|Gal (F v/Fv) is potentially semistable

(in fact potentially crystalline), and if χv is unramified then it is crys-
talline.
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3. If v|l is a prime of F and if τ : F ↪→ Ql lies above v then

dimQl
gr i(rl,ı(χ)⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = mıτ in which case

dimQl
gr i(rl,ı(χ)⊗τ,Fv BDR)Gal (F v/Fv) = 1.

Any continuous algebraic character ψ : Gal (F/F ) −→ Q
×
l arises in this

way.

The character rl,ı(χ) is explicitly χ(l)◦Art −1
F where χ(l) : A×F/F

×(F×∞)0 →
Q
×
l is given by

χ(l)(x) =

 ∏
τ∈Hom (F,C)

(ı−1τ)(xl)
−mτ

 ı−1

 ∏
τ∈Hom (F,C)

τ(x∞)mτ

χ(x)

 .

Lemma 4.1.4 Let F be an imaginary CM field with maximal totally real
subfield F+. Let S be a finite set of primes of F+ which split in F . Let I
be a set of embeddings F ↪→ C such that I

∐
Ic is the set of all embeddings

F ↪→ C. For τ ∈ I let mτ be an integer. Suppose that

χ : A×F+/(F
+)× −→ C×

is algebraic, unramified at S and such that χv(−1) is independent of v|∞.
Then there is an algebraic character

ψ : A×F/F
× −→ C×

which is unramified above S and satisfies

ψ ◦NF/F+ = χ ◦NF/F+

and
ψ|F×∞ =

∏
τ∈I

τmτ (cτ)w−mτ

for some w.

Proof: From the discussion before lemma 4.1.3 we have that

χ|((F+
∞)×)0 =

∏
τ∈I

τw

for some integer w. Choose an algebraic character

φ : A×F/F
× −→ C×
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which is unramified above S and such that

φ|F×∞ =
∏
τ∈I

τmτ (cτ)w−mτ .

Replacing χ by χφ|×
A+
F

we may suppose that χ has finite order and that

mτ = 0 for all τ ∈ I.
Let US =

∏
v∈S O

×
F,v and U+

S =
∏

v∈S O
×
F+,v. It suffices to prove that

χ|
(NF/F+A×F )∩USF×F×∞

= 1.

If γi ∈ F× and xi ∈ F×∞ and γixi tends to an element of A×F+US, then for

large i the ratio γci /γi ∈ F
NF/F+=1 is a unit at all primes above S and tends

to 1 in (AS,∞
F )×. As O

NF/F+=1

F is the group of roots of unity in F and hence
is finite, we conclude that for i sufficiently large γci /γi = 1, i.e. γi ∈ F+. Thus

(NF/F+A×F ) ∩ USF×F×∞ = (NF/F+A×F ) ∩ U+
S (F+)×(F+

∞)×.

We know that χ is trivial on (NF/F+A×F ) ∩ U+
S (F+)×((F+

∞)×)0.
Note that A×F+/(NF/F+A×F )(F+)×(F+

∞)× corresponds under the Artin
map to the maximal quotient of Gal (F/F+) in which all complex conju-
gations are trivial. Hence A×F+ = (NF/F+A×F )(F+)×(F+

∞)× and we have an
exact sequence

(0)→ ((NF/F+A×F ) ∩ U+
S (F+)×(F+

∞)×)/((NF/F+A×F ) ∩ U+
S (F+)×((F+

∞)×)0)

→ (F+)×(NF/F+A×F )/U+
S (F+)×((F+

∞)×)0 → A×F+/U
+
S (F+)×(F+

∞)×)→ (0).

If M/F+ denotes the maximal abelian extension unramified in S and if L/F+

denotes the maximal totally real abelian extension unramified in S, then by
class field theory this exact sequence corresponds to the exact sequence

(0)→ Gal (M/LF )→ Gal (M/F )→ Gal (L/F+)→ (0).

If v|∞ write cv for a complex conjugation at v. As Gal (M/LF ) is gener-
ated by elements cv1cv2 where v1 and v2 are infinite places we see that the

image of ((NF/F+A×F )∩U+
S (F+)×(F+

∞)×)/((NF/F+A×F )∩U+
S (F+)×((F+

∞)×)0) in

(F+)×(NF/F+A×F )/U+
S (F+)×((F+

∞)×)0 is generated by elements (−1)v1(−1)v2 ,
where v1 and v2 are two infinite places. Thus χ will be trivial on the inter-
section (NF/F+A×F ) ∩ U+

S (F+)×(F+
∞)× if and only if χv1(−1)χv2(−1) = 1 for

all infinite places v1 and v2. The lemma follows. �
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Lemma 4.1.5 Let F be an imaginary CM field with maximal totally real
subfield F+. Let I be a set of embeddings F ↪→ Ql such that I

∐
Ic is the set

of all such embeddings. Choose an integer mτ for all τ ∈ I. Choose a finite
set S of primes of F+ which split in F and do not lie above l. Suppose that

χ : Gal (F/F+) −→ Q
×
l

is a continuous algebraic character which is unramified above S, crystalline at
all primes above l and for which χ(cv) is independent of the infinite place v of
F+. (Here cv denotes complex conjugation at v.) Then there is a continuous
algebraic character

ψ : Gal (F/F ) −→ Q
×
l

which is unramified above S and crystalline above l, such that

ψψc = χ|Gal (F/F ),

and
grmτ (Ql(ψ)⊗τ,Fv(τ)

BDR)Gal (F v(τ)/Fv(τ)) 6= (0)

for all τ ∈ I. (Here v(τ) is the place above l induced by τ .)

Proof: This is the Galois theoretic analogue of the previous lemma. It
follows from lemmas 4.1.3 and 4.1.4. �

A slight variant on these lemmas is the following.

Lemma 4.1.6 Suppose that l > 2 is a rational prime. Let F be an imaginary
CM field with maximal totally real subfield F+. Let S be a finite set of finite
places of F containing all primes above l and satisfying Sc = S. Let

χ : Gal (F/F+) −→ O×
Ql

and
θ : Gal (F/F ) −→ F

×
l

be continuous characters with θθ
c

equal to the reduction of χ|Gal (F/F ). For
v ∈ S, let

ψv : Gal (F v/Fv) −→ O×Ql

be a continuous character lifting θ|Gal (F v/Fv) such that

(ψvψ
c
vc)|IFv = χ|IFv .

Suppose also that if τ : F ↪→ Ql lies above v ∈ S then

dimQl
grmτ (ψv ⊗τ,Fv BDR)Gal (F v/Fv) = 1,
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and that mτ +mτ◦c is independent of τ .
Then there is a continuous character

θ : Gal (F/F ) −→ O×
Ql

lifting θ and such that
θθc = χ|Gal (F/F )

and, for all v ∈ S,
θ|IFv = ψ|IFv .

In particular θ is algebraic.

Proof: Choose an algebraic character φ of Gal (F/F ) such that if τ :
F ↪→ Ql lies above v ∈ S then

dimQl
grmτ (φ⊗τ,Fv BDR)Gal (F v/Fv) = 1.

Replace ψv by ψvφ|−1

Gal (F v/Fv)
; θ by θφ−1; and χ by χφ−1

0 , where φ0 denotes φ

composed with the transfer Gal (F/F+)ab → Gal (F/F )ab. Then we see that
we may suppose that χ has finite image and each ψv|IFv has finite image.

Using the Artin map, think of χ as a character of A×F+/(F+)×((F+
∞)×)0;

θ as a character of A×F/F
×F×∞; and ψv as a character of O×F,v. Let US =∏

v∈S O
×
F,v, U

+
S =

∏
v∈S O

×
F+,v and ψ =

∏
v∈S ψv : US → Q

×
l . Note that ψ|U+

S
=

χ|U+
S

, that the reduction of χ equals θ on NF/F+A×F and that the reduction

of ψ equals θ on US.
We get a character

χ′ = χψ : USNF/F+A×F/((U
+
S NF/F+A×F ) ∩ (F+)×((F+

∞)×)0) −→ O×
Ql
.

The reduction of χ′ equals the restriction of θ to the domain of χ′. As in
the proof of lemma 4.1.4 we see that

US(NF/F+A×F ) ∩ F×F×∞ = U+
S (NF/F+A×F ) ∩ (F+)×(F+

∞)×.

However

(U+
S (NF/F+A×F ) ∩ (F+)×(F+

∞)×)/((U+
S NF/F+A×F ) ∩ (F+)×((F+

∞)×)0)

is a 2-group on which θ vanishes. As l > 2 we see that χ′ also vanishes on
this group.

Extend χ′ to a continuous character

χ′ : A×F/F
×F×∞ −→ Q

×
l
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and let χ′ denote its reduction. Then θ(χ′)−1 is a continuous character

A×F/(US(NF/F+A×F )F×F×∞ −→ F
×
l .

Lift it to a continuous character

χ′′ : A×F/(US(NF/F+A×F )F×F×∞ −→ Q
×
l .

Then θ = χ′χ′′ will suffice. �

4.2. CM fields.. — Let F be a CM field. By a RACSDC (regu-
lar, algebraic, conjugate self dual, cuspidal) automorphic representation π of
GLn(AF ) we mean a cuspidal automorphic representation such that

– π∨ ∼= πc, and
– π∞ has the same infinitesimal character as some irreducible algebraic

representation of the restriction of scalars from F to Q of GLn.

Let a ∈ (Zn)Hom (F,C) satisfy

– aτ,1 ≥ ... ≥ aτ,n, and
– aτc,i = −aτ,n+1−i.

Let Ξa denote the irreducible algebraic representation of GL
Hom (F,C)
n which

is the tensor product over τ of the irreducible representations of GLn with
highest weights aτ . We will say that a RACSDC automorphic representation
π of GLn(AF ) has weight a if π∞ has the same infinitesimal character as
Ξ∨a .

Let S be a finite set of finite places of F . For v ∈ S let ρv be an
irreducible square integrable representation of GLn(Fv). We will say that a
RACSDC automorphic representation π of GLn(AF ) has type {ρv}v∈S if for
each v ∈ S, πv is an unramified twist of ρ∨v .

The following is a restatement of theorem VII.1.9 of [HT].

Proposition 4.2.1 Let ı : Ql
∼→ C. Let F be an imaginary CM field, S a

finite non-empty set of finite places of F and, for v ∈ S, ρv a square integrable
representation of GLn(Fv). Let a ∈ (Zn)Hom (F,C) be as above. Suppose that π
is a RACSDC automorphic representation of GLn(AF ) of weight a and type
{ρv}v∈S. Then there is a continuous semisimple representation

rl,ı(π) : Gal (F/F ) −→ GLn(Ql)

with the following properties.

1. For every prime v 6 |l of F we have

rl,ı(π)|ss
Gal (F v/Fv)

= rl(ı
−1πv)

∨(1− n)ss.
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2. rl,ı(π)c = rl,ı(π)∨ε1−n.
3. If v|l is a prime of F then rl,ı(π)|Gal (F v/Fv) is potentially semistable,

and if πv is unramified then it is crystalline.
4. If v|l is a prime of F and if τ : F ↪→ Ql lies above v then

dimQl
gr i(rl,ı(π)⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = aıτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(rl,ı(π)⊗τ,Fv BDR)Gal (F v/Fv) = 1.

Moreover if ψ : A×F/F
× → C× is an algebraic character satisfying ψ◦c =

ψ−1 then
rl,ı(π ⊗ (ψ ◦ det)) = rl,ı(π)⊗ rl,ı(ψ).

Proof: We can take rl,ı(π) = Rl(π
∨)(1−n) in the notation of [HT]. Note

that the definition of highest weight we use here differs from that in [HT].
�

The representation rl,ı(π) can be taken to be valued in GLn(O) where
O is the ring of integers of some finite extension of Ql. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

rl,ı(π) : Gal (F/F ) −→ GLn(Fl)

which is independent of the choices made. Note that if rl,ı(π) (resp. rl,ı(π))
is irreducible it extends to a continuous homomorphism

rl,ı(π)′ : Gal (F/F+) −→ Gn(Ql)

(resp.
rl,ı(π)′ : Gal (F/F+) −→ Gn(Fl)).

Let ı : Ql
∼→ C. Suppose that a ∈ (Zn)Hom (F,Ql) satisfies

– aτ,1 ≥ ... ≥ aτ,n, and
– aτc,i = −aτ,n+1−i.

Then we define ı∗a by
(ı∗a)ıτ,i = aτ,i.

Suppose that a ∈ (Zn)Hom (F,Ql) satisfies the conditions of the previous
paragraph, that S is a finite set of finite places of F not containing any
prime above l and that ρv is a discrete series representation of GLn(Fv) over
Ql for all v ∈ S. We will call a continuous semisimple representation

r : Gal (F/F ) −→ GLn(Ql)
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(resp.
r : Gal (F/F ) −→ GLn(Fl))

automorphic of weight a and type {ρv}v∈S if there is an isomorphism ı : Ql
∼→

C and a RACSDC automorphic representation π of GLn(AF ) of weight ı∗a
and type {ıρv}v∈S (resp. and with πl unramified) such that r ∼= rl,ı(π) (resp.
r ∼= rl,ı(π)). We will say that r is automorphic of weight a and type {ρv}v∈S
and level prime to l if there is an isomorphism ı : Ql

∼→ C and a RACSDC
automorphic representation π of GLn(AF ) of weight ı∗a and type {ıρv}v∈S
and with πl unramified such that r ∼= rl,ı(π).

The following lemma is standard.

Lemma 4.2.2 Suppose that E/F is a soluble Galois extension of CM fields.
Suppose that

r : Gal (F/F ) −→ GLn(Ql)

is a continuous semisimple representation and that r|Gal (F/E) is irreducible and

automorphic of weight a and type {ρv}v∈S. Let SF denote the set of places of
F which lie under an element of S. Then we have the following.

1. aτ = aτ ′ if τ |F = τ ′|F so we can define aF by aF,σ = aeσ for any
extension σ̃ of σ to E.

2. r is automorphic over F of weight aF and type {ρ′v}v∈SF for some
square integrable representations ρ′v.

Proof: Inductively we may reduce to the case that E/F is cyclic of
prime order. Suppose that Gal (E/F ) = 〈σ〉 and that r = rl,ı(π), for π
a RACSDC automorphic representation of GLn(AE) of weight a and level
{ρv}v∈S. Then r|σ

Gal (F/E)
∼= r|Gal (F/E) so that πσ = π. By theorem 4.2 of [AC]

π descends to a RACSDC automorphic representation πF of GLn(AF ). As
r and rl,ı(πF ) are irreducible and have the same restriction to Gal (F/E)
we see that r = rl,ı(πF ) ⊗ χ = rl,ı(πF ⊗ (χ ◦ Art F )) for some character χ of
Gal (E/F ). The lemma follows. �

4.3. Totally real fields. — Now let F+ denote a totally real field. By a
RAESDC (regular, algebraic, essentially self dual, cuspidal) automorphic rep-
resentation π of GLn(AF+) we mean a cuspidal automorphic representation
such that

– π∨ ∼= χπ for some character χ : (F+)×\A×F+ → C× with χv(−1) inde-
pendent of v|∞, and

– π∞ has the same infinitesimal character as some irreducible algebraic
representation of the restriction of scalars from F+ to Q of GLn.
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One can ask whether if these conditions are met for some χ : (F+)×\A×F+ →
C×, they will automatically be met for some such χ′ with χ′v(−1) indepen-
dent of v|∞. This is certainly true if n is odd. (As then χn is a square, so
that χv(−1) = 1 for all v|∞.) It is also true if n = 2 (As in this case we can
take χ to be the inverse of the central character of π and the parity con-
dition is equivalent to the fact that if a holomorphic Hilbert modular form
has weight (kτ )τ∈Hom (F+,R) then kτ mod 2 is independent of τ .)

Let a ∈ (Zn)Hom (F+,C) satisfy

aτ,1 ≥ ... ≥ aτ,n

Let Ξa denote the irreducible algebraic representation of GL
Hom (F+,C)
n which

is the tensor product over τ of the irreducible representations of GLn with
highest weights aτ . We will say that a RAESDC automorphic representation
π of GLn(AF ) has weight a if π∞ has the same infinitesimal character as
Ξ∨a . In that case there is an integer wa such that

aτ,i + aτ,n+1−i = wa

for all τ ∈ Hom (F+,C) and all i = 1, ..., n.
Let S be a finite set of finite places of F+. For v ∈ S let ρv be an

irreducible square integrable representation of GLn(F+
v ). We will say that a

RAESDC automorphic representation π of GLn(AF+) has type {ρv}v∈S if for
each v ∈ S, πv is an unramified twist of ρ∨v .

Proposition 4.3.1 Let ı : Ql
∼→ C. Let F+ be a totally real field, S a finite

non-empty set of finite places of F+ and, for v ∈ S, ρv a square integrable
representation of GLn(F+

v ). Let a ∈ (Zn)Hom (F+,C) be as above. Suppose that
π is a RAESDC automorphic representation of GLn(AF+) of weight a and
type {ρv}v∈S. Specifically suppose that π∨ ∼= πχ where χ : A×F+/(F+)× → C×.
Then there is a continuous semisimple representation

rl,ı(π) : Gal (F
+
/F+) −→ GLn(Ql)

with the following properties.

1. For every prime v 6 |l of F+ we have

rl,ı(π)|ss
Gal (F

+
v /F

+
v )

= rl(ı
−1πv)

∨(1− n)ss.

2. rl,ı(π)∨ = rl,ı(π)εn−1rl,ı(χ).
3. If v|l is a prime of F+ then the restriction rl,ı(π)|

Gal (F
+
v /F

+
v )

is po-

tentially semistable, and if πv is unramified then it is crystalline.
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4. If v|l is a prime of F+ and if τ : F+ ↪→ Ql lies above v then

dimQl
gr i(rl,ı(π)⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 0

unless i = aıτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(rl,ı(π)⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1.

Moreover if ψ : A×F+/(F+)× → C× is an algebraic character then

rl,ı(π ⊗ (ψ ◦ det)) = rl,ı(π)⊗ rl,ı(ψ).

Proof: Let F be an imaginary CM field with maximal totally real sub-
field F+, such that all primes above l and all primes in S split in F/F+.
Choose an algebraic character φ : A×F/F

× → C× such that χ ◦ NF/F+ =
φ ◦ NF/F+ . (See lemma 4.1.4.) Let πF denote the base change of π to F .
Applying proposition 4.2.1 to πFφ, we obtain a continuous semi-simple rep-
resentation

rF : Gal (F
+
/F ) −→ GLn(Ql)

such that for every prime v 6 |l of F we have

rF |ssGal (F
+
v /Fv)

= rl(ı
−1πv|F+ )∨(1− n)|ss

Gal (F
+
v /Fv)

.

Letting the field F vary we can piece together the representations rF to ob-
tain r. (See the argument of the second half of the proof of theorem VII.1.9
of [HT].) �

The representation rl,ı(π) can be taken to be valued in GLn(O) where
O is the ring of integers of some finite extension of Ql. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

rl,ı(π) : Gal (F
+
/F+) −→ GLn(Fl)

which is independent of the choices made.
Let ı : Ql

∼→ C. Suppose that a ∈ (Zn)Hom (F+,Ql) satisfies

aτ,1 ≥ ... ≥ aτ,n.

Then we define ı∗a by
(ı∗a)ıτ,i = aτ,i.

Suppose that a ∈ (Zn)Hom (F+,Ql) satisfies the conditions of the previous
paragraph, that S is a finite set of finite places of F+ not containing any
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prime above l and that ρv is a discrete series representation of GLn(F+
v ) over

Ql for all v ∈ S. We will call a continuous semisimple representation

r : Gal (F
+
/F+) −→ GLn(Ql)

(resp.

r : Gal (F
+
/F+) −→ GLn(Fl))

automorphic of weight a and type {ρv}v∈S if there is an isomorphism ı : Ql
∼→

C and a RAESDC automorphic representation π of GLn(AF+) of weight ı∗a
and type {ıρv}v∈S (resp. and with πl unramified) such that r ∼= rl,ı(π) (resp.
r ∼= rl,ı(π)). We will say that r is automorphic of weight a and type {ρv}v∈S
and level prime to l if there is an isomorphism ı : Ql

∼→ C and a RAESDC
automorphic representation π of GLn(AF+) of weight ı∗a and type {ıρv}v∈S
and with πl unramified such that r ∼= rl,ı(π).

The following two lemmas are proved just as lemma 4.2.2.

Lemma 4.3.2 Let E+/F+ be a soluble Galois extension of CM fields. Sup-
pose that

r : Gal (F
+
/F+) −→ GLn(Ql)

is a continuous semisimple representation and that r|
Gal (F

+
/E+)

is irreducible

and automorphic of weight a and type {ρv}v∈S. Let SF+ denote the set of
places of F+ under an element of S. Then we have the following.

1. aτ = aτ ′ if τ |F+ = τ ′|F+ so we can define aF+ by aF+,σ = aeσ for
any extension σ̃ of σ to E+.

2. r is automorphic over F+ of weight aF+ and type {ρ′v}v∈SF+ for
some square integrable representations ρ′v.

Lemma 4.3.3 Let F be a CM field with maximal totally real subfield F+.

Suppose that ψ : Gal (F/F ) → Q
×
l is a continuous algebraic character and

that

r : Gal (F/F+) −→ GLn(Ql)

is a continuous semisimple representation and that r|Gal (F/F )⊗ψ is irreducible

and automorphic of weight a and type {ρv}v∈S. Let SF+ denote the set of
places of F+ under an element of S. Then r is automorphic over F+ of
weight b and type {ρ′v}v∈SF+ for some square integrable representations ρ′v and

for some b. Moreover, for all τ : F ↪→ Ql and all i = 1, ..., n, the co-ordinate
aτ,i equals bτ |F+ ,i plus the unique number j such that gr j(ψ ⊗τ,Fv BDR) 6= (0)
(where v is the place of F induced by τ).
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4.4. Modularity lifting theorems: the minimal case. — In this section we
use base change to translate theorem 3.5.1 into a modularity lifting theorem
on GL(n). The results here are entirely superseded by the results of [Tay]
and for the reader interested only in the main results of [Tay] and [HSBT]
this section could be skipped.

We start with a lemma about congruences which is analogous to a trick
invented by Skinner and Wiles in the case of GL2, see [SW].

Lemma 4.4.1 Let F+ be a totally real field of even degree and E an imagi-
nary quadratic field such that F = F+E/F+ is unramified at all finite primes.

Let n ∈ Z≥2 and let l > n be a prime which splits in E. Let ı : Ql
∼→ C and

let Sl denote the set of primes of F above l. Let π be a RACSDC auto-
morphic representation of GLn(AF ) of weight a and type {ρv}v∈S where S
is a finite non-empty set of primes split over F+. Assume that 4|#(S ∪ Sc).
Suppose that πv is unramified if v is not split over F+ or if v|l. Let R be a
finite set of primes of F such that if v ∈ R then

– v 6∈ S ∪ Sc ∪ Sl,
– v is split over F+,
– Nv ≡ 1 mod l,

– π
Iw(v)
v 6= (0).

Let Sa be a non-empty finite set of primes of F such that Sa = Sca and
Sa ∩ (R ∪ S ∪ Sl) = ∅.

Then there is a RACSDC automorphic representation π′ of GLn(AF ) of
weight a and type {ρv}v∈S with the following properties:

– rl,ı(π) ∼= rl,ı(π
′);

– if v 6∈ Sa and πv is unramified then π′v is unramified;
– if v in R then rl(π

′
v)
∨(1− n)(IFv) is finite.

Proof: Let S(B) denote the set of primes of F+ below an element of
S. Choose B and ‡ as at the start of section 3.3. These define an algebraic
group G. Consider open compact subgroups U =

∏
v Uv of G(A∞F+) where

– if v is inert in F , then Uv is a hyperspecial maximal compact sub-
group of G(F+

v );
– if v is split in F and v lies below S then Uv = G(OF+,v);
– if v does not lie below R∪Sa, if v is split in F and if πv is unramified

then Uv = G(OF+,v);
– if v lies below R and if w is a prime of F above v then Uv =

i−1
w Iw(w);

– if v lies below Sa then Uv contains only one element of finite order,
namely 1.
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We now apply lemma 3.4.1 with χv = 1 and χ′v =
∏n

i=1 χ
′
v,i for all v ∈ R,

where we choose χ′v,i each of l-power order and with χ′v,i 6= χ′v,j for i 6= j.
(This is possible as l > n.) The lemma then follows from lemma 3.1.6 and
proposition 3.3.2. (The fact that the χ′v,i are distinct gives the finiteness of
the image of intertia at v.) �

Next we prove a ‘minimal’ modularity lifting theorem over a CM field.

Theorem 4.4.2 Let F be an imaginary CM field and let F+ denote its max-
imal totally real subfield. Let n ∈ Z≥1 and let l > n be a prime which is
unramified in F . Let

r : Gal (F/F ) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. rc ∼= r∨ε1−n.
2. r is unramified at all but finitely many primes.
3. For all places v|l of F , r|Gal (F v/Fv) is crystalline.

4. There is an element a ∈ (Zn)Hom (F,Ql) such that
– for all τ ∈ Hom (F,Ql) we have

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0

or
l − 1− n ≥ aτc,1 ≥ ... ≥ aτc,n ≥ 0;

– for all τ ∈ Hom (F,Ql) and all i = 1, ..., n

aτc,i = −aτ,n+1−i;

– for all τ ∈ Hom (F,Ql) above a prime v|l of F ,

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 1.

5. There is a non-empty finite set S of places of F not dividing l and
for each v ∈ S a square integrable representation ρv of GLn(Fv) over Ql

such that
r|ss

Gal (F v/Fv)
= rl(ρv)

∨(1− n)ss.

If ρv = Spmv(ρ
′
v) then set

r̃v = rl((ρ
′
v)
∨| |(n/mv−1)(1−mv)/2).
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Note that r|Gal (F v/Fv) has a unique filtration Fil jv such that

gr jvr|Gal (F v/Fv)
∼= r̃vε

j

for j = 0, ...,mv − 1 and equals (0) otherwise. We assume that r̃v has

irreducible reduction rv. Then r|Gal (F v/Fv) inherits a filtration Fil
j

v with

gr jvr|Gal (F v/Fv)
∼= rvε

j

for j = 0, ...,mv − 1. Finally we suppose that for j = 1, ...,mv we have

rv 6∼= rvε
i.

6. For all finite places v 6 |l with v 6∈ S ∪ Sc the image r(IFv) is finite.

7. F
ker ad r

does not contain F (ζl).
8. The image r(Gal (F/F (ζl))) is big in the sense of definition 2.5.1.
9. The representation r is irreducible and automorphic of weight a and

type {ρv}v∈S with S 6= ∅.
Then r is automorphic of weight a and type {ρv}v∈S and level prime to

l.

Proof: Suppose that r = rl,ı(π), where ı : Ql
∼→ C and where π is a

RACSDC automorphic representation of GLn(AF ) of weight ı∗a and type
{ıρv}v∈S and with πl unramified. Let Sl denote the primes of F above l. Let
R denote the primes of F outside Sc ∪ S ∪ Sl at which r or π is ramified.

Because F
ker ad r

does not contain F (ζl), we can choose a prime v1 of F with
the following properties

– v1 6∈ R ∪ Sl ∪ S ∪ Sc,
– v1 is unramified over a rational prime p for which [F (ζp) : F ] > n,
– v1 does not split completely in F (ζl),
– ad r(Frobv1) = 1.

(We will use primes above v1 as auxiliary primes to augment the level so
that the open compact subgroups of the finite adelic points of certain unitary
groups we consider will be sufficiently small. The properties of v1 will ensure
that the Galois deformation problems we consider will not change when we
allow ramification at primes above v1.)

Choose a CM field L/F with the following properties

– L = L+E with E an imaginary quadratic field and L+ totally real.
– 4|[L+ : F+].
– L/F is Galois and soluble.

– L is linearly disjoint from F
ker r

(ζl) over F .
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– L/L+ is everywhere unramified.
– l splits in E and is unramified in L.
– v1 and vc1 split completely in L/F and in L/L+.
– All primes in S split completely in L/F and in L/L+.
– Let πL denote the base change of π to L. If v is a prime of L not

lying above S ∪ Sc then π
Iw(v)
v 6= (0).

– If v is a place of L above R then r|Gal (L/L) is unramified at v.

Let S(L) (resp. Sl(L)) denote the set of places of L above S (resp. l). Let

aL ∈ (Zn)Hom (L,Ql) be defined by aL,τ = aτ |F . By theorem 4.2 of [AC] we
know that r|Gal (F/L) is automorphic of weight aL and type {ρv|F }v∈S(L). (The
base change must be cuspidal as it is square integrable at finite places in
S.) By lemma 4.4.1 there is a RACSDC automorphic representation π′ of
GLn(AL) of weight aL and type {ρv|F }v∈S(L) and level prime to l such that

– r|Gal (F/L) = rl,ı(π
′), and

– rl,ı(π
′) is finitely ramified at all primes outside S(L) ∪ S(L)c ∪ Sl(L).

(If v|v1 or vc1 then rl,ı(π
′) is unramified at v and all the eigenvalues of

the matrix rl,ı(π
′)(Frobv) are equal. As Nv 6≡ 1 mod l we see that rl,ı(π

′)
is finitely ramified at v.)

Choose a decomposition Sl(L) = S̃l(L)
∐
S̃l(L)c. Also choose an alge-

braic character ψ : A×L/L
× → C× such that

– ψ ◦NF/F+ = 1;
– ψ is unramified at Sl(L) ∪ S(L); and
– π′ ⊗ ψ has weight ı∗a

′ where

l − 1− n ≥ a′τ,1 ≥ ... ≥ a′τ,n ≥ 0

for all τ : L ↪→ Ql lying over an element of S̃l(L).

(This is possible by lemma 4.1.4. The point of this step is to arrange that
for each place v|l of F the weights a′τ,i for τ above v are all in the same
range of length l− 1−n. This was assumed in theorem 3.5.1, so as we could
apply Fontaine-Laffaille theory to calculate the local deformation ring, see
section 2.4.1.)

Choose a CM field M/L with the following properties.

– M/L is Galois and soluble.

– M is linearly disjoint from F
ker r

(ζl) over L.
– l is unramified in M .
– v1 splits completely in M/F .
– All primes in S split completely in M/L.
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– Let (π′ ⊗ ψ)M denote the base change of π′ ⊗ (ψ ◦ det) to M . If v is
a prime of M not lying above S ∪ Sc then (π′ ⊗ ψ)M,v is unramified.

– If v is a place of M not lying above S(L) ∪ S(L)c ∪ Sl(L) then (r ⊗
rl,ı(ψ))|Gal (L/L) is unramified at v.

Let S(M) denote the set of places of M above S. Let a′M ∈ (Zn)Hom (M,Ql)

be defined by a′M,τ = a′τ |F . Let S(M+) denote the set of places of M+ below

an element of S(M). Then #S(M+) is even and every element of S(M+)
splits in M . Choose a division algebra B/M and an involution ‡ of B as at
the start of section 3.3, with S(B) = S(M+). Let Sl(M

+) denote the primes
of M+ above l and let Sa(M

+) denote the primes of M+ above v1|F+ . Let
T (M+) = S(M+) ∪ Sl(M+) ∪ Sa(M+). It follows from proposition 3.3.2 and
theorem 3.5.1 that r|Gal (F/M) ⊗ rl,ı(ψ)|Gal (F/M) is automorphic of weight a′M
and type {ρv|F }v∈S(M). The theorem now follows from lemma 4.2.2. �

Let us say a few words about the conditions in this theorem. The first
condition ensures that r is conjugate self-dual. Only for such representations
will the numerology behind the Taylor-Wiles argument work. Also it is only
for such representations that one can work on a unitary group. Indeed when-
ever one has a cuspidal automorphic representation of GLn(AF ) for which
one knows how to construct a Galois representation, that Galois representa-
tion will have this property. The second condition should be necessary, i.e. it
should hold for any Galois representation associated to an automorphic form.
A weakened form of the third condition which required only that these re-
strictions are de Rham is also expected to be necessary. The stronger form
here (requiring the restrictions to be crystalline), the assumption that l is
unramified in F and the bounds on the Hodge-Tate numbers in condition
four are all needed so that we can apply the theory of Fontaine and Laf-
faille to calculate the local deformation rings at primes above l. Condition
four also requires the Hodge-Tate numbers to be distinct. Otherwise the nu-
merology behind the Taylor-Wiles method would fail. The fifth condition is
there to ensure that the corresponding automorphic form will be discrete
series at some places (ie those in S). With the current state of the trace
formula this is necessary to move automorphic forms between unitary groups
and GLn and also to construct Galois representations for automorphic forms
on GLn. The exact form of condition five is also designed to also make the
deformation problem at the places v ∈ S well behaved. The sixth condition
is designed so that we can use base change to put us in a situation where
we can apply a minimal R = T theorem. In chapter 4 we will show that a
conjecture about mod l automorphic forms on unitary groups which we call
“Ihara’s lemma” implies that we could remove this condition. The seventh
condition is to allow us to choose auxiliary primes which can be used to
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augment the level and ensure that certain level structures we work with are
sufficiently small. The eighth condition is to make the Cebotarev argument
used in the Taylor-Wiles argument work. It seems to be often satisfied in
practice.

Now we turn to the case of a totally real field.

Theorem 4.4.3 Let F+ be a totally real field. Let n ∈ Z≥1 and let l > n be
a prime which is unramified in F+. Let

r : Gal (F
+
/F+) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. r∨ ∼= rεn−1χ for some character χ : Gal (F
+
/F+) −→ Q

×
l with χ(cv)

independent of v|∞. (Here cv denotes a complex conjugation at v.)
2. r ramifies at only finitely many primes.
3. For all places v|l of F+, r|

Gal (F
+
v /F

+
v )

is crystalline.

4. There is an element a ∈ (Zn)Hom (F+,Ql) such that
– for all τ ∈ Hom (F+,Ql) we have

l − 1− n+ aτ,n ≥ aτ,1 ≥ ... ≥ aτ,n;

– for all τ ∈ Hom (F+,Ql) above a prime v|l of F+,

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1.

5. There is a finite non-empty set S of places of F+ not dividing l
and for each v ∈ S a square integrable representation ρv of GLn(F+

v ) over
Ql such that

r|ss
Gal (F

+
v /F

+
v )

= rl(ρv)
∨(1− n)ss.

If ρv = Spmv(ρ
′
v) then set

r̃v = rl((ρ
′
v)
∨| |(n/mv−1)(1−mv)/2).

Note that r|
Gal (F

+
v /F

+
v )

has a unique filtration Fil jv such that

gr jvr|Gal (F
+
v /F

+
v )
∼= r̃vε

j
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for j = 0, ...,mv − 1 and equals (0) otherwise. We assume that r̃v has
irreducible reduction rv such that

rv 6∼= rvε
j

for j = 1, ...,mv. Then r|
Gal (F

+
v /F

+
v )

inherits a unique filtration Fil
j

v with

gr jvr|Gal (F
+
v /F

+
v )
∼= rvε

j

for j = 0, ...,mv − 1.
6. If v 6∈ S and v 6 |l then r(IF+

v
) is finite.

7. (F
+

)ker ad r does not contain F+(ζl).

8. The image r(Gal (F
+
/F+(ζl))) is big in the sense of definition 2.5.1.

9. r is irreducible and automorphic of weight a and type {ρv}v∈S with
S 6= ∅.

Then r is automorphic of weight a and type {ρv}v∈S and level prime to
l.

Proof: Choose an imaginary CM field F with maximal totally real sub-
field F+ such that

– all primes above l split in F/F+,
– all primes in S split in F/F+, and

– F is linearly disjoint from (F
+

)ker r(ζl) over F+.

Choose an algebraic character

ψ : Gal (F
+
/F ) −→ Q

×
l

such that

– χ|
Gal (F

+
/F )

= ψψc,

– ψ is unramified above S,
– ψ is crystalline above l, and
– for each τ : F+ ↪→ Ql there exists an extension τ̃ : F ↪→ Ql such that

gr −aτ,n(Ql(ψ)⊗eτ ,Fv(eτ)
BDR)Gal (F v(eτ)/Fv(eτ)) 6= (0),

where v(τ̃) is the place of F above l determined by τ̃ .

(This is possible by lemma 4.1.5.) Now apply theorem 4.4.2 to r|
Gal (F

+
/F )
ψ

and this theorem follows from lemma 4.3.3. �

As the conditions of this theorem are a bit complicated we give a spe-
cial case as a corollary.
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Corollary 4.4.4 Let n ∈ Z≥1 be even and let l > max{3, n} be a prime. Let
S be a finite non-empty set of primes such that if q ∈ S then q 6= l and
qi 6≡ 1 mod l for i = 1, ..., n. Let

r : Gal (Q/Q) −→ GSpn(Zl)

be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes.
2. r|Gal (Ql/Ql)

is crystalline and dimQl
gr i(r⊗Ql

BDR)Gal (Ql/Ql) = 0 un-

less i ∈ {0, 1, ..., n− 1}, in which case it has dimension 1.
3. If q ∈ S then r|ssGQq

is unramified and r|ssGQq
(Frobq) has eigenvalues

{αqi : i = 0, 1, ..., n− 1} for some α.
4. If q 6∈ S ∪ {l} then r(IQq) is finite.
5. The image of r mod l contains Spn(Fl).
6. r mod l is automorphic of weight 0 and type {Sp n(1)}q∈S.

Then r is automorphic of weight 0 and type {Sp n(1)}{q} and level prime
to l.

Proof: Let r = r mod l. As PSpn(Fl) is simple, the maximal abelian
quotient of ad r(GQ) is

r(GQ)/(r(GQ) ∩ F×l )Spn(Fl) ⊂ PGSpn(Fl)/PSpn(Fl)
∼−→ (F×l )/(F×l )2.

Thus Q
ker ad r

does not contain Q(ζl).
The corollary now follows from lemma 2.5.5 and theorem 4.4.3. �
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5. Ihara’s lemma and the non-minimal case

The results of this chapter are not required for the proofs of the main
theorems in [Tay] and [HSBT]. It could be skipped by those only interested
in these applications.

5.1. GLn over a local field: finite characteristic theory II. — We will
keep the notation and assumptions of section 3.2. Following Vigneras we also
make the following definition.

Definition 5.1.1 We will call l quasi-banal for GLn(Fw) if either we have
l 6 |#GLn(k(w)) (the banal case), or we have l > n and qw ≡ 1 mod l (the
limit case).

Suppose that U is an open subgroup of GLn(OFw) and that

φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] −→ k

is a k-algebra homomorphism. Set

k[GLn(Fw)/GLn(OFw)]φ
= k[GLn(Fw)/GLn(OFw)]⊗k[GLn(OFw )\GLn(Fw)/GLn(OFw )],φ k

and
k[U\GLn(Fw)/GLn(OFw)]φ

= k[U\GLn(Fw)/GLn(OFw)]⊗k[GLn(OFw )\GLn(Fw)/GLn(OFw )],φ k

If V is any smooth k[GLn(Fw)]-module and if v ∈ V GLn(OFw ) satisfies Tv =
φ(T )v for all T ∈ k[GLn(OFw)\GLn(Fw)/GLn(OFw)], then there is a unique
map of k[GLn(Fw)]-modules

k[GLn(Fw)/GLn(OFw)]φ −→ V

sending [GLn(OFw)] to v, and a unique map of k[U\GLn(Fw)/U ]-modules

k[U\GLn(Fw)/GLn(OFw)]φ −→ V U

sending [GLn(OFw)] to v. (These observations were previously used in a sim-
ilar context by Lazarus [La].)

Fix an additive character ψ : Fw → k with kernel OFw . Let Bn denote
the Borel subgroup of GLn consisting of upper triangular matrices and let Nn

denote its unipotent radical. Let Pn denote the subgroup of GLn consisting
of matrices of the form (

a b
0 1

)
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with a ∈ GLn−1. We will think of ψ as a character of Nn(Fw) by

ψ :



1 a12 a13 ... a1n−1 a1n

0 1 a23 ... a2n−1 a2n

0 0 1 ... a3n−1 a3n

. . .
...

...
0 0 0 ... 1 an−1n

0 0 0 ... 0 1

 7−→ ψ(a12 + a23 + ...+ an−1n).

We will denote by genn the compact induction c-Ind
Pn(Fw)
Nn(Fw)ψ and by Wn the

induction Ind
GLn(Fw)
Nn(Fw) ψ. We will use the theory of derivatives over k as it is

developed in section III.1 of [V1]. Note that if π is a smooth k[GLn(Fw)]-
module then

Hom GLn(Fw)(π,Wn) ∼= π∨Nn(Fw),ψ
∼= Hom Pn(Fw)(genn, π)∨,

where ∨ denote linear dual and πNn(Fw),ψ denotes the maximal quotient of
π on which Nn(Fw) acts by ψ. If π is irreducible we will call it generic if
these spaces are non-trivial.

The next lemma is proved exactly as in characteristic zero (see [Sh]).

Lemma 5.1.2 Suppose that φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] → k is a

homomorphism. Then the φ eigenspace in WGLn(OFw )
n is one dimensional and

spanned by a function W 0
φ with W 0

φ(1) = 1.

The next lemma is due to Vignéras, see parts 1 and 3 of theorem 1 of
her appendix to this article.

Lemma 5.1.3 (Vignéras) Suppose that l is quasi-banal for GLn(Fw). Then
the functor V 7→ V Iw(w) is an equivalence of categories from the category of
smooth k[GLn(Fw)]-modules generated by their Iw(w)-fixed vectors to the cat-
egory of k[Iw(w)\GLn(Fw)/Iw(w)]-modules. Moreover the category of smooth
k[GLn(Fw)]-modules generated by their Iw(w)-fixed vectors is closed under pas-
sage to subquotients (in the category of smooth k[GLn(Fw)]-modules).

Lemma 5.1.4 Suppose that l is quasi-banal for GLn(Fw) and that

φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] −→ k

is a k-algebra homomorphism. Then k[GLn(Fw)/GLn(OFw)]φ has finite length

(as a smooth k[GLn(Fw)]-module) and its Jordan-Holder constituents are the
same as those of any unramified principal series representation π for which
k[GLn(OFw)\GLn(Fw)/GLn(OFw)] acts on πGLn(OFw ) by φ. In particular the
smooth representation k[GLn(Fw)/GLn(OFw)]φ has exactly one generic irre-
ducible subquotient.
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Proof: In the banal case this is due to Lazarus [La]. By lemma 5.1.3 the
Iw(w)-invariants functor is exact on the category of subquotients of smooth
k[GLn(Fw)]-modules generated by their Iw(w)-fixed vectors. The k[GLn(Fw)]-
module k[GLn(Fw)/GLn(OFw)] is generated by its Iw(w)-fixed vectors.

Let the elements T1, ..., Tn+1 generate k[GLn(OFw)\GLn(Fw)/GLn(OFw)]
as a k-algebra. Then we have a right exact sequence⊕n+1

i=1 k[GLn(Fw)/GLn(OFw)]
P
i(Ti−φ(Ti))−→ k[GLn(Fw)/GLn(OFw)] −→
−→ k[GLn(Fw)/GLn(OFw)]φ −→ (0).

Taking Iw(w)-invariants, we get an exact sequence⊕n+1
i=1 k[Iw(w)\GLn(Fw)/GLn(OFw)]

P
i(Ti−φ(Ti))−→

k[Iw(w)\GLn(Fw)/GLn(OFw)] −→ k[GLn(Fw)/GLn(OFw)]
Iw(w)
φ −→ (0).

We deduce that

(k[GLn(Fw)/GLn(OFw)]φ)Iw(w) = k[Iw(w)\GLn(Fw)/GLn(OFw)]φ.

(We thank a referee for pointing out that the original argument we gave for
this was needlessly complex.)

Following Kato and Lazarus [La] we see that the Satake isomorphism
extends to an isomorphism

k[Iw(w)\GLn(Fw)/GLn(OFw)] ∼= k[X±1
1 , ..., X±1

n ]

as k[GLn(OFw)\GLn(Fw)/GLn(OFw)] ∼= k[X±1
1 , ..., X±1

n ]Sn-modules. We deduce
immediately that

dimk k[Iw(w)\GLn(Fw)/GLn(OFw)]φ = n!

and hence (from lemma 5.1.3) that k[GLn(Fw)/GLn(OFw)]φ has finite length.
Moreover the argument of section 3.3 of [La] then shows that the Jordan-
Holder constituents of k[GLn(Fw)/GLn(OFw)]φ are the same as the Jordan-
Holder constituents of any unramified principal series representation π for
which k[GLn(OFw)\GLn(Fw)/GLn(OFw)] acts on πGLn(OFw ) by φ. The final
assertion of the lemma then follows from the results of section III.1 of [V1].
�

We will now recall some results of Russ Mann [Man1] and [Man2]. See
also appendix A of this article.

The first result follows at once from proposition 4.4 of [Man1].
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Lemma 5.1.5 (Mann) Suppose that χ1, ..., χn are unramified characters

F×w → K
×

and set π = n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn). The simultaneous eigenspaces

of the operators U
(j)
w (for j = 1, ..., n− 1) on πU1(wn) are parametrised by sub-

sets A ⊂ {1, ..., n} of cardinality less than n. Let u
(j)
A denote the eigenvalue

of U
(j)
w on the eigenspace corresponding to A. Then

Xn − q(1−n)/2
w u

(1)
A Xn−1 + ...+ (−1)jq

j(j−n)/2
w u

(j)
A Xn−j+

+...+ (−1)n−1q
(n−1)/2
w u

(n−1)
A X = Xn−#A

∏
i∈A(X − χi($w)).

Moreover the generalised eigenspace corresponding to a subset A has dimen-

sion

(
n− 1
#A

)
.

The next two results are proved in [Man2]. As this is not currently
available, the proofs are repeated in appendix A.

Lemma 5.1.6 (Mann) Suppose that

φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] −→ k

is a homomorphism. Then the map

k[U1(wn)\GLn(Fw)/GLn(OFw)]φ −→Wn

T 7−→ TW 0
φ

is an injection.

Let ηw denote the diagonal matrix diag(1, ..., 1, $n
w). Then there is a

bijection ̂ :

Z[1/qw][U1(wn)\GLn(Fw)/GLn(OFw)]→ Z[1/qw][GLn(OFw)\GLn(Fw)/U1(wn)]
[U1(wn)gGLn(OFw)] 7→ [GLn(OFw)tgη−1

w U1(wn)].

(This is because U1(wn) = ηw
tU1(wn)η−1

w .)

Proposition 5.1.7 (Mann) There exists an element

θn,w ∈ Zl[U1(wn)\GLn(Fw)/GLn(OF,w)]

with the following properties.

1. For i = 1, ..., n− 1 we have U
(i)
w θn,w = 0.

2. For any homomorphism φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] → k
we have θn,wW

0
φ 6= 0 in Wn.
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3. If χ1, ..., χn are unramified characters F×w → K× such that the in-

duced representation π = n-Ind
GLn(Fw)
Bn(Fw) (χ1, ..., χn) is irreducible and if v is

a nonzero element of πGLn(OFw ), then θn,wv is nonzero and so a basis of

πU1(wn),U
(1)
w =...=U

(n−1)
w =0.

4. The composite

θ̂n,wθn,w ∈ Zl[GLn(OFw)\GLn(Fw)/GLn(OFw)]

has Satake transform

qn
2(n−1)/2

w (X1...Xn)−(n+1)

n∏
i=1

n∏
j=1

(qwXi −Xj).

Corollary 5.1.8 Suppose that π is an irreducible unramified representation of

GLn(Fw) over K such that rl(π)∨(1 − n) is defined over K. If θ̂n,wθn,w acts
on πGLn(OF,w) by α then α ∈ O and

lgOO/α ≥ lgOH
0(Gal (Fw/Fw), (ad rl(π)∨(1− n))⊗O (K/O)(−1)).

Definition 5.1.9 Let M be an admissible k[GLn(Fw)]-module. We will say
that M has the Ihara property if for every v ∈MGLn(OFw ) which is an eigen-
vector of k[GLn(OFw)\GLn(Fw)/GLn(OFw)], every irreducible submodule of the
k[GLn(Fw)]-module generated by v is generic.

Lemma 5.1.10 Suppose that l is quasi-banal for GLn(Fw). Suppose also that
M is an admissible k[GLn(Fw)]-module with the Ihara property and that

ker(θn,w : MGLn(OFw ) −→M)

is a k[GLn(OFw)\GLn(Fw)/GLn(OFw)]-module. Then

θn,w : MGLn(OFw ) ↪→MU1(wn),U
(1)
w =...=U

(n−1)
w =0

is injective.

Proof: Suppose θn,w were not injective on MGLn(OF,w). We could choose

a k[GLn(OFw)\GLn(Fw)/GLn(OFw)]-eigenvector 0 6= v ∈ ker θn,w, say

Tv = φ(T )v

where

φ : k[GLn(OFw)\GLn(Fw)/GLn(OFw)] −→ k

is a k-algebra homomorphism.
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Let A denote the kernel of the map

k[GLn(Fw)/GLn(OFw)]φ −→Wn

T 7−→ TW 0
φ .

Thus A has no generic subquotient and k[GLn(Fw)/GLn(OFw)]φ/A has a
unique irreducible submodule B/A. The module B/A is generic, but no sub-
quotient of k[GLn(Fw)/GLn(OFw)]φ/B is generic.

Now consider the map

k[GLn(Fw)/GLn(OFw)]φ −→M
T 7−→ Tv.

As M has the Ihara property, any irreducible submodule of the image is
generic. Thus A is contained in the kernel and moreover the induced map

k[GLn(Fw)/GLn(OFw)]φ/A −→M

must be injective. Thus we have an injection

〈GLn(Fw)W 0
φ〉 ↪→ M
W 0
φ 7−→ v.

Proposition 5.1.7 then tells us that θn,wv 6= 0, a contradiction. �

We would conjecture that the previous lemma remains true without the
quasi-banal hypothesis. In fact, it is tempting to conjecture that the natural
map

k[GLn(Fw)/GLn(OFw)]φ −→Wn

[GLn(OFw)] 7−→W 0
φ

is in general injective.

5.2. Duality. — Keep the notation of section 3.3. In this section we
will develop a duality theory for automorphic forms on G. It will actually
pair automorphic forms on G with automorphic forms on another related
group G′. So first we define an algebraic group G′/F+ by setting

G′(R) = {g ∈ Bop ⊗F+ R : g‡⊗1g = 1}

for any F+-algebra R. Note that there is an isomorphism

I : G
∼−→ G′

g 7−→ g−1.
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Our choice of an order OB in B gives a model of G′ over OF+ . If
v = wwc splits in F then itv : Oop

B,v

∼→Mn(OFv) and we get an identification

itw : G′(F+
v )

∼−→ GLn(Fw)
(itv)

−1(x, tx−c) 7−→ x

with itwG
′(OF+,v) = GLn(OF,w) and itw ◦ I = t(iw)−1 = c ◦ iwc . If v ∈ S(B) and

w is a prime of F above v we get an isomorphism

i′w : G′(F+
v )

∼−→ (Bop
w )×

with i′wG
′(OF+,v) = O×Bop,w.

Given an n-tuple of integers a = (a1, ..., an) with a1 ≥ ... ≥ an there is
a (unique up to scalar multiples) perfect pairing

〈 , 〉a : Wa ×Wa −→ Q

such that
〈ξa(g)w,w′〉a = 〈w, ξa(tg)w′〉a

for all w,w′ ∈ Wa and g ∈ GLn(Q). Let M ′
a ⊂ Wa denote the 〈 , 〉a dual of

Ma and
ξ′a : GLn −→ GL(M ′

a)

the corresponding model over Z of ξa.
If a ∈Wtn then there is an irreducible representation

ξ′a : G′(F+
l ) −→ GL(Wa)
g 7−→

∏
τ∈eIl ξaτ (τitτg).

The representation ξ′a contains a G′(OF+,l)-invariant O-lattice M ′
a such that

there is a perfect pairing

〈 , 〉a : Ma ×M ′
a −→ O

with
〈ξa(g)x, ξ′a(I(g))y〉a = 〈x, y〉a.

For v ∈ S(B), let M ′
ρv = Hom (Mρv ,O) and define ρ′v : G(F+

v ) →
GL(M ′

ρv) by

ρ′v(g)(x)(y) = x(ρv(I
−1(g))−1y).

If we identify G(F+
v ) ∼= B×w and G′(F+

v ) ∼= (Bop
w )× and if g ∈ B×w and g′ ∈

(Bop
w )× have the same characteristic polynomials then tr ρv(g) = tr ρv(g

′). We
have JL (ρ′v ◦ i−1

w ) = Spmv(πw).
For v ∈ R let U ′0,v be an open compact subgroup of G′(F+

v ) and let

χ′v : U ′0,v −→ O×
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be a homomorphism with open kernel.
Let A denote an O-algebra. Suppose that a ∈ Wtn and that for v ∈

S(B), ρv is as in section 3.3. Set

Ma,{ρv},{χ′v} = M ′
a ⊗

 ⊗
v∈S(B)

M ′
ρv

⊗(⊗
v∈R

O(χ′v)

)
.

If U ′ is an open compact subgroup of G′(AR,∞
F+ )×

∏
v∈R U

′
0,v and either A is

a K-algebra or the projection of U ′ to G′(F+
l ) is contained in G′(OF+,l) we

define
S ′a,{ρv},{χ′v}(U

′, A)

to be the space of functions

f : G′(F+)\G′(A∞F+) −→ A⊗OM ′
a,{ρv},{χ′v}

such that
f(gu) = u−1

Sl∪S(B)∪Rf(g)

for all u ∈ U ′ and g ∈ G′(A∞F+). As in section 3.3 we extend this to define

S ′a,{ρv},{χ′v}(V
′, A) for V ′ any compact subgroup of G′(AR,∞

F+ )×
∏

v∈R U
′
0,v and

define actions of g′ ∈ G′(AR,∞
F+ )×

∏
v∈R U

′
0,v and of Hecke operators [U ′1g

′U ′2].
Lemma 3.3.1, proposition 3.3.2, corollary 3.3.3 and proposition 3.3.4 all

remain true for G′.
Suppose that U is an open compact subgroup of G(AR,∞

F+ ×
∏

v∈R U0,v)
and that η ∈ G′(A∞F+). Suppose also that for v an element of R we have
U ′v,0 = η−1

v I(Uv,0)ηv and

χ′v(u
′
v) = (χv ◦ I−1)(ηvu

′
vη
−1
v )−1.

If A is not a K-algebra further assume that ηl ∈ G′(OF+,l) and that for all
u ∈ U we also have ul ∈ G(OF+,l). Set U ′ = η−1I(U)η. Define a pairing

〈 , 〉U,η : Sa,{ρv},{χv}(U,A)× S ′a,{ρv},{χ′v}(U
′, A) −→ A

by

〈f, f ′〉U,η =
∑

g∈G(F+)\G(A∞
F+ )/U

〈f(g), ηSl∪S(B)f
′(I(g)η)〉a,{ρv}.

If U is sufficiently small, or if A is a K-algebra, this is a perfect pairing. If
we have two such pairs (U1, η1) and (U2, η2) with each Ui sufficiently small,
if U ′i = η−1

i I(Ui)ηi and if g ∈ G(A∞F+) (with gl ∈ G(OF+,l) if A is not a
K-algebra) then

〈[U1gU2]f, f ′〉U1,η1 = 〈f, [U ′2η−1
2 I(g)−1η1U

′
1]f ′〉U2,η2 .
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Now suppose that

U ′ =
∏
v

U ′v ⊂ G′(A∞F+)

is a sufficiently small open compact subgroup , that T ⊃ S(B)∪R and that,
if v 6∈ T splits in F , then U ′v = G(OF+,v). We will denote by

TT
a,{ρv},{χ′v}(U

′)′

the O-subalgebra of End (S ′a,{ρv},{χ′v}(U
′,O)) generated by the Hecke operators

T
(j)
w (or strictly speaking (itw)−1(T

(j)
w ) × (U ′)v) and (T

(n)
w )−1 for j = 1, ..., n

and for w a place of F which is split over a place v 6∈ T of F+. (Again

T
(j)
wc = (T

(n)
w )−1T

(n−j)
w , so we need only consider one place w above a given

place v of F+.) If X ′ is a TT
a,{ρv}(U

′)′-stable subspace of S ′a,{ρv},{χ′v}(U
′, K)

then we will write
TT (X ′)′

for the image of TT
a,{ρv},{χ′v}

(U ′)′ in EndK(X ′). Note that TT (X ′)′ are finite
and free as O-modules and is reduced.

Proposition 3.4.2 remains true for G′. We call a maximal ideal m′ of
TT
a,{ρv},{χ′v}

(U ′)′ Eisenstein if rm′ is absolutely reducible. Then proposition

3.4.4, corollary 3.4.5 and lemma 3.4.1 also remain true for G′.

5.3. Ihara’s lemma and raising the level. — Keep the notation and
assumptions of sections 3.4 and 5.2.

In this section we will discuss congruences between modular forms of
different levels. Unfortunately we can not prove anything. Rather we will
explain how the congruence results we expect would follow from an analogue
of Ihara’s lemma for elliptic modular forms (see [I], [Ri]). Let us first describe
this conjecture more precisely.

Conjecture I Let G, l, T and U be as in section 3.4 with U sufficiently
small. Suppose that v ∈ T − (S(B) ∪ Sl) with Uv = G(OF+,v) and that m is a

non-Eisenstein maximal ideal of TT
0,{1},{1}(U). If f ∈ S0,{1},{1}(U, k)[m] and if

π is an irreducible G(F+
v )-submodule of

〈G(F+
v )f〉 ⊂ S0,{1},{1}(U

v, k)

then π is generic.

In fact we suspect something stronger is true. Although we will not
need this stronger form we state it here. We will call an irreducible G(F+

v )-
submodule π of Sa,{ρx},{χx}({1}, k) Eisenstein if for some (and hence all) open
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compact subgroups U =
∏

x Ux with πU 6= (0) there is a finite set T ′ ⊃
R ∪ Sl ∪ S(B) ∪ {v} of split primes and an Eisenstein maximal ideal m of
TT ′

a,{ρx},{χx}(U, k) with πm 6= (0).

Conjecture II Let G and l be as in section 3.3. Suppose that v 6∈ S(B)∪Sl∪
R is a prime of F+ which splits in F . Let π be a non-Eisenstein irreducible
G(F+

v )-submodule of S0,{1},{1}({1}, k). Then π is generic.

We should point out that these conjectures are certainly false if we re-
place ‘submodule’ by ‘subquotient’. If we replace k by K and TT ′

0,{1},{1}(U)

by TT ′

0,{1},{1}(U)⊗OK, then the conjectures would be true by part 7 of propo-
sition 3.3.4. In the case n = 2 the conjecture is an easy consequence of the
strong approximation theorem for G. We also believe that we can prove many
cases of conjecture I in the case n = 3. We hope to return to the case n = 3
in another paper.

Lemma 5.3.1 Conjecture II (and hence conjecture I) is true if n = 2.

Proof: Let G1 denote the derived subgroup of G. Then we have exact
sequences

(0) −→ G1(F+) −→ G(F+)
det−→ FNF/F+=1

and

(0) −→ G1(A∞F+) −→ G(A∞F+)
det−→ A

NF/F+=1

F .

Suppose π is as in the statement of conjecture II, but π is not generic.
Then π is one dimensional and trivial on G1(F+

v ). Let 0 6= f ∈ π be invariant
by an open compact U . Then for all g ∈ G(A∞F+), the function f is constant
on

G(F+)gUG1(F+
v ) = G(F+)G1(A∞F+)gU

(by the strong approximation theorem). Thus f factors through

det : G(F+)\G(A∞F+)/U −→ detG(F+)\(A∞F )N=1/ detU.

Thus we can find a character

χ : detG(F+)\(A∞F )N=1/ detU −→ k
×

such that ∑
g∈(detG(F+))\(detG(A∞

F+ ))/(detU)

χ(g)−1f(g) 6= 0.

It follows that, for all but finitely many places w of F which are split over
F+, rm(Frobw) has characteristic polynomial

(X − χ($w/$
c
w))(X − qwχ($w/$

c
w)).
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We deduce that
(ad rm)ss = ε−1 ⊕ 1⊕ 1⊕ ε.

Thus rm is reducible and m is Eisenstein. �

Lemma 5.3.2 Let G be as in the section 3.4. Suppose conjecture I holds for
all T and U with U sufficiently small. Let T , U , a, {ρx} and {χx} be as in
section 3.4. Let v ∈ T − (S(B) ∪ Sl ∪ R) with Uv = G(OF+,v) and let m be

a non-Eisenstein maximal ideal of TT
a,{ρx},{χx}(U). If f ∈ Sa,{ρx},{χx}(U, k)[m]

and if π is an irreducible G(F+
v )-submodule of

〈G(F+
v )f〉 ⊂ Sa,{ρx},{χx}(U

v, k)

then π is generic.

Proof: We need only prove the lemma for U small, because its truth for
some U implies its truth for all U ′ ⊃ U . But for U small enough we have

Sa,{ρx},{χx}(U, k) = S0,{1},{1}(U, k)r

for some r. �

We now turn to the construction of ‘raising the level’ congruences. Let
m be a non-Eisenstein maximal ideal of TT

a,{ρx},{χx}(U) and let

φ : TT
a,{ρx},{χx}(U)m −→ O.

We will consider subsets S ⊂ T−(S(B)∪Sl∪R) such that Uv = G(OF+,v)
for all v ∈ S. For such S set

U(S) = US
∏
v∈S

i−1ev U1(ṽn)

and
θS =

∏
v∈R

i−1ev θn,ev
and

XS = Sa,{ρx},{χx}(U(S),O)m,n

where n denotes the maximal ideal

(λ, U
(1)ev , ..., U

(n−1)ev : v ∈ S)

of O[U
(1)ev , ..., U

(n−1)ev : v ∈ S]. Further set

TS = TT (XS),
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so that T∅ = TT
a,{ρx},{χx}(U)m. If S1 ⊂ S2 are such sets then we get an

injection
θS2−S1 : XS1 ↪→ XS2 .

(To see that this map is an injection we may suppose that S2 = S1∪{v}. Let
π be an irreducible constituent of Sa,{ρx},χx}({1}, K) with π ∩XS1 6= (0). Be-
cause m is not Eisenstein we see that πv is generic (see part 7 of proposition
3.3.4). Thus by proposition 5.1.7

i−1ev θn,ev : π ∩XS1 ↪→ π ∩XS2 .)

Thus we also have a surjection

TS2 →→ TS1

which takes T
(j)
w to T

(j)
w for all w (a prime of F which is split over a prime

of F+ not in T ) and j (= 1, ..., n). Let φS denote the composite

φS : TS →→ T∅
φ−→ O.

We will be interested in congruences between φ and other homomorphisms
TS → K. In particular we will be interested in how these congruences vary
with S. A useful measure of these congruences is provided by the ideal cS(φ),
defined by

φS : TS/(kerφS + Ann TS kerφS)
∼−→ O/cS(φ).

Let XS[φ] denote the subspace of XS where TS acts via φS. Let iS :
XS[φ] ↪→ XS denote the canonical inclusion and let πS : XS →→ XS[φ] denote
the TS-equivariant projection. (This exists because TS is reduced.) The next
lemma is now clear.

Lemma 5.3.3 Keep the above notation. The module XS[φ]/πSiSXS[φ] is an
O/cS(φ)-module. If XS is free over TS then XS[φ]/πSiSXS[φ] is free over
O/cS(φ).

Lemma 5.3.4 Keep the above notation. Then

θS : X∅[φ]⊗O K
∼−→ XS[φ]⊗O K.

Proof: It suffices to prove that if π is an irreducible constituent of the
space Sa,{ρx},{χx}({1}, K) then

θS : (X∅[φ]⊗O K) ∩ π ∼−→ (XS[φ]⊗O K) ∩ π.

As φrm is unramified at v ∈ S, proposition 3.3.4 tells us that if (XS[φ] ⊗O
K) ∩ π 6= (0) then πv is unramified. In particular (X∅[φ] ⊗O K) ∩ π 6= (0). If
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(X∅[φ] ⊗O K) ∩ π 6= (0) then for v ∈ S the representation πv is unramified
and, by part 7 of proposition 3.3.4, generic. Write

πv ◦ i−1ev = n-Ind
GLn(Fev)
Bn(Fev) (χv,1, ..., χv,n)

with each χv,i unramified. Again by proposition 3.3.4 we see that for v ∈ S,
each χv,i($ev) ∈ O×K . From lemma 5.1.5 we deduce that

πU(S)
n

is the subspace of πU(S) on which i−1ev U
(j)ev = 0 for each v ∈ S and each

j = 1, ..., n− 1. Proposition 5.1.7 then tells us that

θS : πU(∅) ∼−→ πU(S)
n

as desired. �

Proposition 5.3.5 Keep the above notation and assumptions. In particular
assume that U is sufficiently small. Let S ⊂ T − (S(B)∪ Sl ∪R) be such that
Ux = G(OF+,x) and G′(OF+,x) for all x ∈ S. Suppose that conjecture I is true
for the groups G and G′, for l, for T , for v ∈ S, and for the various open
compact subgroups US1 with S1 ⊂ S − {v}. Also suppose that X∅ is free over
T∅. Finally suppose that for each v ∈ S, l is quasi-banal for G(F+

v ). Then

lgOO/cS(φ) ≥ lgOO/c∅(φ) +
∑
v∈S

lgOH
0(Gal (F ev/Fev), (ad rm)⊗T∅,φ K/O(ε−1)).

Proof: Let η∅ ∈ G′(A∞F+) equal 1 at all places in (S ∪S(B)∪Sl) and all
places outside T . If S1 ⊂ S set

ηS1 = η∅
∏
v∈S1

(itev)−1

(
1n−1 0

0 $nev
)

and
U(S1)′ = η−1

S1
U(S1)ηS1 = (U(∅)′)S1 ×

∏
v∈S1

(itev)−1U1(ṽn).

Let m′ denote the ideal of TT
a,{ρv}(U(S1)′)′ generated by λ and T

(j)
w −a when-

ever a ∈ O, w is a prime of F split above a prime of F+ not in T and

T
(j)
w − a ∈ m. Then m′ is either maximal or the whole Hecke algebra. Set

X ′S1
= S ′a,{ρx},{χx}(U(S1)′,O)m′,n

where n denotes the maximal ideal

(λ, U
(1)ev , ..., U

(n−1)ev )
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of O[U
(1)ev , ..., U

(n−1)ev ], and
T′S1

= TT (XS1)′.

Also set
θ′S1

=
∏
v∈S1

(itev)−1θn,ev
and

θ̂′S1
=
∏
v∈S1

(itev)−1(θ̂n,ev).
If S1 ⊂ S2 ⊂ S then we get an injection

θ′S2−S1
: X ′S1

↪→ X ′S2

and exactly as in the proof of lemma 5.3.4 we see that

θ′S2−S1
: X ′S1

⊗O K
∼−→ X ′S2

⊗O K.

Also by corollary 3.4.5

θ̂′S1
θS1 =

∏
v∈S1

i−1ev (θ̂n,evθn,ev)
acts on X∅ by an element of T∅.

Under the perfect pairing

〈 , 〉U(S1),ηS1
: Sa,{ρx},{χx}(U(S1),O)× S ′a,{ρx},{χx}(U(S1)′,O) −→ O

we have that:

– for v ∈ S1 the adjoint of i−1ev U
(j)ev is (itev)−1U

(j)ev , and
– for w a prime of F split over a prime of F+ not in T , the adjoint

of T
(j)
w is T

(j)
w .

Thus TS1
∼= T′S1

(with T
(j)
w matching T

(j)
w for w a prime of F split over a

prime of F+ not in T ), and 〈 , 〉U(S1),ηS1
induces a perfect pairing

〈 , 〉S1 : XS1 ×X ′S1
−→ O

under which the actions of TS1
∼= T′S1

are self-adjoint. If S1 ⊂ S2 ⊂ S, then

θ̂′S2−S1
: XS2 −→ XS1

is the adjoint of θ′S2−S1
.

It follows from conjecture I and lemma 5.1.10 that

θ{v} : XS1 −→ XS1∪{v}
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has torsion free cokernel, and that

θ̂′{v} : XS1∪{v} −→ XS1

is surjective. Thus
θS : X∅ −→ XS

has torsion free cokernel, and

θ̂′S : XS −→ X∅

is surjective. In particular

θS : X∅[φ]
∼−→ XS[φ],

and we may take
iS = θS ◦ i∅ ◦ θS|−1

X∅[φ]

and
πS = θS|X∅[φ] ◦ π∅ ◦ θ̂′S.

Thus
XS[φ]/πSiSXS[φ] ∼= X∅[φ]/φ(θ̂′SθS)π∅i∅X∅[φ]

∼= X∅[φ]/(
∏

v∈S φi
−1ev (θ̂n,evθn,ev))π∅i∅X∅[φ].

The proposition follows from corollary 5.1.8. �

5.4. R = T theorems: the non-minimal case. — In this section we will
show how conjecture I would imply a generalisation of theorem 3.5.1 to a
less restrictive set of deformation problems S. Such a generalisation would
be very much more useful in practice than theorem 3.5.1. After this paper
was written, one of us (R.L.T.) found an unconditional proof of a slight
weakening of theorem 5.4.1 below (see [Tay]). This seems to be sufficient
for most current applications. However we present this conditional argument
here because it would provide a stronger result. For instance it shows that
the Galois deformation ring is a reduced complete intersection, which might
be pertinent for special value conjectures. This information does not appear
to be available by the methods of [Tay].

For the sake of clarity we recap the notation.
Fix a positive integer n ≥ 2 and a prime l > n.
Fix an imaginary quadratic field E in which l splits and a totally real

field F+ such that

– F = F+E/F+ is unramified at all finite primes, and
– F+/Q is unramified at l.
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Fix a finite non-empty set of places S(B) of places of F+ with the
following properties:

– Every element of S(B) splits in F .
– S(B) contains no place above l.
– If n is even then

n[F+ : Q]/2 + #S(B) ≡ 0 mod 2.

Choose a division algebra B with centre F with the following properties:

– dimF B = n2.
– Bop ∼= B ⊗E,c E.
– B splits outside S(B).
– If w is a prime of F above an element of S(B), then Bw is a division

algebra.

Fix an involution ‡ on B and define an algebraic group G/F+ by

G′(A) = {g ∈ B ⊗F+ A : g‡⊗1g = 1}

such that

– ‡|F = c,
– for a place v|∞ of F+ we have G(F+

v ) ∼= U(n), and
– for a finite place v 6∈ S(B) of F+ the group G(F+

v ) is quasi-split.

Also define an algebraic group G′/F+ by setting

G′(A) = {g ∈ Bop ⊗F+ A : g‡⊗1g = 1}

for any F+-algebra A.
Choose an order OB in B such that O‡B = OB and OB,w is maximal

for all primes w of F which are split over F+. This gives a model of G over
OF+ . If v 6∈ S(B) is a prime of F+ which splits in F choose an isomorphism

iv : OB,v
∼→Mn(OF,v) such that iv(x

‡) = tiv(x)c. If w is a prime of F above v

this gives rise to an isomorphism iw : G(F+
v )

∼→ GLn(Fw) as in section 3.3. If

v ∈ S(B) and w is a prime of F above v choose isomorphisms iw : G(F+
v )

∼→
B×w such that iwc = i−‡w and iwG(OF+,v) = O×B,w.

Let Sl denote the set of primes of F+ above l. Let Sa denote a non-
empty set, disjoint from Sl ∪ S(B), of primes of F+ such that

– if v ∈ Sa then v splits in F , and
– if v ∈ Sa lies above a rational prime p then [F (ζp) : F ] > n.

Let S denote a set, disjoint from Sl ∪ S(B) ∪ Sa, of primes of F+ such that

– if v ∈ S then v splits in F , and
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– if v ∈ S then either Nv ≡ 1 mod l or l 6 |#GLn(k(v)).

Let T = S ∪S(B)∪Sl ∪Sa. Let T̃ denote a set of primes of F above T such

that T̃
∐
T̃ c is the set of all primes of F above T . If v ∈ T we will let ṽ

denote the prime of T̃ above v. If T1 ⊂ T we will let T̃1 denote the set of ṽ
for v ∈ T1.

If S1 ⊂ S let U(S1) =
∏

v U(S1)v denote an open compact subgroup of
G(A∞F+) such that

– if v is not split in F then U(S1)v is a hyperspecial maximal compact
subgroup of G(F+

v ),
– if v 6∈ Sa ∪ S1 splits in F then U(S1)v = G(OF+,v),
– if v ∈ S1 then U(S1)v = i−1ev U1(ṽn), and
– if v ∈ Sa then U(S1)v = i−1ev ker(GLn(OF,ev) → GLn(OF,ev/($mvev ))) for

some mv ≥ 1.

Then U(S1) is sufficiently small. If S1 = ∅ we will drop it from the notation,
i.e. we will write U =

∏
v Uv for U(∅).

Let K/Ql be a finite extension which contains the image of every em-
bedding F+ ↪→ K. Let O denote its ring of integers, λ the maximal ideal of
O and k the residue field O/λ.

For each τ : F ↪→ K choose integers aτ,1, ..., aτ,n such that

– aτc,i = −aτ,n+1−i, and

– if τ gives rise to a place in S̃l then

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0.

For each v ∈ S(B) let ρv : G(F+
v ) −→ GL(Mρv) denote a representation

of G(F+
v ) on a finite free O-module such that ρv has open kernel and Mρv⊗O

K is irreducible. For v ∈ S(B), define mv, πev and r̃ev by

JL (ρv ◦ i−1ev ) = Spmv(πev)
and

r̃ev = rl(πev| |(n/mev−1)(1−mev)/2).

We will suppose that

r̃ev : Gal (Fw/Fw) −→ GLn/mev(O)

(as opposed to GLn/mev(K)), that the reduction of r̃ev mod λ is absolutely
irreducible and that for i = 1, ...,mv we have

r̃ev ⊗O k 6∼= r̃ev ⊗O k(εi).
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Let m be a non-Eisenstein maximal ideal of TT
a,{ρv},∅(U) with residue

field k and let
rm : Gal (F/F+) −→ Gn(k)

be a continuous homomorphism associated to m as in propositions 3.4.2 and
3.4.4. Note that

ν ◦ rm = ε1−nδµm

F/F+

where δF/F+ is the non-trivial character of Gal (F/F+) and where µm ∈ Z/2Z.
We will assume that rm has the following properties.

– rm(Gal (F/F+(ζl))) is big in the sense of section 2.5.
– If v ∈ Sa then rm is unramified at v and

H0(Gal (F ev/Fev), (ad rm)(1)) = (0).

We will also assume that TT
a,{ρv},∅(U) admits a section

φ : TT
a,{ρv},∅(U)→ O.

For S1 ⊂ S write Xm,S1 for the space

Sa,{ρv},∅(U(S1),O)m,n

where n is the maximal ideal

(λ, U
(1)ev , ..., U

(n−1)ev : v ∈ S1)

of O[U
(1)ev , ..., U

(n−1)ev : v ∈ S1]. Also write Tm,S1 for the algebra TT (Xm,S1).
Thus Tm,S1 is a quotient of TT

a,{ρv},∅(U(S1))m, and these two algebras are

equal if S1 = ∅. The algebra Tm,S1 is a local, commutative sub-algebra of
EndO(Xm,S1). It is reduced and finite free as an O-module. Let

rm,S1 : Gal (F/F+) −→ Gn(Tm,S1)

denote the continuous lifting of rm provided by proposition 3.4.4. Then Tm,S1

is generated as an O-algebra by the coefficients of the characteristic polyn-
imials of rm,S1(σ) for σ ∈ Gal (F/F ).

For S1 ⊂ S, consider the deformation problem SS1 given by

(F/F+, T, T̃ ,O, rm, ε
1−nδµm

F/F+ , {Dv}v∈T )

where:

– For v ∈ Sa, Dv will consist of all lifts of rm|Gal (F ev/Fev) and

Lv = H1(Gal (F ev/Fev), ad rm) = H1(Gal (F ev/Fev)/IFev , ad rm).
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– For v ∈ Sl, Dv and Lv are as described in section 2.4.1 (i.e. consists
of crystalline deformations).

– For v ∈ S(B), Dv consists of lifts which are r̃ev-discrete series as de-
scribed in section 2.4.5. In this case Lv is also described in section 2.4.5.

– For v ∈ S − S1, Dv will consist of all unramified lifts of rm|Gal (F ev/Fev)

and

Lv = H1(Gal (F ev/Fev)/IFev , ad rm).

– For v ∈ S1, Dv will consist of all lifts of rm|Gal (F ev/Fev) and

Lv = H1(Gal (F ev/Fev), ad rm).

Also let

runiv
m,S1

: Gal (F/F+) −→ Gn(Runiv
m,S1

)

denote the universal deformation of rm of type SS1 . By proposition 3.4.4 there
is a natural surjection

Runiv
S1
→→ Tm,S1

such that runiv
m,S1

pushes forward to rm,S1 .

Theorem 5.4.1 Keep the notation and assumptions of the start of this sec-
tion. Assume also that conjecture I is true for G and G′. Then

Runiv
m,S

∼−→ Tm,S

is an isomorphism of complete intersections.

Proof: As in section 5.3 we see that we have a commutative diagram

Runiv
m,S →→ Tm,S

↓ ↓
Runiv

m,∅
∼−→ Tm,∅

φ−→O.

The lower left map is an isomorphism by theorem 3.5.1. Let φS denote

the composite Tm,S → Tm,∅
φ−→ O. Let c∅(φ) (resp. cS(φ)) be the ideals

φ(Ann Tm,∅ kerφ) (resp. φS(Ann Tm,S
kerφS)). Also let ℘∅ (resp. ℘S) denote

the kernel of the composite Runiv
m,∅ →→ Tm,∅

φ−→ O (resp. Runiv
m,S →→ Tm,S

φS−→ O).

By theorem 3.5.1 the map Runiv
m,∅

∼→ Tm,∅ is an isomorphism of complete

intersections and the main theorem of [Le] implies that

lgO ℘∅/℘
2
∅ = lgOO/c∅(φ).
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Hence by lemma 2.3.2 and proposition 5.3.5 we see that

lgO ℘S/℘
2
S

≤ lgO ℘∅/℘
2
∅ +

∑
v∈S lgOH

0(Gal (F ev/Fev), (ad rm)⊗Tm,∅,φ K/O(ε−1))
≤ lgOO/cS(φ).

Another application of the main theorem of [Le] tells us that Runiv
m,S → Tm,S

is an isomorphism of complete intersections. �

5.5. Conditional modularity lifting theorems. — In this section we ap-
ply theorem 5.4.1 to deduce conditional modularity lifting theorems in the
non-minimal case. The following theorem is proved in exactly the same way
as theorem 4.4.2, except that we appeal to theorem 5.4.1 instead of theorem
3.5.1.

Theorem 5.5.1 Let F be an imaginary CM field and let F+ denote its max-
imal totally real subfield. Let n ∈ Z≥1 and let l > n be a prime which is
unramified in F . Let

r : Gal (F/F ) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. rc ∼= r∨ε1−n.
2. r is unramified at all but finitely many primes.
3. For all places v|l of F , r|Gal (F v/Fv) is crystalline.

4. There is an element a ∈ (Zn)Hom (F,Ql) such that
– for all τ ∈ Hom (F,Ql) we have

l − 1− n ≥ aτ,1 ≥ ... ≥ aτ,n ≥ 0

or
l − 1− n ≥ aτc,1 ≥ ... ≥ aτc,n ≥ 0;

– for all τ ∈ Hom (F,Ql) and all i = 1, ..., n

aτc,i = −aτ,n+1−i;

– for all τ ∈ Hom (F,Ql) above a prime v|l of F ,

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 1.
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5. There is a non-empty finite set S of places of F not dividing l and
for each v ∈ S a square integrable representation ρv of GLn(Fv) over Ql

such that
r|ss

Gal (F v/Fv)
= rl(ρv)

∨(1− n)ss.

If ρv = Spmv(ρ
′
v) then set

r̃v = rl((ρ
′
v)
∨| |(n/mv−1)(1−mv)/2).

Note that r|Gal (F v/Fv) has a unique filtration Fil jv such that

gr jvr|Gal (F v/Fv)
∼= r̃vε

j

for j = 0, ...,mv − 1 and equals (0) otherwise. We assume that r̃v has

irreducible reduction rv. Then r|Gal (F v/Fv) inherits a filtration Fil
j

v with

gr jvr|Gal (F v/Fv)
∼= rvε

j

for j = 0, ...,mv − 1. Finally we suppose that for j = 1, ...,mv we have

rv 6∼= rvε
i.

6. F
ker ad r

does not contain F (ζl).
7. The image r(Gal (F/F (ζl))) is big in the sense of definition 2.5.1.
8. The representation r is irreducible and automorphic of weight a and

type {ρv}v∈S with S 6= ∅.
Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic of weight a and type {ρv}v∈S and level prime to
l.

Exactly as we deduced theorem 4.4.3 from theorem 4.4.2 we can deduce
the following variant of theorem 5.5.1 for totally real fields.

Theorem 5.5.2 Let F+ be a totally real field. Let n ∈ Z≥1 and let l > n be
a prime which is unramified in F+. Let

r : Gal (F
+
/F+) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. r∨ ∼= rεn−1χ for some character χ : Gal (F
+
/F+) −→ Q

×
l with χ(cv)

independent of v|∞. (Here cv denotes a complex conjugation at v.)
2. r ramifies at only finitely many primes.
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3. For all places v|l of F+, r|
Gal (F

+
v /F

+
v )

is crystalline.

4. There is an element a ∈ (Zn)Hom (F+,Ql) such that
– for all τ ∈ Hom (F+,Ql) we have

l − 1− n+ aτ,n ≥ aτ,1 ≥ ... ≥ aτ,n;

– for all τ ∈ Hom (F+,Ql) above a prime v|l of F+,

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 0

unless i = aτ,j + n− j for some j = 1, ..., n in which case

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1.

5. There is a finite non-empty set S of places of F+ not dividing l
and for each v ∈ S a square integrable representation ρv of GLn(F+

v ) over
Ql such that

r|ss
Gal (F

+
v /F

+
v )

= rl(ρv)
∨(1− n)ss.

If ρv = Spmv(ρ
′
v) then set

r̃v = rl((ρ
′
v)
∨| |(n/mv−1)(1−mv)/2).

Note that r|
Gal (F

+
v /F

+
v )

has a unique filtration Fil jv such that

gr jvr|Gal (F
+
v /F

+
v )
∼= r̃vε

j

for j = 0, ...,mv − 1 and equals (0) otherwise. We assume that r̃v has
irreducible reduction rv such that

rv 6∼= rvε
j

for j = 1, ...,mv. Then r|
Gal (F

+
v /F

+
v )

inherits a unique filtration Fil
j

v with

gr jvr|Gal (F
+
v /F

+
v )
∼= rvε

j

for j = 0, ...,mv − 1.

6. (F
+

)ker ad r does not contain F+(ζl).

7. The image r(Gal (F
+
/F+(ζl))) is big in the sense of definition 2.5.1.

8. r is irreducible and automorphic of weight a and type {ρv}v∈S with
S 6= ∅.

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic of weight a and type {ρv}v∈S and level prime to
l.
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5.6. A conditional modularity theorem. — We would like to apply the-
orems 5.5.1 and 5.5.2 in situations where one knows that r is automorphic.
One such case is where r : Gal (F/F )→ GLn(k) is induced from a (suitable)
character over some cyclic extension. However it will be useful to have such
a theorem when ρv is Steinberg for v ∈ S. Because the lift of r which we
know to be automorphic is an automorphic induction it can not be Steinberg
at any finite place (although it can be cuspidal at a finite place). Thus we
have a problem in applying theorems 5.5.1 or 5.5.2 directly. We shall get
round this by applying proposition 2.7.4 to construct a second lift r1 of r
which is Steinberg at v ∈ S, but which is also cuspidal at some other finite
places S ′. We first show that r1 is automorphic using the places in S ′. The
result is that we succeed in ‘raising the level’ for the automorphicity of r.
We can then apply theorem 5.5.1 or 5.5.2 a second time. A further compli-
cation arises because we want to treat r which do not look as if they could
have a lift which is cuspidal at any finite place. We will do so under an
assumption that r extends to a representation of Gal (Q/Q) which looks as
if it could have a lift which is cuspidal at some finite place.

More precisely we will consider the following situation.

– M/Q is a Galois imaginary CM field of degree n with Gal (M/Q)
cyclic generated by an element τ .

– l > 1 + (n− 1)((n+ 2)n/2− (n− 2)n/2)/2n−1 (e.g. l > 8((n+ 2)/4)1+n/2)
is a prime which splits completely in M and is ≡ 1 mod n.

– p is a rational prime which is inert and unramified in M .
– q 6= l is a rational prime, which splits completely in M and which

satisfies qi 6≡ 1 mod l for i = 1, ..., n− 1.

– θ : Gal (Q/M) −→ F
×
l is a continuous character such that

– θθ
c

= ε1−n;
– there exists a prime w|l of M such that for i = 0, ...., n/2 − 1 we

have θ|Iτiw = ε−i;

– if v1, ..., vn are the primes of M above q then {θ(Frobvi)} =

{αqq−j : j = 0, ..., n− 1} for some αq ∈ F
×
l ;

– θ|Gal (Mp/Mp) 6= θ
τ j |Gal (Mp/Mp) for j = 1, ..., n− 1.

Let S(θ) denote the set of rational primes above which M or θ is ramified.
– E/Q is an imaginary quadratic field linearly disjoint from the Galois

closure of M
ker θ

(ζl)/Q in which every element of S(θ)∪{l, q, p} splits; and
such that the class number of E is not divisible by l.

Theorem 5.6.1 Keep the notation and assumptions listed above. Let F/F0

be a Galois extension of imaginary CM fields with F linearly disjoint from
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the normal closure of M
ker θ

(ζl) over Q. Assume that l is unramified in F
and that there is a prime vp,0 of F0 split above p. Let

r : Gal (F/F ) −→ GLn(Ql)

be a continuous irreducible representation with the following properties. Let r
denote the semisimplification of the reduction of r.

1. r ∼= Ind
Gal (F/F )

Gal (F/FM)
θ|Gal (F/FM).

2. rc ∼= r∨ε1−n.
3. r ramifies at only finitely many primes.
4. For all places v|l of F , r|Gal (F v/Fv) is crystalline.

5. For all τ ∈ Hom (F,Ql) above a prime v|l of F ,

dimQl
gr i(r ⊗τ,Fv BDR)Gal (F v/Fv) = 1

for i = 0, ..., n− 1 and = 0 otherwise.
6. There is a place vq of F above q such that (#k(vq))

j 6≡ 1 mod l
for j = 1, ..., n, and such that r|ss

Gal (F vq/Fvq )
is unramified, and such that

r|ss
Gal (F vq/Fvq )

(Frobvq) has eigenvalues {α(#k(vq))
j : j = 0, ..., n − 1} for

some α ∈ Q
×
l .

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic over F of weight 0 and type {Sp n(1)}{vq} and
level prime to l.

Proof: Replacing F by EF if necessary we may suppose that F ⊃ E
(see lemma 4.2.2).

Choose a continuous character

θ : Gal (M/M) −→ O×
Ql

such that

– θ lifts θ;
– θ−1 = εn−1θc;
– for i = 0, ..., n/2− 1 we have θ|IM

σiw
= ε−i; and

– l 6 |#θ(Iv) for all places v|p of M .

(See lemma 4.1.6.) We can extend θ|Gal (E/EM) to a continuous homomorphism

θ : Gal (E/(EM)+) −→ G1(OQl
)
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with ν ◦ θ = ε1−n. We will let θ also denote the reduction

θ : Gal (E/(EM)+) −→ G1(Fl)

of θ. Consider the pairs Gal (E/(EM)+) ⊃ Gal (E/(EM)) and Gal (E/Q) ⊃
Gal (E/E). Set

r0 = Ind
Gal (E/Q),ε1−n

Gal (E/(EM)+)
θ : Gal (E/Q) −→ Gn(OQl

).

Note also that

r0|Gal (E/E) = ((Ind
Gal (E/Q)

Gal (E/M)
θ)|Gal (E/E), ε

1−n).

By proposition 2.7.4 there is a continuous homomorphism

r1 : Gal (E/Q) −→ Gn(OQl
)

with the following properties.

– r1 lifts Ind
Gal (E/Q),ε1−n

Gal (E/(EM)+)
θ.

– ν ◦ r1 = ε1−n.
– For all places w|l of E, r1|Gal (Ew/Ew) is crystalline.

– For all τ ∈ Hom (E,Ql) corresponding to prime w|l,

dimQl
gr i(r1 ⊗τ,Ew BDR)Gal (Ew/Ew) = 1

for i = 0, ..., n− 1 and = 0 otherwise.
– r1|ssGal (Evq/Evq )

is unramified and r|ss
Gal (Evq/Evq )

(Frobvq |E) has eigenvalues

{αq−j : j = 0, ..., n− 1} for some α ∈ Q
×
l .

– r1|Gal (Evp/Evp ) is an unramified twist of Ind
Gal (Qp/Qp)

Gal (Qp/Mp)
θ|Gal (Qp/Mp).

Let vp be a prime of F above vp,0 and let F1 ⊂ F denote the fixed
field of the decomposition group of vp in Gal (F/F0). Thus vp|F1 is split over
p and F/F1 is soluble.

The restriction r0|Gal (E/F1) is automorphic of weight 0, level prime to l

and type {ρp}{vp|F1
}, for a suitable cuspidal representation ρp (by theorem 4.2

of [AC]). Applying lemma 2.7.5 and theorem 5.5.1 we deduce that r1|Gal (F/F1)

is automorphic of weight 0 and type {ρp}{vp|F1
} and level prime to l. It fol-

lows from corollary VII.1.11 of [HT] that r1|Gal (F/F1) is also automorphic of

weight 0 and type {Sp n(1)}{vq |F1
} and level prime to l. (The only tempered

representations π of GLn(F1,vq |F1
) for which rl(π)∨(1 − n)ss unramified and

rl(π)∨(1− n)ss(Frobvq |F1
) has eigenvalues of the form {αq−j : j = 0, ..., n− 1}

are unramified twists of Sp n(1).) From theorem 4.2 of [AC] we deduce that
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r1|Gal (F/F ) is automorphic of weight 0 and type {Sp n(1)}{vq} and level prime

to l. (The base change must be cuspidal as it is square integrable at one
place.)

Finally we again apply theorem 5.5.1 to deduce that r is automorphic
of weight 0 and type {ρp}{vp} and level prime to l. The verification that
r(GF+(ζl)) is big is exactly as above. �

We also have a version for totally real fields.

Theorem 5.6.2 Keep the notation and assumptions listed at the start of this
section. Let F+/F+

0 be a Galois extension of totally real fields with F+ linearly

disjoint from the Galois closure of E(ζl)M
ker θ

over Q. Suppose that that l is
unramified in F+ and that there is a prime vp,0 of F+

0 split over p. Let

r : Gal (F+/F+) −→ GLn(Ql)

be a continuous representation such that

– r ∼= (Ind
Gal (Q/Q)

Gal (Q/M)
θ)|Gal (Q/F+);

– r∨ ∼= rεn−1;
– r is unramified at all but finitely many primes;
– For all places v|l of F+, r|

Gal (F
+
v /F

+
v )

is crystalline.

– For all τ ∈ Hom (F+,Ql) above a prime v|l of F+,

dimQl
gr i(r ⊗τ,F+

v
BDR)Gal (F

+
v /F

+
v ) = 1

for i = 0, ..., n− 1 and = 0 otherwise.
– There is a place vq|q of F+ such that
– #k(vq)

j 6≡ 1 mod l for j = 1, ..., n− 1,
– r|ss

Gal (F
+
vq/F

+
vq )

is unramified, and

– r|ss
Gal (F

+
vq
/F+
vq )

(Frobvq) has eigenvalues {α(#k(vq))
j : j = 0, ..., n− 1}

for some α ∈ Q
×
l .

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic over F+ of weight 0 and type {Sp n(1)}{vq} and
level prime to l.

Proof: Apply theorem 5.6.1 to F = F+E and use lemma 4.3.3. �
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[Mau] D. MAUGER, Algèbres de Hecke quasi-ordinaires universelles, Ann. Sci. Ecole Norm. Sup. (4) 37,
(2004), 171–222.

[Maz] B. MAZUR, An introduction to the deformation theory of Galois representations, in Modular forms
and Fermat’s last theorem (Boston, MA, 1995), Springer, (1997).

[MW] C. MOEGLIN and J.-L. WALDSPURGER, Le spectre résiduel de GL(n), Ann. Sci. ENS, 22, (1989),
605-674.

[N] M. NORI, On subgroups of GLn(Fp), Invent. Math., 88, (1987), 257–275.

[NSW] J. NEUKIRCH, A. SCHMIDT, and K. WINGBERG, Cohomology of number fields, Grundlehren der
Mathematischen Wissenschaften 323, Springer-Verlag, (2000).



164 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

[Ra1] R. RAMAKRISHNA, On a variation of Mazur’s deformation functor, Compositio Math., 87, (1993),
269-286.

[Ra2] R. RAMAKRISHNA, Deforming Galois representations and the conjectures of Serre and Fontaine-Mazur,
Ann. of Math., 156, (2002), 115–154.

[Ri] K. RIBET, Congruence relations between modular forms, in Proceedings of the Warsaw ICM, PWN,
Warsaw (1984).

[Ro] A. ROCHE, Types and Hecke algebras for principal series representations of split reductive p-adic
groups, Ann. Sci. ENS, 31, (1998), 361-413.

[Se1] J.-P. SERRE, Abelian l-adic representations and elliptic curves, Benjamin, (1968).
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APPENDIX A: The level raising operator after Russ Mann.

In this appendix we will explain Russ Mann’s proof of lemma 5.1.6 and
proposition 5.1.7. A preliminary write-up of most of the arguments can be
found in [Man2], but as Russ has left academia it seems increasingly unlikely
that he will finish [Man2]. Hence this appendix. Russ actually found more
general results concerning level raising for forms of level greater than 1, which
we do not report on here. We stress that the arguments of this appendix are
entirely due to Russ Mann, though we of course take responsibility for any
errors in their presentation.

Write Bn for the Borel subgroup of GLn consisting of upper triangu-
lar matrices and write Nn for its unipotent radical. Also write Tn for the
maximal torus in GLn consisting of diagonal matrices and write Pn for the
subgroup of GLn consisting of matrices with last row (0, ..., 0, 1).

Let Fw be a finite extension of Qp with ring of integers OFw . Let w :
F×w →→ Z denote the valuation, let $w denote a uniformiser of OFw and let

qw = #OFw/($w). Also let O denote the subring of C generated by q
−1/2
w

and all p-power roots of 1. Let Sn denote the symmetric group on n letters
and set

R+
n = O[X1, ..., Xn]Sn ⊂ Rn = O[X±1

1 , ..., X±1
n ]Sn ,

where Sn permutes the variables Xi. Sometimes we will want to consider
Rn and Rn−1 at the same time. To make the notation clearer we will write
Rn−1 = O[Y ±1

1 , ..., Y ±1
n−1]Sn−1 and R+

n−1 = O[Y1, ..., Yn−1]Sn−1 . We will also set

R∧n−1 = O[[Y1, ..., Yn−1]]Sn−1

and R≤mn−1 to equal to the O-submodule of R+
n−1 consisting of polynomials of

degree ≤ m in each variable separately.
Let αj = $w1j ⊕ 1n−j and let T (j) denote the double coset

T (j) = GLn(OFw)αjGLn(OFw).

Let GLn(OFw)+ denote the sub-semigroup of GLn(Fw) consisting of matrices
with entries in OFw . Then

O[GLn(OFw)\GLn(Fw)+/GLn(OFw)] = O[T (1), T (2), ..., T (n)]

and

O[GLn(OFw)\GLn(Fw)/GLn(OFw)] = O[T (1), T (2), ..., T (n), (T (n))−1].

Define ∼ from O[GLn(OFw)\GLn(Fw)/GLn(OFw)] to itself by

[GLn(OFw)gGLn(OFw)]∼ = [GLn(OFw)g−1GLn(OFw)].



166 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

Then (T (j))∼ = (T (n))−1T (n−j).
There is an isomorphism (a certain normalisation of the the Satake iso-

morphism)

S : O[GLn(OFw)\GLn(Fw)/GLn(OFw)]
∼−→ Rn

which sends T (j) to q
j(1−j)/2
w times the jth elementary symmetric function in

the Xi’s (i.e. to the sum of all products of j distinct Xi’s). We have

S(O[GLn(OFw)\GLn(Fw)+/GLn(OFw)]) = R+
n

and

S(T∼)(X1, ..., Xn) = S(T )(qn−1
w X−1

1 , ..., qn−1
w X−1

n ).

If we write

O[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m

for the submodule of O[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)] spanned by
the double cosets

GLn−1(OFw)diag(t1, ..., tn−1)GLn−1(OFw),

where m ≥ w(t1) ≥ ... ≥ w(tn−1) ≥ 0, then

S(O[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m) = (O[Y1, ..., Yn−1]Sn−1)≤m.

Let U1(wm) denote the subgroup of GLn(OFw) consisting of elements
which reduce modulo $m

w to an element of Pn(OFw/($m
w )). For j = 1, ..., n−1

let

U (j) = Pn(OFw)αjPn(OFw).

Note that U (j)/Pn(OFw) has finite cardinality. If π is a smooth representation
of GLn(Fw) and if m ∈ Z≥1 then

– the operators U (j) on πPn(OFw ) commute, and
– the action of U (j) preserves πU1(wm) and in fact acts the same way

as

U1(wm)αjU1(wm)

on this space.

(This is proved by writing down explicit coset decompositions, see for in-
stance proposition 4.1 of [Man1] .)

Let A be an O-module and suppose that

T =
∑
i

aiGLn−1(OFw)giGLn−1(OFw)
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is in A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]. Define

V (T ) =
∑
i

ai| det gi|n−1/2Pn(OFw)

(
g−1
i 0
0 1

)
GLn(OFw).

Note that if h ∈ GLn−1(Fw)+ and

GLn−1(OFw)h−1GLn−1(OFw) =
∐
j

hjGLn−1(OFw)

then

Pn(OFw)

(
h−1 0
0 1

)
GLn(OFw) =

∐
j

(
hj 0
0 1

)
GLn(OFw).

Similarly if m ∈ Z≥1 and if

T =
∑
i

aiGLn−1(OFw)giGLn−1(OFw)

is in A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m define

Vm(T ) =
∑
i

ai| det gi|n−1/2U1(wm)

(
g−1
i 0
0 1

)
GLn(OFw).

Note that if h ∈ GLn−1(Fw)+ is such that GLn−1(OFw)hGLn−1(OFw) lies in
A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m, and if

GLn−1(OFw)h−1GLn−1(OFw) =
∐
j

hjGLn−1(OFw)

then

U1(wm)

(
h−1 0
0 1

)
GLn(OFw) =

∐
j

(
hj 0
0 1

)
GLn(OFw).

We deduce that if π is any smooth representation of GLn(Fw) and if T ∈
A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m then V (T ) preserves the space
πU1(wm) and acts on it via Vm(T ). In the case A = Rn the map Vm induces
a map, which we will also denote Vm, from the module

Rn[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m

to O[U1(wm)\GLn(Fw)/GLn(OFw)] given by the formula

Vm(
∑

i ai[GLn−1(OFw)giGLn−1(OFw)])

=
∑

i | det gi|n−1/2

[
U1(wm)

(
g−1
i 0
0 1

)
GLn(OFw)

]
◦ S−1(ai).
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Proposition 5.2 of [Man1] says that the set of

Vm(GLn−1(OFw)diag(t1, ..., tn−1)GLn−1(OFw)),

where t ∈ Tn−1(Fw)/Tn−1(OFw) with m ≥ w(t1) ≥ ... ≥ w(tn−1) ≥ 0 is a basis
of O[U1(wm)\GLn(Fw)/GLn(OFw)] as a right Rn-module. Hence the map Vm
from

Rn[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m

to O[U1(wm)\GLn(Fw)/GLn(OFw)] is an isomorphism of free Rn-modules.
Let

ψ : Fw −→ O×

be a continuous character with kernel OFw . We will also think of ψ as a
character of Nn(Fw) by setting

ψ(u) = ψ(u1,2 + u2,3 + ...+ un−1,n).

If A is an O-algebra we will write Wn(A,ψ) for the set of functions

W : GLn(Fw) −→ A

such that

– W (ug) = ψ(u)W (g) for all g ∈ GLn(Fw) and u ∈ Nn(Fw),
– and W is invariant under right translation by some open subgroup

of GLn(Fw).

Thus Wn(A,ψ) is a smooth representation of GLn(Fw) (acting by right trans-
lation).

There is a unique element W 0
n(ψ) ∈ Wn(Rn, ψ)GLn(OFw ) such that

– W 0
n(ψ)(1n) = 1 and

– TW 0
n(ψ) = S(T )W 0

n(ψ) for all T ∈ O[GLn(OFw)\GLn(Fw)/GLn(OFw)].

Moreover if the last row of g is integral then W 0
n(ψ)(g) ∈ R+

n . (These facts
are proved exactly as in [Sh].)

Suppose again that A is an O-algebra. If W ∈ Wn(A,ψ)Pn(OFw ) we
heuristically define Φ(W ) ∈ A⊗O R∧n−1 = A[[Y1, ..., Yn−1]]Sn−1 by

Φ(W ) =

∫
Nn−1(Fw)\GLn−1(Fw)

W

(
g 0
0 1

)
W 0
n−1(ψ−1)(g)| det g|s−n+1/2dg

∣∣∣∣
s=0

where the implies Haar measures give GLn−1(OFw) and Nn−1(OFw) volume 1.
Rigorously one can for instance set

Φ(W ) =
∑
t

W

(
t 0
0 1

)
W 0
n−1(ψ−1)(t)| det t|s−n+1/2|t1|2−n|t2|4−n...|tn−1|n−2
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where t = diag(t1, ..., tn−1) runs over elements of Tn−1(Fw)/Tn−1(OFw) with

w(t1) ≥ w(t2) ≥ ... ≥ w(tn−1) ≥ 0.

For such t the value W 0
n−1(ψ−1)(t) is a homogeneous polynomial in the Yi’s

of degree w(det t) and these polynomials are linearly independent over A for
t ∈ Tn−1(Fw)/Tn−1(OFw) with w(t1) ≥ w(t2) ≥ ... ≥ w(tn−1) ≥ 0. (As in [Sh].)
In particular if W ∈ Wn(A,ψ)Pn(OFw ) then Φ(W ) determines W |Pn(Fw). As in
section (1.4) of [JS2] we see that

Φ(W 0
n(ψ)) =

∏
i,j

(1−XiYj)
−1.

Fix an embedding ı : Rn ↪→ C. There is a unique irreducible smooth rep-
resentation π of GLn(Fw) such that O[GLn(OFw)\GLn(Fw)/GLn(OFw)] acts
on πGLn(OFw ) via ı◦S. Moreover there is an embedding π ↪→Wn(C, ψ) which
is unique up to C×-multiples. It follows from [Sh] that ıW 0

n(ψ) is in the
image of π. It follows from sections (3.5) and (4.2) of [JPSS] that

Φ : (Rn[GLn(Fw)]W 0
n(ψ))Pn(OFw ) ↪→

∏
i,j

(1−XiYj)
−1Rn[Y1, ..., Yn−1]Sn−1 .

From corollary 3.5 of [Man1] we see also see that

dimC(Rn[GLn(Fw)]W 0
n(ψ))U1(wm))⊗Rn,ı C ≤ dimC π

U1(wm) =

(
m+ n− 1
n− 1

)
.

If W ∈ (Rn[GLn(Fw)]W 0
n(ψ))Pn(OFw ) and Φ(W ) = 1 then we see that

W |Pn(Fw) is supported on Nn(Fw)Pn(OFw) and that W (1n) = 1. Thus we

have (U (j)W )|Pn(Fw) = 0. (Recall that we only have to check this at ele-
ments diag(t1, ..., tn−1, 1) and that any element of Wn(Rn, ψ) will vanish at
diag(t1, ..., tn−1, 1) unless w(ti) ≥ 0 for all i. To check at the remaining diag-
onal matrices one uses the explicit single coset decomposition in proposition
4.1 of [Man1].) Hence Φ(U (j)W ) = 0 and so U (j)W = 0.

Recall that if h ∈ GLn−1(Fw)+ and

GLn−1(OFw)h−1GLn−1(OFw) =
∐
j

hjGLn−1(OFw)

then

Pn(OFw)

(
h−1 0
0 1

)
GLn(OFw) =

∐
j

(
hj 0
0 1

)
GLn(OFw).
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From this and a simple change of variable in the integral defining Φ, we
see that if T is in A[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)] and f is in
Wn(A,ψ)GLn(OFw ) then

Φ(V (T )f) = S(T )Φ(f).

Thus we have

Rn[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m T
↓ ↓

(Rn[GLn(Fw)]W 0
n(ψ))U1(wm) Vm(T )W 0

n(ψ) W
↓ ↓∏

i,j(1−XiYj)
−1Rn[Y1, ..., Yn−1]Sn−1 Φ(W ).

The composite sends

T 7−→ S(T )
∏
i,j

(1−XiYj)
−1.

The composite is an isomorphism to its image:∏
i,j

(1−XiYj)
−1(Rn[Y1, ..., Yn−1]Sn−1)≤m,

which is a direct summand of
∏

i,j(1−XiYj)
−1Rn[Y1, ..., Yn−1]Sn−1 and which

is free over Rn of rank (
m+ n− 1
n− 1

)
.

As

dimC(Rn[GLn(Fw)]W 0
n(ψ))U1(wm))⊗Rn,ı C ≤

(
m+ n− 1
n− 1

)
,

we deduce that

Rn[GLn−1(OFw)\GLn−1(Fw)+/GLn−1(OFw)]≤m
∼−→O[U1(wm)\GLn(Fw)/GLn(OFw)]
∼−→ (Rn[GLn(Fw)]W 0

n(ψ))U1(wm)

∼−→
∏

i,j(1−XiYj)
−1(Rn[Y1, ..., Yn−1]Sn−1)≤m.

Lemma 5.1.6 follows immediately from this.
Let θ denote the element of

O[U1(wm)\GLn(Fw)/GLn(OFw)]

which is Vn(
∏

i,j(1−XiYj)). Then

Φ(θW 0
n(ψ)) = 1.
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Moreover U (j)θW 0
n(ψ) = 0 and so U (j)θ = 0 for j = 1, ..., n−1. Thus θ satisfies

the first three parts of proposition 5.1.7.
We now turn to the proof of the final part of proposition 5.1.7. Write

θ =
∑
a

[U1(wn)diag($−a1
w , ..., $−an−1

w , 1)GLn(OFw)]Ta

where Ta ∈ O[GLn(OFw)\GLn(Fw)/GLn(OFw)] and where a = (a1, ..., an−1)
runs over elements of Zn−1 with

n ≥ a1 ≥ ... ≥ an−1 ≥ 0.

As∑
a

S(Ta)S(GLn−1(OFw)diag($a1
w , ..., $

an−1
w )GLn−1(OFw)) =

∏
i,j

(1−XiYj)

we see that
S(T(n,...,n)) = (X1...Xn)n−1,

i.e. T(n,...,n) = q
n(n−1)2/2
w (T (n))n−1. Let η = 1n−1 ⊕ $n

w and define θ̂ as we did
just before proposition 5.1.7. Thus we have

θ̂ =
∑
a

(T (n))−nTa[GLn(OFw)diag($n−a1
w , ..., $n−an−1

w , 1)U1(wn)].

Again π denote the GLn(Fw)-subrepresentation of Wn(C, ψ) generated
by ıW 0

n(ψ). Define ı̃ : Rn ↪→ C to be the O-linear map sending Xi to
qn−1
w ı(Xi)

−1. Let π̃ denote the GLn(Fw)-subrepresentation of Wn(C, ψ−1) gen-
erated by ı̃(W 0

n(ψ−1)). Then π̃ is the contragredient of π. Write genn for

the compact induction c-Ind
Pn(Fw)
Nn(Fw)C(ψ). It follows from proposition 3.2 and

lemma 4.5 of [BZ] that gen embeds in π|Pn(Fw) and in π̃|Pn(Fw). Moreover it
follows from proposition 3.8 and lemma 4.5 of [BZ] that any Pn(Fw) bilinear
form

〈 , 〉 : π × π̃ −→ C

restricts non-trivially to genn × genn. Hence there is a unique such bilinear
form up to scalar multiples and so any Pn(Fw)-bilinear pairing π× π̃ → C is
also GLn(Fw)-bilinear. Such a pairing is given by

〈W, W̃ 〉 =

∫
Nn(Fw)\Pn(Fw)

W (g)W̃ (g)| det g|sdg
∣∣∣∣
s=0

.

Here we use a Haar measure on Nn(Fw) giving Nn(OFw) volume 1 and a
right Haar measure on Pn(Fw) giving Pn(OFw) volume 1. The integral may
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not converge for s = 0, but in its domain of convergence it is a rational
function of qsw and so has meromorphic continuation to the whole complex
plane.

We will complete the proof of proposition 5.1.7 by evaluating

〈ıθ̂θW 0
n(ψ), ı̃W 0

n(ψ−1)〉

in two ways. Firstly moving the θ̂ to the other side of the pairing we obtain

[GLn(OFw) : U1(wn)]
∑

a ı̃ ◦ S(T̃a(T
(n))n)

〈ıθW 0
n(ψ), ı̃[U1(wn)diag($a1−n

w , ..., $an−1−n
w , 1)GLn(OFw)]W 0

n(ψ−1)〉.

The restriction (θW 0
n(ψ))|Pn(Fw) is supported on Nn(Fw)Pn(OFw) and equals

1 on Pn(OFw). Thus 〈ıθW 0
n(ψ), W̃ 〉 simply equals W̃ (1n). We deduce that

〈ıθ̂θW 0
n(ψ), ı̃W 0

n(ψ−1)〉 = (qnw − 1)q
n(n−1)
w

∑
a ı̃ ◦ S(T̃a(T

(n))n)

ı̃([U1(wn)diag($a1−n
w , ..., $an−1−n

w , 1)GLn(OFw)]W 0
n(ψ−1))(1n).

The terms of this sum are zero except for the term a1 = ... = an−1 = n which
gives

(qnw − 1)qn(n−1)
w ı̃S(qn(n−1)2/2

w T (n)),

i.e.

(qnw − 1)q(n+2)n(n−1)/2
w ı(X1...Xn)−1.

On the other hand

〈ıθ̂θW 0
n(ψ), ı̃W 0

n(ψ−1)〉

equals

ı(S(θ̂)θ)〈ıW 0
n(ψ), ı̃W 0

n(ψ−1)〉.

We consider the integral∫
Nn(Fw)\Pn(Fw)

W (g)W̃ (g)| det g|sdg

with the Haar measures described above. It equals∑
t

ı(W 0
n(ψ)(t))̃ı(W 0

n(ψ−1)(t))|t1|2−n+s|t2|4−n+s...|tn|n+s,

where the sum runs over t = diag(t1, ..., tn) ∈ Tn(Fw)/Tn(OFw) with

w(t1) ≥ w(t2) ≥ ... ≥ w(tn) = 0.
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Because ı(W 0
n(ψ)(t))̃ı(W 0

n(ψ−1)(t)) is invariant under the multiplication of t
by an element of F×w this in turn equals

(1− q−n(s+1)
w )

∑
t

ı(W 0
n(ψ)(t))̃ı(W 0

n(ψ−1)(t))|t1|2−n+s|t2|4−n+s...|tn|n+s,

where now the sum runs over t = diag(t1, ..., tn) ∈ Tn(Fw)/Tn(OFw) with

w(t1) ≥ w(t2) ≥ ... ≥ w(tn) ≥ 0.

This in turn equals (1− q−n(s+1)
w ) times∫

Nn(Fw)\GLn(Fw)

ı(W 0
n(ψ)(g))̃ı(W 0

n(ψ−1)(g))ϕ((0, ..., 0, 1)g)| det g|1+sdg,

where ϕ is the characteristic function of OnFw and where we use the Haar
measures on Nn(Fw) (resp. GLn(Fw)) which give Nn(OFw) (resp. GLn(OFw))
volume 1. As in proposition 2 of [JS1] this becomes

(1− q−n(s+1)
w )

n∏
i=1

n∏
j=1

(1− ı(Xi/Xj)q
−(1+s)
w )−1.

Thus

〈ıθ̂θW 0
n(ψ), ı̃W 0

n(ψ−1)〉 = ı(S(θ̂)θ)(1− q−nw )
n∏
i=1

n∏
j=1

(1− ı(Xi/Xj)q
−1
w )−1.

Thus we conclude that

S(θ̂θ) = qn
2(n−1)/2

w (X1...Xn)−(n+1)

n∏
i=1

n∏
j=1

(qwXi −Xj),

and we have completed the proof of proposition 5.1.7.



174 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

APPENDIX B: Unipotent representations of GL(n, F ) in the quasi-
banal case.

By M.-F.Vigneras

Let F be a local non archimedean field of residual characteristic p and
let R be an algebraically closed field of characteristic 0 or ` > 0 different from
p. Let G = GL(n, F ). The category ModRG of (smooth) R-representations of
G is equivalent to the category of right modules HR(G) for the global Hecke
algebra (the convolution algebra of locally constant functions f : G→ R with
compact support, isomorphic to the opposite algebra by f(g)→ f(g−1).)

ModRG ' ModHR(G).

Definitions. We are in the quasi-banal case when the order of the max-
imal compact subgroup of G is invertible in R (the banal case), or when
q = 1 in R and the characteristic of R is ` > n (the limit case).

A block of ModRG is an abelian subcategory of ModRG which is a
direct factor of ModRG and is minimal for this property. One proves that
ModRG is a product of blocks [V2, III.6]. The unipotent block BR,1(G) is
the block containing the trivial representation. An R-representation of G is
unipotent if it belongs to the unipotent block.

Notations. Let I, B = TU be a standard Iwahori, Borel, diagonal, stritly
upper triangular subgroup of G, To the maximal compact subgroup of T , Ip
the pro-p-radical of I. The functor Ind G

B : ModRB → ModRG is the nor-
malised induction. The group I has a normal subgroup I` of pro-order prime
to ` and a finite ` subgroup I` such that I = I`I`. To get a uniform no-
tation, we set I` = I, I` = {1} when the characteristic of R is 0. We have
I = I`, I` = {1} in the banal case and I 6= I`, I` 6= {1} in the limit case. Let
ModHR(G, I) be the category of right modules for the Iwahori Hecke algebra
(isomorphic to its opposite)

HR(G, I) := End RGR[I\G] 'R R[I\G/I].

Let ModR(G, I) be the category of R-representations of G generated by their
I-invariant vectors.
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1 Theorem In the quasi-banal case,
1) The category ModR(G, I) is stable by subquotients.
2) For any V ∈ ModR(G, I), one has V Ip = V I , in particular R[I\G] is

projective in ModR(G, I).
3) The I-invariant functor

V → V I : ModR(G, I)→ ModHR(G, I)

is an equivalence of categories.
4) The I`-invariant functor on the unipotent block BR,1(G)

V → V I` : BR,1(G)→ ModHR(G, I`)

is an equivalence of categories.
5) In the banal case, ModR(G, I) is the unipotent block.
6) In the limit case, ModR(G, I) is not the unipotent block.
7) The parabolically induced representation Ind G

B1 is semi-simple (hence
also Ind G

P1 for all parabolic subgroups P of G). In the limit case, Ind G
BX is

semi-simple for any unramified R-character X : T/To → R∗ of T .
8) In the limit case, the R-algebra HR(G, I`) is isomorphic to the nat-

ural twisted tensor product of HR(G, I) and R[I`].

The proof of the theorem uses some general results (A), . . . , (H), valid
in the non quasi-banal case (except (E) and (G)) and for most of them when
G is a general reductive connected p-adic group. We recall them first.

(A) The algebra R[T/To] is identified to its image in HR(G, I) by the
Bernstein embedding

(1) tB : R[T/To]→ HR(G, I)

such that the U -coinvariants induces a R[T/To]-isomorphism

(2) V I ' (VU)To

for any V ∈ ModRG [V2, II.10.2].

(B) By [Dat], we have a (G,R[T/To])-isomorphism

(3) R[I\G] ' Ind G
BR[T/To]

when R[T/To] is embedded in HR(G, I) by the Bernstein embedding tB :
R[T/To] → HR(G, I), defined by the opposite (lower triangular) B of B as
in (A), where R[T/To] is the universal representation of T inflated to B.



176 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

Hence for any character X : T/To → R∗ i.e. an algebra homomorphism
R[T/To]→ R

(4) R⊗X,R[T/To],tB
R[I\G] ' Ind G

BX

(5) R⊗X,R[T/To],tB
HR(G, I) ' (Ind G

BX)I .

(C) The compact induction from an open compact subgroup K of G to
G has a right adjoint the restriction from G to K [V1, I.5.7]. In particular,
a representation generated by its I-invariant vectors is a quotient of a direct
sum of R[I\G] (denoted ⊕R[I\G]).

(D) The double cosets of G modulo (Ip, I) are in bijection with the
double cosets of G modulo (I, I). This is clear by the Bruhat decomposition.
In particular, the Ip-invariants of R[I\G] is equal to the I-invariants.

(E) In the quasi-banal case, every cuspidal irreducible representation of
every Levi subgroup of G is supercuspidal [V1, III.5.14].

(F) The irreducible unipotent representations are the irreducible sub-
quotients of R[I\G] by [V2, IV.6.2].

(G) When q = 1 in R, the Iwahori-Hecke algebra is the group algebra
of the affine symmetric group

N/To ' W.(T/To) ' SnZ
n

(semi-direct product) where N is the normalizer of T in G and W := N/T
with its natural action on T/To. Naturally T/To ' Zn by choice of a uni-
formising parameter pF of F and W ' Sn the symmetric group on n letters
with its natural action on Zn. The natural embedding

(6) R[T/To]→ HR(G, I) ' R[W.(T/To)]

is equal to tB = tB. These properties are deduced without difficulty from [V1,
I.3.14], [V2, II.8].

(H) When q = 1 in R, let πi be an irreducible R-representation of the
group GL(nidi, F ) with cuspidal support ⊗niσi, for an irreducible cuspidal
R-representation σi of GL(di, F ) for all 1 ≤ i ≤ k. Suppose that σi is not
equivalent to σj if i 6= j. Then the representation of GL(

∑
i nidi, F ) parabol-

ically induced from π1 ⊗ . . .⊗ πk is irreducible by [V2, V.3].
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Proof of the theorem 1 We suppose that we are in the quasi-banal
case.

a) We prove that any irreducible subquotient V of R[I\G] has a non
zero I-invariant vector. The U -coinvariants VU of any irreducible subquotient
V of the representation (3) have a non zero vector invariant by To, by (E).
By (2), V has a non zero I-invariant vector.

b) We prove that if W ⊂ V are subrepresentations of ⊕R[I\G], then
W I = V I implies W = V , and V I = V Ip . The geometric property (D) implies
that the Ip-invariants of any subrepresentation of ⊕R[I\G] is equal to its I-
invariants. Hence W I = W Ip , V I = V Ip . The functor of Ip-invariants is exact
and any irreducible subquotient of R[I\G] has a non zero Ip-invariant vector
by a). Hence W Ip = V Ip implies W = V .

c) We prove the property 1) of the theorem. The property is trivial
with quotient instead of subquotient. Let Y ⊂ X and p : ⊕R[I\G] → X a
surjective G-homomorphism. Let us denote by V the inverse image of Y by
p, and by W the subrepresentation of V generated by V I . We have W I = V I

by construction, hence W = V by b). Hence V is generated by its I-invariant
vectors. The same is true for its quotient Y .

d) We prove the property 2) of the theorem. In c) V is a subrepre-
sentation of ⊕R[I\G] hence we have V I = V Ip by b). The functor of Ip-
invariants is exact hence p(V Ip) = Y Ip . As Y I ⊂ Y Ip and p(V I) ⊂ Y I we
have Y I = Y Ip = p(V I). This is valid for any Y hence for any representation
of ModR(G, I).

e) We prove the property 3) of the theorem. All the conditions of the
theorem of Arabia [A, th.4 2) (b-2)] are satisfied.

f) We prove the property 4) of the theorem. Let V be a unipotent rep-

resentation. Then V is generated by V I` by (F). The irreducible subquotients

of the action of I on V I` are trivial, because I/I` is an `-group. Conversely

let V be a representation generated by V I` . Then the irreducible subquotients
of V are unipotent, and a representation such that all its irreducible subquo-
tients are unipotent is unipotent. As the pro-order of I` is invertible in R,
and the unipotent block is generated by Ind G

I`1R = R[I`\G], the I`-invariant
functor is an equivalence of category with the Hecke algebra HR(G, I`).

g) We prove the property 5) of the theorem. In the banal case I = I`

and compare the properties 3) and 4) of the theorem.

h) We prove the property 6) of the theorem. In the limit case, I 6= I`.
The I-invariants of Ind G

I`1 can be computed using the decomposition of the
parahoric restriction-induction functor [V3, C.1.4] and the simple property

dim(Ind I
I`1)I = 1.
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One finds that the I-invariants of Ind G
I`1 are the I-invariants of its proper

subrepresentation Ind G
I 1 = R[I\G]. Hence the unipotent representation Ind G

I`1
is not generated by its I-invariant vectors.

i) We prove the property 7) of the theorem. In the banal case Ind G
B1

is irreducible. We suppose that we are in the limit case. By (4), Ind G
B1 is

generated by its I-invariant vectors. Hence by the property 3) of the theorem,
Ind G

B1 is semi-simple if (Ind G
B1)I is a semi-simple right HR(G, I)-module. By

(5) for the trivial character of T , we have

(Ind G
B1)I ' R⊗1,R[T/To],tB

HR(G, I).

By (6), the action of HR(G, I) ' R[W.(T/To)] on (Ind G
B1)I restricted to

R[T/To] is trivial. As R[W ] is semi-simple, (Ind G
B1)I is a semi-simple right

HR(G, I)-module.
Every parabolic subgroup of G is conjugate to a parabolic group P

which contains B, and the isomorphism class of Ind G
P1 does not change when

P is replaced by a conjugate in G. We have an inclusion Ind G
P1 ⊂ Ind G

B1 in
ModRG. As Ind G

B1 is semi-simple, the same is true for Ind G
P1.

Let X be an unramified R-character of T . Modulo conjugaison X =
⊗iXi is the external product of characters Xi := xi1 of the diagonal sub-
groups Ti of Gi := GL(ni, F ), which are different multiples of the identity
character, xi 6= xj ∈ R∗ if i 6= j and

∑
i ni = n. The parabolic induction

ModR
∏

iGi → ModRG sends any irreducible subquotient of ⊗iInd G
Bi
xi1 to

an irreducible representation of G by (H). This implies the semi-simplicity of
Ind G

BX.
j) We prove the property 8). Let V be an R-vector space with an action

σ : I → GLR(V ) of I trivial on Ip. We have I = ToIp. The Weyl group
W ' Sn embedded in G as usual, acts on To by conjugation. By inflation,
the affine Weyl group W.(T/To) acts on To. For w ∈ wo.(T/To) with wo ∈ W ,
one denotes by Intw.V the space V with the action of I such that k ∈ toIp
acts by σ(wotow

−1
o ) for to ∈ To. The endomorphism algebra End RGInd G

I V is
isomorphic as an R-module to ([V2, II.2 page 562] and [V3, C.1.5]):

(8) End RGInd G
I V ' ⊕w∈W.(T/To)Hom RI(V, Intw.V ).

A function in Ind G
I V with support Ig and value v ∈ V at g ∈ G is denoted

by [Ig, v]. We have g−1[I, v] = [Ig, v]. The endomorphism Tw,A corresponding
to w ∈ W.(T/To), A ∈ Hom RI(V, Intw.V ) in (8) is defined by [V2, II.2, page
562]:

(9) Tw,A[I, v] =
∑

x∈(Ip∩w−1Ipw)\Ip

[Iwx,A(v)] =
∑

x∈(Ip∩w−1Ipw)\Ip

(wx)−1[I, A(v)]
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because IwI = ∪x∈(Ip∩w−1Ipw)\IpIx is a disjoint decomposition and Ip acts

trivially on V . The product in End RGInd G
I V is given by

Tw′,A′Tw,A[I, v] =
∑

x∈(Ip∩w−1Ipw)\Ip,y∈(Ip∩(w′)−1Ipw′)\Ip

(wx)−1(w′y)−1[I, (A′ ◦ A)(v)],

or equivalently,

(10) Tw′,A′Tw,A[I, v] =
∑

x∈(Ip∩w−1Ipw)\Ip,y∈(Ip∩(w′)−1Ipw′)\Ip

[Iw′ywx, (A′ ◦ A)(v)].

The Iwahori-Hecke algebra HR(G, I) is the R-algebra of RG-endomorphisms
of Ind G

I 1R. We denote Tw for Tw,Id in HR(G, I). The Hecke algebra HR(G, I`)
is the R-algebra of RG-endomorphisms of Ind G

I V where V = R[I/I`] with
the regular action σ of I. Let iw be the R-linear automorphism of V '
k[I`] given by conjugation by w ∈ W.(T/To). The R-linear map A 7→ iw ◦ A
from End RI(V ) to Hom RI(V, Intw.V ) is an isomorphism. We have Tw,iw◦A =
Tw,iwT1,A in HR(G, I`) and the R-linear map defined by

Tw ⊗ A 7→ Tw,iwT1,A : HR(G, I)⊗R End RI(V ) 7→ HR(G, I`)

is an isomorphism. The injective R-linear map A 7→ T1,A : End RI(V ) →
HR(G, I`) respects the product. In the limit case, the injective R-linear map
such that Tw 7→ Tw,iw : HR(G, I) → HR(G, I`) respects also the product be-
cause Tw′Tw = Tw′w in HR(G, I) and Tw′,A′Tw,A = Tw′w,i−1

w ◦A′◦iw◦A in HR(G, I`).
We have End RIV = End RI`V = R[I`]. �

Let JR be the annihilator of R[G/I]. The Schur R-algebra of G is
Morita equivalent to HR(G)/JR [V3, 2]. It is clear that JR annihilates the
abelian category ModR(G, I).

2 Theorem In the quasi-banal case, the category ModR(G, I) is
the category of representations of G which are annihilated by JR. In other
terms, the Schur R-algebra of G is Morita equivalent to the Iwahori-Hecke
R-algebra of G.

This is already known in the banal case. The proof of the theorem
results from properties of the Gelfand-Graev representation ΓR and of the
Steinberg representation StR of GL(n,Fq).

We need more notation.
a) The subcategory ModR,1GL(n,Fq) of ModRGL(n,Fq) generated by

(the irreducible subquotients of) R[GL(n,Fq)/B(Fq)] is a sum of blocks by
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a theorem of Broué-Malle. Representations in ModR,1GL(n,Fq) are called
unipotent. The annihilator JR(q) of R[GL(n,Fq)/B(Fq)] in R[GL(n,Fq)] is
the Jacobson radical of the unipotent part of the group algebra R[GL(n,Fq)],
because the representation R[GL(n,Fq)/B(Fq)] is semi-simple.

b) Let ψ : Fq → R∗ be a non trivial character. We extend ψ to a
character (ui,j)→ ψ(

∑
ui,i+1) of the strictly upper triangular subgroup U(Fq)

of GL(n,Fq), still denoted by ψ. The representation of GL(n,Fq) induced
by the character ψ of U(Fq) is the Gelfand-Graev representation ΓR. Its
isomorphism class does not depend on ψ. We denote by ΓR,1 the unipotent
part of ΓR.

c) The Steinberg representation StR of GL(n,Fq) is the unique irre-
ducible R-representation such that, as a right module for the Hecke algebra
HR(GL(n,Fq), B(Fq)), its module of B(Fq)-invariants is isomorphic to the
sign representation.

d) The inflation followed by the compact induction is an exact functor

iG : ModRGL(n,Fq)→ ModRGL(n,OF )→ ModRG

e) The global Hecke algebra HR(G) contains the Hecke algebra

Ho
R := HR(GL(n,OF ), 1 + pFM(n,OF ))

isomorphic via inflation to the group algebra R[GL(n,Fq)]. The Jacobson rad-
ical JR(q) of the unipotent part of the group algebra R[GL(n,Fq)] identifies
with a two-sided ideal of Ho

R.

We recall [V3, theorem 4.1.4]:

(I) The representation of GL(n,Fq) on the 1+pFM(n,OF )-invariants of
R[G/I] is isomorphic to a direct sum ⊕R[GL(n,Fq)/B(Fq)].

(J) iGV is generated by its I-invariant vectors if V ∈ ModRGL(n,Fq)
is generated by its B(Fq)-invariant vectors.

4 Lemma Suppose that we are in the quasi-banal case. Then
1) JR is the Jacobson radical of the unipotent bloc of ModRG (same

for JR(q) and GL(n,Fq)).
2) The unipotent part ΓR,1 of the Gelfand-Graev R-representation of

the group GL(n,Fq) is the projective cover of the Steinberg R-representation
StR of GL(n,Fq).

3) ΓR,1JR(q) is the kernel of the map ΓR,1 → StR.
4) JR(q) ⊂ JR.
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5) iGΓR,1/(i
GΓR,1)JR is a quotient of iGStR and is generated by its I-

invariant vectors.

Proof of the lemma This is known in the banal case, hence we suppose
that we are in the limit case.

We prove the property 1). The semi-simplicity of Ind G
BX for all un-

ramified characters (theorem 1 7)) implies with (3) that JR is the Jacobson
radical of the unipotent bloc. This means that JR is the intersection of the
annihilators in the global Hecke algebra HR(G) of the irreducible unipotent
R-representations of G.

We prove the property 2). The induced representation Ind
GL(n,Fq)

B(Fq)
1R is

semi-simple, and StR is the unique subquotient which is isomorphic to a
quotient of the Gelfand-Graev representation ΓR. By the uniqueness theorem,

dimR Hom RG(ΓR, StR) = 1.

The unipotent part ΓR,1 of the Gelfand-Graev representation ΓR is projective
(because the characteristic of R is different from p) and is a direct sum
of indecomposable projective representations of GL(n,Fq). In the quasi-banal
case, the two properties of uniqueness imply that ΓR,1 is projective cover of
StR.

The property 3) results from 1) and 2) by general results [CRI 18.1].
The property 4) results from e) and (I).
We prove the property 5). By definition (iGΓR)JR = ΓR ⊗HoR JR.
By 4) ΓR ⊗HoR JR(q)HR(G) ⊂ ΓR ⊗HoR JR.

We have [V1 I.5.2.c)] ΓR⊗HoRJR(q)HR(G) = ΓRJR(q)⊗HoRHR(G) = iGW

where W = ΓRJR(q). Clearly iGΓR/(i
GΓR)JR is a quotient of iGΓR/i

GW .
The functor iG is exact hence iGΓR/i

GW ' iG(ΓR/W ). By 3) ΓR/W '
StR. Hence iGΓR/(i

GΓR)JR is a quotient of iGStR. By c), StR is irreducible
and has a non zero vector invariant by B(Fq). By (J), iGStR is generated
by its I-invariant vectors. �

Lemma 4 extends to the standard Levi subgroups Mλ(Fq) of GL(n,Fq),
quotients of the parahoric subgroup Pλ(OF ). These groups are parametrised
by the partitions λ of n. The group GL(n,Fq) corresponds to the partition
(n). One denotes by an index λ the objects relative to λ.

We recall:

(K) QR := ΓR/ΓRJR is a projective generator of ModHR(G)/JR where
ΓR := ⊕λiGλΓR,λ [V3, theorem 5.13].

Proof of the theorem 3 By lemma 4 for the group Mλ(Fq), the quo-
tient iGλΓR,λ/i

G
λΓR,λJR of iGλ StR,λ is generated by its I-invariant vectors. Hence
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the progenerator QR of ModHR(G)/JR is generated by its I-invariant vec-
tors. �

——–
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