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AUTOMORPHY FOR SOME [-ADIC LIFTS OF
AUTOMORPHIC MOD [ GALOIS REPRESENTATIONS.

by Lavrent CLOZEL, Micuaer HARRIS * and Ricuarp TAYLOR **

ABSTRACT

We extend the methods of Wiles and of Taylor and Wiles from G Ly to higher rank unitary groups and
establish the automorphy of suitable conjugate self-dual, regular (de Rham with distinct Hodge-Tate numbers),
minimally ramified, [-adic lifts of certain automorphic mod ! Galois representations of any dimension. We also
make a conjecture about the structure of mod [ automorphic forms on definite unitary groups, which would
generalise a lemma of Thara for GLs. Following Wiles’ method we show that this conjecture implies that our
automorphy lifting theorem could be extended to cover lifts that are not minimally ramified.

1. Introduction

In this paper we discuss the extension of the methods of Wiles [W] and
Taylor-Wiles [TW] from GLs to unitary groups of any rank.

The method of [TW] does not extend to GL, as the basic numerical
coincidence on which the method depends (see corollary 2.43 and theorem
4.49 of [DDT]) breaks down. For the Taylor-Wiles method to work when
considering a representation

r:Gal(F/F) — G(Q))
one needs

[F: Q)(dimG — dim B) = Y~ H%(Gal (F,/F,),ad °F)

v|oo

where B denotes a Borel subgroup of a (not necessarily connected) reductive
group G and ad® denotes the kernel of the map, ad — adg, from ad to
its G-coinvariants. This is an ‘oddness’ condition, which can only hold if F'
is totally real (or ad? = (0)) and 7 satisfies some sort of self-duality. For
instance one can expect positive results if G = GSps, or G = GO(n), but
not if G = GL, for n > 2.

In this paper we work with a disconnected group G, which we define
to be the semidirect product of GL, x GL; by the two element group {1, 7}
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with
2Wg, )= (plg™ " p).

The advantage of this group is its close connection to GL, and the fact that
Galois representations valued in the [-adic points of this group should be
connected to automorphic forms on unitary groups, which are already quite
well understood. This choice can give us information about certain Galois
representations

r:Gal(F/F) — GL,(Q),

where F' is a CM field. If ¢ denotes complex conjugation then the representa-
tions r which arise all have the following property: There is a non-degenerate
symmetric pairing ( , ) on Q; and a character y : Gal (F/F) — le such
that

(oz,coc™ly) = x(0)(z,y)

for all o € Gal (F/F). Let F* denote the maximal totally real subfield of F.
By restriction this also gives us information about Galois representations

r:Gal(F/F") — GL,(Q))

for which there is a non-degenerate bilinear form ( , ) on Q, and a character
x:Gal(F/Ft) — Q, such that

(y,2) = x(c)(z,y)
and
(0, 0y) = x(0)(z,y)

for all o € Gal (F/F*).

In this setting the Taylor-Wiles argument carries over well, and we are
able to prove R = T theorems in the ‘minimal’ case. Here, as usual, R
denotes a universal deformation ring for certain Galois representations and T
denotes a Hecke algebra for a definite unitary group. By ‘minimal’ case, we
mean that we consider deformation problems where the lifts on the inertia
groups away from [ are completely prescribed. (This is often achieved by
making them as unramified as possible, hence the word ‘minimal’.) That this
is possible may come as no surprise to experts. The key insights that allow
this to work are already in the literature:

1. The discovery by Diamond [Dia] and Fujiwara that Mazur’s ‘multi-
plicity one principle’ (or better ‘freeness principle’ - it states that a certain
natural module for a Hecke algebra is free) was not needed for the Taylor-
Wiles argument. In fact they show how the Taylor-Wiles argument can be
improved to give a new proof of this principle.
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2. The discovery by Skinner and Wiles [SW] of a beautiful trick using
base change to avoid the use of Ribet’s ‘lowering the level’ results.

3. The proof of the local Langlands conjecture for GL, and its compat-
ibility with the instances of the global correspondence studied by Kottwitz

and Clozel. (See [HT].)

Indeed a preliminary version of this manuscript has been available for many
years. One of us (R.T.) apologises for the delay in producing the final ver-
sion.

We will now state a sample of the sort of theorem we prove. (See corol-
lary 4.4.4.)

Theorem A Let n € Zsy be even and let | > max{3,n} be a prime. Let S
be a finite non-empty set of rational primes such that if ¢ € S then q # 1 and
¢ #Z1modl fori=1,..,n. Also let

r:Gal(Q/Q) — GSpn(Z)

be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes.
2. Tlgar g, qn 8 crystalline.

3. dimgq, gr’(r®q, Bpr) (/) = 0 unless i € {0,1,...,n—1} in which
case it has dimension 1.

4. If ¢ € S then 7’|SGSQq is unramified and 7’|SGSQq (Frob,) has eigenvalues
{ag': i=0,1,....,n— 1} for some .

5. If p € SU{l} is a prime then r(Ilqg,) is finite.

6. The image of r mod [ contains Sp,(F).

7. rmod [ arises from a cuspidal automorphic representation mwy of
GL,(A) for which Ty~ has trivial infinitesimal character and, for all g € S
the representation my, is an unramified twist of the Steinberg representa-

tion.

Then r arises from a cuspidal automorphic representation ™ of GL,(A)
for which mo has trivial infinitesimal character and m, s an unramified twist
of the Steinberg representation.

We also remark that we actually prove a more general theorem which
among other things allows one to work over any totally real field, and with
any weight which is small compared to [, and with 7 with quite general
image. (See theorems 4.4.2 and 4.4.3.)

Let us comment on the conditions of this theorem. The sixth condi-
tion is used to make the Cebotarev argument in the Taylor-Wiles method
work. Much weaker conditions are possible. (See theorem 4.4.3.) One expects
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to need to assume that r is de Rham at [. The stronger assumption that
it be crystalline and that the Hodge-Tate numbers lie in a range which is
small compared to [ is imposed so that one can use the theory of Fontaine
and Laffaille to calculate the relevant local deformation ring at [. The as-
sumptions that r is valued in the symplectic group and that the Hodge-
Tate numbers are different are needed so that the numerology behind the
Taylor-Wiles method works out. This is probably essential to the method.
The condition on T|GQq for ¢ € S says that the representation looks as if
it could correspond under the local Langlands correspondence to a Steinberg
representation. The set S needs to be non-empty so that we can transfer
the relevant automorphic forms to and from unitary groups and so that we
can attach Galois representations to them. As the trace formula technology
improves one may be able to relax this condition. The condition that r(Iq,)
is finite for p ¢ SU{l} reflects the fact that we are working in the minimal
case. It is a very serious restriction and seems to make this theorem nearly
useless for applications.

Our main aim in this paper was to remove this minimality condition.
Our strategy was to follow the arguments of Wiles in [W]. We were not able
to succeed in this. Rather we were able to reduce the non-minimal case to an
explicit conjecture about mod [ modular forms on unitary groups, which gen-
eralises Thara’s lemma on elliptic modular forms. We will explain this more
precisely in a moment. After we had made this paper public one of us (R.T.)
found a new approach to the non-minimal case, which bypasses Wiles’ level
raising arguments and treats the minimal and non-minimal cases simultane-
ously using a form of the Taylor-Wiles argument. Thus in some sense this
part of the present paper has been superseded by [Tay|. However we still be-
lieve that our present arguments have some value. For one thing they would
prove a stronger result. In [Tay] a Hecke algebra is identified with a universal
deformation ring modulo its nilradical. This does not suffice for special value
formulae for the associated adjoint L-function. However the method of the
present paper would provide this more detailed information and prove that
the relevant universal deformation ring is a complete intersection, if one as-
sumes our conjectural generalisation of Thara’s lemma. In addition we believe
that our conjectural generalisation of Ihara’s lemma may prove important in
the further study of arithmetic automorphic forms on unitary groups.

To describe this conjecture we need some notation. Let F'* be a totally
real field and let G/FT be a unitary group with G(FY) compact. Then G
becomes an inner form of GL, over some totally imaginary quadratic exten-
sion F/F*. Let v be a place of F* with G(F,') = GL,(F,") and consider
an open compact subgroup U =[] Jooo Uy, C G(ALY"). Let [ be a prime not
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divisible by v. Then we will consider the space A(U,F;) of locally constant
functions

G(FN\G(AF))/U — F.

It is naturally an admissible representation of GL,(F,") and of the commu-
tative Hecke algebra

T = I (Q) FUL\G(F)/Uu] — End (AU, FY)),

with the restricted tensor product taken over places w # v for which the
isomorphism between G(F,f) and GL,(F,) identified U, with GL,(Op+ ).
Subject to some minor restrictions on G we can define what it means for a
maximal ideal m of T in the support of A(U,F,) to be Eisenstein - the as-
sociated mod ! Galois representation of Gal (F/F) should be reducible. (See
section 3.4 for details.) Then we conjecture the following.

Conjecture B For any F*, G, U, v and | as above, and for any irreducible
G(F,")-submodule

™ C A(U, Fl)
either m s generic or it has an Eisenstein prime of T in its support.

In fact a slightly weaker statement would suffice for our purposes. See
section 5.3 for details. For rank 2 unitary groups this conjecture follows from
the strong approximation theorem. There is another argument which uses the
geometry of quotients of the Drinfeld upper half plane. An analogous state-
ment for GL,/Q is equivalent to lhara’s lemma (lemma 3.2 of [I]). This
can be proved in two ways. lThara deduced it from the congruence subgroup
property for SLo(Z[1/v]). Diamond and Taylor [DT] found an arithmetic al-
gebraic geometry argument. The case of GLy seems to be unusually easy as
non-generic irreducible representations of GLo(F,") are one dimensional. We
have some partial results when n = 3, to which we hope to return in a future
paper. We stress the word ‘submodule’ in the conjecture. The conjecture is
not true for ‘subquotients’. The corresponding conjecture is often known to
be true in characteristic 0, where one can use trace formula arguments to
compare with GL,. (See section 5.3 for more details.)

An example of what we can prove assuming this conjecture is the fol-
lowing strengthening of theorem A.

Theorem C If we assume conjecture B then theorem A remains true without
the assumption 5.
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We remark that to prove this theorem we need conjecture B not just
for unitary groups defined over Q, but also over other totally real fields.

We go to considerable length to prove a similar theorem where instead
of assuming that 7 is automorphic one can assume that it is induced from
a character. (See theorems 5.6.1 and 5.6.2.) Along the way to the proof of
these latter theorems we prove an analogue of Ramakrishna’s lifting theorem
[Ra2] for G,. (See theorem 2.6.3 and, for a simple special case which may
be easier to appreciate, corollary 2.6.4.)

One of the problems in writing this paper has been to decide exactly
what generality to work in. We could certainly have worked in greater gen-
erality, but in the interests of clarity we have usually worked in the minimal
generality which we believe will be useful. In particular we have restricted
ourselves to the ‘crystalline’ case. It would be useful, and not very difficult,
to include also the ordinary case. It would also be useful to clarify the more
general results that are available in the case n = 2.

In the first chapter of this paper we discuss deformation theory and Ga-
lois theory. We set up the Galois theoretic machinery needed for the Taylor-
Wiles method (see proposition 2.5.9) and also take the opportunity to give
an analogue (see theorem 2.6.3 and corollary 2.6.4) of Ramakrishna’s lifting
theorem [Ra2| for G,. In the last section of this chapter we go to considerable
lengths to prove a version of this lifting theorem when the mod! represen-
tation we are lifting is induced from a character of a cyclic extension. This
strengthening is needed to prove modularity lifting theorems for these same
mod [ representations. (It will be used to construct a lift whose restriction
to some decomposition group corresponds, under the local Langlands corre-
spondence, to a Steinberg representation.) This chapter was originally written
in the language of deformation rings, but at the referees’ suggestion we have
rewritten it in Kisin’s language of framed deformation rings to make it easier
to read in conjunction with [Tay].

In the second chapter we discuss automorphic forms on definite unitary
groups, their associated Hecke algebras, their associated Galois representations
and results about congruences between such automorphic forms. In the final
section of this chapter we put these results together to prove an R = T
theorem in the minimal case (see theorem 3.5.1). In the third chapter we

use base change arguments to deduce (minimal) modularity lifting theorems
for GL,, (see theorems 4.4.2 and 4.4.3).

In the final chapter we discuss our conjectural generalisation of Thara’s
lemma (conjecture I), and explain how it would imply a non-minimal R =T
theorem (theorem 5.4.1) and non-minimal modularity lifting theorems (see
theorems 5.5.1 and 5.5.2). In the last section we explain how to generalise
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these theorems to some cases where the residual representation has a small
image in the sense that it is induced from a character. This is where we use
the last section of chapter one. Some of the results in this chapter depend
on previously unpublished work of Marie-France Vignéras and of Russ Mann.
Marie-France has kindly written up her results in an appendix to this pa-
per. Russ has left academia and as it seems unlikely that he will ever fully
write up his results (see [Man2]) we have included an account of his work
in another appendix.

For the reader interested only in the main results of [Tay| and [HSBT],
there is no need to read chapter 4 or the appendices of this paper. These
other papers do not depend on them. (There is also no need to read sections
3.5 and 4.4.)

Finally we would like to express our great gratitude to the referees
who did a wonderful job. This paper is not only more accurate, but also
(we believe) much more readable thanks to their efforts.
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2. Galois deformation rings.

2.1. Some algebra. — As explained in the introduction we are going
to be concerned with homomorphisms from Galois groups to a certain dis-
connected group G,. In this section we define G, and make a general study
of homomorphisms from other groups to G,.

For n a positive integer let G, denote the group scheme over Z which is
the semi-direct product of GL,xGL; by the group {1, s} acting on GL, xGL,
by

Wg,m)g = (gt w).

(If x is a matrix we write 'z for its transpose.) There is a homomorphism
v : G, — GL; which sends (g,u) to p and j to —1. Let G° denote the
connected component of G,. Let g, denote LieGL, C LieG, and ad the
adjoint action of G, on g,. Thus for z € g we have

(ad (g, ) (x) = gzg™*

and
(ad (7)) (z) = ~".

We also write g for the subspace of g, consisting of elements of trace zero.
Over Z[1/2] we have

g = (0).

Suppose that ' is a group, that A is a subgroup of index 2. Whenever
we endow [' with a topology we will assume that A is closed (and hence
also open).

Lemma 2.1.1 Suppose that R is a ring and v € I' — A. Then there is a
natural bijection between the following two sets.

1. Homomorphisms r : I' — G,(R) that induce isomorphisms I'/A =
Gn /G-

2. Triples (p,u,{ , )), where p: A — GL,(R) and p: I' — R* are
homomorphisms and

(, ):R"XR"— R

is a perfect R linear pairing such that for all x,y € R™ and all 6 € A we
have

— {x, p(%)y) = —p(0)(y, ), and
— 1(6){z,y) = (p(8)z, p(v0d75 " )y)-
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Under this correspondence u(y) = (vor)(y) for all v € I', and
(z,y) ="zA™ly,

where 7(v9) = (A, —(0))s.- If I' and R have topologies then under this cor-
respondence continuous r’s correspond to continuous p’s.

Note that in the special case 72 =1 the pairing ( , ) is either symmetric or
anti-symmetric.

If r:I' — G,(R), it will sometimes be convenient to abuse notation and
also use r to denote the homomorphism A — GL,(R) obtained by composing
the restriction of r to A with the natural projection G — GL,.

Lemma 2.1.2 Suppose that R is a ring and that ( , ) is a perfect bilinear
pairing R™ x R™ — R, which satisfies

(ZL‘, y) = (_1)a(y’ {L‘)
Say
(z,y) ="z Jy

for J € My(R). Let 6pjn : I'/A = {£1}. Suppose that p : I' — R* and
p:I"— GL,(R) are homomorphisms satisfying

(p(M)z, p(V)y) = w(y)(z,y)
for all v € I' and z,y € R". Then there is a homomorphism

r: I — Gu(R)
defined by

if 6 € A, and

if yel —A. Moreover
a+1

VoT = 0p Al

Let us introduce induction in this setting. Suppose that I"” is a finite
index subgroup of I' not contained in A and set A" = ANI". Suppose also
that x : I' — R* is a homomorphism. Let r' : I — G, (R) be a homomor-
phism with vor’ = y|r and A" = (')~ (GL,(R) x R*). Suppose vy, € I" — A’
and that 7’ corresponds to a triple (p/,x|r,( , )’) as in lemma 2.1.1. We
define

Ind 1257 T = Guirr(R)
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to be the homomorphism corresponding to the triple (p,x,( , )) where p
acts by right translation on the R-module of functions f: A — R"™ such that

f(0'6) = p'(8") f(0)
for all &’ € A" and 6 € A. We set

(£ Y= Xx@E)f0), f' (6751

seANA
This construction is independent of the choice of 7y, and we have
vo (Ind 11:’,%(7“/) =X.
We will sometimes write Ind X for Ind IFJ,?AA%‘, although it depends essentially

on A as well as I, I and Y.
Now we consider the case that R is a field.

Lemma 2.1.3 Suppose that k is a field of characteristic # 2 and that r :
I' — G, (k) such that A=r"Y(GL, x GL)(k). If ce ' — A and ¢* =1, then

dim, g7 =n(n+nvor)(c))/2
forn=1 or —1.
Proof: We have r(c) = (A, —(vor)(c))y where ‘A= —(vor)(c)A. Then
g "= {g € My(k) : gA—n(vor)(c)(gA) = 0}.
The lemma follows. [J
Lemma 2.1.4 Suppose that k is a field, that vo € I' — A, that x : ' — k* is
a homomorphism and that
p:A— GL,(k)

is absolutely irreducible and satisfies xp¥ = p. Then there exists a homo-
morphism

r: ' — G,(k)

such that r|a = (p,x|a) and r(v0) € Gn(k) — GL, (k).
If a € k* define
To: I — G(k)

by roala=p and, if y€ T — A and r(y) = (A, u)y, then

ra(Y) = (@A, p)).
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This sets up a bijection between G L, (k)-conjugacy classes of extensions of p
to I' — Gn(k) and k*/(k*)2.

Note that vor, =vor. Also note that, if k is algebraically closed then
r is unique up to GL,(k)-conjugacy.

If I' and R have topologies and p is conlinuous then so is r.

Proof: There exists a perfect pairing
(, ) K"xE"—k

such that x(0){p(6)tz,y) = (2, p(767, " )y) for all 6 € A and all 2,y €
k™. The absolute irreducibility of p implies that ( , ) is unique up to k*-
multiples. If we set

(@) = (y,p(73)2)
then x(0){p(0) 'z, y)" = (z, p(y07; ")y)" for all 6 € A and all z,y € k. Thus
(,)Y=e(,)
for some € € k*. As

< ) >//:X(73>< ) >

we see that €2 = x(v9)?. The first assertion now follows from lemma 2.1.1.
For the second assertion note that conjugation by « € k* C GL, (k) leaves p
unchanged and replaces ( , ) by o?( , ). O

Lemma 2.1.5 Suppose that I' is profinite and that

r: ' — G,(QF)

is a continuous representation with A = r~*(GL, x GL;)(Q¢). Then there
exists a finite extension K/Q; and a continuous representation

' ' — G,(Ok)
which is GL,(Qf°)-conjugate to r.

Proof: By the Baire category theorem, the image r(I") is a Baire space.
It is also a countable union of closed subgroups:

r(0) = (1) N Ga(K))

K

where K runs over finite extensions of Q; in Q;. Thus one of the groups
r(I") N G,(K) contains a non-empty open subset of r(I"), and hence is of
finite index in r(I"). It follows that r(I") C G, (K) for some (possibly larger)
finite extension K/Q;. A standard argument using the compactness of A



12 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

shows that there is a A-invariant Og-lattice A C K™. (Choose any lattice and
add it to all its translates by elements of A.) We may further suppose that
the ( , )-dual lattice A* contains A. (If not replace A by a suitable scalar
multiple.) Choose a maximal A-invariant Og-lattice A* D M D A such that
M* > M, and replace A by M. Then if A* D N D A is any A-invariant Og-
lattice with N/A simple, we must have N*NN = A. We conclude that A*/A
must be a direct sum of simple Og[A]-modules. Replacing K by a ramified
quadratic extension and repeating this procedure we get a A-invariant Og-
lattice A with A* = A. The lemma now follows from lemma 2.1.1. [J

Deformation theory works well for absolutely irreducible representations
I' - GL,(k). In the case of homomorphisms r : I' — G,(k) with A =
r Y GL, x GLy)(k), it works well if r|s is absolutely irreducible. However
it seems to work equally well in slightly greater generality. To express this
we make the following definition. For our applications to modularity lifting
theorems and to the Sato-Tate conjecture the case r|, absolutely irreducible
will suffice, so the reader who is only interested in these applications can
simply read “r|, absolutely irreducible” for “Schur”.

Definition 2.1.6 Suppose that k is a field and r: I" — G, (k) is a homomor-
phism with A = r~'(GL, x GL,)(k). Let vo € I' — A. We will call r Schur
if all irreducible A-subquotients of k™ are absolutely irreducible and if for all
A-invariant subspaces k™ DO Wy D Wy with k™ /Wy and Wsy irreducible, we have

Wy (vor) % (k" /W)
This s independent of the choice of o.

Note that if r| is absolutely irreducible then r is certainly Schur. Also
note that if &'/k is a field extension then r: I" — G, (k) is Schur if and only
if r:I"— G,(K) is.

Lemma 2.1.7 Suppose that k is a field and v : I' — G,(k) is a homomor-
phism with A =r"YGL,xGLy)(k). If v is Schur then the following assertions
hold.

1. r|a is semisimple.

2. If v : I' — G, (k) is another representation with A = (r')"'(GL, %
GLy)(k) and trr|a =trr'|a, then v is GL,(k*)-conjugate to r.

3. If k does not have characteristic 2 then gl = (0).

Proof: We may suppose that k is algebraically closed.
Choose vy € I' — A. Suppose that r corresponds to (r|a,u,( , )) as in
lemma 2.1.1, and let V' C k™ be an irreducible A-submodule. Then (k"/V+)%
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is isomorphic to VY (vor), and so we can not have V C V+. Thus k" =2 VaV+
as A-modules. Arguing recursively we see that we have a decomposition

Er=Vie.. eV,

and
<> >:<7 >1J—~'J—<7 >r:

where each V; is an irreducible k[A]-module and each ( , ); is a perfect
pairing on V;. The first part of the lemma follows. Note also that for i # j
we have V; 2V, as k[A]-modules and V;* = VY (vor).

Note that if p and 7 are representations A — GL,(k) with p semi-
simple and multiplicity free and with trp = tr7, then the semisimplification
of 7 is equivalent to p. Thus 7/|5 has the same Jordan-Holder factors as r|a
(with multiplicity). Thus r’ satisfies the same hypothesis as r and so by part
one 7’|5 is also semisimple. Hence 7’|o = 7|4, and we may suppose that in
fact 1|4 = r|a. Then corresponding to our decomposition

Er2Vie.. eV,
we see that r corresponds to

(rlasps (0 )L ()

while " corresponds to

<T|A7HJ>N1< ) >1 1. J—,Ur< ) >7“)

for some p; € k*. Conjugation by the element of GL,(k) which acts on V;

by /pi takes r to 7’
For the third part note that

g = End (V1) ® ... ® End y0)(V;) = K.

Then vy sends (aq,...,a,) to (—aj', ..., —a") = (—aq,...,—q,), where *; de-
notes the adjoint with respect to ( , );. Thus g/ = (0). O

We now turn to the case that R is a noetherian complete local ring.
We first recall the well known case of homomorphisms to GL,(R), before
studying homomorphisms to G, (R).

Lemma 2.1.8 Let R be a noetherian complete local ring. Let A be a profinite
group and p: A — GL,(R) a continuous representation. Suppose that p mod
mp is absolutely irreducible. Then the centraliser in GL,(R) of the image of
p is R*.



14 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

Proof: 1t suffices to consider the case that R is Artinian. We can then
argue by induction on the length of R. The case R is a field is well known.
So suppose that I is a non-zero ideal of R with mzl = (0). If z is an element
of Zgr,(ry(Imp) then we see by the inductive hypothesis that z € R*(1 +
M, (I)). With out loss of generality we can suppose z = 1+y € 1+ M,(I).
Thus y € (ad (p mod mg))? @gr/my I = I, and the lemma is proved. OJ

Lemma 2.1.9 Let R D S be noetherian complete local rings with mrNS = mg
and common residue field. Let A be a profinite group and let p,p : A —
GL,(S) be continuous representations. Suppose that for all ideals I C J of R
we have

Z\ 4 M (mpyry(Im (p mod 1)) — Z14 a1, (mpy0)(Im (p mod J)).

(This will be satisfied if, for instance, p mod mg is absolutely irreducible.) If
p and p' are conjugate in GL,(R) then they are conjugate in GL,(S5).

Proof: It suffices to consider the case that R is Artinian (because S =
lim. S/INS as I runs over open ideals of R). Again we argue by induction
on the length of R. If R is a field there is nothing to do. So suppose that
I is an ideal of R and mgzl = (0). By the inductive hypothesis we may
suppose that pmod INS = p' mod INS. Thus p/ = (1+¢)p for some cocycle
¢ € ZHA,ad(pmodmg)) @ (INS). As p and p’ are conjugate in R, our
assumption (on surjections of centralisers) tells us that they are conjugate
by an element of 1+ M, (I). Hence [¢] =0 in H'(A,ad (p mod mg))® 1. Thus
[#] =0 in H'Y(A,ad (p mod mg)) @ (INS), so that p and p' are conjugate by
an element of 1+ M,(InS). O

Lemma 2.1.10 (Carayol) Let R D S be noetherian complete local rings with
mr NS = mg and common residue field. Let A be a profinite group and
p: A — GL,(R) a continuous representation. Suppose that p mod mp is
absolutely irreducible and that trp(A) C S. If I is an ideal of R such that
pmod I has image in S/I NS, then there is a 1, + M,(I)-conjugate p' of p
such that the image of p' is contained in GL,(S). In particular there is always
a 1, + M,(mg)-conjugate p' of p such that the image of p' is contained in
GL,(5).

Proof: A simple recursion allows one to reduce to the case that mgl =
(0) and dimp/m, I = 1. Replacing R by the set of elements in R which are
congruent mod I to an element of S we may further assume that S/INS =
R/I.1f I C S then R =S and there is nothing to prove. Otherwise R = S@[
with multiplication
(s,0)(s',1") = (s, s"i + s1).
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Note that mgR = mg, that R/mg = (S/mg)[e|/(e?) and that an element r € R
lies in S if and only if r mod mg lies in S/mg. Suppose we know the result
for S/mg C R/mg. Then we can find A € M, (I) such that

(1, — A)p(1l, + A) mod mg
is valued in GL,(S/mg) so that
(171 - A)p<1n + A)
is valued in S. Hence the result would follow for S C R.
Thus we are reduced to the case S = k is a field, R = kle]/(e?) and
I = (¢). Extend p to a homomorphism
p: k[A] — M, (R).

Note that p mod € is surjective onto M, (k), and write J for the kernel of
pmode. If 6 € k[A] and v € J then

tr p(8)(p(7)/€) = 0.

Thus

tr My (K)(p(7)/€) = (0)
and p(y) = 0. We deduce that p factors through (p mode) : k[A] — M,(k),
ie.

p(0) = (pmod €)(6) + ¢((p mod €)(9))e

where
is a k-linear map satisfying

¢(ab) = ag(b) + ¢(a)b.
There is an element A € M, (k) such that

o(b) = Ab — bA.

(See for instance lemma 1 of [Cal. Alternatively it is not hard to check that

A= dlej)er
j=1

will work, where e;; denotes the matrix which has a 1 in the intersection of
the i row and j™ column, and zeros elsewhere.) Then

(1, — Ae)p(1 + Ae) = (p mod €)
is valued in M, (k), and the lemma follows. [

Finally in this section we turn to analogous results for homomorphisms

into G,(R).
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Lemma 2.1.11 Let R be a complete local noetherian ring with maximal ideal
mpg and residue field k = R/mpg of characteristic | > 2. Let I" be a group and
let r: ' — G,(R) be a homomorphism such that A =r"Y(GL, x GL,)(R) has
index 2 in I'. Suppose moreover that r mod mp is Schur. (Which is true if,
for instance, r|a mod mg is absolutely irreducible.) Then the centraliser of r
in 14+ M,(mg) is {1}.

Proof: This lemma is easily reduced to the case that R is Artinian. In
this case we argue by induction on the length of R, the case of length 1
(i.,e. R = k) being immediate. In general we may choose an ideal I of R
such that I has length 1. By the inductive hypothesis any element of the
centraliser in 14 M, (mg) of the image of r lies in 1+ M, (I). It follows from
lemma 2.1.7 that this centraliser is {1}. O

Lemma 2.1.12 Suppose that R D S are complete local noetherian rings with
mr NS = mg and common residue field k of characteristic | > 2. Suppose
that I' is a profinite group and that r: ' — G,(R) is a continuous represen-
tation with A = r='(GL, x GL{)(R). Suppose moreover that r|, mod mp is
absolutely irreducible and that trr(A) C S. Then r is GL,(R)-conjugate to a
homomorphism r': I" — G, (S).

Proof: By lemma 2.1.10 we may suppose that r(A) C (GL, x GLy)(S).
Choose 7y € I' — A and suppose r(y) = (A, —u)y with A € GL,(R). Then

r| R = Ar|i(vor)At.
It follows from lemma 2.1.9 that we can find B € GL,(S)-conjugate with
r|%® = Bri4(vor)B™1.

It follows from lemma 2.1.8 that A = aB for some a € R*. As R and S
have the same residue field we may choose B so that o € 1+ mg. Then
a = 3% for some 3 € R* and

(ﬁln7 1)T<70)(ﬁ1na 1)_1 S g’VZ(S)
Thus
(810, 1)r (8L, 1)
is valued in G,(95), as desired. O

We remark that this lemma does not remain true of the hypothesis that
r|a mod mR is absolutely irreducible is weakened to r mod mg is Schur.
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2.2. Deformation theory. — In this section we will discuss the de-
formation theory of homomorphisms into G,. This closely mirrors Mazur’s
deformation theory of representations of Galois groups, but the section gives
us an opportunity both to generalise the results to G, and to set things up
in a way that will be convenient in the sequel. At the referees’ suggestion we
include a discussion of Kisin’s framed deformations which originally appeared
in [Tay].

Let | be an odd prime. Let k denote an algebraic extension of the finite
field with [ elements, let O denote the ring of integers of a finite totally
ramified extension K of the fraction field of the Witt vectors W(k), let A
denote the maximal ideal of O, let C(’; denote the category of Artinian local
O-algebras for which the structure map O — R induces an isomorphism
on residue fields, and let C» denote the full subcategory of the category
of topological O-algebras whose objects are inverse limits of objects of C(J;.
The morphisms in C(]; and Co are continuous homomorphisms of O-algebras
which induce isomorphisms on the residue fields. Also fix a profinite group
I' together with a closed subgroup A C I' of index 2. Also fix a continuous
homomorphism

7: I — G,(k)
and a homomorphism y : I' — O*, such that A =7 *(GL, x GL;)(k) and
voT = x. Let S be a finite index set. For ¢ € S let A, be a topologically
finitely generated profinite group provided with a continuous homomorphism
A, — A. In applications I" will be a global Galois group and A, will be a
local Galois group. We will sometimes write 7|, for the composite

A, — A o Gn(k) — G Ly ().

We will want to distinguish between ‘liftings’ of representations and con-
jugacy classes of liftings, which we will refer to as ‘deformations’.

Definition 2.2.1 By a lifting of ¥ (resp. 7|a,) to an object R of Co we
shall mean a continuous homomorphism r : I' — G,(R) (resp. r : A, —
GL,(R)) with r mod mp =7 (resp. =T|a,) and (in the former case) vor = x.
We will call two liftings equivalent if they are conjugate by an element of
1+ M,(mg) C GL,(R). By a deformation of 7 (resp. T|a,) we shall mean an
equivalence class of liftings.

Let T C S. By a T-framed lifting of 7 to R we mean a tuple (r;ay)qer
where r s a lifting of T and oy € 1+ M,(mg). We call two framed liftings
(1;09)ger and (1';a;)qer are called equivalent if there is an element 3 €
1, + M,(mg) with ' = BrB3~ and o, = fBay. By a T-framed deformation of
T we shall mean an equivalence class of framed liftings. If T =S we shall
simply refer to framed liftings and framed deformations.
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Note that we can associate to a T-framed deformation [(1;0y)eer] of T
both a deformation [r] of T and, for q € T, a lifting ay'r|a,aq of T|a,. (Here
we define r|a, in the same manner we defined T|a, above.)

For g € S there is a universal lifting (not deformation)
ryt s Ay — GL,(RY°)
of T|a, over an object R}IOC of Co. As A, is topologically finitely gener-
ated, R}IOC is noetherian. (A lifting is determined by the images of a set of
topological generators for A,.) Note that R°° has a natural (left) action of
1,4+ My, (Mpoc). (An element g € 1, + M, (mpoc) acts via the map RP° — R
q q

univ
q

univ ,—

under which r pulls back to gry™g 1.) There are natural isomorphisms

Hom k(ﬂiR}]oc/(fﬂ%%loc, A, k)= Hoch(R}fC, klel/(€%)) = Z'(A,, adT).

The first is standard. Under the second a cocycle ¢ € Z'(A,,adT) corre-
sponds to the homomorphism arising from the lifting

(1 + ¢e)7 4,

Of ?’Aq The aCthn Of Mn(mRboc/(m?%}ZOC,)\)) on R}]OC/(m%z}ZOC7)\) glves an actlon
on Z'(A, adT) which can be described as follows. Recall that we have an

exact sequence
(0) — H°(A,,adT) — adT — Z'(A,,ad7) — H'(A,,ad7) — (0).

If ¢ € Hom (mpie/ (M}, A), k) corresponds to z € Z'(A,,ad7), then B €
Mn(ngoc/(méloc,)\)) takes z to z plus the image of ¥(B) € ad7. In partic-
ular there is a bijection between M, (mpioc/ (Mm%, A)) invariant subspaces of
Z'(A,,adT) and subspaces of H'(A,, adT).

Let R be an object of Co and I be a closed ideal of R with mzl = (0).
Suppose that 7, and 7 are two liftings of 7|5, with the same reduction
mod I. Then

v ra(y)ri(y) T -1
defines an element of H'(A,,adT)®; I which we shall denote [ry—74]. In fact
this sets up a bijection between H'(A,,ad7)®; I and (1 + M,(I))-conjugacy
classes of lifts which agree with r; modulo /. Now suppose that r is a lift

of 7|a,, to R/I. For each v € A, choose a lifting () to GL,(R) of r(v).
Then

— 11

(7,0) == r(v0)r(d) ()
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defines a class obsg(r) € H?*(A,,adT) ®; I which is independent of the
choices made and vanishes if and only if r lifts to R.

Now suppose that r, is a lifting of 7|, to O corresponding to a ho-
momorphism « : R}IOC — (. There is also a natural identification

Hom ¢ (ker o/ (ker a)?, K/O) = Z'(A,,ad 1, @ K/O).

This may be described as follows. Consider the topological O-algebra O &
K/Oe¢ where ¢ = 0. Although O & K/QOe is not an object of Co, it still
makes sense to talk about liftings of 7, to O @ K/Oe. One can then check
that such liftings are parametrised by Z'(4,,adr,® K/O). (Any such lifting
arises from a lifting to some O® A"V O/O¢.) On the other hand such liftings
correspond to homomorphisms R;OC — O @ K/QOe lifting o and such liftings
correspond to Hom o (ker o/ (ker a)?, K/O).

Definition 2.2.2 If ¢ € S then by a local deformation problem at ¢ we mean
a collection D, of liftings of T|a, to objects of Co satisfying the following
conditions.

1. (k,7|a,) € Dy.

2. If (R,r) € D, and if f: R — S is a morphism in Co then (S, for) €
D,.
' 3. Suppose that (Ry,r1) and (Ra,re) € D,, that I (resp. 1) is a closed
ideal of Ry (resp. Ry) and that f : Ri/I; = Ry/Iy is an isomorphism
in Co such that f(ry mod I;) = (re, modly). Let R3 denote the subring of
Ry @ Ry consisting of pairs with the same image in Ri/I} = Ry/I5. Then
(R3,7‘1@T2) EDq.

4. If (Rj,rj) is an inverse system of elements of D, then

(lim R;, limr;) € D,.

5. Dy is closed under equivalence.
6. If R — S is an injective morphism in Co and if r: A; — GL,(R)
is a lifting of T|a, such that (S,r) € Dy then (R,r) € D,.

(Compare with section 23 of [Maz].)

Lemma 2.2.3 If T is a 1, + My(mpoc) invariant ideal of RY° then the col-
lection of all liftings v over rings R such that the kernel of the induced map
R}IOC — R contains Z s a local deformation problem. Moreover every local de-
formation problem D, arises in this way from some 1n+Mn(mR}10c) mvariant

ideal Z, of R}JOC.
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Proof: The first assertion is clear. Consider the second assertion. Let J
denote the set of ideals Z of RP°® such that (R)°/Z,r"™) € D,. The second
and sixth conditions on D, tell us that a lifting (R,r) of 7|, lies in D, if
and only if the kernel of the corresponding map R;OC — R lies in J. The first
condition on D, tells us that J is non-empty, the third condition tells us it
is closed under finite intersections and the fourth condition tells us that it is
closed under arbitrary nested intersections. Thus J contains a minimal ele-
ment Z, which is contained in all other elements of J. The second condition
on D, tells us that any ideal of qu"c containing 7, lies in J, and the second
assertion follows. [J

Definition 2.2.4 Suppose D, is a local deformation problem corresponding to
an ideal I, of RY°. We will write Ly = Ly(Dy) for the image in H'(A,,adT)
of the annihilator Ly in Z'(Ag,adT) of Zy/(Zy N (MFee, A)) C Mpioe /(MF1oc, A)
under the isomorphism

Hom k(manoc/(m?{m, M), k)= ZY A, adT).
q

Because 1, s 1n+Mn(mR}10c) invariant we see that Lé is the preimage of Ly
in Z'(A,, adT).

We remark that

Hom k(mRiloc/(m?%}f“I(lv )‘)7 k) = L;
and the exact sequence in the paragraph after definition 2.2.1 shows that
dim;, L; =n? + dimy, L, — dimy, H°(A,, ad 7).

Lemma 2.2.5 Keep the above notation and assumptions. Suppose that R is
an object of Co and I is a closed ideal of R with mgl = (0). Suppose also that
r1 and ry are two liftings of T|a, with the same reduction modI. Suppose
finally that 1 is in D,. Then 1o is in Dy if and only if [ry — ] € L,.

Proof: Suppose that r; corresponds to «; : quoc — R. Then as = a1+ 0
where

0 R;OC — 1
satisfies
— Bz +y) = B(z) + B(y);

— Blzy) = B(x)ar(y) + aa(z)B(y);
— and flo =0.
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Thus ( is determined by [y

rise to and is determined by an O-linear map:

e and B s trivial on (m3y,., A). Hence (3 gives
q

B mR}{,c/(m%g)C, A — 1.
A straightforward calculation shows that
[ro — ] € H'(A,,ad7)
is the image of
B € Hom (mppe /(Mpec, A), I) = Z'(Ag, adT) @y, L.

The homomorphism «a; vanishes on Z,. Thus we must show that 3 van-
ishes on 7, if and only if 8 maps to L, ®; I, i.e. if and only if

/6 E Hom (mRiloc/(m?{}]Qc, )\, :Z-q), ]{:) ®k [

This is tautological. [

Again let r, be a lift of 7|5, to O corresponding to a homomorphism
o : R — O. Suppose that rq is in D,. We will call a lift of 7, to O &
K/Oe of type D, if it arises by extension of scalars from a lift to some
O & A"VO/O¢ which is in D,. Such liftings correspond to homomorphisms
R°/T, — O & K/Oe which lift «. Because Z, is 1, + Mp(mpoc) invariant,
the subspace of Z'(4,,adr, ® K/O) corresponding to

Hom ¢ (ker o/ ((ker @), Z,), K/O) C Hom o (ker o/ (ker a)*, K/O)
is the inverse image of a sub-O-module
L,(r,) C H(A,,adr, ® K/O).

Thus a lift of r, to O @& K/Oe¢ is of type D, if and only if its class in
ZY A, adr, ® K/O) maps to an element of L,(r,).

Definition 2.2.6 We will call D, liftable if for each object R of Co, for each
ideal I of R with mpl = (0) and for each lifting v to R/I in D, there is a
lifting of v to R. This is equivalent to R}ZOC/Iq being a power series ring over

0.

We now turn to deformations of 7: 1" — G, (k).
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Definition 2.2.7 Let S be a collection of deformation problems D, for each
qe S and let T C S. We call a T-framed lifting (R,r;ay)qer of T of type S
if for all g € S the restriction (R,r|a,) € Dy. For q € T this is equivalent to
requiring (R, oy 'r|a,aq) to lie in Dy. If a T-framed lifting is of type S, so
1s any equivalent T'-framed lifting. We say that a T-framed deformation is of
type S if some (or equivalently, every) element is of type S. We let DefET
denote the functor from Co to sets which sends R to the set of T-framed
deformations of ¥ to R of type S. If T'=S we shall refer simply to framed
deformations and write Def?. If T =0 we shall refer simply to deformations
and write Defg.

We need to introduce a variant of the cohomology groups H(I',adT).
More specifically we will denote by HfS’T(F ,ad7T) the cohomology of the com-
plex

Cor(IadT) = C(I,adT) & €D €71 (A, ad ) /M,
qeS

where M} = (0) unless ¢ € S —T and i =0 in which case
M;) = CO(Aq,adF),

or €S —T and i =1, in which case M, = L; denotes the preimage of L,
in C'(A,,ad7). The boundary map is

C (I adT) — CEH (I adT)
(0, (q)) = (09, (¢|a, — Oyg)).

If T =0 we will drop it from the notation. If T'= S we will drop the S
from the notation.
We have a long exact sequence

(0) —
— H‘g’T(F’ ad?> - HO<F7 ad?) - @qu HO(Aq; adF) —
— Hs (I ad7) — HY(I' adT) — <@q€S—T H'(A,, ad T)/Lq)

® (Gaqu Hl(Aq,adF)> —
— H‘%’T(F’ ad?> - H2<F7 ad?) - ®q€S H2(Aq7 adF) —
= H(Iad7) — HY(I,ad7) —

Note that the dimensions of H'(I adT) and Hi(I,adT) are either both
finite or both infinite. 7
(At least one of the authors thinks it is helpful to write that this is a
special case of a ‘cone construction’.)
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Lemma 2.2.8 Suppose that all the groups H'(I',adT) and H'(A,adT) are
finite and that they all vanish for i sufficiently large. Set

X(IadF) = "(—1)"dimy, H'(T',ad ),

7

and
X(Ag,adT) =Y (—1)' dimy H'(A,, ad 7),
and
Xsa([adT) =Y (—1)' dimy Hj (T, adT).
Then

xso([,adT) = x([,ad7) — ZX Ay, adT) + Z (dimy, L, — dimy H(A,, adT)).

qeS qeS-T

The next result is a variant of well known results for GL,,.

Proposition 2.2.9 Keep the above notation and assumptions, and also as-
sume that 7 is Schur. Then Def?T 1s represented by an object RET of Co. (If
T =0 we will denote it R&Y, while if T =S then we will denote it RS.)

1. There is a tautological morphism

loc Or
®q€T Rq RS

and a canonical isomorphism

Hom Cts<mRDT/(m2 Or> )\, leoc>q€T’ k) = Hé T(F7 ad?)
S Rs 1 ’

If HY(I",adT) is finite dimensional then RET 15 a complete local noetherian
O-algebra.

2. The choice of a universal lifting r¥™ : I' — G,(R®Y) determines
an extension of the tautological map

Ruan RET
to an isomorphism

univ ~ O
Rg™ ([ Xqigllgerig=1 — Rg".

77777
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Proof: First we consider representability. By properties 1, 2, 3 and 4
of D, we see that the functor sending R to the set of all T-framed lifts

of 7 to R of type § is representable. By property 5 we see that Def?T
is the quotient of this functor by the smooth group valued functor R —
ker(GL,(R) — GL,(k)). Thus by [Dic| it suffices to check that if ¢ : R — R’
in Co, if (r;ay)ger is a T-framed lift of 7 to R, and if g € 1+ M, (mg)
takes @(r;ay)qer to itself, then there is a lift § of ¢ in 14 M, (mg) which
takes (r;ay)4er to itself. In the case T # () this is clear, in the case T = ()
it follows from lemma 2.1.11.
Recall that

HOHI Cts(mRET /(mQRET 5 )\, leloc)qu, k) g HOm (RET/(mR}ZOC)qu7 k[e]/(€2))

is isomorphic to the subspace of Defg” (k[e]/(¢2)) consisting of elements giving
trivial liftings of 7|, for ¢ € T. Any T-framed lifting of 7 is of the form

(1, + ¢e)T; 1, + ag€)ger
with ¢ € Z'(I,ad7). It is of type S if ¢|a, € Lcll for g € S. For ¢ € T, it
gives rise to a trivial lifting of 7|, if and only if
(1, — age) (1 + @|a,€)T|a,(1n + age) = T|4,.
Thus
Hom Cts(ngT/(m;§T7 A, Mpoc ) ger, k)

is in bijection with the set of equivalence classes of tuples

(5 ag)ger
where ¢ € Z1(I',adT); a, € adT;
Pla, = (ad7|a, — 1n)a,
for all ¢ € T; and ¢|la, € L, for ¢ € S —T. Two tuples (¢;aq)ger and
(¢';a)qer are equivalent if there exists b € ad7 with
¢ =¢+ (1, —adr)b
and
ay = ag +b
for all ¢ € T. The first part of the proposition follows.
Note that by lemma 2.1.11 the centraliser in 1n+Mn(mR§niv) of TV is

{1,}. Thus
is a universal framed deformation of 7 over RE™[[X,; ill4es:ij=1
ond part of the proposition follows. [J

n- The sec-

.....
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Definition 2.2.10 We will use the following abreviations:

—

loc loc
RS,T - ®quRq /Iq
and
Ir = O[[Xqslleersij=1...n-
Thus we have a canonical map
Ry — R
and the choice of a universal lifting &Y : I' — G,(R¥Y) determines a map
Tr — R3"

such that

Lemma 2.2.11 Suppose that R is an object of Co and that I is a closed
ideal of R with mgl = (0). Suppose that (r;ay)eer is a T-framed lifting of T
to R/1 of type S. Suppose moreover that for each q € T (resp. ¢ € S—T) we
are gwen a lifting T4 of oy 'r|a,aq (resp. r|a,) to R in Dy. For each v € I’

pick a lifting r(y) of r(v) to G.(R). For each q € T pick a lifting a, of a,
to 1, + M,(mg). Set

(resp. -
g (8) = r(O)F(0) ™" — 1n).

Then (¢, (¥q))qes defines a class obss r (15 aq)ger € Hgp(I',adT) @1 which is
independent of the various choices and vanishes if and only if (r,a,)eer has
a T-framed lifting (7, 04)qer of type S to R with

&';1?|Aq62q =Ty
for all q € T.
Proof: We leave the proof to the reader. [
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Corollary 2.2.12 Suppose that T is Schur and H'(I',adT) is finite dimen-
sional for i < 2. Then RET is the quotient of a power series ring in

variables over R};CT. If D, is lftable for ¢ € S —T then it will suffice to
quotient out by
dimy, H3 (I, ad T)

relations and so RET has Krull dimension at least

dimy, Hg (T, adT) — dimy, H3 (I,ad7) + 1+ Y (dim R/, — 1).
qeT

Moreover R¥Y has Krull dimension at least
dimy, Hg(I',ad7) — dimy H3(I,adF) + 1+ Y (dim RY*/T, — n* — 1).

qeS

Corollary 2.2.13 Suppose that T is Schur, that H(I,adT) = (0) and that
each D, 1is liftable for ¢ € S —T. Then RET 1S a power Sseries Ting in

dimy, H§ (I, adT) variables over R$S.

Finally in this section we turn to a slightly different type of result.
Suppose that that 7 is Schur and « : R — O corresponds to a deformation
[r] of 7 to O. Let Hi(I,adr ® K/O) denote the kernel of

H' T adr @ K/O) — @ H'(Ag, adr @ K/O)/Ly(r,).

q€eSs
The next lemma is immediate.

Lemma 2.2.14 Keep the notation and assumptions of the previous paragraph.
Then there is a natural isomorphism

Hom ¢ (ker o/ (ker a)?, K/O) = HY(Iadr @0 K/O).

2.3. Galois deformation theory. — In this section we specialise some
of the results of the previous section to the case of Galois groups.

Let I, k, K, O and A\ be as at the start of the previous section. We will
let € denote the [-adic cyclotomic character and write M (n) for M ®z, Z;(€").
Also let (,, denote a primitive m‘ root of unity. We will consider a totally
real field F'* and a totally imaginary quadratic extension F/F7T split at all
places above [. Let S denote a finite set of finite places of F™ which split
in F, and let F(S)/F denote the maximal extension unramified outside S
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(and infinity). We will suppose that S contains all the primes of F'™ above
. For I' we will consider the group Gp+s = Gal(F(S)/F*) and for A the
group Grg = Gal(F(S)/F). Note that F(S)/F* may ramify at some places
outside S which ramify in F/F*. If v|oo is a place of F* we will write ¢, for
some element of the corresponding conjugacy class of complex conjugations
in Gp+g. For each v € S choose a place v of F' above v and let S denote

the set of v for v € S. (Thus S and S are in bijection with each other.) If
v e S then for A, we will consider

GF5 = Gal (Fg/Fg) — GF,S-

(Note that G, = Gal (F:/Fj), but the Gpg conjugacy class of the map to
Grs depends on the choice of v]v.) We will write I, for the inertia subgroup
of Gp, and Froby for the geometric Frobenius in Gp, /IF..
Let
T GF+,S — Qn(k)
be a continuous homomorphism such that Grps = 7 (GL, x GL;)(k). Let
X : Gprs — O a continuous lift of vo7. For v € S let D, be a local
deformation problem for 77|GF5' To it we have associated a subspace L, C

HY(Gp,,adT) and an ideal Z, of R°¢. Together this data defines a global
deformation problem for 7 which we will denote
S = (F/F+a Sa ga Oafv X {Dv}vES)-

We will write L for the annihilator in H'(Gp,,ad7(1)) of the subspace

L, of H'(G 7,ad7T) under the local duality induced by the pairing
ad7 x (ad7)(1) — k(1)
(z,y) — tr (zy).
If TS will also write H., .(Gp+g,ad7(1)) for the kernel of the map
H'(Gp+5,2d7(1)) — €D H'(Gradr(1))/L;.
vesS-T
The next lemma is immediate.

Lemma 2.3.1 Suppose that
S = (F/F+7 Sa ga 0777 X {D’U}UES)

is a deformation problem as above. Suppose also that S D S is a finite set
of primes of FT™ which split in F and that S" D S consists of one prime of
F above each element of S'. Define a deformation problem

S/ = (F/F+7S/7OaF7X7 {D;}UGS)
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where, for v € S we have D, = D,, and for v € " — S the set D, con-
sists of all unramified (i.e. minimal) lifts. If T C S then DefET 1s naturally
isomorphic to Def?}”. If 7 is Schur then RET = RE,T.

Lemma 2.3.2 Suppose that
§= (F/F+7 Sa §7 07F7 X {DU}’UES)

is a deformation problem as above. Suppose that R C S contains only primes
v for which

— v/,
— T is unramified at v,
— D, consists of all unramified (i.e. minimal) lifts of F|GF§.

Define a new deformation problem

Sl = (F/F+7 Sv ga 0777 X5 {D;}vES)
where for v € S— R we set Dy =Dy, and for v € R we let DL consists of all
liftings of T|cp. -

Suppose that ¢ : R®Y — O and let ¢r denote the composite of ¢ with
the natural map REY — RV, Also let vy, denote ¢(r@™™). Then

lg, ker ¢/ (ker ¢r)? < lgo ker ¢/ (ker ¢)? + Z lgo H (G, (adry)(e 7).

vER
Proof: As described at the end of section 2.2 a class

[’l/i] € Hé/(GF+75, ad T & )\_N/O)

corresponds to a deformation (14 te)ry of 74 mod AV. This deformation cor-
responds to an element of Hi(Gp+g,adry @ AN /O) if and only if (1+1e)r,
is unramified at all v € R if and only if ¢)(Ir,) =0 for all v € R. Note that,
for v € R, we have
Hl(IFE,adT(b Ko >\_N/0> = Hom (]Fa,ad% RKRo )\_N/O)
= (ad T‘¢) KXo )\_N/O<E_l).

Thus we have an exact sequence
(0) — Hi(Gp+ 5,adrg @ AN /O) — HL(Gp+ g,adry @ AV /O) —
— @, H'(GR,, (ad 1) ®0 (AN /O0) (7).

Taking a direct limit and applying lemma 2.2.14 we then get an exact se-
quence

(0) — Hom (ker ¢/ (ker ¢)?, K/O) — Hom (ker ¢/ (ker ¢z)*, K/O) —
— @er (G, (ad ) ®o K/O(e7))
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and the lemma follows. O

We will require a lemma from algebraic number theory, which may be
known, but for which we do not know a reference.

Lemma 2.3.3 Let [ be a prime, k an algebraic extension of F; and O the
ring of integers of a finite totally ramified extension of the field of fractions of
W(k). Let A denote the mazimal ideal of O. Let E/D be a Galois extension
of number fields with LJ[E : D). Let S be a finite set of finite places of D
containing all places dividing 1, and let E(S)/E be the mazimal extension
unramified outside S. Thus E(S)/D is Galois. Let M be a finite length O-
module with a continuous action of Gal (E(S)/D). Then

lgo H'(Gal (E(S)/D), M) —lgo H%(Gal (E(S)/D), M)
—1go H*(Gal (E(S)/D), M) + 3, 180 H°(Gal (D, /D,), M)
D Qllgo M.
Proof: Note that places outside S may ramify in E/D and hence in
E(S)/D. Nonetheless, as [ /[E : D], the lemma may be proved in exactly the
same way as the usual global Euler characteristic formula. We sketch the

argument.
Firstly one shows that if there is a short exact sequence

(0) = My — My — Mz — (0)

and the theorem is true for two of the terms, then it is also true for the
third. To do this one considers the long exact sequences for the cohomol-
ogy groups H'(Gal (E(S)/D),M;) and H'(Gal(D,/D,), M;). The key point
is that

coker (H*(Gal (E(S)/D), My) — H*(Gal (E(S)/D), M3))
is isomorphic to
coker () H°(Gal (D,/ D), My) — @5 H(Gal (D,,/D,), Ms)).
v]oo v]oo
This follows from the equalities

H3(Gal (E(S)/D), M;) = H*(Gal (E(S)/E), M;)G (E/P)
(Do H*(Gal (E./ Ey), M;)) o /)
®v|oo HS(Gal (?v/Dv)’ Mz)
=D, H'(Gal (D,/D,), M;).

(See for instance (8.6.13)(ii) of [NSW] for the second isomorphism.) Thus we
are reduced to the case that M is a k-module.

12
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Next choose a subfield L of E(S) which contains E((;), which is to-
tally imaginary and which is finite and Galois over D. Suppose that M is a
Gal (L/D)-module. Let L D K D D and let Ry(Gal(L/K)) denote the rep-
resentation ring for Gal(L/K) acting on finite dimensional k-vector spaces.
Define a homomorphism

X : Ri(Gal (L/K)) ®z Q — Q
by
Xk [M]

= dimy, H*(Gal (E(S)/K), M) — dim;, H*(Gal (E(S)/K), M)
— dimy H(Gal (E(S)/K), M) + ¥, dimy, H*(Gal (K, /K,), M).

This is well defined by the observation of the previous paragraph. We need
to show that

xp = [D : Q]dimy, .
It is easy to check that

Gal (L/D) _
XD © IndGZl(L/K) = XK-

As Rp(Gal(L/D)) ® Q is spanned by Inng}EZ%Rk(Gal (L/K)) as K runs
over intermediate fields with L/K cyclic of degree prime to [, it suffices to
prove that yx = [K : Q]dim; when K is an intermediate field with L/K
cyclic of degree prime to [.
Now assume that L D K D D with L/K cyclic of degree prime to I.
Define
Xk : Ri(Gal (L/K)) — Ry (Gal (L/K))
by
~ Gal(L/K
e [M] = oo [M @ Ind G175 K]+ [H* (Gal (E(S)/L), M)
—[H°(Gal (E(S)/L), M)] — [H*(Gal (E(S)/L), M)],
where w denotes a place of L above v. This is well defined because L totally
imaginary implies H3(Gal (E(S)/L), M) = (0) (see for instance (8.6.13)(ii) of
INSW]). Note that Yx([M]) = [M(-1)] ® Xk([k(1)]). Moreover as [f[L : K]
we see that
xrx = H(Gal(L/K), )o Xk,
so that
xx ([M]) = H*(Gal (L/K), [M(=1)] @ X« ([k(1)]))-

Thus it suffices to prove that

e (k1)) = [K : Q)[ind {} “/ k).
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As E(S) is the maximal extension of L unramified outside S one has
the standard formulae

[H°(Gal (E(S)/L), k(1))] = [k(1)]
and
[H'(Gal (E(S)/L), k(1))] = [OL[1/S]* @ k(1)] + [Cls(L)[I] @, k]
and

[H?(Gal (E(S)/L), k(1))] = [Cls(L) @ K] — [K] + D> [P Br (Lu)[l] @, K],
vES wlv
where Clg(L) denotes the S-class group of L (i.e. the quotient of the class
group by classes of ideals supported over S) and Br(L,) denotes the Brauer
group of L,. Using these formulae the proof is easily completed, just as in
the case of the usual global Euler characteristic formula. [J

Lemma 2.3.4 Keep the notation and assumptions of the start of this section.
1. Hfg’T(GF-hs,adF) = (0) fO?” 1> 3.
2. Hg1(Gprg,adT) = H'(Gp+ s,adT) if T =0 and = (0) otherwise.
3. dimy Hg’T(GFJr’S, ad?) = dimy, HO(GF+,S, ad?(l)).
4. dlmk Hg,T(GF-k’s, adF) = dlmk HEJ_’T(GF-»—,S, adF(l))
5. XS,T(GF+75,adF) =

Do (0 x(€0)) /2 + 30 es p(dimy HO(GR,,adT) — dimy L,).

6.

dlmk Hé',T(GF"',Sa adF)
= dlmk HO<GF+75', ad F) + dlmk HLI:J_ T(GF+7S’ adF(l))
—dimy, H*(Gp+ 5,ad (1)) = 32, n(n + x(cy))/2
+ ZveS—T(dimk Lv — dlmk HO(GFU, ad ?))
where we drop the term dimy HY(Gp+g,adT) if T # 0.

Proof: For the first part we use the long exact sequences before lemma
2.2.8, and also the vanishing of H'(Gp+g,ad7) = H(Gpg,ad7)% EF/F) and
H'(GE,,adT) for v € S and i > 2. For the second part we use the long exact
sequences before lemma 2.2.8.

For the third and fourth parts one compares the exact sequences

HI(GF+75, adF) — (@veSfT Hl(GFT’, ad?)/Lg)
D (@UET o (GFW ad F))
|

D.cs H*(Gr,,adT) «— H*(Gp+ g, adT) H3 1 (Gpr.g,adT)

!
H‘?S"’T(Gpﬂs,adf) — (0)
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and

Hl(GF+75, adv_") — (@UES*T HI(GFE, ad?)/Lg)
@D (®’UET Hl(GFE,adF))
!
@’UES Hz(GFE, adF) — H2(GF+’5, ad F) — HéL7T(GF+,S7 adF(l))V
!
HGpogoad (D) = (0)

(The latter exact sequence is a consequence of Poitou-Tate global duality
and the identifications H'(Gp+g,ad7) = H'(Grg,ad7)SEFD for § = 1,2
and H{(Gp+.g, (ad7)(1)) = H (G, (ad7)(1)) G2 E/FD) for §=10,1.)

The fifth and sixth parts follow from lemma 2.2.8, lemma 2.3.3, the
local Euler characteristic formula and lemma 2.1.3. (We remark that by the
local Euler characteristic formula we have

Y x(Gr,ad7) =n’[F": Q)
vES
The final part follows from the previous parts. [J
Combining this with lemma 2.2.12 we get the following corollary.

Corollary 2.3.5 Keep the notation and assumptions of the start of this sec-
tion. Suppose also that 7 is Schur. Then RET is the quotient of a power series
Ting in

dlmk HEJ_7T<GF+7S, ad F(l)) + EUESfT(dimk Lv — dlmk HO(GFT], ad?))
—dimy, H(Gp+ 5,ad 7(1)) = 35, n(n + x(cy))/2

variables over REQCT If one further assumes that D, is liftable for v e S =T
then it will suffice to quotient by

dlmk H}:L7T(GF+7S,adF<1))
relations and so RS has Krull dimension at least

1+ er(dim R /T, — 1) + 37, L (dimy, L, — dimy, H*(Gp,, adT))
— dimyg H(Gp+ 5,ad (1)) = 2, 00 n(n + x(cu)) /2.

Thus RY™ has Krull dimension at least

L+ (dim RY*/T, — n® = 1) — dimy H(Gp+ 5,adT(1)) = > n(n + x(c))/2.

veS v|oo
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Corollary 2.3.6 Keep the notation and assumptions of the start of this sec-
tion. Suppose also that T is Schur, that H}, (Gp+g,ad7(1)) = (0) and that
each D, is liftable for all v € S. Suppose moreover that for v € S not dividing
[ we have
dlmk Lv = dlmk HO(GFU, adF),
while for v|l we have
dimy L, = [F| : Q|n(n — 1)/2 + dim, H*(GF,,ad 7).

Then x(cy) = —1 for all v|oo, the cohomology group H°(Gp+ g,ad7(1)) = (0)
and REY = 0.

2.4. Some Galois Local Deformation Problems. — In this section we
specialise the discussion still further by considering some explicit local defor-
mation problems D, for 7|g, . We will continue to use Z, to denote the ideal

of RY° corresponding to D, and L, to denote the subspace of H'(Gp.,adT)
corresponding to deformations of 7 to k[e]/(¢*) of type D,.

2.4.1. Crystalline deformations. — In this section we suppose that [ =
p and that F% is unramified over Q, = Q;. We will also suppose that K
contains the image of all Q;-linear embeddings of fields Fy — K.

We first recall a (covariant) version of the theory of Fontaine and Laf-
faille [FL], which will play the key role in this section. Let Fr: Op — Op.
denote the arithmetic Frobenius. Let MFpy denote the category of finite
Op, ®z, O-modules M together with

— a decreasing filtration Fil‘M by Op, ®z, O-submodules which are Op,
direct summands with Fil°M = M and Fil"*"'M = (0);
— and Fr ® I-linear maps @' : Fil'M — M with &|p,it1,, = 19! and
S Fil'M = M.
Let MF} s denote the full subcategory of objects killed by A. There is an
exact, fully faithful, covariant functor of O-linear categories Gy from MFp 5
to the category of finite O-modules with a continuous action of Gp, . Its
essential image is closed under taking sub-objects and quotients. The length
of M as an O-module is [k(v) : Fy| times the length of G#(M) as an O-
module. (Here k(v) denotes the residue field of v.) For any objects M and
N of MFoz (resp. MFy5), the map

Ext Fon(M,N) — Ext }9[%} (G3(M), G5(N))

(resp.
Ext yz, (M, N) — Ext 5, 1(Ga(M), Gg(N))

>~ H'(Gp,, Hom ,(Gs(M), G5(N))))



34 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

is an injection. Moreover
Hom iz, ,(M,N) — H°(Gp,,Hom o(Gz(M), G5(N))).

We explain how to define Gz in terms of the functor Ug of [FL]. First
we define a contravariant functor

Hom ( y F’g/OF"g{l — 2})
from MFp 7 to itself. Then we set
G#(M) = Us(Hom (M, F5/Opzs{l — 2})))(2 = 1).

If M is an object of MFozs we define Hom (M, Fy/Opw{l — 2})) € MFos
as follows.

— The underlying O-module is Hom o, (M, F5/OFg).
— Fil*Hom (M, F5/Opz{l — 2})) = Hom o, (M /Fil'"' "M, F;/Op3).
— If f€Homo, (M/Fil""'"M, F;/Opz) and if m € ®*Fil°M set
PU(f)(m) = 1" Fr f(2°) 7 (m)).
To check that @*f is well defined one uses the exact sequence

0) - @P2FiI'M - @2FI'M - M —(0)
() = (I — M)

To check that
Hom o, (M, F5/Opg) = > @*Hom o, (M/Fil'™'"“M, F;/Opg)

it suffices to check that
Hom OF,E(M[ZL F;5/0F%) = Z d*Hom OF)E(M[Z]/FH l_l_aM[l], F;5/OF5%).

But M[l] = ,P'gr'M[l] and @“Hom@Fﬁ(M[l}/Fill_l_aM[l},Fg/OEg) =
Hom o, (@2~ %gr =22 M[l], F5/OF3).

In this section we will assume that 7 is in the image of Gy and that
for each 7 and each 7: F; — K we have

dlmk(grngl(ﬂGFa)) ®OF577~' O S 1.

We will let Dy consist of all lifts r : G, — GLn(R) of Tlg, such
that, for each Artinian quotient R’ of R, r ® g R’ is in the essential image
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of Gy. It is easy to verify that this is a local deformation problem and that
Ly = Ly(Dy) will be the image of

Bxthr, (G5 1(7), G51(7) — H (G, adT),
(This was first observed by Ramakrishna [Ral].)
Lemma 2.4.1 Dy s liftable.

Proof: Suppose that R is an Artinian object of Co and I is an ideal of
R with mzl = (0). Suppose also that r is a deformation in Dy of 7lg, to
R/I. Write M = G3'(r) and for 7 : Fy — K write Mz = M ®0, 0, 0791 O
Then Fil‘M = bD- Fil’M; for all 4. Let mzg < ... < ms,_1 denote the indices
i for which Fil‘Mz # Fil“™™' M=, Also set mz, =00 and mz_; = —00.

As M/mpM = G;'(F) we see that we can find a surjection (R/I)" —
— Mz such that (R/I)" — Fil™" "Mz for all i (where (R/I)" C (R/I)"
consists of vectors whose last n — i entries are zero). Counting orders we
see that (R/I)™ = Mz, and hence (R/I)* = Fil™™ "Mz for all i. Define
an object N = @- Nz of MFpz with an action of R as follows. We take
Nz = R with an Opg-action via 7. We set Fil’ N> = R" where Mz p—i > J >
Mz n—1—i- Then N/I = M as filtered Oy ®z, R-modules. Finally we define
¢m7i ¢ Fil"™" Nz — Nzopon, by reverse recursion on 4. For ¢ = n —1 we
take any lift of @™7n-1 : Fil"™ "' Mz — Mzopon,. In general we choose any
lift of @™7i : Fil"" Mz — Msopwon, Which restricts to [M7i+17m7i@Mm7it1 on
Fil ™71 N=. This is possible as Fil"7#*1 Mz is a direct summand of Fil™7¢ Mx.
Nakayama’s lemma tells us that >, @"#Fil"™" Nz = Niopwob,, S0 that N is
an object of MFpz. As our lifting of r we take Gz(N). O

We will need to calculate dimy L. To this end we have the following
lemma.

Lemma 2.4.2 Suppose that M and N are objects of MFyz. Then there is
an eract sequence

(0) — Hom iz, (M, N) — Fil "Hom o, e, 0(M, N) —
— Hom OF3®z,0,Fr®l (gr Ma N) — Ext }\/l]-'k,g(M’ N) - (O)a

where FiliHomoFﬁ)@Zl@(M, N) denotes the subset of Hom o, g, o(M,N) con-

sisting of elements which take FilYM to Fil™ N for all j and where gr M =
@, gr'M. The central map sends 3 to (BP, — Dy [3).

Proof: Any extension

(0) — N —FE — M — (0)
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in MFy5s can be written £ = N @ M such that Fil'E = Fil'N @ Fil'M
(and such that N — E is the natural inclusion and E — M is the natural

projection). Then
P 453\7 0%
Pp = ( 0 %>
with «; € Hom o, e, 0re1(gr M, N). Conversely, any

o= (Oéz) € Hom OF,%®ZZO,FT®1<gr M, N)

gives rise to such an extension. Two such extensions corresponding to a and
o are isomorphic if there is a § € Homo, g, 0(M,N) which preserves the
filtrations and such that for all ¢

18\ (D a; \ [Py 1 Blgrinm
01 0o, 0 & 0 1 '
The lemma now follows easily. [J

Corollary 2.4.3 Keep the above notation. We have
dimy, Lz — dimy, HO(GFWadF) = [Fy: Qin(n —1)/2.
Hence RY¢/T, is a power series ring over O in
n® + [F5: Qn(n —1)/2
variables.
Proof: 1f M is an object of MFps and if 7: Fy; — K set
Mz = M Qo ;07,001 0.
Thus Fil'M = @, Fil'Mz and &' : Fil’M;z — 1. We have

ToFr—

Fil "Hom o, 6, 0(M, N) = @D Fil "Hom o (Mz, N7)

?

and

HOHIOFv@Z O,Fr®1 ng N EBHOIHO ng NTOFI‘ )
Note that d1mkF110Homk(G~ (7 )T,G~ (7)) = n(n + 1)/2 and that
dimy, Hom 1, (gr G5 ' ()7, G5 (T)z0p—1) = n?. The first part of the corollary fol-

lows. The second part follows from the ﬁrst part, lemma 2.4.1 and the dis-
cussion immediately following definition 2.2.2. [J
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Corollary 2.4.4 If n=1 then
Lg = H1<GF5/IF5; adF).

Proof: One checks that Ly D H'(GE, /Ir.,adT) and then uses the equal-
ity of dimensions. [J

The next lemma is clear.
Lemma 2.4.5 If F|GF5 = @,;5; then
H'(Gp.,adT) = ®; ;H'(Gp.,Hom (5;,3;))
and Ly = @, ;(Lz);j, where (Ly);; denotes the image of
Ext iz, (G5 (5:), G5 '(5;)) — H'(Gr,, Hom (5;,5;)).

2.4.2. Ordinary deformations. — This section is not required for our
applications to modularity lifting theorems and the Sato-Tate conjecture, and
can be skipped by those readers whose only interest is in these applications.
Our discussion is rather unsatisfactory as we were unable to find the right
degree of generality in which to work. In the first version of this manuscript
we worked in greater generality, but the result was so complicated that some
of the referees urged us to remove the section all together. Rather than do
so we have restricted ourselves to the easiest possible case. We hope that the
result is more readable. We also hope that future investigators will either not
need to rediscover our messy but more complete results, or that they will be
able to find a more transparent approach.

A referee has reminded us of previous work of Tilouine [Ti] and Mauger
[Mau] along similar lines.

We again assume that p = [. For ¢ = 0,...,n — 1 choose characters
Xvi ¢ Gr, — O with the following properties.

1. 7 has a decreasing filtration {Fil'} by k[Gr]-submodules such that
for i =0,..,n—1 we have an isomorphism gr'7 = k(x,.;).

2. If X,; denotes the reduction of x,; modulo A then for i < j the
ratio X, ;/X,; is neither trivial nor the cyclotomic character.

The second of these two conditions can be weakened, but we have not been
able to determine exactly how far. Note that the second condition implies
that the filtration {Fil } is unique.

We will take D, to be the set of all lifts r of 7 to objects R of Cop
such that R" has a decreasing filtration {Fil’} by R[Gf]-submodules such
that
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1. Fil' @z k > Fil' for all 4, and
2. I, acts on gr'R" by x,.

It follows from the first of these properties that the Fil’ are free over R
and direct summands of R". Moreover for i = 0,...,n — 1 the graded piece
gr'R™ = R(x%) where x/} is an unramified twist of x,; which reduces modulo
mp to x,,; mod A

Lemma 2.4.6 1. If such a filtration {Fil'} exists then it is unique.
2. Suppose that R — S 1is an injective morphism in Co and that
r: Gp, — GL,(R) is a lift of Flg, . If (S,r) € D, and {Fil%} is the
corresponding filtration of S™ then

(Fil N R") ®x S — Fil%.
3. D, s a local deformation problem.

Proof: The third part follows from the first two. For the first two parts,
arguing inductively it suffices to treat the case of Fil™*. For i =0,...,n — 2
choose 0; € G, with X, ;(0:) # X, ,_1(03). Let Pi(X) denote the characteristic
polynomial of r(o;). Modulo mp we have a factorisation

B(X) = (X = Xon-1(0:)"Q;(X) mod mpg

with Q,(Xvn-1(0i)) # 0 mod mp. By Hensel's lemma we may lift this to a
factorisation

Pi(X) = Ri(X)Qi(X)
where Q; lifts @Q; and R; lifts (X —X,,,,_1(0:))*. Let

Then e acts as zero on gr'R™ (resp. grS") for i = 0,..,n — 2 (because
Qi(r(0;)) does). On the other hand e is an isomorphism on Fil" 'R"™ (resp.
Fil,7'S"), so that Fil" 'R™ = eR" (resp. Fil% 'S™ = eS™). The first part
follows immediately. In the case of the second part note that ek™ # (0).
Choose y € R™ such that the image of ey in k™ is non-zero. Then Fil%'S" =
Sey so that Fil g_l N R"™ = Rey. The second part of the lemma follows. [

Lemma 2.4.7 D, is liftable.
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Proof: Suppose that R is an object of Co and I is a closed ideal of
R with mgl = (0). Suppose also that r is a deformation in D, of 7 to
R/I. Let {Fil'} be the corresponding filtration of (R/I)". We will show by

reverse induction on i that we can find a lifting Fil of Fil'r to R such that
—~— it+1 —~— , . ~— i ~— it

Fil'" < Fil' compatibly with Fil™*'r < Fil'r and Fil /Fil 2 R(xvilr)
as a R[[p|-module.

—~ i+1
The case i =n—1 is trivial. Suppose that Fil has been constructed.
Also choose a lifting gr' of grir such that Ir, acts by x,,;. We will choose

—~1 —~ —~—i—1 . . 14 .
Fil to be an extension of gr by Fil which lifts Fil'r. Such extensions
are parametrised by some fibre of the map

H'(Gy., Hom p(gf", Fil ")) — H'(G,, Hom 7 (grir, Fil *17)).
Thus it suffices to show that this map is surjective. This would follow if
H?* (G, Hom 4 (gr 7, Fil "7'7)) @ I = (0).

However locally duality tells us that H?(Gp, Hom y(gr'7, Fil'*'F)) is dual to
HO(Gp,, Hom 4 (Fil"*'%, gr 7)(1)), and this latter group vanishes, because, for
J =1

YU,iE/Yv,j # 1.
U

Lemma 2.4.8 RI°°/7, is a power series ring in
n® + [Fs: Qn(n —1)/2
variables over O. Moreover
dimy, L, — dimy, H*(Gp,,ad7) = [F5 : Qn(n —1)/2.

Proof: From the previous lemma and discussion immediately following
definition 2.2.2, we see that the two assertions are equivalent. Moreover they
are both equivalent to the space of liftings of type D, of T to k[e]/(€?) having
dimension n? + [Fy: Qln(n —1)/2.

Let B, denote the Borel subgroup of GL, consisting of upper triangular
matrices. Without loss of generality we may suppose that 7 maps Gp, to
B,(k) so that the diagonal entries of 7(o) reading from the top left are
(Xom-1(0), s Xy 0(0)). The space of liftings of type D, of T to k[e]/(e*) maps
surjectively to the space of filtrations {Fil'} of k[e]/(e?) lifting {Fil'} with
kernel the space of liftings of 7 to B,(kle]/(¢*)) such that for o € Ir  the
element 7(o) has diagonal entries (X, ,_1(7),...,X,0(c)) reading from the top
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left. For the rest of this proof, we will call such a lift suitable. Thus it
suffices to show the space of suitable lifts to B,(k[e]/(¢?)) has dimension
n(n+1)/2+ [Fy: Qin(n —1)/2.

We will prove this by induction on n. The case n = 1 is clear. (A
lift is specified by specifying a lift of any element lying over Frobenius.) For

general n write
— — A
7= (T X_v"ﬂ/’> .
0 X”L),O

By the argument in the proof of the last lemma we see that the space
of suitable lifts of T to B,(k[e]/(¢?)) maps surjectively to the sum of the
space of suitable lifts of 7 to B,_1(k[e]/(¢?)) and the space of lifts of X, to
(k[e]/(¢*))* which agree with X, on Ir. Thus by the inductive hypothesis
it suffices to show that the set of lifts of 7 to B,(k[e]/(e?)) of the form

(Wyw¢)
0 X’U,O

has dimension (1 + [Fy: Q])(n —1).
However the latter space can be identified with a fibre of the surjective
linear map:

2N Gy X @k K[/ (€)) = Z2N(Grs XooT)-
This map has kernel Z'(Gp,, X, 7)e, which has dimension
n—1+dimy H(Gp,, X, 07) — dimy H*(Gp,, X, 07)
which (by the local Euler characteristic formula) equals
n—14[F;:Ql(n—1)+ dimy H2(GF5,Y;(1)F’).

As we saw in the proof of the last lemma H*(Gp,X, o) = (0) and this
lemma follows. [J

2.4.3. Unrestricted deformations. — Suppose now that [ # p. We can
take D, to consist of all lifts of 7 in which case L, = H'(Gf.,ad7). In this
case, by the local Euler characteristic formula,

dimy, L, — dimy H*(Gp,,ad7) = dimy H(GF., (ad 7)(1)).

Lemma 2.4.9 If H°(GE,(adT)(1)) = (0) then H*(Gp.,ad7) = (0), D, is
liftable, and RY°° is a power series ring in n* wvariables over O.

(In fact these four conditions are probably all equivalent.)
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2.4.4. Minimal deformations. — Again suppose that p # [. In this
section we will describe certain lifts of 7 which can be considered ‘minimally’
ramified. We will show that these lifts constitute a liftable, local deformation
problem and calculate the dimension of the corresponding R!°¢/Z,. However
first we must discuss a general classification of lifts of 7.

If ¢ € Z.y is not divisible by [, we will write 7], for the semidirect
product of Z; = (o,) by 7 = (¢q) where ¢, acts on Z; by multiplication by
q.

Let Pp. denote the kernel of any (and hence every) surjection Ip. — Z;.
Then Pp. has pro-order prime to . Also set Tk = Gp, /Pp, = TN

Lemma 2.4.10 The exact sequence
(O) - PFa - GF?; - TFa - (0)

splits, so that G, becomes the semidirect product of Pp, by Tp. We will fix
one such splitting.

Proof: Let S denote a Sylow pro-l-subgroup of Ir so that S = Z;. Let ¢
denote a lift to Gp, of Frobg1 € Gp,/Ip,. The conjugate »S¢~! is another
Sylow pro-l-subgroup of Ip, and hence an Ip -conjugate of S. Thus premul-
tiplying ¢ by an element of Irp, we may suppose that ¢ normalises S. The
group topologically generated by S and ¢ maps isomorphically to Tp and
we have our desired splitting. [

Suppose that 7 is an irreducible representation of Pp, over k. We will
write G, for the group of 0 € Gp, with 77 ~ 7. We will also write T, =
G./Pp, C Tp,. Then T, = T(Ng)[GFE:GTIFTJ] and the splitting Tp, — Gp, re-
stricts to a splitting T, — G,.

The proof of the next lemma uses standard techniques of what is some-
times called Clifford theory (see section 11 of [CR]).

Lemma 2.4.11 1. lfdimy 7 and T has a unique deformation to a rep-
resentation T of Pg, over O.
2. T has a unique (up to equivalence) extension to G,NIp.. Moreover
T has a unique extension G, N Ip, with determinant of order prime to l.
3. T has an extension to G, with det7(G, N Ig,) having order prime
to 1. Choose such an extension, which we will also denote T, and let T
also denote its reduction modulo .

Proof: The first part is true because Pp;, has pro-order prime to [.

Any Sylow pro-l-subgroup of G, NIp maps isomorphically to G,/(G,N
Ir.). Let o, denote a topological generator of a Sylow pro-l-subgroup of
G; N Ip,. The kernel of 7 is normal in G,.. The conjugation action of some
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power ol of o, on the image 7Pp is trivial. Because o, € G;, there is an
automorphism A of the vector space underlying 7 such that 7(o,g0 ') =
Ar(g)A~! for all g € Pp.. Then we see that z = A" lies in the centraliser
Z. of the image of 7. As 7 is irreducible we see that Z, is the multiplica-
tive group of a finite extension of k£ and so is a torsion abelian group with
order prime to [. Moreover Z/I’Z acts on Z, by letting 1 act by conju-
gation by A. As H?*(Z/I'Z,Z.) = (0) we see that there is w € Z, with
27 = w(AwA ) (A2wA ). (A" A = (wA) AT We can extend T to
G, N Ip, by sending o, to wA. Now write A for wA. Any other extension
sends o, to uA for some u € Z, with u(AuA=")...(A"'wA'"") equalling an
element of Z, of I-power order, i.e. equalling 1. As HY(Z/I'Z, Z,) = (0) we
see that u=v"1AvA~! for some v € Z,. Hence our second extension of 7| Pr.
is v~ !7v, i.e. our extension is unique up to equivalence. Similarly the lifting
7 has a unique extension to G;NIg, with determinant of order prime to [.
(Argue as before but choose A with det A having order prime to [, which
is possible as for 2 € O* we have det(zA) = 24m7 det(A). Then take Z, to
be the set of elements of the centraliser of 7(Pg,) with order prime to [.
The same argument shows the existence of one extension with determinant
of order prime to [ and also its uniqueness.)

Let ¢, € G, lift a generator of G,./(G,NIg,). As T and 7% are equiv-
alent as representations of G, N Ig,, the representation 7 extends to G,.. O

If M is a finite O-module with a continuous action of G, then we set
M, = Hom p, (7, M).
It is naturally a continuous T,-module.

Lemma 2.4.12 Suppose that M is a finite O-module with a continuous ac-
tion of Gp,. Then there is a natural isomorphism

M= P hd " (7 0o M,),
]

where [T] runs over Gp, -conjugacy classes of irreducible k[Pp.|-modules. More-
over
Hom ¢, (M, M') = @5 Hom 1, (M, M.).
[7]

Proof: We have a decomposition

M= P70 M,,
7]
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where [7] runs over isomorphism classes of irreducible k[Pg ]-modules. The
embedding T ®o M, — M is G -equivariant and the image is the biggest
submodule all whose simple O|[Pf,]-subquotients are isomorphic to 7. More-

over 0 € Gp, takes the image of T ®o M; to 7° ®o M-. The lemma follows.
O

Corollary 2.4.13 Suppose R is an object of C(J;. The map
T —— (TT)[T]

sets up a bijection between deformations r of T (as a Gp,-representation) to
R, and tuples (r;)i of deformations of T~ (as Ty-representations) to R, where
7] runs over Gp, -conjugacy classes of irreducible k[P, ]|-modules.

Definition 2.4.14 Let p be an m dimensional representation of T, over k,

and let p denote a lifting of p to an object R of C(J;. We will call r minimally
ramified if for all i the natural map

ker(p(og) — 1)’ @r k — ker(p(og) — 1)’

s an isomorphism.

We call a lifting v of T to a representation of Gp, over an object R of
Cg; minimally ramified if, for all irreducible k[Pp,]-modules T, the deformation
r, of T, is minimally ramified (as a representation of Ty ).

For this definition to make sense we need to make two remarks. Firstly,
for any g € 1,, + M,,(mg) a lifting p (resp. r) is minimally ramified if and
only if gpg~' (resp. grg™') is. Secondly, in the case of T,, the definition
of minimally ramified does not depend on the choice of generator o, of Z;.
(Indeed if o, is another generator of Z; then p(o;) = p(o,)* for some a € Z-g
not divisible by 1. Then p(0}) —1m = (p(0q) = L) (Im+p(og) +...+p(0,)* ") s0
that ker(p(o))—1,)" D ker(p(oq) —1,)". Similarly ker(p(oq)—1m)" D ker(p(o)—
1,n)%, so the two kernels are in fact equal.)

We remark that if 7|, is unramified then minimally ramified lifts are
just unramified lifts. ’

Lemma 2.4.15 Suppose that R is an object of Co. Let A € My, xm,(R) and
let A denote its image in My, xm, (k). We can find bases ey, ...,en, of R™
and fi,..., fm, of R™ such that Ae; = f; for i =1,...r and Ae; € mgfr11 @
e B mpifo, for i=r—+1,...,my. Moreover the following are equivalent.

1. Ae; =0 fori=r+1,..,my.
2. (ker A) ®p k = ker A.
3. (ker A) @p k — ker A.
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4. (ImA) @z k = Im A.
5. (ImA)®p k — Im A.

Proof: Choose a basis €, ..., €y, of k™ so that €,;1,...,€,, is a basis of

ker A. Let f; = Ag; for i = 1,...,r and extend f,,..., f, to a basis J1soos oy of

kmi. Lift €y, ..., €y, to a basis e, ...,ep, €., ..., €, of R™2. Also lift f,..., f,.,

to a basis fi1 = Aes, ..., fr = Aer, fri1, .oy fy of R™. For @ =r+1,...,mg write
Ael = Z;n:ll a;;f; with each a;; € mp and set

T
!
€, = 61- — aijej.
Jj=1

Then ey, ...,e,, is a basis of R™ with Ae; = f; for i = 1,...,r, while Ae; €
Mpfry1 @ ... &@mpfn, for i=r4+1, ..ms.

Now consider the second part of the lemma. The first condition implies
the second, which implies the third. Suppose the third condition is satisfied.
Then ker A is a submodule of Re,,1®...®Re,,, which surjects under reduction
modulo mg onto k€, 1 @ ... €,,. We deduce that ker A = Re, 1B ... B Ren,,
and the first condition follows.

Similarly the first condition implies the fourth which implies the fifth.
Suppose the fifth condition is satisfied. Let X = A(Re,41 @ ... B Rey,), S0
that InA=Rfi®...® Rf,®X. We deduce that X ®gk = (0), so that X =0
and the first condition follows. [

Corollary 2.4.16 Suppose that R — S is a morphism in Cé and that A €

Mo, xmy (R) satisfies the conditions of the equivalent conditions of the lemma.
Then so does the image of A in M, xm,(S).

Corollary 2.4.17 Suppose that R — S 1is an injective morphism in C(J; and
that A € My, sxm,(R). Suppose that the image of A in My, wm,(S) satisfies
the equivalent conditions of the lemma, then so does A € My, xm,(R).

Corollary 2.4.18 Minimally ramified lifts in the case of T, (resp. Gg,) define
a local deformation problem DI (resp. D,) in the sense of definition 2.2.2.

We claim that a lifting p of an m-dimensional representation p of T,
over k to R an object of C(J; is minimally ramified if and only if there is an
increasing filtration {Fil’} of p by T,-invariant direct summands such that
p(o,) acts trivially on each grip = Fil’p/Fil"'p and

Fil' @ k — ker(p(o,) — 1,,)"

under the natural map Filf@ rk — p. Moreover in this case there is a unique
such filtration, namely Fil' = ker(p(o,) — 1,,)". To see this first note that if p
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is minimally ramified then it follows from Nakayama’s lemma that ker(p(c,)—
1,,)" is a direct summand of p for all i. Conversely if {Fil’} is a filtration
as above then ker(p(c,) — 1,,)" D Fil’p. On the other hand, as the rank of
(p(0,) — 1,n)" equals m minus the R-rank of Fil’p, we see that we must have
equality ker(p(o,) — 1,,)" = Fil’p and our claim follows.

Lemma 2.4.19 Suppose that p : T, — GL,,(k) is a continuous represen-
tation. The universal minimally ramified lifting ring Rrﬁnin for p is a power
series ring in m? variables over O.

Proof: The filtration ker(p(o,) — 1,,)" of k™ defines a closed point of
some flag scheme over k. Let the formal completion of this flag scheme at
this closed point be Spf R, and let {Fil; . R”} denote the universal lifting

univ* “oco

of {ker(p(o,) — 1,,)'} to a filtration by direct summands of R7. If we set
m; = dimy, ker(p(o,) — 1)/ ker(p(o,) — 1) "

then
Roo = O[[X1, .., X(m(m—1)-3, mi(mi—1))/2]]-

Also let P C GL,,/Ryx be the parabolic subgroup consisting of elements
which stabilise {Fil, ., }. Note that 5:7T, — P(k). Also note that we have a
natural map

R, — Rf;in

determined by {ker(p(o,) — 1,,)"}.
For i a positive integer let P; the subgroup of GLp,,, tm, o+../Ro Which
preserves the filtration {Fil? . /Fil’ .} of R”/Fil’ . R™. Thus Py = P and

there are natural maps P, — P,;,. Let p; denote the composite
T, -2 P(k) — Pi(k).

Consider the following functor from Artinian local R..-algebras to sets. It
sends Ry, — R to the set of continuous homomorphisms p; : T} —>'Pi(R)
which lift p; : T, — P;(k) and for which p;(o,) acts trivially on each gr? . R™
for 7 > 4. We shall call such lifts p; minimally ramified. This functor is
represented by
Pt Ty — Pi(Ry),
for some complete noetherian local R..-algebra R;. There are natural maps
RZ' — Ri—l-

Moreover Ry — R2™ and for i >> 0 we have R, = R;.
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It suffices to prove that for all ¢ the ring R;_; is a power series ring
over R; in m;(m; +m;1 + ...) variables. Write

. . i A
o) = (o) O = (3 il )

We require only one relation

4 8) (v

P} (O'q) . 1> = X(l _{_p;lniv(o_q) 4o _{_p;lniv(o,q)q—l)p’l;niv( )

The reduction modulo mg, , of the matrix

i—1

Y= (o -1)

has the same rank as p,_;(0,) — 1, which is m;41 +m;yo +.... Choose m;1 +
Mo + ... linearly independent rows of Y mod mpg, ,. Then the liftings of
X and the m; columns of (A B) not corresponding to the selected rows
of Y mod mp, , are arbitrary, and the liftings of the remaining columns of
(A B) are then completely determined. Thus R;_; is indeed a power series
ring in

mi(miﬂ + m;io + ) + mf

variables over R;, and the lemma follows. [

Corollary 2.4.20 Keep the notation and assumptions of the lemma. Mini-
mally ramified liftings are liftable. Moreover

dimy, L,(DL) = dim;, H°(T,,, ad p).

(See definition 2.2.4 for the definition of L,(DI) c HY(T,,adp).)
Proof: The first assertion is immediate. The second follows from the dis-
cussion immediately following definition 2.2.4. [J

Corollary 2.4.21 Suppose that 7 : Gp, — GL,(k) is a continuous repre-
sentation. Define a local deformation problem D, to consist of all minimally

ramified lifts of 7.

1. D, s liftable.

2. The space L, of deformations of T to k[e]/(e*) has dimension equal
to dimy, H*(Gp,,adT).

8. The corresponding quotient R\°°/T, is a power series ring in n
variables over Q.

2



Title Suppressed Due to Excessive Length 47

Proof: The first two parts follow from the previous corollary using the
equivalence of categories of corollary 2.4.13 and the equality

dimy, H°(GF., adT) Z dimy H°(T}, ad 7,)

(see lemma 2.4.12). The third part follows from the first two. [

Lemma 2.4.22 Suppose that | f#7(Ip,) and that D, consists of all minimal
lifts of 7. Then L, = HY(Gp. /Ir, (ad7)'s).

Proof: A lifting of 7 is minimal if and only if it vanishes on ker7|y, .
Thus
L, = H'(Gp /(ker7|;, ),adT).

However H'(7(If.),ad7) = (0) so that
Hl(GFa/[Fm (adF)IFT’) — H1<GF§/(kerF|IF5)7 ad?)

and the lemma follows. O

2.4.5. Discrete series deformations. — Let n = md be a factorisation
and let
Ty : Gp, — GLg(O)

be a continuous representation such that

1. ¥, ® k is absolutely irreducible,
2. every irreducible subquotient of (7, ® k)|, is absolutely irreducible,

3.and 7, ® k 27, ® k(i) for i =1,...,m.

The second condition is probably unnecessary, but it is harmless for applica-
tions and simplifies this section, so we include it. Note that in particular we

have
k(i) # k
for i =1,...,m.

Lemma 2.4.23 1. There is a factorisation d = dydy and a represen-
tation

o Gpr — GLg4,(0),

where FL/F5 is the unramified exstension of degree dy, such that s,|r, ®ok
15 absolutely irreducible and not isomorphic to its conjugate by any element

of Gr, — Gpy, and such that

Gr.
) v
ry = Ind G Syp-



48 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

2. If R is an object of C(]; and p: Gp, — GL4(R) satisfies
plir, = Tolrp, ®o R

then o
p=Indg" (s, @0 R(x))

for some uniquely determined unramified character x : Gpr — R*. In par-
ticular

p % pli)

fori=1,..m.
3. If R is an object of Cg; and I is an ideal of R then

Zaryr) (To(Ir,)) = Zaryr/n(To(Ir;))-

Proof: Let 71 be an irreducible (and hence absolutely irreducible) sub-
representation of 7|, ® k. Let H C Gp, denote the group of o € Gp, such

that 77 = 7. Because H/Ip, is pro-cyclic we can extend 7; to a representa-
tion of H. Then there is an H-equivariant embedding

T ® HOHl[FE(ﬂ,?v ®o k) — T, Qo k,

and the image is the biggest Ip -submodule of 7, ®o k isomorphic to a direct
sum of copies of 7;. Because 7, ®o k is absolutely irreducible we see that the
map

Ind " (7, ® Hom 1p. (T2, 70 @0 k) — Pl @ k

is an isomorphism and that Hom . (71,7, ®p k) is an absolutely irreducible

H/Ip -module, which must therefore be one dimensional. Twisting 7; by a
character of H/Ip. we may assume that

7, @k = Ind 5T
where T1|7,. is absolutely irreducible. Thus
Tolr, @k =T1® ... ®Tq

where each 7; is irreducible, where 7; 2 7; if i # j, and where dy = [Gp, : H|
and d; dim,7; = d. Note that H is nothing else than GFUL~

We claim that 777)|IF5 =71 @...0ry where r; is a lifting of 7;. We prove
this modulo A* by induction on ¢, the case ¢t = 1 being immediate. So suppose
this is true modulo A\'. As Ir. has cohomological dimension 1 we see that we
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may lift r; to a continuous representation 7} : Ir. — GLgims (O/A1). Then
Tolr,. mod A1 differs from r{ & ... @) by an element of

Hl([FE, adﬁ, X k’) = @Hl([FmHom (FHF]»
i,J

For i # j we have Hom (7;,7;)r, = (0) so

H'(Ip,,ad7, @ k) = @ H' (Ir,,adT;).

Hence 7|, mod AN =r @ ... ®ry, as desired.

The gvroup H must stabilise the subspace r; and so we can extend ry
to a representation s, of H which embeds into 7,|g and lifts 7;. The first
part of the lemma follows.

For the second part we are assuming that we have a decomposition

p|]F5 = (Tl ®(9 R) D..D (T’d1 ®() R)
The submodule r ®» R of p is stable by H and so we can extend r; ®¢p R
to a representation p; of H which embeds into p|y. We see that
Ind gFﬁ p1 — p.

Let ¢y denote the lift to H of a topological generator of the pro-cyclic group
H/Ip . As 7|, is absolutely irreducible, it follows from lemma 2.1.8 that
(sy ®0 R)(¢g) and py(¢y) differ by multiplication by an element of R*, i.e.
that p; = s, ®0 R(x) for some character x : H/Ip. — R*.
If
Gr- G-
Ind GZ(Sv ®o R(x)) = Ind GZ(SU ®o R(X))

for two characters x,x’: H/Ip, — R* then
v @0 R(x) = s, @0 R(X).
But
Hom (s, ®0 R(X), 50 ®o R(X)) = Hom 1, (s,,5,)(X'x )" =2 R(X'x )"

by lemma 2.1.8. Thus we see that y = x/, and the second part of the lemma
follows.
For the third part simply note that by lemma 2.1.8

Zaram (To(IF,)) = (R)™.
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Definition 2.4.24 Suppose that R is an object C(J; and
p:Gp, — GL,(R)

is a continuous representation. We will say that p is 7,-discrete series if there
is a decreasing filtration {Fil'} of p by R-direct summands such that

1. grip (gr) (i) for i=1,...m—1, and
2. (gr0p>’1F5 = (Fv’IF5 ®O R)

Lemma 2.4.25 If p is 7,-discrete series then the filtration {Fil'} as in the
definition is unique.

Proof: Suppose that {Fil{} and {Fil}} are two such filtrations. Suppose
also that

~ GFg
gr?p =~ Ind GFL<Sv ® X;j)-
From our assumptions on 7, we see that

e|ZéF/ mod A # 1
for i =1,...,m. However

{Xlﬁi mod mR}i:O,...,m—l = {Xzﬁi mod mR}i:O,..‘,m—l-

Thus
Y2 = x1€° mod mp

for some 0 < iy <m. If 75 > 1 then

X1€7 = o™ X y1€™ mod mp

for some 0 < i3 < m, which would give a contradiction. Thus y; = x2 mod mg
and
gr?p@Rk = gr?p@R k.
Note that gr;'-p is the maximal submodule of p/ Filéﬂp all whose simple

R[Gp,]-subquotients are isomorphic to grfp®@k(e’). Thus by reverse induction
on i we see that Filip = Fillp. O

Lemma 2.4.26 If 7 is 7,-discrete series then the set D, of r, discrete series
liftings of T form a local deformation problem.
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Proof: The first two conditions of definition 2.2.2 are immediate. The
third and fourth follow from lemma 2.1.8, the third part of lemma 2.4.23
and lemma 2.4.25. The fifth condition is also immediate. Let us verify the
sixth condition. Suppose that R <— S is an injective morphism in Cg; and
that p: Gp, — GL,(R) is a continuous representation such that p thought
of as valued in GL,(S) is 7,-discrete series. Let {Fils} be the corresponding
filtration of S™ and set Fily, = Fil, N R". Note that all simple R[Gf.] sub-
quotients of gr are isomorphic to gr% ®g k(7). Thus the same is true for all
simple subquotients of gré, and hence for (Fil%)s/(Fil%!')s. By part two of
lemma 2.4.23 we see that the gr%®gk(i) are non-isomorphic for i = 0,...,m—1
and hence (Fil’;)s = Fil%. In particular the reduction map gives a surjection
Fily, — Fily®sk C k™. Choose a basis e, ..., &, of k" adapted to {Fily®sk}.
We now see that we can lift it to a basis eq,...,e, of R"™ so that e; € Filfq
whenever e; € Filf9®5 k. Then each Filg has a basis consisting of a subset of
the {e;}, so that the same is true of Fil%. Thus each Fil’, is a direct sum-
mand of R" and gr%@ RS = grg. The sixth condition of definition 2.2.2 now
follows from lemma 2.1.9, lemma 2.1.8 and the third part of lemma 2.4.23.
OJ

For the rest of this section we will assume that 7 is 7,-discrete series
and let D, denote the set of 7,-discrete series lifts.

Lemma 2.4.27 D, is liftable.

Proof: We will argue by induction on m. The result for m = 1 follows
from part 2 of lemma 2.4.23.

Let R be an object of C} and let I be an ideal of R with mpl = (0).
Suppose that r is a 7,-discrete series lifting of 7 to R/I. Let {Fil’} be the
corresponding filtration of r. By the inductive hypothesis we may choose a
7,-discrete series lifting v of r/Fil™ 'r to R. It will suffice to show that the
natural map

HY(Gp,,Hom g(r', (gr°r')(m — 1)))
!
HY (G, Hom g(r/Fil™ 'r, (gr o) (m — 1)))
is surjective. The cokernel of this map equals the kernel of

H?*(Gp,,Hom k(F/Film_l?, (gr'7)(m —1))) @ [
!

H?*(Gpg,,Hom g(r, (gr %) (m — 1))).
Using local duality we see that it will suffice to show that
H(Gp.,Hom g(gr %' 7' /Fil"'7')(2 — m)) @p R
!

H(G ., Hom 4 (gr 7, 7/Fil™ 7 '7)(2 — m)) @y, 1V
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is surjective, where MY denotes the Pontriagin dual of M. However the com-
posites
k — H(GF,, Hom ;(gr o7, gr ™%7)(2 — m))
— H°Gp,,Hom (gr 7, 7/Fil " '7)(2 — m))
and N
R 5 HYGFp,,Hom g(gr %', gr™ ") (2 — m))
— H°(Gp., Hom g(gr %, v /Fil™ 17')(2 — m))
are isomorphisms, because
H°(Gr.,Hom g(gr %', gr'v’)(2 — m)) = (0)

and A
H°(Gp,, Hom 4 (gr °F, gr '7)(2 — m)) = (0)

for i =0,...,m — 3. The lemma follows. [J

2

Lemma 2.4.28 R°/7, is a power series ring in n® variables over O.

Proof: We will prove by induction on m that the dimension of the space
of 7,-discrete series liftings of 7 to k[e]/(€?) is m?. The lemma will follow
because 7,-discrete series lifts are liftable.

If m =1 then it follows from part 2 of lemma 2.4.23 that the space
of T,-discrete series deformations of 7 to k[e]/(¢*) has dimension 1. Thus the
space of 7,-discrete series liftings has dimension:

1+ n? — dimy H(Gp,,adT) = n?.

Now suppose that m > 1. To choose an 7,-discrete series lifting of 7 to
kle]/(€?) is equivalent to choosing

—alift FiI of Fil™ 7 to (k[d]/(2)";

— an 7,-discrete series lift r; of 7/Fil™ 'F to k[e]/(€?);

— a lifting ry of Fil™ 'F to k[e]/(e?) such that ry = grO(m — 1);
— an element of a specific fibre of

2 (G, Hom g (e2) (11, 72)) — Z* (G, Hom  (7/Fil ™17, Fil 7'7).

~— m—1
The space of choices for Fil"  has dimension m(n—m). The space of choices
for r; has dimension (n —m)? by inductive hypothesis. The space of choices
for r, then has dimension

m? — dimy, H*(Gp,,ad gr '7) = m* — 1.
Finally as in the proof of the last lemma, we see that

ZY(Gy, Hom gy (11, 72)) — Z* (G, Hom y (7/Fil ™7, Fil " ~'7))
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is surjective with kernel Zl(GFa? Hom k(F/Fﬂm_lF, Fil m_lf)) Thus any fibre
has dimension
dimy, Z' (G, Hom (r/Fil ™ ~'7, Fil 7))
- m(n R m> — dimy, HO(GF;? Hom k(F/Fﬂ milF, Fil mfl?_"))
+ dimy, H'(G,, Hom 1 (7/Fil ™7, Fil " '7))
= m(n —m) + dimy H*(G,, Hom (7/Fil ™7, Fil ™ '7))
= m(n — m) + dimy, HO(GFW Hom k(Fll m—lF’ F/Fll m_lf)(]_))
(We are using the exact sequence in the paragraph following definition 2.2.1,

the local Euler characteristic formula and local duality.) As in the proof of
the last lemma we see that

k= H°(Gp., Hom ,(Fil™ '7, 7 /Fil ™" '7)(1)).

Thus the space of 7,-discrete series liftings of 7 to k[e]/(€?) has dimension

m(n —m)+ (n—m)*+ (m?>—1)+ (mmn—m)+1) =n

The lemma follows. O

Corollary 2.4.29 Keep the notation of the lemma. Then
dimy, L, = dimy H*(GF.,adT).

The next lemma is self-explanatory.

Lemma 2.4.30 Suppose that d =1 and m = n. Define Fil'ad7 to be the set
of © in adT such that zFil'F C Fil™"'F for all i. If D, is the set of discrete
series lifts of T|g, then

L, = H'(Gp. /Ir., kl1,) ©® ker(H (G ., ad °F) — H'(G ., ad 7/Fil 'ad ).

2.4.6. Taylor-Wiles deformations. — Suppose that Nv =1 mod [, that
7 is unramified at v and that F|GF1~ =1,®5s, where dimg 1, =1 and 5, does

not contain @U as a sub-quotient. Take D, to consist of all lifts of 7|q,

which are (1 + M,(mg))-conjugate to one of the form ¢ @ s where ¢ lifts
v, and where s lifts 5, and is unramified. Then D, is a local deformation
problem and

L, = L,(D,) = H' (G, /If,,ad3,) ® H (Gp.,ad1,).
Note that in this case
lgo Ly, —1go H(Gr.,adT) = lgp H' (Ir.,ad ¢,) % = 1.
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We will write A, for the maximal [-power quotient of the inertia subgroup
of G‘}}Z It is cyclic of order the maximal power of [ dividing Nv — 1. If r is
any deformation of r|GF in D, over a ring R then detr: A, — R* and so
R becomes an O[A,]- algebra If a, denotes the augmentation ideal of O[A,]
then R/a,R is the maximal quotient of R over which r becomes unramified
at v.

2.4.7. Ramakrishna deformations. — Suppose that (Nv) # 1 mod [ and
that 7"|GF @D e@w @ s,, where ¢ and 5, are unramified and 5, contains

neither v, nor e as a sub-quotient. Take D, to consist of the set of lifts
of 7|g, which are (1+ M,(mg))-conjugate to a lift of the form

we x 0
090
0 0s

with ¢ an unramified lift of v, and s an unramified lift of 5,. Then D, is
a local deformation problem and L, = L,(D,) is

H'(Gro/Ip. k (102 8)) ® H' (G, Hom (B, ,€)) & H (G /I, ad5,).

Then
dlmk Lv
=2+ lel]C Hl(GF;,/]Fga adEU)
=2+ dimy H°(GF,,ads,)
= dimy H°(GE,,adT).

Moreover D, is liftable. (Because if R is an object of Co and if I is a closed
ideal of R then

HY(Gry, R(e)) — H'(Gr,, (R/1)(e)).)

2.4.8. One more local deformation problem. — Suppose again that
(Nv) # 1mod ! and that r|GF = e @, ©F,, where ¢, and 5, are un-

ramified and 3, contains neither v, nor v,e as a sub-quotient. Take D, to
consist of the set of lifts of 7|g, which are (14 M,(mpg))-conjugate to a lift
of the form

wl*o

0 10
0 0 s
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with 1 (resp. v;) an unramified lift of i e (resp. v,) and s an unramified
lift of 5,. Note that D, includes all unramified lifts and all Ramakrishna lifts
(see section 2.4.7). It is a local deformation problem and L, = L,(D,) is

Hl(GFa/]Faﬁ Hom (%67%6) @ Hom (Em Eu)) o H! (GFW Hom @m%ﬁ))@
@Hl(GFb,/IF%,adEv).

Then dlmk LU =3+ dlmk Hl(GFT)/IFT}, ad§v) =3+ dlmk HO(GFW adEU) =1+
dlmk HO(GFT), adT").

We remark that this deformation problem is only used in the proof of
theorem 2.6.3, where its function is to compare unramified deformations with
Ramakrishna deformations.

2.5. An application of the Cebotarev Density Theorem. — We will keep
the notation and assumptions established at the start of section 2.3. In this
section we will lay the groundwork for the Taylor-Wiles arguments we will
use to prove our modularity lifting theorems. More specifically we will use
the Cebotarev density theorem and our Galois cohomology calculations to
construct the sets of auxiliary primes on which the method relies. To be
able to do this we will need to put some restrictions on the image of 7.
The condition we will need to impose we have called ‘big’. This condition is
somewhat ugly, but we failed to find a more natural formulation. It is how-
ever usually easy to verify in specific cases. The terminology ‘big’ is perhaps
unfortunate. If the cardinality of a subgroup H C G,(k) is large compared
to the cardinality of G, (k) then the H is often ‘big’ in our technical sense.
However there are also many subgroups H C G,(k) whose cardinality is not
large which are also ‘big’ in our technical sense. We apologise for our lack
of imagination in nomenclature.

Definition 2.5.1 We will call a subgroup H C G,(k) big if the following
conditions are satisfied.

— HNG%k) has no l-power order quotient.

— HO(H, g,(k)) = (0).

— For all irreducible k[H|-submodules W of g,(k) we can find h € HN
GO(k) and o € k with the following properties. The o generalised eigenspace
Vi of hin k™ is one dimensional. Let mp o 1 k™ — Vi o (Tesp. ina) denote
the h-equivariant projection of k™ to Vi o (resp. h-equivariant injection of

Vi into k). Then w0 W oy o # (0).

Similarly we call a subgroup H C GL,(k) big if the following conditions
are satisfied.
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— H has no l-power order quotient.
— HO(H, (k) = (0).
— HY(H, g)(k)) = (0).
— For all irreducible k[H|-submodules W of g°(k) we can find h € H
and o € k with the following properties. The o generalised eigenspace Vi, o
of h in k™ is one dimensional. Let mp o : K™ — Vi (Tesp. ina) denote the
h-equivariant projection of k™ to Vi . (resp. h-equivariant injection of Vj,
into k™). Then mpq 0 W oip, # (0).
(Recall that g° denotes the trace zero subspace of LieGL, C LieG,.)
We note that the fourth property will also hold for any non-zero F,[H]-
subspace W of g, (k). (Because it holds for W if and only if it holds for its
k-linear span.) Also note that, if H C G,(k) surjects onto G,(k)/G°(k) and
if HNGYk) is big, then H is big.
At the referee’s suggestion, we will digress here to give some examples
of big subgroups H C G, (k), which will be needed later.

Lemma 2.5.2 Suppose that | > 2n — 1 is a prime; that k is an algebraic
extension of ¥;; and that H C GL,(k). Suppose that

— H has no l-power order quotient,
— H contains Symm " 'SLy(F,), and
— H'(H,gy(k)) = (0).

Then H s big.

Proof: As a SLy(F;)-module we have

adSymm”™ ! =2 1@ Symm? @ Symm* & ... ® Symm > 2.

(That ad Symm "' is semi-simple follows for instance from [Se2].) As 2n—2 <
I — 1 each factor in this decomposition is irreducible. In particular

H(H, g,(k)) = (0).
Let T' denote the torus of diagonal elements in SLy(F;) and let ¢ denote
a generator of T. Let D = (ad7)”. As n <l we can decompose
Symm" =V, Vi@ ... eV,

where the V; are the eigenspaces of ¢t and each is one dimensional. Let i ;
denote the injection V; < Symm™ ! and m,; denote the t-equivariant projec-
tion Symm "' — V;. Thus 7 i,; = 1. As 2n <[+ 1 we see that

n—1

D = @) Hom (V;, V)

J=0
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has dimension n and that, for i =0,...n —1
dim D N Symm % = 1.

For each ¢ = 0,...,n — 1 choose j such that the projection of D N Symm *
onto Hom (V},V;) is non-trivial. Then

m;(D N Symm 2i)it’j # (0).
O

Corollary 2.5.3 Fiz positive integers m and n. There is a constant C(mn?)
such that for any prime 1 > C(mn?) and any finite extension k/F; of degree
at most m the group GL,(k) has the following property. Any subgroup H C
G Ly, (k) which contains Symm™ *SLy(F;), but has no [-power order quotient,
15 big.

Proof: Using the lemma one just needs to check that H'(H, g (k)) = (0).
However [Se2] tells us that g,(k) is semi-simple as an H-module. The result
then follows from theorem E of [N]. O

Corollary 2.5.4 Suppose that | > 2n — 1 is a prime; that k is an algebraic
extension of ¥y; that k' C k is a finite field and that H C GL,(k). Suppose
that

E*Symm ™ *GLy(K') D H D Symm "™ ' SLy (k).

Then H s big.
Proof: 1t follows from the lemma that it suffices to show that
H'(SLy(K'),ad Symm ™ 1) = (0).
(Note that [ J[H : Symm "™ 'SLy(k")].) As in the proof of the lemma we have
a decomposition
adSymm”™ ' =2 1@ Symm? @ Symm* & ... ® Symm " 2.

Let B (resp. T') denote the subgroup of SLo(k') consisting of upper triangular
(resp. diagonal) matrices and let U denote the Sylow [-subgroup of B. Thus

n—1
H'(SLy(k'),ad Symm ") — @HI(U, Symm )5,
i=0
As [ >n+1 it follows from lemma (2.7) c¢) of [CPS| that for i =0,...n —1
we have

H' (U, Symm *)? = (0).

The lemma follows. [
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Lemma 2.5.5 Suppose that n is even; that | > max{3,n} is a prime; that
k is an algebraic extension of F;; that k' C k is a finite field; and that
H C GL,(k). Suppose that

k*GSpn(K') D H D Spu(K').
Then H s big.
Proof: For definiteness we suppose that Sp, is defined by the skew-

symmetric matrix
B 0 1,
/= (—1n/2 0 )

ie. Sp, = {9 € GL, : ¢gJ'g = J}. Define H-submodules Ry, R; and Ry of
gn(k) as follows. R, consists of scalar matrices. R; consists of matrices A
such that AJ+ J'A = 0. Finally R, consists of matrices A such that tr A =0
and AJ — J'A = 0. Each is preserved by H°. As [ >n we see that

ad :Ro@Rl@RQ

and each R; is an irreducible Sp, (F;)-module. (The latter fact is because each
R; is a Weyl module with [-restricted highest weight.) Thus H°(H, g% (k)) =

(0).

Choose o € F; with o? # 1 and take h to be the diagonal matrix
diag(a, 1,..., 1,071 1,...,1)

in Sp,(F;). If i, (resp. m,) denotes the injection of (resp. projection onto)
the « eigenspace in k™ then

WaRjia 7é (O)
for 7 =0, 1 and 2.
Finally it will suffice to check that
H'(Spu(K), ga(k)) = (0),

or simply that H'(Sp,(k'),g%(k)) = (0). (Because Sp,(k’) has no quotient of
l-power order.) Let B, denote the Borel subgroup of elements of Sp, of the

form
a b
a

with @ upper triangular. Then (ad7)P¥) = R,. Also let T, denote the sub-
group of Sp, consisting of diagonal elements. Identify the character group
X*(T,) with Z"? by

(al, ey an/g)diag(tl, . tn/g, t1_17 ceey t;/l2> = t?l...tzr;g.
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Corollary 2.9 of [CPS] tells us that H'(Sp,(k'),g2(k)) = (0). (According to
footnote (23) on page 182 of [CPS], because [ > 3, we may take ¢ of corollary
2.9 of [CPS] to consist of (1,-1,0,...,0), (0,1,—1,...,0), ..., (0,0,....,1,—1),
and (0,0,...,0,2). Then that corollary tells us that

dim H'(Sp,(K'), g2 (k)) =2(n/2 —=1)+1—(n—1)=0.)
U

Lemma 2.5.6 Suppose that | > n is a prime; that k is an algebraic extension
of Fi; that K C k is a finite field; and that H C GL,(k). If n = 2 suppose
further that 1 > 3 and #k' > 5. Suppose that

k*GL, (k') D> H D> SL, (k).
Then H s big.
Proof: As | > n we see that
gn(k) = gy (k) & k1,
as H-modules and that g°(k) is an irreducible SL,(F;)-module. We deduce

that H°(H, g, (k)) = (0).
Choose o € F) with o? # 1 and take h to be the diagonal matrix

diag(a, !, ..., 1)

in SL,(F;). If i, (resp. m,) denotes the injection of (resp. projection onto)
the a eigenspace in k™ then

Tafn(k)ia # (0)
and
Toklpia # (0).
Finally it will suffice to check that

HY(SLu(K'), gu(k)) = (0),

or simply that H'(SL,(k"),g%(k)) = (0). (Because SL,(k") has no quotient of
l-power order.) But this follows from table (4.5) of [CPS]. O

These examples are by no means exhaustive. We will discuss another
example later (see lemma 2.7.5). We wonder whether in any irreducible com-
patible system of de Rham A-adic representations from the absolute Galois
group of a number field into G, with distinct Hodge-Tate numbers, the im-
age of the corresponding mod A representation will be big for all but finitely
many .

We now turn to the Galois theoretic part of the Taylor-Wiles argument
in this context.
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Definition 2.5.7 Suppose that
S = (F/F+7 Sa ga 0777 X {DU}’UES)

1s a global deformation problem and that T C S. Let (Q be a finite set of
primes v € S of FT which split in F and for which

Nv =1 mod .

Let @ denote the set consisting of one choice v of a prime of F above each
element of Q. For v € Q suppose also that T|g, =1, B S, where dimg1 =1

and 3 does not contain 1 as a sub-quotient. Then we define a second global
deformation problem

S(Q) = 8(Q, {¥,}veo) = (F/F*,SUQ,SUQ,O,T, X, {D, }uesuo),

where for v € Q we take Dy to consist of all lifts of T|g,. which are (1 +

M, (mg))-conjugate to one of the form 1 @ s where 2 lifts 1, and where s
lifts 5 and is unramified. (See section 2.4.0.)

If v e Q then we will write A, for the mazximal l[-power order quotient
of the inertia subgroup of G'}‘;g. We will also write

Ag =[] A,
vEQR
and arg for the ideal of Tr|Ag| generated by the X,,;; (for v € T and
i,j=1,...,n) and the 6 — 1 for § € Ag. If T is Schur we have
O univ
RS(TQ)/C‘T,Q = Rg™.
The next lemma follows immediately from corollary 2.3.5.

Lemma 2.5.8 Keep the notation and assumptions of the start of section 2.3.
Also suppose that T is Schur and that for v € S —T we have

+ . _ 1
dimy, L, — dimy H*(Gp,, adF) = {EF Q=172 g i'jz

Let (Q,{¥,}veq) be as in definition 2.5.7. Then RE(TQ @,y can be topologically

loc

generated over RgG = R};’(CQ) r by

dimy, HE(Q)J—,T(GF"’S’ adT(1)) + #Q — X er ulFy : Quln(n —1)/2—
— dimy H*(Gp+ g,adT(1)) — N (14 x(c))/2

elements.
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Proposition 2.5.9 Keep the notation and assumptions of the start of section
2.8. Let qy € Zxo. Suppose that T is Schur and that the group T(Gp+(,)) is
big. Suppose also that for ve S —T we have

. o 0 —_ JIES - Qin(n—1)/2if vl
dimy L, — dimy H”(GF,,adT) = {0 -
Set q to be the larger of dimkHl:l +(Gpr.g,ad7(1)) and qo. For any posi-

tive integer N we can find (Q,Q, {Y,}oeq) as in definition 2.5.7, with the
following properties.

- #Q =42 qo.
- vaeQ then Nv =1 mod V.
- R TQ{w )y can be topologically generated over R?CT = RIOCQ)T by
#Q— > [F :Qln(n=1)/2=n) (1+x(c))/2
veT, v|l v|oo
elements.

Proof: Suppose that (Q,{w,}veq) is as in definition 2.5.7. We have a
left exact sequence
(0) — H' (G . (ad7)(e)) — HY (G- suigr (adF)(e) —
- @’UEQ ' ([Faa (adF) E))GFN
As _ _
H*(Ir,, Hom (¢,,3,) (€))% = Hom (¥, 5,) . = (0)
and B _
H'(Ip,, Hom (3,, 9, )(€))“" = Hom (50,9, )c, = (0)
we have a left exact sequence
(0) _>H1(GF+,Sa(adT)(€>> - (GF+SUQ7( dF)(
— @,eq(H' Ik, (ad5,)(€)) s @ H'(Ir,, (ad P,)(€))“Fv),
and hence a left exact sequence
(0) — HY gy (Gt sugn (ad7)(©)) — HLL (Crv s, (ad P) () —
- @’UGQ Hl (GFT;/[FW (ad wv)(e)) = @vEQ k.
The latter map sends the class of a cocycle ¢ € Z'(Gp+ g, (adT)(€)) to

l

(7TFrob U (Frobg) o ¢<Fr0b ) o Z.Frobgﬂ,/)v(Frob;))’UEQ'

(We are using 7, (resp. in,) to denote the h-equivariant projection onto
(resp. injection of) the « eigenspace of h.)

By lemma 2.5.8 it suffices to find a set @ of primes of F'* disjoint from
S with #0Q > ¢y and such that
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— if v € @ then v splits completely in F((~);

— if v € @ then 7(Frob,) has an eigenvalue v, (Frobg) whose generalised
eigenspace has dimension 1;
- Héi- (GF+,57 (adf)(e)) — @ueQ Hl(GFa/IFajv (ad %)(6))
(If necessary we can then shrink @ to a set of cardinality ¢ with the same
properties.) By the Cebotarev density theorem it suffices to show that if
¢ is an element of the group Z'(Gp+ g, (adT)(e)) with non-zero image in
H'(Gp+ g, (adT)(e)), then we can find o € Gp(y) such that

— 7(o) has an eigenvalue o whose generalised eigenspace has dimension
L;
— Ty © P(0) 0lp o # 0.
Let L/F((;v) be the extension cut out by ad7. If ¢’ € G then T(o'0) €
k*7(0) and ¢(o’'c) = ¢(0’) + ¢(o). Thus it suffices to find o € Gp(,y) such
that

— 7(o) has an eigenvalue o whose generalised eigenspace has dimension
L;
- To,a © <¢(GL) + gb(O‘)) © Z.U,OC 7£ 0.
It even suffices to find o € Gal (L/F({;~)) such that

— 7(o) has an eigenvalue o whose generalised eigenspace has dimension
L;
— Moo © (b(GL) o io,a # 0.
As T(Gpe(g) is big, so is T(Grr(y))- Thus H'(Gal(L/F(¢~)),adT) = (0).
We deduce that [¢] # 0 implies that ¢(GL) # (0). Then the existence of a
suitable o follows from our assumptions. []

2.6. Lifting Galois representations. — In this section we will prove
a generalisation of Ramakrishna’s lifting theorem for Galois representations
[Ra2]. We keep the notation and assumptions at the start of section 2.3.

Definition 2.6.1 Suppose that ad7 is a semisimple k[Gp+]-module. If W C
ad7 is a k[Gp+]-submodule we will define

H{(Gp+ 5, W)
= HI(GF+75, W) N Hé(GF+7S, ad?)
= ker<H1(GF+,Sv W) — ®5e§ H1<GF57 W)/(Ls N H1<GF57 W)))

(GF+75, W(l)) N HEL<GF+,S; ad 7_“(1))
— ker(H' (G 5, W(1) — @, 5 H{(G o, W)/(LE 0 H (G, W(L)))-
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We will call W (resp. W(1)) insubstantial if Hg(Gr+s, W) = (0) (resp.
Hp (G5, W (1)) = (0)).

Definition 2.6.2 Suppose that
S - (F/F+7 Sa ‘§7 O7F7 X {DU}'UES)

is a global deformation problem. Let Q be a finite set of primes v € S of F*
which split in F and for which

Nov # 1 mod (.

Also let Q denote a set consisting of one choice of a prime v of F' above each
element v of Q. For v € Q suppose also that r|GF = 1,®5, with t, =V, ®,€

where dimyg ¢, = 1 and 3, does not contain 1, or e as a sub-quotient. Then
we define a global deformation problem

S[Q] = S[Q, {¥, }veq) = (F/F*,SUQ,SUQ, 0,7, x, {D, }uesua),

where for v € Q we take D, to consist of all lifts of F|g, which are (1 +
M, (mg))-conjugate to one of the form t © s where t is an estension of an
unramified lift 1 of ¥, by e, and where s is an unramified lift of 5. (See

section 2.4.7.) We also define a second new global deformation

S[Q]/ = S[Q7 {EU}’UGQ]I = (F/F+> S U Q: §U @7 07F7 X) {DU}UGS U {D;}vGQ)a

where for v € Q we take D) to consist of all lifts of T|GF§ which are (1 +
M, (mg))-conjugate to one of the form t © s where t is an extension of an
unramified lift of 1, by an unramified lift of V¥, €, and where s is an unramified
lift of 5. (See section 2.4.8.)

If v € Q we will let my (resp. i, TESP. Tg ., TESP. iy .) denote the
G, -equivariant projection T —» ), (resp. inclusion 1, — T, resp. projection
T —» 1€, resp. inclusion e — T).

We now state our main lifting theorem for Galois representations. We
believe such theorems have some intrinsic interest. In addition we will need to
apply this theorem in the following situation. We will have a mod [ represen-
tation which is induced from a character (and hence provably automorphic).
We will need to find an [-adic lift whose restriction to the decomposition
group at some prime corresponds (under the local Langlands correspondence)
to a Steinberg representation. (Such a lift will never itself be induced from
a character.)

The conditions of the following theorem are unfortunately rather compli-
cated. We apologise for this. They deserve clarification. However the theorem
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does suffice for our purposes. The reason for introducing the submodules W}
and W) of ad7 is that Ramakrishna’s method [Ra2] may not work to kill
cohomology classes on all of ad7. However sometimes in applications we will
know for other reasons that there are no cohomology classes supported on
these parts of ad7.

Theorem 2.6.3 Keep the notation and assumptions of the start of section
2.4. In addition make the following assumptions.

— For all v e S the local deformation problem D, 1is liftable and

: : _ FEf:Qin(n—1)/2if |l
dimy, L, — dimy, HO(Gpg,adr) = {g Qijn( )/ i v|,ﬂ.
— For each infinite place v of F* we have x(c,) = —1.
— ad7 and (adT)(1) are semisimple k|G p+]|-modules and have no irre-
ducible constituent in common.

— H'(T(Gp+(c)), gn(k)) = (0) for i =0 and 1.

Suppose that Wy and Wi are Gp+-submodules of adT with Wy and Wi(1)
insubstantial. Suppose moreover that for all irreducible k[Gp+ s]-submodules
W and W' of g,(k) with W' ¢ Wy and W ¢ Wy we can find 0 € Gpgs and
a € kX with the following properties:

— €(0) # 1 mod .

— The o generalised eigenspace V, o of T(0) and the ae(o) generalised
eigenspace Vyae(o) of T(0) are one dimensional. Let i, (T€SP. iy ac(0)) de-
note the inclusions Vy o — k" (resp. Vyaeo) = k). Let Toq @ k" — Vg
(resp. Toac(o) - K" — Vg,ae(a)) denote the o-equivariant projections.

- iO',OéE(O')ﬂ-O'OL g WO'

- (Z'J,oas(a)ﬂ-a,ae(a) - ia,aﬂa,a) ¢ Wy,

— Mo, © Wo Z.O',ae(a) 7& (O)

— T O W 0lg o # Moaco) © W Olyaco) for some w' € W'.

(We note that this property will also hold for any non-zero ¥Fi[Gr+ s]-subspaces
W and W' of gn(k) with W' ¢ Wy and W ¢ W;. Because it holds for W
and W' if and only if it holds for their k-linear spans.)

Then we can find (Q,{¥,}veq) as in definition 2.6.2 such that

R = 0.

In particular there is a lifting v : Gp+ sug — Gu(O) of T unramified at
all but finitely many primes, with vor = x and such that for all v € S the
restriction r|g, lies in Dj.
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Proof: We will continue to use the notation of definition 2.6.2. If the
cohomology group H},(Gp+g,ad7(1)) = (0) then the proposition follows at
once from corollary 2.3.6 (with @ = (). In the general case we need only
show that we can find a prime v € S of F* which splits in F such that

— Nv # 1 mod [. L B B
- T|GF5 =1t,®3s, where t, = ¢, ® 1¥,e and neither 1, nor e is a
subquotient of 3,.

dlmk H(lﬁ[{v}})L(GF+,SU{U}7 (adT")(l)) < dlmk Hél (GF+75', (ad?)(l))

— Hé[{v}]<GF+7SU{U}7WO) = (0) and H(lﬁ[{v}])L(GF+7SU{’U}7W1(1>> = (O>, le
Wy and Wi(1) remain insubstantial for S[{v}].

(Then one can add primes v as above to S recursively until

Hizigne (G sugs (adT)(1)) = (0).)

So let v € S be a prime of F* which splits in F such that

— Nv # 1 mod [. L B B

— Flgp. = t, ®3, where t, = ¢, ® e and neither ¢, nor ¢,e is a
subquotient of 3,.

— Z‘Evﬁﬂ-@v ¢ Wo and Z'Eveﬂ'@ve — Z.EUTFEU g Wwy.

Note that there are left exact sequences
(0) = Hg(Gp+5,adT) = Hgpoyy (G sugey, adT) — H' (I, k(i 75.))
and
(0) = Hgpy(Gr+ supey adT) — Hip (G supey, ad T) —
— HYGr /Iy, k(i g — i, 7))
and

(0) = Higjpye (Gre sugey: (adT)(1)) — HL(G_FH;, (ad7)(1)) —
— HY(GE, Ik, ((adt)/k(ig 75 ))(1)).

It follows from lemma 2.3.4 (and the discussions of sections 2.4.7 and 2.4.8)
that
dimy, Hllzl (GF+,,5’7 (ad F)(l)) — dimy, H(lq{v}]/)i (GF+,SU{U}7 (ad F)<1))
= dlmk Hé(GF+,S, adF) - dlIIl]C Hé[{v}]/(GF+,SU{U}7 ad F)—f—
+ dimy, L, — dim H°(GE,, adT)
= dimk Hé(GF‘F,S; adF) - dimk Hé[{v}],<GF+’SU{U}J ad?) + 1L
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Moreover because iy 75 ¢ Wy we see that H'(Gp,,Wy)N L, is contained in
HY(Gp, /I, W) and so

H}?[{UH(GF+,SU{U}7 Wo) C Hé(GF+7s, Wo) = (0)
Similarly because (i 7y  — iy 75 ) € Wi we see that
HY(Gr,Wi(1)) N Ly € HY (G /Ir;, Wi(1))
and so
Hé[{v}]l<GF+,SU{U}J Wl(].)) C H}L (GF-F’S, Wl(l)) - (O)

Thus the prime v will have the desired properties if
H}. (G s, (ad7)(1)) — H (G, /Iy, (ad D) k(i 75.)) (1))
and
Hi(Gp+ g,adT) — Hé[{y}y(Ger,su{v}, ad7) — H'Y(Gp. /I, k(ig 75« — i3 75.)

are both non-trivial. (From the non-triviality of the first map we would then
deduce that

dimy, Hp, (G5, (ad 7)(1)) = dimy Hlyoy (Gresopey. (ad P)(1)) + 1,

so that
dlmk Hé(GF+’S, ad F) Z dlmk Hé[{v}]/<GF+,SU{v}a ad F)

and, in fact,
Hg(Gpr5,adT) — Hgpn(Gre sugey, adT).)

Suppose that H}., (Gp+ g, (adT)(1)) # (0). It follows from lemma 2.3.4
that
dim Hg(Gp+ g,ad7) = dim H}. (Gp+ g, (ad7)(1)) > 0.

Choose a non-zero class [p] € H},(Gp+g,(adT)(1)) and a non-zero class
[¢"] € H(Gp+5,adT). By the Cebotarev density theorem it suffices to show
that we can choose 0 € Gr and « € k with the following properties.

= Olre) # 1.

— 7(o) has eigenvalues a and «e(o) and the corresponding generalised
eigenspaces U and U’ have dimension 1. Let i (resp. ¢) denote the inclu-
sion of U (resp. U’) into k" and let 7 (resp. n’) denote the o-equivariant
projection of k" onto U (resp. U’).

—i'm € Wo.

— 7 —ir & W1.

— moy(o)oi #0.
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—moy(o)oi# oy’ (0)od.

Let L denote the extension of F((;) cut out by ad7. Replacing o by
o'c with ¢’ € G; we need only show that we can find 0 € Gr and «a € k
with the following properties.

o G|F(Cz) 7 1.

— 7(0) has eigenvalues « and ae(o) and the corresponding generalised
eigenspaces U and U’ have dimension 1. Let i (resp. ') denote the inclu-
sion of U (resp. U’) into k™ and let m (resp. 7’) denote the o-equivariant
projection of k™ onto U (resp. U’).

- 7;/7'( Q Wo.

—i'n’ —im & Wh.

—mop(Gr)oi #0.

— o' —moy’(c')oi—n"oy"(c')0i is not identically zero on Gp.

Note that ¢(Gr) ¢ Wy and ¢"(Gr) ¢ Wi (because Hg(Gp+ g, Wo) = (0)
and H}, (Gp+g,Wi(1)) = (0)). Hence the existence of o follows from the
assumptions of the theorem. []

Because the hypotheses of this theorem are so complicated we give a
concrete illustration of the theorem. It will not be needed in the sequel. We
will write CI(F") for the class group of a number field F.

Corollary 2.6.4 Suppose that n > 1 is an integer, that F* is a totally real
field and that F is a totally imaginary quadratic extension of F*t. Suppose
also that | >n is a prime with the following properties.

— 1 is unramified in FT.
— All primes of F* above [ split in F.
— UJ#CUF)Gai(p/F+), the order of the Gal (F/F*)-coinvariants C1(F).

Suppose finally that
T GF+ — Qn(Fl)

18 a continuous, surjective homomorphism such that

— F_l(GLn(Fl) X GLl(Fl>) = Gp;

— Tlg, only ramifies at primes which are split over F7;

— voT7(c) = —1 for any complex conjugation c;

— for any place w of F above [ then T|g,, is in the image of G, and
for each 1 =0,...,l —2 we have

dimk(w) gl"iG;IHGFw <1
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Then there is a finite extension k/F; such that T lifts to a continuous
homomorphism

r: G+ — G,(W(k))

which ramifies at only finitely many primes and which is crystalline at all
primes of F' above | (with Hodge-Tate numbers all between 0 and [ —2).

Proof: We apply the theorem. We take O = W (k) for a suitably large
finite extension k/F;. We take S to be the set of places above [ or below
a prime of F' at which 7|g, is ramified. For v|l we take D, as in section
2.4.1. For v € S with v/l we take D, as in section 2.44. As | > n we
have ad7 = k1, ® ad’7 and both summands are irreducible G p-modules.
As F7((;) is linearly disjoint from F over FT (look at ramification above
l) we have that H° (_<GF+(Q))7kln) = (0) and Hl(F(GFﬂCZ)),k‘ln) = (O)
Clearly HO(T(Gp+(c)), gh(k)) = (0). By [CPS] (see table (4.5)) we have that
HY(SL,(F), M, (Fl)tr 0) (0), and so H'(F(Gp+(), 00(k)) = (0). We take
W(J = kln and W1 ( )(1) Then

Hé(GFJr,Ag,Wo) = ker(Hl(GF+,k1 ) — @ HI(IFL k‘l ))
= ker(H'(Gp+,k1,) — @, HY( F+,k1 )
= ker(H'(Gp, kl,) — @, Hl(IFT), k1,))Gal (F/FT)
= Hom (CI(F)/(c — 1)CI(F), k) = (0).

(Note that if v is a prime of F ramified over F* then H'(I.+, kl,) —
HY(Ip., k1,).) Also

H. (Gpe g, W) = ker(HY(Gp+, (k1,,) —>@H (Ips, (K1,)(1))).

(Note that if ¥ is a prime of F ramified over F* then H'(I+,(k1,)(1)) —
HY (I, (k1,)(1)).) By, for instance, theorem 2.19 of [DDT] we see that

H} (Gp+ g, W) = (0).

The rest of the hypotheses of the theorem are easy to verify and the corollary
follows. [J

2.7. An example. — In this section we will specialise the theorem of
the last section to the case where we will require it: 7 will be induced from
a character and we will be looking for a lift r with the property that the
restriction to some decomposition group corresponds (under the local Lang-
lands correspondence) to a Steinberg representation.
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Fix a positive even integer n and choose a second positive integer k,
greater than (n — 1)((n +2)"/2 — (n — 2)™?)/2"*!, (This number is too large
for its precise value to matter, what matters is that there is some constant
kn, which depends only on n which will suffice.)

In this section we will consider the following situation.

— M/Q is a Galois imaginary CM field of degree n with Gal (M/Q)
cyclic generated by an element 7.
— [ > 144k, is a prime which splits completely in M and is = 1 mod n.
— @ # 1 is a finite set of rational primes, such that if ¢ € @) then ¢
splits completely in M and ¢ Z1mod ! for i =1,...,n.
— 6:Gal(Q/M) — F, is a continuous character such that
— 00° = et=m;
— there exists a prime w|l of M such that for i =0,....,n/2 —1 we
have 6, , =€
— if vy,...,v, are the primes of M above ¢ € Q then {#(Frob,,)} =
{agq7: j=0,..,n—1} for some a, € F,;
Let S(0) denote the set of rational primes above which M or  is ramified.
It includes .

- E/Q is an imaginary quadratic field linearly disjoint from the normal

closure of Mke”)(gl) /Q in which every element of S(#)UQ splits; and such

that the class number of F is not divisible by .

The referee asks the good question: are there any examples where all
these conditions are met? The answer is ‘yes’. One example is given in the
proof of theorem 3.1 of [HSBT|. We remark that the primes in @ will be
those at which the lift we construct will correspond (under the local Lang-
lands correspondence) to a Steinberg representation.

Set L/Q equal to the normal closure over Q of the composite of E and

Mkera(_g). Also let (EM)" denote the maximal totally real subfield of EM.
Then ngal(L/EM) extends to a homomorphism, which we will also denote 6,

0:Gal(L/(EM)Y) — Gi(F))

such that 6(c) = (1,1,7) and v o f = € Let 7 : Gal(L/Q) — G.(F))
denote the induction with multiplier ¢!~ from (Gal (L/(EM)"),Gal (L/EM))
to (Gal(L/Q),Gal (L/E)) of 6. (See section 2.1.)

We have an embedding

Gal (L/EM) — (F,)"? x F¥
—r —rn/2-1

ar— (0(a),0 (a),...,0 (); e(a)).
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th root of unity ¢, € F;. Suppose a = (g, .., Qi jo— 1) €

(F,)"/? and 3 € F, satisfy 52 = a.. Qpa—y. I n/2 <i <n—1set o; = q 1n/2

Let I',3 = I" denote the group generated by (Fl )2 x F) and two elements
C and T satisfying

—C?=1and T" =1;

— CTCT ™' = (ag, ..., Qnya—1; 1);

— T(Cbo,...,an/z_l,b)Til (al,.. Cln/g 1,b (IO ,b)

— and C(ay, ..., n/2-1;0)C = (b~ "ay?t, ..., b' "a ;/12 ;5 0).

Fix a primitive n'

Define characters = : 1" — F;* by
— Z(T) = G,
- Z(C)=-1,
— and Z(ag, ..., an/2-1;b) = b;
and O : ((F, x FX,CT"?) — F, such that
- @(Go, ey A /213 b) = do,
— and O(CT™?) = 3.
Note that
- O(CT'CT™") = «p..c;i_1 (because (CTCT HT(CT'CTHT' =
CTHCT-0*D), and
— O(T'CT*T~%) = Blag...a;_1)~' (because (CT'CTH)TH(CTT~" =
CTm?).
Let Iy = I, 50 denote the subgroup generated by ((F))®)®"/2*l and by C

and 7. The next lemma tells us that for many calculations we can replace
the group Gal(L/Q) by the more concrete groups I' and Ij.

Lemma 2.7.1 There exist a and [ such that the embedding
Gal (L/EM) — (F,)"? x F¥

extends to an embedding
j:Gal(L/Q) — I
satisfying
- on =€
- @ Oj = 97'
— the image of j contains Iy;
— some complex conjugation maps to C;
— and some lifting T € Gal (L/E) of the generator T of Gal (EM/E) =
Gal (M/Q) maps to T.
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If such an embedding exists for some « it also exists for any element of
a((F7 )2

Proof: Note that EM and Q((;) are linearly disjoint over Q. Thus we
may choose a lifting 7 € Gal (L/E) of the generator 7 of Gal (EM/E) =
Gal (M/Q) with ¢(7) = (,. Also choose a complex conjugation ¢ € Gal (Q/Q).
Then e(c7™?) =1 and so

Also note that e(cFcF—1) = 1. Setting a; = 8 (cFe7!) we get a homomor-
phism
j:Gal(L/Q) — I

extending the embedding Gal (L/EM) — (F, )2 x F} and which sends 7 to
T and ¢ to C. We have = oj =e. Note that

B(cF /)2 = B(cF 261 = B(cFer T (Fer ). 8 (FerY),

and so for some choice of # we have @ oj = 6.

Choose a place u of E above [. Let A denote the subgroup of the image
of Tnd ! (E/E)
Gal (E/EM)
a place of KM above u. For any integer i define 3; to be
— —ip if i=igmodn and 0 <iy <n/2—1, and
—ip+1—3n/2 if i=igmodn and n/2 <ig <n—1.

Note that 5; + Bijn2 =1 —n. We have

@ generated by the decomposition groups above wu. Let w be

n—1

n—1
1.~ T w7 = a— @
i=0

The composite map

H F>< n/2+1

sends
n—1 n—1

n—1 n—1
i i— /Bz —n —
(ai)i L ( a’f? aiﬁz 1?"'>Hai o /27(1_[ ai)l n)
=0 =0

=0 1=0
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Moreover by part three of lemma 2.7.2 below we see that the image has
index dividing k,. Thus the image of j contains Ij.
Finally note that

((ag, .oy pjo—1; 1)T)" =1
and
Cl(ag, ..., anjo—1; 1)TC((ag, .., Gpja—1; DT) ! = (apag?, ..., Oén/g_la;/22_1; 1).
(These two equalities follow directly from the relations defining I:
((aoy s Qpyo—1; 1)T)"
= (@g, ..., anja—1; 1) (a1, ..o, Qpya_1, agti1)...(agt, ..., a;/l%l; 1)...

L(art a;/lzfl, ao; )T
and
C(Clo, ey an/g_l; 1)0_1(CTCT_1>(CL0, vy A /2135 1)_1
- (CL(), s an/Z—l; 1)_1(Oé0, s an/?—l; 1)(@0, ce0y a’n/?—l; 1)_1')

O

Here is the evaluation of a determinant that was used in the proof of
the last lemma. The first two parts are only needed to help prove the third
part.

Lemma 2.7.2 We have the following evaluations of determinants.

1. For an n X n determinant:

1600 00
1¢b0...00

lcebd 00
det .

lcce cb
lcce...cc

2. For an n x n determinant:

abbb bb
cabb...bb

ccab bb
det L )

= (cla—=0b0)"—bla—c)")/(c—0D).

ceccee ab
cccecce...ca
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3. For an (n+1) x (n+ 1) determinant:

0 1 2 3 n—2 n—1 2n-—1
n 0 1 2 ...n—-3 n—2 2n-—1
n+1 n 0 1 n—4 n—3 2n-—1

det
2n—32n—42n—-52n—=6 0 1 2n —1
n—22n—-32n—42n—5... n 0 2n—1

2n—12n—12n—12n—1 2n—12n—-12(2n—1)

=(-1)"2n—-1)((n+1)"+(n—1)")/2.

Proof: For the first part subtract the penultimate row from the last row,
then the three from last row from the penultimate row and so on finally sub-
tracting the first row from the second. One ends up with an upper triangular
matrix.

For the second matrix let A, denote the determinant. Subtract the first
row from each of the others and expand down the last column. Using the
first part, we obtain

a b b b b
c—aa—b 0 0O ... 0
0

A, =bla—c)" 1+ (a —b)det c—ac—ba—2» 0
c—ac—bc;bc—b...a.—b
=bla—c)" '+ (a—b)A,_4.

The second assertion follows easily by induction.

For the third matrix subtract the second row from the first, the third
from the second and so on, finally subtracting the penultimate row from the
two from last row. One obtains

—-n 1 1 1 1 1 0
—1 -n 1 1 ... 1 1 0
-1 -1 -n 1 1 1 0
det : - :
-1 -1 -1 -1 -n 1 0
2n—22n—32n—42n—-5... n 0 2n —1

2n—12n—12n—12n—-1 2n—12n—-122n—1)

Then add half the sum of the first n—1 rows to the penultimate row making
it

n—1ln—1n—1n—-1...n—1(n—-1)/22n— 1.



74 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

Now subtract 1/2 of the last column from each of the first n columns. This
leaves the first n — 1 rows unchanged and the last two rows become

~1/2-1/2-1/2-1/2...=1/2 =n/2 2n—2

0 0 0 0o ... 0 0 2(2n-—1).
Thus the determinant becomes
-n 1 1 1 1 1
11— 1 1 ... 1 1
1 1 1

-1 -1-n
(2n — 1) det ,
-1 -1-1-1 —n 1
—-1-1-1-1...-1-n

The result follows on applying the second part. [

There is a homomorphism
O : ((F,)"* x F,C) — Gi(F))
extending @\(le)n/Qxle and with vo@ = Z'"_ It takes C to (1,1,7). Consider
I, the induction of © from (((F; )2 xF,C), (F, )2 xF}) to (I, ((F, )"/*x

F/,T)) with multiplier Z*~™. (See section 2.1.) Then I has a basis consisting
of functions e; for i = 0,...,n — 1 with ¢;(7Y) = d6;; for j = 0,...,n — 1. Let
fo, -y fam1 be the dual basis of IV. If (ag,...,ane-1;b) € (FZX)"/2 x F[ set

a; = bl*”a;ln/2 for i=n/2,....,n— 1. Then we have

- Tei = €;—1 (Wlth €_1 = €n,1);

— (ag, ..., an/2-1;b)e; = aze; for i =10,...,n —1;

= Tfi= fi1;

— and (ag, ..., njo-1;b)f; = a; ' f; for i =0,....,n— 1.
Moreover

<€Z', €j> = C:Lao...ai_léij.

We have 7 =1o0j.

Then I' acts on ad [ via

—Te; @ f; =ei1 @ fj_1;

= (a0, - Gnyo-1;b)€; @ [; = ai/aje; @ [j;

- Ce® fi=-0 0060 f; 1 0<j<i<n-1

— and C@i & fj - —C:L_j(Oéi...Oéj_l)_lej ® fz if 0 <1< j <n-—1.

Hence if 0 <i<j<n/2—1 then
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— CT"?e; ® fi= —Qf;jai...ozj_leﬂn/z ® fitn/2;

— CT™"2ejn)2 @ firnse = G q..0j_16; @ fj;

— CTV?e; @ f; = —C%_iai_l"'aj_flle””/z D fien2;

— CT™?ei1np2 @ fiinp = —Gia; o ajie; ® fi

— CT"?¢; @ fipna = Cilag i . anp 165 @ fiing;

— CT"?e; @ fiynn = ¢ g0 10Oy 165 @ fingo;

— CT"?ei 10 ® fj = Cfl_jao-‘-ai—la‘;l'”O‘;/12—1€j+n/2 ® fi;
—and CT"2ejip @ fi = G g ciaaf toay ) jein @ fj.

For j=1,..,n/2 -1 let VVjjE denote the span of the vectors

€ @ firi T Gl enjorivi @ fojori
for i = 0,...,n — 1 (and where we consider the subscripts modulo n). Then
T/Vji is a [-invariant subspace of adI. The space I/V;r is isomorphic to the
induction from ((F, )2 x F,CT"?) to I' of ©/6™. The space W, is iso-
morphic to the induction from ((F;)"? x F),CT"?) to I' of ©/O" times
the order two character with kernel (F,)"2 x F).

If x is a character of I'/((F, )2 x F}) with x(C) = —1 let W, denote
the span of

eo® fot+x(Te1® fi+ .. +x(T)" ten 1 ® frui.

Then W, is an [-invariant subspace of adl on which I acts via ¥.

Let W, denote the span of the vectors e; ® fiin/2 for ¢ =0,...,n—1
(with the subscripts taken modulo n). Then W, /2 is a I'-invariant subspace of
ad I isomorphic to the induction from ((F, )"2xFX, CT"?) to I' of @/6OT"".
We have

n/2—1 n/2—1

adl =W,p® (W) e (P WhHe (@ wy).

X J=1 Jj=1
Lemma 2.7.3 The restrictions to ;= of the 2n — 1 representations W2,
T/VjjE (for j=1,...,n/2—1) and W, are all irreducible, non-trivial and pairwise
non-isomorphic.

Proof: 1t suffices to show the following:

—If 1<j<n/2 then © £ 6T on ((F,))®"/2 x {1}.
- If1<yj,77<n/2 and 0 <k <n—1 then

6/6" + o™ /eT
on ((F,))®/2 x {1} unless j = j and k = 0.
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These facts are easily checked because (I —1)/k, > 4. O

Proposition 2.7.4 Keep the notation and assumptions listed at the start of
this section. There is a continuous homomorphism
r:Gq — Ga(Og,)

such that

—r lifts 7;

—por= Elfn’.

— r is ramified at only finitely many primes, all of which split in E;

— for all places v|l of E, r|ga,/p,) S crystalline;

— for all 7 € Hom (E,Q,) above a prime v|l of E;

dlmal gri(,r, ®7-7EU BDR)Gal (E’U/EU) =1

for i=0,...n—1 and =0 otherwise;
— for any place v of E above a rational prime q € QQ, the restriction

]Gal By unramified and 73 B0 /By )(Froby) has eigenvalues {aq™ :

j=0,...,n—1} for some a € Ql )

Proof: Consider the following deformation problem for 7

Sl - (E/Qa 517 glvoa?7 61_n7 {DU}UES1)7
where S} = Q U S() and O denotes the Witt vectors of F;. For v € S; we
define D, (and L,) as follows.

— If v =1 the choice of D, is described in section 2.4.1.
— If v € Q then D, is as in section 2.4.5 with m =n and 7, = 1.
— If v € S(A) — {I} then D, is as in section 2.4.4.
Also set Wy =, Wy C adT and dp/q : Gq — Gal (E/Q) = {+1}.
Then Hg (Gq,s,,Wo) is the kernel of the map from H'(Gq,Ws) to

P H (Iq. W) &P | H' (Iq, Wi, o) ® P H'(Ga., Wy)

vEQ vEQ X#0E/Q
(To calculate the local condition at [ use lemma 2.4.5 and corollary 2.4.4. To
calculate the local condition at v € S(#) — {I} use lemma 2.4.22. To calculate
the local condition at v € @ use lemma 2.4.30.) Because [ does not divide
the order of the class group of F we see that

ker (HI(GQ,WgE/Q) — @Hl(fqv,wg,;/q)> = (0).



Title Suppressed Due to Excessive Length s

On the other hand if x # dg/q then

ker ( (Gq, W, —>@H1 Iq,, x>@@H1(GQwa))

vZQ VEQR

is contained in Hom (Clg(EM), k), where Clg(EM) denotes the quotient of
the class group of EM by the subgroup generated by the classes of primes
above elements of ). Because the maximal elementary [ extension of EM
unramified everywhere is linearly disjoint from L over EM, the Cebotarev
density theorem implies that we can enlarge ) so that Hom (Clo(EM), k) =
(0). Make such an enlargement. Then Hj (Gq.s,, Wo) = (0).

Moreover H 1L(GQ,I/V(;E 1o(1)) is the kernel of the restriction map from

HI(GQ, W(;E/Q<1)) to

(HI(GQN W5E/Q(1))/H1(GQZ/IQL7 W5E/Q)J_> D @ Hl(IQv’ WO)'
v#£l

From theorem 2.19 of [DDT] we deduce that
#Hzl:ll<GQ,51’W5E/Q(1)) = #Hllll(GQ,SN W5E/Q) =1,

ie. Hz% (Gq.sys WéE/Q(l)) = (0).

Now consider a second deformation problem

82 - (E/Q’ 527 §27 Oa F? 61_n7 {D’U}UESQ)'

Here S, = S; UQ', where @' will be a set of primes disjoint from S; such
that if ¢ € Q' then

j(Froby) = T(ao(q'), ..., anj-1(q"); b(q'))

with b(¢')" =1 and (,b(¢') # 1. Thus the eigenvalues of 7(Frob,) are the n'"
roots of b(¢q')"/? each with multiplicity 1, and €(Froby) # 1. Set @iyn/2(¢) =
b(¢') ai(¢')* for i =0,...,n/2—1. For v € Q' choose an unramified character
X, of Gp. with X, (Frobz)" = b(¢')"/?, and let D, and L, be as in section
2.4.7 with Y =%,. Let m, (resp. i,, resp. m,, resp. i,) denote the projection
onto the ¥, (Frobg) (resp. inclusion of the %, (Froby), resp. projection onto the
b(q" )¢ X, (Froby), resp. inclusion of the b(q¢’)(,x,(Frobg)) eigenspace of Frobg
in 7. Then ¢ m, is in the k-span of

Z b(¢') G X, (Frobg) 7 (ai(q)...ai(d) " ar(q)...a;(d)e: ® f.

4,7=0
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~ | 1

Thus i,m, € Wy and so Hg, (Gq,s,, Wo) C Hg, (Gq,s,, Wo) = (0).
On the other hand ¢ 7 —i,m, is in the k-linear span of

n—1

D ((0(a)6)"™ = D)X, (Frob, ) (an()-.aid) " ar(q))-a;(d )e: ® f;

1,j=0

and so o, m — i,m, € Wy (because b(¢')(, # 1). Thus

HZ%(GQSQvWO(l)) = ker ( (GQ S17W0 @ H GQ /IQ ) )) )

qeq’

where the map onto the factor Hl(qu,/Iqq,,k) is induced by A — m,Ai]
for v € Sy with v|¢, i.e. by

zizlhez@ﬁf;F—ﬁ Ez:xz n .

If [¢] € H},(Gq,s,,Wo(1)) then the extension P, of EM cut out by ¢

is nontrivial and [-power order and hence linearly disjoint from L over K M.
Because H};IL(GQ,SUWJE/Q(D) = (0) we see that ¢(Gal(Py/EM)) ¢ Ws, (1)

Thus we can choose b # (' so that

n—1 n—1
inei ® fi— Z xz(an)l
i=0 i=0

is not identically zero on ¢(Gal(P,/EM)). Then choose ay, ..., an/2-1 € F,
and o € Gal (LP;/Q) such that j(o) = T(ao, ..., ans2-1;b) and, if

n—1
= Z gi(o)e; @ f;
=0

then

3
H

(an) $i(0) #0.

I§
o

[

Let ¢ ¢ Si be a rational prime unramified in LP; with Froby, = o €
Gal(LP,/Q). Then if ¢ € @' and b(¢') = b then [¢] & HEQL(GQ&,WO(D).
Thus we can choose @' and the b(¢') for ¢ € @’ such that

H}, (Gqs,, Wo(1)) = (0).
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Make such a choice.

Finally we will apply theorem 2.6.3 with W; = W}, to complete the
proof of the lemma. In the notation of theorem 2.6.3, given W and W’,
each equal to W/, or some Wji, we will show that the conditions of theorem
2.6.3 can be verified with o a lift of T'(ao,...,an/2-1;b) € Iy for a suitable
g, ..., anja—1,b. We shall suppose that b" = 1 but that b # ¢, b, so that
e()" =1 but €(o) # 1. For i =0,...,n/2 — 1 write a;1,2 = b'"""a;". There is
a decomposition

r= P v

Mn:bn/Q

into o-eigenspaces, where o acts on V, as p and where V), is the span of
—1 n-1_-1 -1
ep+ pa; e+ ...+ p Tag...a, 1€n-1.

Let i, denote the inclusion V, — 7 and let m, denote the o-equivariant
projection 7 — V,,, so that m,i, = Idy,. Note that

~ lpe(o) Ty = 2?3_:10 ay..aj(ay...a;) " e(0)'e; @ f; € Wy
— and Gpe(o)Tpe(o) — Ty = ZZL;:IO ay...a;(ay...a;) "t (e(o) I — 1) & Wh.
Moreover

= (€ ® fitn2)ine(o) = ()2 (g Gipya) T

— mule: ® firg F G enjarivg ® fujoti)ineo) = (@ig1--aipg) "l e(o) (1 %
b2 (1) );
- 71-,ue(o')(ei X fi+n/2)iue(0) - Wu(ei ® fi+n/2)iu = (E(U)n/Q - 1)1un/2
(@41 Qiny2) s . ‘ .
— and Tue(0) (€i® fir FC 7 enyatini ® fryari)ine(o) = Tu(€i® fis jF ) €npayini®
Jnjoti)in = (1 £ (Gott) 27 )(e(0)? = 1) (@ig--aip) "
Let 3 (resp. v) denote a primitive (n/2)" (resp. (2n)") root of 1. Then we
have:

— In the cases W, W' € {Wn/g,Wf,...,Wn_/Q_l} taking b = p = 1 will
satisfy the conditions of theorem 2.6.3.

— In the cases W, W’ € {W, 2, W, ...,WTT/Q_l} taking b=1 and pu = (!
will satisfy the conditions of theorem 2.6.3.

— If W, W' e {WZ, ...,W;—L/Q_I} taking b = ('3 and p = ¢, 1y will satisfy
the conditions of theorem 2.6.3.

O

Lemma 2.7.5 Keep the notation and the assumptions of the beginning of this
section. Then T(Gp+(c)) 5 big.
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Proof: This follows from lemmas 2.7.1 and 2.7.3, the fact that [ does
not divide #7(Gq) and the following calculations.

— Take ag € (F))™ with af # 1 and take 0 € Gp(,) with j(o) =
(ap,1,...,1;1) € Ag. Then

To.a0 Wloao 7 (0).

— Take (ag,...,anpp—1) € (F)®2 and o € Gpgy with j(o) =
T(ag, ..., anj2-1;¢, ). Also take p to be the product of ¢, with a primitive
(2n)™ root of 1. Set Qisns2 =, ta; for i =0,...,n/2 —1. Then

T u€i & fi+n/2ia,u = Mn/Q(@i+1-~-ai+n/2)_1
and

Toules ® fir; F C;jen/2+i+j ® foj24i)iop = (1 F (MCn)_2j)Mj(ai+1---ai+j)_1-
Thus 7, Wayiey # (0) and 7., W:ig, # (0).
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3. Hecke algebras.

3.1. GL, owver a local field: characteristic zero theory.. — In this sec-
tion let p be a rational prime and let F, be a finite extension of Q,. Let
Op, denote the maximal order in F,, let p, denote the maximal ideal in
Op,, let k(w) = Op,, /ow and let q, = #k(w). We will use w, to denote a
generator of g, in situations where the particular choice of generator does
not matter. Fix a set X = X(F,) of representatives in Op, for k(w) such
that 0 € X. Also let K denote an algebraic closure of Q;. Also fix a pos-
itive integer n. We will write B, for the Borel subgroup of GL, consisting
of upper triangular matrices.

We will use some, mostly standard, notation from [HT] without com-
ment. For instance n-Ind, H, Sp,,, JL, rec and R;. On the other hand, if
T is an irreducible smooth representation of GL,(F,) over K we will use
the notation r(m) for the l-adic representation associated (as in [Tat]) to the
Weil-Deligne representation

recy(n¥ @ | |(17/2),

when it exists (i.e. when the eigenvalues of rec(n¥ ® | [(17™)/2)(¢,,) are l-adic
units for some lift ¢,, of Frob,). In [HT] we used r;(r) for the semisimplifi-
cation of this representation.

For any integer m > 0 we will let Up(w™) (resp. Uj(w™)) denote the
subgroup of GL,(Opg,) consisting of matices whose last row is congruent to
(0,...,0,%) (resp. (0,...,0,1)) modulo @!. Thus U;(w™) is a normal subgroup
of Up(w™) and we have a natural identification

Uo(w™)/Ur(w™) = (OF, [ 9y))"

by projection to the lower right entry of a matrix. We will also denote by
Iw(w) the subgroup of GL,(OF,) consisting of matrices which are upper tri-
angular modulo g,, and by Iw;(w) the subgroup of Iw(w) consisting of matri-
ces whose diagonal entries are all congruent to one modulo g,. Thus Iw;(w)
is a normal subgroup of Iw(w) and we have a natural identification

Tw(w)/Twy (w) = (k(w)™)",

under which diag(ay, ..., o) maps to (a; mod @y, ..., a, mod @,).
We will let ¢, ; denote the matrix

wwlj 0
0 1oy



82 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

We will also let w,, denote the m xm-matrix with (w,,);; =1 if i+j=m+1
and (wy,);; = 0 otherwise. Finally we will let w,; denote the matrix

1i—1 0
0 wpy1- )"

For j=1,...n let Té,j) denote the Hecke operator
|GL(OF,)$uw,;GLn(OF,)].
For j=1,...n—1 and for m > 0 let U,E?) denote the Hecke operator
[Uo(w™ )sw,;Uo(w™)]

or

[Ur (w™) S, Ur (w™)].

If W is a smooth representation of GL,(F,) and if m; > my > 0 then the
action of Ué,] ) s compatible with the inclusions

Wto™) ™) b,

(This follows easily from the coset decompositions

Uy (w™)ewUr(w™) = T ] bUL (w™)

and
Uo(w™)sw;Us(w™) = T ] bUs(w™)
b

where [ runs over j element subsets of {1,...,n—1} and b runs over elements
of B,(F,) with

— by = 1w, if €1 and =1 otherwise,
— b€ X if s>r, and =0 unless r € I and s ¢ I.

See [Manl].)
If a € F has non-negative valuation we will write V, for the Hecke
operators

and
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If W is a smooth representation of GL,(F,) then the action of V, is com-
patible with the inclusion

W) c ),

(This follows from the easily verified equalities

) (w0 (M5 ) ot (5 00 )) = thtw)

and
1,210 1,-1 O
Ul(w) N 0 ! o U()(’w) 0 ! Oé_l
1,10 1,1 O
= U (w) N Ola Ui (w) 01a_1 )

It is well known that there is an isomorphism

Z|GL,(Op, \GL,(F,)/GL,(Or)| = Z[T\, Ty, ..., T, T; "],
under which 7T} corresponds to T, (The latter ring is the polynomial algebra
in the given variables.) Alternatively we have the Satake isomorphism

201/ 00 [GLa(Or NG Ln(Fu) [GLu(Or,)] = Z1/g,][XE, .., XS,
under which T corresponds to q{;(l_j)/Qsj(Xl,...,Xn), where s; is the j
elementary symmetric function (i.e. the sum of all square free monomials of
degree j). This is not the standard normalisation of the Satake isomorphism.

The next lemma is well known. We include a proof partly to establish
notation and partly as a warm up for later calculations of a similar nature.

Lemma 3.1.1 Suppose that xi,...,Xn are unramified characters of F;. Then

(n—Indgf(";f;”)(Xl,...,Xn))GL"(OFw) is one dimensional and T

qfu(n_j)/Qsj(Xl(ww), woos Xn(@w)), where s; is the j™ elementary symmetric func-

tion (i.e. the sum of all square free monomials of degree j). If

acts on it by

has Satake transform P(Xy,...,X,) then the eigenvalue of T on

GLy(Fw n
(n-Ind Bn(}g‘w) )<X17 XS] Xn>>GL (Oru)

. n—1)/2 n— 2
is P(g5 " x1 (@), - a0 P X ().
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Proof: The fixed space (n- IndGL"F(Fﬁ”)(Xl,...,Xn))GL"(OFw) is spanned by
the function ¢, where

= H Xi(bi) i T2
i=1

for b € B,(F,) and u € GL,(Op,). Then (Tlgj)gpo)(l) equals the eigenvalue of
T on (n- IndGL"(Fw)(Xl,. X)) G ©Or0) - But

Fu)
D= > wlb)

where [ runs over j element subsets of {1,...n} and b runs over elements
of B,(F,) with

— b, =w, if r €1 and b,, =1 otherwise;
—if s>r, re€l and s & I then b, € X;
— if s > r and either r ¢ I or s € I then b, = 0.

Thus

n—j+k—ig) i—(n+1)/2
(T0)(1) = 5y g o it
_quun 2 E[HieIXi(ww)a

where [ = {i; < ... <i;} runs over j element subsets of {1,...,n}. The lemma
follows. U

Corollary 3.1.2 Suppose that w is an unramified irreducible admzsszble Tep—

resentation of GL,(F,) over K. Let t9) denote the eigenvalue of T on
7Gn(Ors) - Then ri(7)V(1 — n)(Frob,) has characteristic polynomial

XWXt (=1 @V RO X g (—1)ngnn D24

Proof: Suppose that m = x; H ... H x,. Then
r(m)Y (1 —n) = @<X1| |(1=m)/2) o Art 7L,

)

so that r;(7)Y(1 — n)(Frob,) has characteristic polynomial

(X — Xl(ww)qfvn_l)/2)-..(X _ Xn(ww>q1(vn_1)/2)-
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Lemma 3.1.3 Suppose that w is an unramified irreducible admzsszble rep—

resentation of GL,(F,) over K. Let t9) denote the eigenvalue of 79 on
GL"(OFw) Then 7Y = gzU() gnd the characteristic polynomial of Vo, on
7o) divides

X —tWX (=) gD X g (—1)n g D2 ),

Proof: The first assertion is immediate because the central character of
7 is unramified. Choose unramified characters y; : F; — K" for i = 1,..n
such that the ¢4 "/*\i(w,) are the roots of

X" — tgrl)Xn—l 4+ ...+ (_1) J— 1)/2t( )X" J + ...+ ( 1)"(]3(" 1)/2t(n)

T

with multiplicities. From the last lemma we see that 7 is a subquotient of
n-Ind GL”(Fs”)(Xl, ..., Xn). Thus it suffices to show that the eigenvalues of V,, on

n-Ind GL"FS”)(XI, e X)) are {g0 Y2\ (w,,)}, with multiplicities (as roots
of the characteristic polynomial).

The space n-Ind g GLn( F;”)(Xl,. L xn)P™) has a basis of functions ¢; for
i = 1,..,n where the support of ¢; is contained in B, (F,)w,;Uy(w) and
gpi(wm) = 1. We have

Vo, i = Z(wa%)(wn,j)%-

J

But
1,4 0O
(Vo)1) = Soexocr (1005 (22 2 )

L, 0 0

= ZmeXﬂ'—l ZyEX”—j Pi | Wl Wyl Wy

0 Wn—j 0
1 1,1 0 0
— qw qu (n+1)/2 Xj(ww> ZmeXﬂ'*l ©; T 0 1
0 wn_jO

A matrix ¢ € GL,(Op,) lies in B,(Ofg, )w,;Uy(w) if and only if i is the
largest integer such that (0,...,0,1) lies in the k(w) span of the reduction
modulo g, of the last n+1—1¢ rows of g. Thus

(Vo i) (W, 5)
18

— 0 if i >,
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— ¢\ (@) if i = j, and

— (g — V)i~ 1q(n_1)/2Xj(ww) if 1 < 7.
Thus the matrix of V., with respect to the basis {¢;} of the space
n-Ind gf(”;f;”)(xl, oy Xn)Y0) s triangular with diagonal entries qq(un_l)/QXj(ww).
The lemma follows. [

Lemma 3.1.4 Suppose that we have a partition n = ni+ny and that w (resp.
me) is a smooth representation of GL, (F,) (resp. GLyn,(Fy,)). Let P D B,
denote the parabolic corresponding to the partition n = ny + ny. Set 1 =
n-Ind IGD(LI?(f“’)(m ® mg). Then

(*5)

Z QU (n1j2+n2j1)/2—j1j2 (T(J1) ® U (42) )
Ji+i2=j

Moreover U(]) acts as
where

and
Z Qv (n1j2+n2j1)/2— Jl]2<U(j1) ® T(j2)>

J=Jj1+72

and if o € F)* has positive valuation then V, acts as

(|a|”1/2(1 © V) " > |

0 la|72/2(V, ® 1)
Proof: Let
lpy—1 00
w = 0 01
0 1,,0
Then, by the Bruhat decomposition,
GL,(F,) = (w) [T P(Fo)wlUs(w)

so that

(n-Ind IGD(LE?”)M ® g ) V1 (w)

= <7T1 ® 71—2)P(Fw)mU1( ) @ (7T]_ ® T )P(Fw)mel( ) -1
— 7.‘-16:[/711 (OFw) ® Ul('w) @ 7_‘_:Lljl( ) ® GLn2 (OFw)
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GLn; (Op,) Ui (w)

Specifically =z € m; ® Ty

on P(F,)Ui(w) with ¢,(1) =z, and y € m, (w)®
function ¢ supported on P(F,)wU;(w) Wlth oy (w ) y.

If ¢ € (n-Ind g?}ifw)m ® m9)V1 () then
=22 wlab)
I b

where I runs over j element subsets of {1,...,n — 1} and where b runs over
elements of B,(F,) with

corresponds to a function ¢, supported

GLny (O
2(Orw) corresponds to a

— b, =w, if r €1 and =1 otherwise,
— b€ X if s>r, and =0 unless r € I and s & I.

Thus
UD¢)) Z Z @) (b

and

U901 ZZ( )

11,12 a,b,c

where I} runs over subsets of {1,...,n1}, Is runs over subsets of {1,...,;no—1},
a € B, (F,), b€ My, xn,(Fy) and ¢ € B,,(F,) such that

— #1 + #I, = j,

— Qp =, if r € I; and =1 otherwise,

— Cpp =, if ¥ €1, and =1 otherwise,

— if s > r then a,, € X and =0 unless r € I} and s & Iy,
— if s > r then ¢,s € X and =0 unless r € I, and s ¢ I,
— by € X and =0 unless r € I} and s & I.

Equivalently
(Ufj)gpx Z " (n1j2+na2j1)/2—j1j2 (T(Jl ® U j2) ).
J1+i2=jJ
Similarly
acb
w9 =Y X i 010) o)
I,I ab,c,de Oed

where [y C {1,...,n1 — 1}, I, C{1,....n2}, a € By, —1(Fy), b € M, —1)xn, (Fu),
ce Fm=l de B,,(F,) and e € F™? with

- #]1+#]2:ja
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— Q= W, if ¥ € I; and =1 otherwise,

— dyy = 1w, if ¥ € I and =1 otherwise,

— if s > r then a,s € X and =0 unless r € 1 and s ¢ I,
— if s > r then d,s € X and =0 unless r € I, and s & I,
— by € X and =0 unless r € I} and s & I,

—¢. € X and =0 unless r € I,

— e, € X and =0 unless r € I,.

The matrix

ach
010 |we P(Fy,)wU(w)
Oed
if and only if
a ¢ b
0 1 0 | €PF,)wlU(w)w!
0d'el,,

if and only if e =0. Thus

VPG = T a0 o Ty,
J=Jj1+72

Now suppose a € F; has non-negative valuation. If ¢ is an element of
(n-Ind gfﬁ(%)m ® m)U1 ™) then

w)
o= 3 e (230)

bG(OFw/(a
Thus
l,, 0 O
(Va¢x)(1) = Z Z P 0 1,,-1 0
be(Opy, /(@)™ c€(Op,, /(a))m2~1 Wb Wy
However

l,, 0 0
0 1n,10 | € P(F)U(w)

Wb wye o

if and only if
1, 0 0
0 1n2—1 0 c P(Fw)Ul(w)

alw,h 0 1
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if and only if b= 0. Hence

l,, 0 O
(Vawpa)(1) = Zce(on/(a))nzfl Yz | 0 Ln,—1 0
0 w,c a
= la| MA@ Vo).
On the other hand
1,10 0
(Vo) (w) = Z Z o wyb awye |w | =0.
bE(Or,, /(@)1 ~ c€(OF,, /())"2 0 01,
Similarly
1,10 0
(Vo)) = Do, Tesion s 8 | | b e |
n2

= o] 2(Va® Ly.

The lemma follows. O

Lemma 3.1.5 Suppose that w is an irreducible admissible representation of
GL,(F,) over K with a Uy(w) fized vector but no GL,(Op,)-fized vector.
Then dim 7"1(") = 1 and there is a character with open kernel, Vi : F)X — K"
such that Vy(a) is the eigenvalue of V., on 7U'") for all o € FX with non-

negative valuation. For j =1,..,n—1, let u7(rj) denote the eigenvalue of Ug)
on 1) and define Q™ (X) € K[X] to be

Xn—l . u7(rl)Xn—2 4+ (_1>jq1]1'](j—1)/2u§rj)Xn—l—j 4.+ (_1)nqq(un—1)(n—2)/2u§rn—l)‘
Then there is an exact sequence
(0) = s —=r(m) (1 —n) = VyoArt ' — (0)

where s is unramified and s(Froby) has characteristic polynomial P™(X). If
m) o (0) then q,'Vi(w,) is a root of PM(X). If, on the other hand,
7o) = (0) then r(m)V(1 —n)(Gal (F,/F,)) is abelian.

Proof: If 7 is an irreducible, cuspidal, smooth representation of GL,,(F,)
then the conductor of rec(m) > m unless m =1 and 7 is unramified. If 7 is
an irreducible, square integrable, smooth representation of GL,,(F,) then the
conductor of rec(m) > m unless 7 = Sp,,(x) for some unramified character
X, in which case the conductor is m — 1. As any irreducible, square inte-
grable, smooth representation 7w of GL,,(F,) is generic we see from [JPSS]
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that 7U1() #£ (0) if and only if either m = 1 and 7 has conductor < 1, or
m =2 and 7™ = Sp,(x) for some unramified character y of F.

Now suppose that n = n;+...+n, is a partition of n and let P D B,, de-
note the corresponding parabolic. Let m; be an irreducible, square integrable,
smooth representation of GL,, (F,). If

GLn Fw 1(w
(n-Ind P(EE) ImM®.® )0 ) £ (0)

then by the last lemma there must exist an index 7y such that:

— For i # iy we have n; =1 and m; unramified.
— Either n;, =1 and m;, has conductor <1 or n;, =2 and m;, = Sp,(x)
for some unramified character x of F).

Thus if 7 is an irreducible smooth representation of GL,(F,) with a
Up(w) fixed vector but no GL,(Op,) fixed vector then

1. either m = x; H ... B x,, with x; an unramified character of F for
t=1,...,n—1 and with y, a character of F with conductor 1,

2. or m=x1B...Bxn—2BSpy(xn_1) with x; an unramified character of
Fx fori=1,...,n—1.

Consider first the first of these two cases. Let n' = x1H...By,_1, an un-

ramified representation of GL,,_1(F,). Also let P D B, denote the parabolic

corresponding to the partition n = (n—1)+1. As (n-Ind GL"(F) )(le- oy X)) 1)

and (n-Ind IGD(L};;”) " ® xn)Y*™) are one dimensional we must have

w0 = (nInd G (e X))

= (uelnd J 7 @ x0) )
— (7T )GL" 1(0Fw) ® X'fl

From the last lemma we see that Vi = y,| |*™™/2 and that UY acts as

@/*TY ® 1. In particular 7 has no Up(w) fixed vector. Because

r(m' Bxa)(1—n) =r(r)V(2—n)|Art 5! [ @ (Ve o Art )

the lemma follows.
Consider now the second of our two cases. Let 7’ = y; H...H x,_2, an
unramified representation of GL,_o(F,). Also let P D B, (resp. P' D B,)

denote the parabolic corresponding to the partition n = (n —2) 4+ 2 (resp.

n=1+..+1+2). Because dim(n- Ind ”(I;w))a Q.. @ Xn_2 ®Sp2(xn))U1(w) =1
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and dim(n—Indg(Lg() T @ Spoy(xn))t™ =1 we must have

71w — (n- Indg/L}; ) )Xl ® . ® Xn—2 @ Spo(xn)) 1)
— (e 527 3,
= ()08  8p ()0
Moreover V, acts as |a|@/2(1®V,) and UY acts as
(TP @ 1) + ¢ * (T7 D @ UY).

The induced representation n-Ind gff;FSU)(XmXM |) has two irreducible

constituents (x,| |/2) o det and Sp,(x,). On nIndgf?ﬁ“)(men‘ V@) e

have 1/2
o Pxa(a)
Vo = ( 0" ol (e

U(l) _ QI1U/2Xn(ww) 0
wo -1/2 :
* Guw " Xn(Tw)

n (xn| |/?) odet we have

and

Vo = lal?xa(a)
and

Uzgjl) = qqlu/2Xn(ww)
Thus on Sp,(x,)"* ™ we have

Va = la| ™ yu(a)

and
UM = q,"*xn ().

w

Uiy (w)

Hence on « we have

=[] 2x (a)

and
UY = g (TP @ 1) + ¢TI © xn(ww)).

On the other hand

(0) = (ru(x')Y(3 — n)|Art | ' & (an I(3’")/2)0Art_f,)
— (" BSpy(xn))Y (L = n) = (xul [17"/2) 0 Art ) — (0).
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This is a short exact sequence of the desired form and s(Frob,) has charac-

teristic polynomial (X — g/ () times

X2 _ qwt(l)Xn—S +o+ (_1)jqij+j(j—1)t(j)Xn—2—j 4o+ (_1>nqn2—4n+4t(n—2)’

w

GLn—Q(OFw)

where tU) is the eigenvalue of 7Y on (7') . From the above formula

for the UY)’s, we see that this product equals P™(X) and the lemma follows.
U

Lemma 3.1.6 Let 7 be an irreducible smooth representation of G'L,(F,) over
K.

1. If 7™ £ (0) then ri(7)V(1 —n)® is a direct sum of one dimen-
stonal representations.
2. Suppose

=X

X = (X1, Xn) ¢ (K(w) )" — K.
If 7o)X £ (0) then

r(m) (1 =), = (oAt ) ® ... (xn o Art ).

(Here we think of x; as a character of Op —» k(w)*.) Moreover if x; # X;
whenever i # j then r(m)"(1 —n)|5,, is semisimple.

Proof: The key point is that 7' = (0) if and only if 7 is a sub-

quotient of a principal series representation n-Ind gf(”ég)(x’l, sy Xs) With each

X, tamely ramified. More precisely 7o)X £ (0) if and only if 7 is a sub-

quotient of a principal series representation n-Ind gf(;f;”)(x’l, sy Xs) With each

X;]O;w = Xi- (See theorem 7.7 of [Ro|. In section 4 of that article some

restrictions were placed on the characteristic of Op,/p,. However it is ex-
plained in remark 4.14 how these restrictions can be avoided in the case of
GL,. More precisely it is explained how to avoid these restrictions in the
proof of theorem 6.3. The proof of theorem 7.7 relies only on lemma 3.6
and, via lemma 7.6, on lemma 6.2 and theorem 6.3. Lemmas 3.6 and 6.2
have no restrictions on the characteristic.) O

3.2. GL, over a local field: finite characteristic theory.. — We will
keep the notation and assumptions of the last section. Let [ fq, be a rational
prime, K a finite extension of the field of fractions of the Witt vectors of an
algebraic extension of F;, O the ring of integers of K, A\ the maximal ideal

of O and k= O/
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Lemma 3.2.1 Suppose that | > n and [|(q, — 1). Suppose also that 7 is
an unramified z"rreducz'ble smooth representation of GL (Fy) over F;. Then

dim 7L ©r) = 1. Let t¥) denote the eigenvalue of T on 7Chn(©r.)  Set
P (X)=X"— ()Xn Ly (=1) g J (5= 1)/2t( XTI A4 (= 1)nq3)(n 1)/2157(:1)_

(Of course in F; we have q, = 1 so we could have dropped it from this
definition.) Suppose that Pr(X) = (X —a)"Q(X) with m > 0 and Q(a) # 0.

Then
QV,, )m e Ore) 3£ (0).
(Considered in 7o) )

Proof: According to assertion VI.3 of [V2] we can find a partition n =
ni1 + ... + n, corresponding to a parabolic P D B, and distinct, unramified
characters xi, ..., x,r : F.N — Fl such that 7 = n-Ind g(Lg (Fu) (Xlodet, .., Xrodet).

Then

Pr(X) = [[(X = xi(@w)™
i=1
Suppose without loss of generality that a = xi(wy).
For i = 1,...,r set w, = Wy n,+. 1n, (in the notation established in the
fourth paragraph of section 3.1). Then n-Ind JGD(L&E?)(M odet, ..., x, o det)Yo®

has a basis consisting of functions ¢; for ¢+ = 1,...,r, where the support of y;
is P(F,)w.Uy(w) and ¢;(w;) = 1. Note that

n-Ind GL; fw (x1 o det, ..., x, o det) S (Oru)
is spanned by @1 + ... + @,
We have
Vouwpi = Z(wa%)(w;)@j-
J
But, as in the proof of lemma 3.1.3, we also have

, 1n1+---+nj—1 0 0
(Veuo) (W) = xi(@ma) > ¢ x 0 1
xGXn1+...+nj71 0 wnj+1+.~-+nr O

A matrix g € GL,(Op,) lies in P(Op, )w,Up(w) if and only if 7 is the largest
integer such that (0,...,0,1) lies in the k(w) span of the reduction modulo
0w of the last n; + ... +n, rows of g. Thus

(Vo i) (w;)

is
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—0ifi>j7,
— i (wy) = xg(ww) if i =4, and
— (g — D)t (@) = 0 i i <

Thus, for ¢ =1,...,r, we have

Vou i = Xi(@w) @i
and
Q(Ve, ) (01 + . + 01) = Q(x1(®w)) 1

and the lemma follows. O

Lemma 3.2.2 Suppose that | > n and l|(q, — 1). Let R be a complete local
O-algebra. Let M be an R-module with a smooth action of GL,(F,) such that
for all open compact subgroups U C GL,(F,) the module of invariants MY
1s finite and free over O. Suppose also that for j =1,..,n there are elements

t; € R with 7 =t; on MGLn(Oru)  Set
= X"+ Z i0-0/2, X" ¢ RX].

Suppose that in R[X] we have a factorisation P(X) = (X — a)Q(X) with
Q(a) € R*. Suppose finally that M ®p K is semi-simple over the ring (R ®o
K)|[GL,(F,)] and that, if © is an R-invariant irreducible G L, (F,)-constituent
of M @0 K with a Uy(w)-fized vector, then either m is unramified or
P(X) _ (X _ wa)<Xn_1 _ Uzs;l)Xn_Q 4o+ (_1)jqi)(j—1)/2Ulgjj)Xn—1—j+
4o+ (_1)nq1(1}n71)(n72)/2U15}n71))

on 7 (e for j=1,...,n the coefficient of X" on the right hand side

acts on the one dzmenswnal space w00 by (—1 )qu(J 1/225) Then Q(Vy)
gives an isomorphism

Proof: Lemma 3.1.3 tells us that
Q(Vz,) : MCEn(Ory) __ pplo(w) Ve, =a

Let 7 be an R-invariant irreducible GL,(F,)-constituent of M ®¢ K with
glo(w)Vaw=a £ (), If 7 is ramified then lemma 3.1.5 tells us that

(g'a)" ™ = Us (@' )"+ (1P’ PU (g )"+
++ (_1)nq1(1}n71)(n72)/2U15}n71) —0
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on 70 Thus Q(a) € mp, which contradicts our hypothesis. Thus 7 is
unramified. By lemma 3.1.3 and the assumption that a is a simple root of

P(X), we see that dim7Y0®)\Vew=0 <1 = dim 7¢%+(©r0) Thus
dim(M ®o K)P@V=u=t < dim(M ®0 K ) ©Or),

Hence it suffices to show that Q(V,,) ® k is injective. Suppose not.
Choose a non-zero vector z € ker(Q(V,,,) ® k) such that mpz = (0). Let N’
denote the k[GL,(F,)]-submodule of M ®¢ k generated by z. Let N denote
an irreducible quotient of N’. Then by lemma 3.2.1

Q(Va,, )N ©ru) o£ (0),

a contradiction and the lemma is proved. [

3.3. Automorphic forms on unitary groups.. — Fix a positive integer
n > 2 and a prime [ > n.

Fix an imaginary quadratic field £ in which [ splits and a totally real
field F*. Set FF = FTE. Fix a finite non-empty set of places S(B) of places
of F'* with the following properties:

— Every element of S(B) splits in F.
— S(B) contains no place above [.
— If n is even then

n[F*:QJ/2+ #S(B) =0 mod 2.
Choose a division algebra B with centre F' with the following properties:

— dimpg B = n?.

— B?*=Bg.FE.

— B splits outside S(B).

— If w is a prime of F' above an element of S(B), then B, is a division
algebra.

If { is an involution on B with f|p = ¢ then we can define a reductive
algebraic group G;/F7T by setting

Gi(R)={g € B®p+ R: g*®'g=1}
for any F*-algebra R. Fix an involution I on B such that

- i|F =G
— for a place vjoo of F* we have Gy(F, ) = U(n), and
— for a finite place v & S(B) of F* the group Gy(F,) is quasi-split.
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Because either n is odd or
n[F*:QJ/2+ #S(B) =0 mod 2,

this is always possible. (The argument is exactly analogous to the proof of
lemma 1.7.1 of [HTJ].) From now on we will write G' for Gj.

We can choose an order Qg in B such that O = Qg and Op .y is max-
imal for all primes w of F which are split over F. (Start with any order.
Replacing it by its intersection with its image under I gives an order Of
with (O%)* = O%. For all but finitely many primes v of F* the completion

B, Will be a maximal order in B,. Let R denote the finite set of primes
which split in F' and for which Oy, is not maximal. For v € R choose a
maximal order 0%, of B, with (Of,)f = 0%, (e.g. Op. @ Of B Where w
is a prime of F' above v and Op, is a maximal order in B,). Let Op be
the unique order with Op, = 0%, if v € R and Op, = Of, otherwise.)
This choice gives a model of G over Op+. (This model may be very bad at
primes v which do not split in F', but this will not concern us.)

Let v be a place of F™ which splits in F. If v ¢ S(B) choose an
isomorphism i, : Op, — M,(OF,) such that i,(z*) = %, (). The choice of a
prime w of F above v then gives us an identification

iw: G(ES) — GL,(F,)
I G T
with i, G(Op+ ) = GLy(OFy) and iye = f(coiy,)™" If v € S(B) and w is a
prime of F' above v we get an isomorphism
iw: G(ES) — B
with i,G(Op+ ) = O, and iye(x) = (iy(z)?) "

Let S; denote the primes of F'™ above [. Suppose that R is a finite set
of primes of F'* which split in F such that R is disjoint from S;US(B). Let
T2 S URUS(B) denote a finite set of primes of F* which split in F. Fix
a set T of primes of F' such that T]_[CT is the set of all primes of F' above
T.If SC T write S for the preimage of S in T.If veT we will write ¥
for the element of T above v. Write S for the set of infinite places of F'T.

Let k£ be an algebraic extension of F; and K a finite, totally ramified
extension of the fraction field of the Witt vectors of k such that K contains
the image of every embedding F — K. Let O denote the ring of integers of
K and let \ denote its maximal ideal. Let I; denote the set of embeddings
F* — K. so that there is a natural surjection I; — S;. Let E denote the
set of embeddings F' < K which give rise to a prime of S;. Thus there is a
natural bijection I; = I;.
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For an n-tuple of integers a = (ay,...,a,) with a; > ... > a, there is an
irreducible representation defined over Q:

& : GL, — GL(W,)
with highest weight
diag(ty, ..., t,) — Htfl
i=1

(N.B. This is not the same convention used in [HT].) We can choose a model
& GL, — GL(M,)

of & over Z. (So M, is a Z-lattice in W,.) B
Let Wt, denote the subset of (Z")Hom Q) consisting of elements a
which satisfy

= Qrci = —OQrp41—i and
- Qr1 Z Z Qr -
If a € Wt,, then we get a K-vector space W, and irreducible representation
& G(F) — GL(W,)
g ®TEE§GT (TiTg).
The representation ¢, contains a G(Op+,)-invariant O-lattice M,.
For v € S(B), let p, : G(F,}) — GL(M,,) denote a representation of

G(F,) on a finite free O-module such that p, has open kernel and M, ®0 K
is irreducible. If JL (p, 0i;") = Sp,, (75) then set

;;5 _ Tl<7r'17| |(n/mv—2)(1—mv)/2)‘

We will suppose that
?5 . Gal (Fg/Fg) — GLn/mU(O)

(This is a condition on K. A priori this representation is into GL,/m,(K),
but if K is sufficiently large it can be replaced by a conjugate valued in
G Ly /m,(O). Because 75 is absolutely irreducible it suffices to check that det 75
takes unit values, and this follows because v does not lie above [ and because
the central character of p, takes unit values.)

For v € R let Uy, be an open compact subgroup of G(F.") and let

Xv - UO,v — OX

be a homomorphism with open kernel.
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We will call an open compact subgroup U C G(A%.) sufficiently small
if for some place v its projection to G(F)) contains only one element of
finite order, namely 1.

Let A denote an Q-algebra.

Suppose that U is an open compact subgroup of G(A%,) for which the
projection to G(F,") is contained in U, for all v € R. Suppose also that
a € Wt,, and that for v € S(B), p, is as in the last paragraph but two. Set

Moo}, 00y = Ma ® ® My, | @ <® O(Xv)> :

vES(B) vER

Suppose that either A is a K-algebra or that the projection of U to G(F;")
is contained in G(Op+;). Then we define a space of automorphic forms

Sav{pv}v{Xv} (U7 A)

to be the space of functions
frGETNG(AR) — A®0 Magp,).x.)

such that
f(gu) = ugllLJS(B)URf(g)

for all w € U and g € G(AY;). Here ugusmur denotes the projection of u
to [Lesusmuor GUEY). I V is any compact subgroup of G(AF,) for which
the projection to G(F,") is contained in Uy, for all v € R, then we define
Safpotixo} (V3 A) to be the union of the S, (,,1,(x.}(U, A) as U runs over open
compact subgroups containing V' which have projection to G(F.") is contained
in Uy, for all v e R.

If g € G(A?fo) X [l,egUown (and either A is a K-algebra or g €
G(Op+,)) and if V C gUg ' then there is a natural map

g : Sar{pv}v{Xv}(U’ A) - Sﬂ,{ﬂv},{XU}(‘/? A)
defined by
(gf)(h) = gs,usByurf(hg).
We see that if V' is a normal subgroup of U then
Satpetixet(Us A) = S (o150 (Vs A)U-

If U is open then the A-module S, (U, A) is finitely generated. If U is
open and sufficiently small then it is free of rank #G(FT)\G(A¥,)/U. If A
is flat over O or if U is sufficiently small then

Sav{Pv}’{Xv}(U7 A) = Sav{Pv}v{Xv}(U’ O) ®O A
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Suppose that U; and U, are compact subgroups whose projections to G(F,")
are contained in Uy, for all v € R and that g € G(A®) x [Ioer Uow If A
is not a K-algebra suppose that ¢, € G(Op+,;) and that v, € G(Op+,) for all
u € U; UUs,. Suppose also that #U;gUs/Us < co. (This will be automatic if
U; and U, are open.) Then we define a linear map

[U19U3] = Sagpy oot (U2, A) — Sap01, 1303 (U1, A)

by
([UrgUs]f)(h) = Z(gi)SlUS(B)URf(hgi>

if UigU; = H g:Us.

Lemma 3.3.1 Let U C G(A?fO)XHUGR U be a sufficiently small open com-
pact subgroup and let V C U be a mnormal open subgroup. Let A be an O-
algebra. Suppose that either A is a K-algebra or the projection of U to G(F}")
is contained in G(Op+;). Then Sy (o1} (Vs A) is a finite free A[U/V]-module
and tryy gives an isomorphism from the coinvariants Sq (p.3,1x03 (Vs A)uyv to

Sadpohixo} (U, A).
Proof: Suppose that
) = [T e g
jeJ

For all j € J we have g;'G(F*)g; NU = {1}. (Because this intersection is
finite and U is sufficiently small.) Thus

0 =11 I cE"guv.

Jj€Juel/Vv
Moreover
Saipot e} (U A) — GBJGJ Ma (p.} 430} ®0 A
and

Sutotit (Vi A) — DBjcs Pucvyv Moot it ®o A
fr— (flg5u))ju

Alternatively we get an isomorphism of A[U/V]-modules

Satpd 0 (Ve A) == Dy Maipu) 1) ®0 A[U/V]
fr— (Cuevyv usiurusm) flgju) @ u™);.
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Then
Satoer 00} (Vs Aoy == @jcs Ma,(p).1x0) ®0 A
fr— (Cuevyv usiorusm) f(g5u));-
In fact we have a commutative diagram

tr U/v

Sa,{pv},{xﬂ(‘/aA)U/v — Sa,{pv},{iv}(U’A)

Dics Matptix ®0 A = DBjes Mafpuhine} ®o A

where the vertical maps are the above isomorphisms. The lemma follows. [J

Proposition 3.3.2 Fix +: K — C.

1. Sap10({1},C) is a semi-simple admissible G(AS,)-module.
2. If S(B) # 0 and m = ®,m, is an irreducible constituent of the
space Sq(p,1,0({1}, C) then there is an automorphic representation BC ()
of (B® A)* with the following properties.
— BC (7)o (—1) = BC ().
— If a prime v of FT splits as ww® in F then BC (), = T, oyt
— If v is an infinite place of F* and 7 : F — C lies above v then
BC (7), is cohomological for (&, _, oT)® (& _, o Tc).

— If v is a prime of F™ which is unramified, inert in F and if m,
has a fized vector for a hyperspecial mazimal compact subgroup of G(F,)
then BC ,(7), has a GL,(Opy)-fired vector.

— Ifve S(B) and m, has a G(Opy) fized vector and w is a prime

of F above v then BC (7), is an unramified twist of (1p)) o iyt

3. If S(B) # 0 and m = ®,m, is an irreducible constituent of the
space Sq{p,1.0({1},C) such that for v € S(B) the representation m, has a
G(Op+,)-fized vector, then there is a positive integer m|n and there is a
cuspidal automorphic representation II of GLy/m(Ar) with the following
properties.

— IINoc=1| |™1.

— If a prime v € S(B) of F* splits as ww® in F then II,BII,| |H

LB [P 2, ot

— If v is an infinite place of F™ and 7 : F — C lies above v then
I,| |Pm=Y/Cm) s cohomological for (&, o 7) ® (&,. o 7c) and b.; =
Urm(i—1)+j + (m —1)(i — 1) for every j=1,...,m.

— If v is a prime of F™ which is unramified, inert in F and if m,
has a fized vector for a hyperspecial mazimal compact subgroup of G(F,)
then II, has a GLym(OF,)-fived vector.

— If m>1 and w is a prime of F above a prime v € S(B) then II,
1s cuspidal.
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— If ve S(B) and w is a prime of F above v then JL (1p, oi ')V
is an unramified twist of Sp,,(Il,). (In the case m =1 and II, is not
cuspidal we interpret Sp,,(Il,) as I,.)

If for one place vy & S(B) of FT, which splits in F, the representation
Tw, U8 generic, then for all places v & S(B) of F*, which split in F, the
representation T, 1S generic.

4. Suppose II is a cuspidal automorphic representation of GL,(Ar)

with the following properties.

— IIVoc=1I.

— If v is an infinite place of F* and 7 : F — C lies above v then
I, is cohomological for (§u _, ©T)® (§a,_, o TC).

— Ifve S(B) and w is a prime of F' above v then II, is an un-
ramified twist of JL ((tp)) oiyt).

Then there is an irreducible constituent 7 of S, (,10({1}, C) with the fol-
lowing properties.

— For v € S(B) the representation m, has a G(Op+,)-fized vector.

— If a prime v € S(B) of FT splits as ww® in F then m, = I, 0.

— If v is a prime of F* which is inert and unramified in F and if
1T, is unramified then m, has a fixed vector for a hyperspecial maximal
compact subgroup of G(F,).

Proof: 1f T € E then 7 : I — C and hence F, — C. Then W, ®k, C
is naturally a continuous G(F3)-module:

qg+— ®T€Tl§a7(m'g).

Denote this action by &,,. Similarly M, ¢,10 ®0, C becomes a continuous
G(FY) % [1,es(8) G(F)-module and hence (via projection) also a continuous
G(Ap+)-module, which we will denote (M, ¢,,1,0®0,,C)e to make clear which
action is being considered. Let A denote the space of automorphic forms on
G(FT)\G(Ar+). We have an isomorphism

i SQ,{,DU},@(U7 C) — HomUxG(F;)((Ma,{pv},(B @0, C)\o/07 A)

given by
i(f)(@)(9) = aléau(goo) " (&al@) F(9™))).

(We remark that the elements of S, 1,,3,0(U, C) are not continuous functions,
because our definition of S, y,,10(U, A) was designed to give continuous func-
tions when A is a topological O-algebra. The map ¢ makes C an O-algebra,
but is not continuous.)

The first part now becomes a standard fact. The second part follows
from theorem A.5.2 of [CL], except that theorem A.5.2 of [CL] only identifies
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BC,(w), for all but finitely many v. We can easily adapt the argument to
identify BC ,(7), at all split places, as is described in the proof of theorem
VI.2.1 of [HT] (page 202). It is equally easy to control BC,(7), at places
where 7, has a fixed vector for a hyperspecial maximal compact subgroup.
One just chooses the set S in the proof of theorem A.5.2 of [CL] not contain-
ing v. The third part follows from the second, theorem VI.1.1 of [HT] and
the main result of [MW]. As for the fourth part, the existence of some de-
scent (controlled at all but finitely many places) follows from theorem VI.1.1
of [HT] and the argument for proposition 2.3 of [Cl] as completed by the-
orem A.3.1 of [CL]. That this descent has all the stated properties follows
from the earlier parts of this proposition. [

Corollary 3.3.3 S, (1.0 ({1}, K) is a semi-simple admissible G(A®) x
[1.cr Uo,n-module.

Proof: This reduces to the case R = () which follows from proposition
3.3.2. 0

Combining the above proposition with theorem VII.1.9 of [HT| we ob-
tain the following result.

Proposition 3.3.4 Let K denote the algebraic closure of Q; in K. Suppose
that ™ = Qugrm, is an irreducible constituent of Sqip.y.4x0} (I Loer Uow: K) then
there is a continuous semi-simple representation

vER

ry: Gal (F/F) — GL,(K")
with the following properties.

1. If vg RUS(B)US, is a prime of F™ which splits v =ww® in F,
then

el = (im0 1) (1= m)*,

RIS

@ IIZ

\/61 n
€ S(B) splits v=ww® in F then

PalGp, = (ML (my 0iy,1))¥ (1 = n))™.

S~~~ ﬂﬁn

4. If v is a prime of F* which is inert and unramified in F and if 7,
has a fixed vector for a hyperspecial mazimal compact subgroup of G(F.)
then rr|w,, is unramified.

5. If w 1s a prime of F above | then r, is potentially semi-stable at
w. If moreover Ty, is unramified then v is crystalline at w.
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6. If . F — K gives rise to a prime w of F then

dimeo gr'(ry @1, Bpr)%™ (Fu/Fu) _

unless 1 = a,; +n —j for some j=1,...,n in which case

dimgo gr'(rx ®rp, Bor)®™ (Fu/Fw) =1,

7. If for some place v & S(B)UR of F* which splits in F the repre-
sentation m, s not generic then r, is reducible.

Proof: Let m and II be as in part 3 of proposition 3.3.2. Let S’ D S
be any finite set of finite places of F'" which are unramified in F. Choose a
character ¢ : Az — C* such that

— ¢t =y
— 1) is unramified above S’; and
—if 7: F — C gives rise to an infinite place v of F' then

Py 12— (7'2/|7'2])5T

where |22 = 22¢ and §, = 0 if either m or n/m is odd and 4, = +1
otherwise.

The existence of such a character is proved as in the proof of lemma VII.2.8
of [HT]. Then

r, = RZ(H®w| |(m—1)/2)\/(1_n)®Rl(,¢—l| |(n/m—1)(m—1)/2)\/®(1@6—1@...Ggel—m)

is independent of the choice of S’ and 1 and satisfies the requirements of
the proposition. (See theorem VII.1.9 of [HT]. We use the freedom to vary
S" to verify property 4. Note that if m = 1 then we simply have r, =
R/(IT)Y(1—=n).) O

3.4. Unitary group Hecke algebras.. — Keep the notation and assump-
tions of the last section. Further suppose that 77> QU RUS(B)U S, is a
finite set of places of F'* and that

U=]JUv. cGax)

is a sufficiently small open compact subgroup such that
1. if v ¢ T splits in F then U, = G(Op+,),

2. if v € R then U, = i;'Iw(?),
3. and if v € Q then U, = i;'Uy (7).
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If v € S(B) also suppose that the representation
ﬁ; : GF17 I GLn/mU (O)
has the following properties:

1. 753 ® k is absolutely irreducible,
2. every irreducible subquotient of (73 ® k)|, is absolutely irreducible,
3. and ;@ k 215 @ k(i) for i =1,...,m,. ’

By the first of these properties we see that the realisation over O we chose

for 73 @ K is in fact unique up to equivalence. If v € R also suppose that ¥,
is a character of Iw(v)/Iwi(v) and hence of the form

g— HXu,i(gii)
i=1

where x,,; : k(v)* — O*.

We will denote by

T
Tooo. 00 (U)

the O-subalgebra of End (S {,,},4x.}(U, O)) generated by the Hecke operators
T (or strictly speaking iz!(T)) x U) and (TS")~! for j = 1,..,n and
for w a place of F which is split over a place v € T of F*. (Note that

7Y = (qu,"))*lTé,n_j), so we need only consider one place w above a given

place v of F.) If X is a TZ . (U)-stable subspace of S, (,,}.{x.}(U, K) then

) . a.{pv}
we will write
T (X)
for the image of T}, (U) in End x(X).
Note that T7(X) is finite and free as a O-module. Also by corollary
3.3.3 we see that it is reduced.
If ve® and o € F write

Vo =i5" <U1(5) (1”01 2) U1(5)> x U".

Lemma 3.4.1 Suppose that for all v € R the O*-valued characters x, and
X, of Iw(?)/Iw1(0) are congruent modulo X. Set V = UR x [], (i ' Tw1(?)).

Then
Sartpo}, 00} (U k) = Sagpu, 003 (U F)
;z}f TaT,{pv}ﬂ(V)—modules. In particular if m is a maximal ideal of th;,{pu},@(v)’
en

Satpo}ixe} (Us K)m # (0)
if and only if
Satpot 00 U K)m # (0).
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Proof: The first part is immediate from the definitions. The second part
follows because Sq {p,1.1x.} (U, K)m # (0) if and only if So (501.4x.1 (U, k)m # (0).
(The second step uses the assumption that U is sufficiently small so that
Satpotixe} (U, O)m is O-torsion free and

Satpetixet (U K)m = Sa (0,3, 30} (Us O)m ®0 K

and

Satpot 00 U B)m = Sa o1, (0} (U, O)m @0 k)
O

Proposition 3.4.2 Suppose that m is a mazimal ideal of TaT{p,,} {XU}(U).
Then there is a unique continuous semisimple representation

T : Gal (F/F) — GLn(Th (1 (1 (U)/m)

with the following properties. The first two of these properties already charac-
terise Ty uniquely.
1. T 18 unramified at all but finitely many places.
2. If a place v &€ T of F* splits as ww® in F then Ty is unramified
at w and Tw(Froby,) has characteristic polynomial

X —THX 4 4 (1) (Nw)?0=D/27) xn—i4
Fo 4 (1) (Nw)rn=D/27,

3. If a place v of F* is inert and unramified in F and if U, is a
hyperspecial mazximal compact subgroup of G(F)), then Tn is unramified
above 0.

4. TLETL Q€T

5. If v € S(B) and U, = G(Op+) then Tw|gaF,/r,) s Ts-discrete se-
ries. (See definition 2.4.24.)

6. Suppose that w € S; is unramified over 1, that Uy, = G(Op+ )

and that for each T € E above w we have
[—1-n>a;>..>a;,>0.

Then o
Talal Fo/m) = Gu(Mmw)

for some object My, of MFpr

oty () /e Moreover for all T € I; over
@51 PV S XY ?

w we have o
dimTaT’{pv}y{Xv}(U)/m(grZMm,w) Ore1 O=1

if i =a.; +n—j for some j=1,...,n and =0 otherwise.
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Proof: Choose a minimal prime ideal @ C m and an irreducible con-

stitu?]nt ™ of Su (o) ({1}, K) such that 7 # (0) and TL . ((U) acts

on m° via the quotient Tg,{pv},{xv}<U )/gp. Choosing an invariant lattice in r,
reducing and semisimplifying gives us the desired representation 7, except
that it is defined over the algebraic closure of T (o). (0o} (U)/m. However, as
the characteristic polynomial of every element of the image of 7, is rational
over TaT,{pU}’{Xv}(U)/m and as Ti{pv}y{xv}(U)/m is a finite field we see that
(after conjugation) we may assume that

Fm : Gal (F/F) — GLn(TZ:{PU},{Xv}(U)/m)
[l

Definition 3.4.3 We will call m Eisenstein if 7y, is absolutely reducible.

Proposition 3.4.4 Suppose that m is a non-Fisenstein maximal ideal of the
Hecke algebra Ti{pv},{xv}(U) with residue field k. Then Ty has an extension
to a continuous homomorphism

Tw: Gal (F/F') — G, (k).
Pick such an extension. There is a unique continuous lifting
o : Gal (F/FT) — G,(TT ey

aﬂ{Pv},{XU
of Tm with the following properties. The first two of these properties already
characterise the lifting ry uniquely.
1. ro is unramified at all but finitely many places.
2. If a place v € T of F* splits as ww® in F then ry is unramified
at w and ry(Froby) has characteristic polynomial

Xt—TWX" =y (=1 (Nw) U= D270 Xn=d | 4 (—1)"(Naw) = D/27m),
3. If a place v of F* such that v is inert and unramified in F and
if U, is a hyperspecial mazimal compact subgroup of G(F.) then 1y is
unramified at v.
4. vory = 61_"5;7F+, where 0p/p+ denotes the nontrivial character of

Gal (F/F*) and where pwm € Z/2Z.
5. Suppose that w € S; is unramified over I, that Uy, = G(Op+ )

and that for each T € E above w we have
l—1-n>a;>..>a,>0.
- T

Then for each open ideal I C Ta’{va{Xv}(U)m

(Tm @pr (U)m TaT,{p,u},{Xv}(U)m/[)|Ga1(Fw/Fw) = Gu(Mum 1)

a,{pv}{xv}
for some object My of MFo ..
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6. If v € S(B) and U, = G(Op+,) then rw|gaF,/r,) 5 rs-discrete
series. (See definition 2.4.24.)
7. If ve R and o € I, then ro(o) has characteristic polynomial

H X Xv] ArtF~ ))

Jj=1

8. Suppose that v € Q. Let ¢ be a lift of Froby to Gal (F3/F;) and let
wy be an element of F such that Art pwy = ¢y on the mazimal abelien
extension of Fy. Suppose that o € k is a simple root of the characteristic
polynomial of Tw(dw). Then there is a unique root & € Tf’{va{XU}(U)m of
the characteristic polynomial of Tm(¢g) which lifts c.

Suppose further that Y is a TT o }{Xv}(U)[Vwi]—mvam’ant subspace of the
space Sq (p,1{x.} (U, K)m such that Vs — o is topologically nilpotent on Y.
Then for each B € FI with non-negative valuation the element Vg (in
End g (Y)) lies in TT(Y)). Moreover 3+ Vj extends to a continuous char-
acter 'V : FX — TT(Y)*. Further (X — V) divides the characteristic
polynomial of ru(¢s) over TT(Y).

If Nv=1mod [ then

7am’Gal(fa/l"a) = 5@ (Vo Art l;;)a
where s s unramified.

Proof: By lemma 2.1.4 we can extend 7, to a homomorphism
Tw: Gal (F/F') — G, (k)

with v o7y = €'~ 16“/F+ and Tm(c,) ¢ GL,(k) for any infinite place v of

F*. Moreover, up to GL,(k)-conjugation, the choices of such extensions are
parametrised by k*/(k*)2.

Similarly, for any minimal primes @ C m we have a continuous homo-

morphism 7, from Gal (F/F*) to the points of G, over the algebraic closure

of Q in the algebraic closure of the field of fractions of T7 1oy (U) /9

such that

— 1, is unramified almost everywhere;

— r,'GL, = Gal (F/F); and

— for all places v € T of F* which split v = ww® in F the characteristic
polynomial of 7y(Frob,) is

Xn—TWX"=ty (=1 (Nw)U=D270 xm=i 4 4 (—1)"(Naw) = D/27m),
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According to lemma 2.1.5 we may assume that r, is actually valued in
Gn(O,) where O, is the ring of integers of some finite extension of the field
of fractions of Tg (o}, {Xv}(U )/p. Then by lemma 2.1.4 again we may assume
that the reduction of 7, modulo the maximal ideal of O, equals 7. (Not
simply conjugate to Ty.) Let A denote the subring of k& @pCm o consist-
ing of elements (am,a,) such that for all p the reduction of a, modulo the
maximal ideal of O, is ay. Then

Tw © P Gal (F/FY) — Gu(A).
2
Moreover the natural map

Tt} e} (D) — A

is an injection. (Because TY (o) (xo) (U)m is Teduced.) Thus by lemma 2.1.12
we see that 7o & P, 1, is GL,(A) conjugate to a representation

rm : Gal (F/F+) — gn<T£{pv},{XU}<U)m>
such that:

— If a place v € T of F'* splits as ww® in F then ry is unramified at
w and ry(Frob,) has characteristic polynomial

X" —TIWX" p (=1 (Nw) U D27 X 4 (= 1) (Nw)" = D/27 ),

— If a place v of F' is inert and unramified in F and if U, is a
hyperspecial maximal compact subgroup of G(F)) then ry, is unramified
at v.

It is easy to verify that r, also satisfies properties 4 and 5 of the proposition.
We next turn to part 6. After base changing to an algebraically closed
field each 7|q, 7, /) has a unique filtration such that grr| 1, = ol
and
i ~ (g0 0 i
8 ol Gal (F3/F5) — (8r " rolga (fg/Fg))(e )
for i =0,..,m, —1 (and = (0) otherwise). Enlarging O, if need be we may
assume that this filtration is defined over the field of fractions of O,. As
73 Qo k is irreducible, such a ﬁltration also exists over O,,. Because of the
uniqueness of the filtration Fil' on the base change of T to the residue
field of O, we see that these filtrations piece together to give a filtration of
Tm @& P, 7 over A. As the isomorphisms g7 = (g7'Tw)(€') are unique up
to scalar multiples we get isomorphisms

rm@@% gr rm@eBrp
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over A[Gal (F3/F;)] which are compatible with the chosen isomorphism be-
tween gr'7y, and (gr7n,)(e'). As

(see lemma 2.4.23), we see that we get an isomorphism

grO(Tm P EB%) 25 Qe A
o

over A[lp,] compatible with the chosen isomorphism gri7,, = 75 ®o k. Thus
Ta® D, rp is T5-discrete series. It follows that rw[g. 7, r,) is also 75-discrete
series.

Part 7 follows from proposition 3.3.4 and lemma 3.1.6. (Note that the
space S (p}.0x) (U, K) equals the subspace of S, (p1.0(URX][,cp s ' Tw1(0), K)
on which Iw(?)/Iw;(v) acts by x;'.)

Finally we turn to part 8 of the proposition. The existence of a fol-
lows at once from Hensel’s lemma. Let P(X) € T; . . (U)x[X] denote
the characteristic polynomial of 7y,(¢3). Thus P(X) = (X — a)Q(X) where

Q@) € Tyt 00y (U

Write Y @x K = @((Y ® K) N7) as m runs over irreducible smooth
representations of G(A%,). From lemmas 3.1.3 and 3.1.5 and the fact that
V. — a is topologically nilpotent we see that dim((Y ® K)Nw) < 1 for all
7. Let ¢4 be any lift of Froby to Gal (F3/F5) and let Art p ok = ¢ Let P’
denote the characteristic polynomial of ry(¢5) and let & be its unique root
in T'(Y) over a. As Vo, and V. commute, each (Y ® K)Nr is invariant
under Ver. By lemma 3.1.5 VW%V;; is topologically unipotent on (Y ® K)N.
Lemmas 3.1.3 and 3.1.5 imply that P'(Vg) =0 on (V ® K)N 7. Thus Ver =
@ on (Y ® K)Nx. Hence Vor =& € TH(Y) C Endg(Y). Tt follows that
Vs € TT(Y) for all B € FY with non-negative valuation and that 3 — Vj
extends to a continuous character V : F2* — TT(Y)*.

Now suppose that Nv = 1 mod /. From lemma 3.1.5 we see that if
(Y @ K) N # (0) then either 7 is unramified or 7@ = (0) (otherwise V.
would be a multiple root of the characteristic polynomial of 7y(¢7)). Thus
(rm ® TT(Y))(Gal (F3/F5)) is abelian. We have a decomposition

TH(Y)" = Q(¢a) T (V)" & (¢5 — &) T (V)"

As (rm @ TT(Y))(Gal (F3/F;)) is abelian we see that this decomposition is
preserved by Gal (F3/F;). By lemma 3.1.5 we see that after projection to
any 7N (Y ® K), Gal (F/F;) acts on Q(¢5)TT(Y)" by VzoArty'; and its
action on (¢7 — @)TT(Y)" is unramified. We conclude that Gal (F3/F;) acts

vER
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on Q(¢z)TT(Y)" by V and that its action on (¢7 —a)TT(Y)" is unramified.
This completes the proof of part 8 of the proposition. [

Corollary 3.4.5 Suppose that m is a non-Fisenstein mazimal ideal of the
Hecke algebra Tz{pu},{xv}(U>' Suppose also that v € T — (S(B)US;) and that
U, =G(Op+,). If w is a prime of F above v then for j=1,...,n we have

T’Lg)j) € Ti{pu},{xu}(U)m C End (Sav{pu},{Xv}<U’ K)m).
Proof: One need only remark that
Té}j) — (Nw)j(lfj)/%r N Tm(Frob,,).

3.5. R = T theorems: the minimal case. — In this section we will
prove the quality of certain global Galois deformation rings and certain Hecke
algebras in the so called ‘minimal case’. The results of this section are not
required for the proofs of the main theorems in [Tay| and [HSBT]. It could
be skipped by those only interested in these applications, but it might serve
as a good warm up for understanding the arguments of [Tay].

We must first establish some notation and assumptions. In the interests
of clarity we recapitulate all running assumptions made in previous sections.

Fix a positive integer n > 2 and a prime [ > n.

Fix an imaginary quadratic field F in which [ splits and a totally real
field F'* such that

— F=F"E/F* is unramified at all finite primes, and
— F/Q is unramified at .

Fix a finite non-empty set of places S(B) of places of FT with the
following properties:

— Every element of S(B) splits in F.
— S(B) contains no place above [.
— If n is even then

n[F*t: Q]/2+ #S(B) = 0 mod 2.

Choose a division algebra B with centre F' with the following properties:

— dimpg B = n?.

— B®~B®,E.
— B splits outside S(B).
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— If w is a prime of F' above an element of S(B), then B, is a division
algebra.

Fix an involution { on B and define an algebraic group G/F* by
G(A)={ge Bop+ A: g"®'g=1},
such that
—Ilr=c

— for a place vjoo of F* we have G(F.) = U(n), and
— for a finite place v € S(B) of F* the group G(F,") is quasi-split.

The purpose of the assumption that S(B) # 0 is to simplify the use of the
trace formula in relating automorphic forms on G to automorphic forms on
GL,/F and in attaching Galois representations to automorphic forms on G.

Choose an order Op in B such that OiB = Op and Op, is maximal
for all primes w of F which are split over F'™. This gives a model of G over
Op+. If v ¢ S(B) is a prime of F™ which splits in F' choose an isomorphism
iy : Opy — M, (OF,) such that i,(z%) =%, (x)° If w is a prime of F above v
this gives rise to an isomorphism i, : G(F,") = GL,(F,) as in section 3.3. If
v € S(B) and w is a prime of F' above v choose isomorphisms i, : G(F,") =
By such that iye = i,,' and i,G(Op+,) = OF .

Let S; denote the set of primes of F™ above [. Let S, denote a non-
empty set, disjoint from S;U S(B), of primes of F™ such that

— if v €S, then v splits in F, and
— if v € S, lies above a rational prime p then [F((,): F] >n

Let T' = S(B)U S US,. Let T denote a set of primes of F above T such
that T]_[TC is the set of all primes of F' above T. If v € T we will let v

denote the prime of T above v. If S C T we will let S denote the set of ¥
for v e S.
Let U =], U, denote an open compact subgroup of G(A%¥,) such that

— if v is not split in F' then U, is a hyperspecial maximal compact
subgroup of G(F),

— if v ¢ 5, splits in F' then U, = G(Op+,),

— if v € S, then U, =i;'ker(GL,(Opzs) — GL.(OFr3/(w3))).

Then U is sufficiently small. (The purpose of the non-empty set S, is to
ensure this.)

Let K/Q; be a finite extension which contains the image of every em-
bedding F'+ < K. Let O denote its ring of integers, A\ the maximal ideal of
O and k the residue field O/\.

For each 7:F — K choose integers a,1,...,a,, such that
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= Qrcp = —OQrp41—iH and
— if 7 gives rise to a place in 5; then

l—1-n>a;>..>a;,>0.

For each v € S(B) let p,: G(F,}) — GL(M,,) denote a representation
of G(F;) on a finite free O-module such that p, has open kernel and M,, ®¢
K is irreducible. For v € S(B), define m,, m; and 75 by

JL (pv © 7'%1) = Sp M (77'5)

and
5 = ry(mg] |(n/mrl)(lfw)/2>.

We will suppose that
775 : Gal (FT}/Fg) I GLn/mg(O)

(as opposed to GL, . (K)), that the reduction of 7 mod A is absolutely
irreducible, that every irreducible subquotient of 73|, mod A is absolutely
irreducible, and that for ¢+ =1,...,m, we have

?’g (S0) k % ?’g Ko k(EI)
Let m be a non-Eisenstein maximal ideal of Ta:[:{ oy 0(U) with residue
field £ and let
Tm: Gal (F/F') — G, (k)

be a continuous homomorphism associated to m as in propositions 3.4.2 and
3.4.4. Note that

1—n6Mm

VOoTy, =¢€ FIF+

where p/p+ is the non-trivial character of Gal (F/F'") and where juy, € Z/2Z.
We will assume that 7, has the following properties.

— To(Gal (F/F*(())) is big in the sense of section 2.5.

— If v €S, then 7, is unramified at v and

H°(Gal (F3/Fy), (adTw)(1)) = (0).

We will write Ty, for the localisation Tz{ p0(U)m and Xy for the lo-
calisation S, 5,3,0(U, O)m. Thus T, is a local, commutative subalgebra of
End o(Xu). It is reduced and finite, free as an O-module. Let

rm : Gal (F/Fﬂ — Gn(Th)
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denote the continuous lifting of 7, provided by proposition 3.4.4. Then T, is
generated as an (-algebra by the coefficients of the characteristic polynomials
of ru(0) for o € Gal (F/F).

Consider the deformation problem S given by

(F/F+7 T7 Ta 077111’ el_nééﬁ;pﬂ {D’U}’UET)

where:

— For v € S,, D, will consist of all lifts of Tw|gy F,/r,) and so
L, = H'(Gal (F3/F5),adTy) = H' (Gal (F3/F5) /I, ad Ty,).

— For v € S, D, and L, are as described in section 2.4.1 (i.e. consists
of crystalline deformations).

— For v € S(B), D, consists of lifts which are 73-discrete series as de-
scribed in section 2.4.5.

Also let . o .
rg : Gal (F/F+) — G (RS™)

denote the universal deformation of 7, of type &. By proposition 3.4.4 there
is a natural surjection .
Rgﬂlv — Tm

such that r4"" pushes forward to 7.
We can now state and prove our main result.

Theorem 3.5.1 Keep the notation and assumptions of the start of this sec-
tion. Then _
Rgmv L Tm

1s an isomorphism of complete intersections and Xy, is free over Ty. Moreover
tm = n mod 2.

Proof: To prove this we will appeal to Diamond’s and Fujiwara’s im-
provement to Faltings’ understanding of the method of [TW]. More precisely
we will appeal to theorem 2.1 of [Dia]. We remark that one may easily
weaken the hypotheses of this theorem in the following minor ways. The
theorem with the weaker hypotheses is easily deduced from the theorem as
it is stated in [Dia]. In the notation of [Dia] one can take B = k[[Xq, ..., X,/]]
with 7/ < r. Also in place of his assumption (c) one need only assume that
H, is free over A/n,, where {n,} is a family of open ideals contained in
n with the property that (), n, = (0). We also remark with these weakened
hypotheses one may also deduce from the proof of theorem 2.1 of [Dia] that
in fact r =1r".
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Choose an integer g as in proposition 2.5.9. Set
¢ =q—n[F": Q)L+ (=1)"")/2.
For each N € Z>, choose (QN,@N,{EEJN)}UEQN) as in proposition 2.5.9 and
definition 2.5.7. We will use the notations S(Qn), A,, Ag, and agg, as in
definition 2.5.7. Recall that
(R‘le‘r(lgN) ) AQN Rumv )
By proposition 2.5.9 there is a surjection
Ol[Yi, o Yyl] — R .
Let ¢y denote the composite
wN . O[[Yi, ’Y*q/]] — Rumv Runlv'
There is a surjection
O[[Zla ey Zq]] - O[AQN]
such that, if ny denotes the kernel, then (), ny = (0). We can lift the map
OHZh ) H - O[AQN] - Rg'ngN
to a map
¢N : O[[Zl, ceny Zq]] e O[[va ,}/;1/]]
Then the composite
Ol Z1, oy Zg]) P25 REiv )\

has kernel (X, Zy,..., Z,).

Note that Xy is a R -module via RE™ —» T,

Define open compact subgroups Ul(QN) IL, Ui(@n)» and Up(Qn) =
[T, Uo(@n)o of G(AS,) by

= Ui(@Qn)v = Up(Qn)y = U, if v & Qn,

— Ui(Qn)y = i5'UL(0) if v € Qu, and

— Up(Qn)v = i5'Up(D) if v € Q.

By corollary 3.4.5 we see that we have

T Gy o@D — Ty g (Un(@u))n = Ty (U)o = T (U)o

For v € Qu choose ¢7 € Gal (Fy/F5) lifting Froby and wy € F> with
¢y = Art p ooy on the maximal abelian extension of Fj. Let

Py € T, (2 (U1 (Qn) ) X]
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denote the characteristic polynomial of 7n(¢5). By Hensel’s lemma we have
a unique factorisation

P5(X) = (X — A3)Qs(X)
over Tf?ﬁ’;@(Ul(QN))m, where Ag lifts %(JN)(Frobg) and where Q3(A4;) is a
unit in TaT,LfZ]]Y,VJ(Ul(QN))m' By lemmas 3.1.3 and 3.1.5 we see that P;(V. ) =

0 on Sa7{pv}7@(U1(QN),O)m. Set
Hygy = (][] Q5(Ve))Satpny0(Ui(Qn), O

vEQN
and
Hogx = (] @5(Ver.))Sartpr 0(Uo(@n), O)n
vERQN
We see that Hy g, is a TaT’Lffv]]Y’m(Ul(QN))—direct summand of the larger mod-

ule S, (5,1,0(U1(Qn), O), and hence by lemma 3.3.1

tr U (@n)/0n @) - (H1L,08 ) Uo@n)/ui(@n) — Hoon-

Moreover for all v € Qu, Vo, = Ay on H, g, . By part 7 of proposition 3.4.4
we see that for each v € @y there is a character

Vit B — TTY9N(H) g )
such that
—if a € FZ' N Opy then Vi(a) =V, on Hig,, and
— Tmlwp. = 5@ (Vi o Art ;})1) where s is unramified.
Thus ry, gives rise to a surjection
Rgr(lgN) — TN (HQN)'
The composite
I 0% — Aay — (R§5,)* — T (Hg, )"
veEQN

is just [[,Vs. As Hyg, is a direct summand of S, ,,3,0(U1(Qn),O) over

TaT’L{Jgf}Vyw(Ul(QN)), lemma 3.3.1 now tells us that Hyg, is a free O[Aq,]-
module and that
(Hl,QN)AQN — Hogy-

Also lemma 3.2.2, combined with lemma 3.1.5, tells us that

( H Qs(Vaw)) + Xm — Hoqy-

VEQN
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Now we apply theorem 2.1 of [Dia] (as reformulated in the first para-
graph of this proof) to A = k[[Z1,...,Z,]], B = Kk[[Y1,...,Yy]], R = R¥V/\,
H = Xu/X and Hy = Hyg,/\. We deduce that r = 7/, that X,/\ is free
over RIV/\ via R¥V/\ — Tn,/A and that R¥V/X\ is a complete inter-
section. As X, is free over O we see that X, is also free over Rg“i" via
R¥Y — Ty, Thus R 5 Ty, is free over O and hence a complete inter-
section. The equality ¢ = ¢’ tells us that puy, =n mod 2. [
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4. Automorphic forms on GL,.

In this chapter we will recall some general facts about the relationship
between automorphic forms on GL, and Galois representations. We will then
combine theorem 3.5.1 with some instances of base change to obtain modu-
larity lifting theorems for GL,,.

4.1. Characters.. — The first three lemmas are well known.

Lemma 4.1.1 Suppose that F is a number field and that S is a finite set of
places of F. Suppose also that

xs: [[Fr—Q

veES

1s a continuous character of finite order. Then there is a continuous character
X:F*\AL — Q"
such that X|vastX = Xs-

Proof: One may suppose that S contains all infinite places. Then we
choose an open subgroup U C (A%)* such that yg is trivial on U N F*.
(This is possible as any finite index subgroup of Oj is a congruence sub-
group.) Then we can extend xg to UJ[,.qF)/(U N F*) by setting it to
one on U. Finally we can extend this character to Aj/F* (which contains
Ullyes £ /(UNF*) as an open subgroup). [

Lemma 4.1.2 Suppose that F' is a number field, D/F is a finite Galois ex-
tension and S is a finite set of places of F. For v € S let E!/F, be a finite
Galois extension. Then we can find a finite, soluble Galois extension E/F
linearly disjoint from D such that for each v € S and each prime w of E
above v, the extension E,/F, is isomorphic to E!/F,.

Proof: For each D D D; D F with D;/F Galois with a simple Galois
group, choose a prime v; € S of F' which does not split completely in D;.
Add the v; to S along with E; = F,,. Then we can drop the condition that
E/F is disjoint from D/F - it will be automatically satisfied.

Using induction on the maximum of the degrees [E! : F,| we may reduce
to the case that each E!/F, is cyclic. Then we can choose a continuous finite
order character

xs: [[F—Q

vES
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such that ker yg|px corresponds (under local class field theory) to E}/F, for
all v € .S. According to the previous lemma we can extend x to a continuous
character

X: F\AL — Q.
Let E/F correspond, under global class field theory, to kery. O

Let F be a number field. A character

X:AL/F* — C*

is called algebraic if for 7 € Hom (F,C) there exist m, € Z such that
Xz (@) = H T(x)""
T7€Hom (F,C)

A set of integers {m,} arises from some algebraic character if and only if

there is an integer d and a CM subfield £ C F such that if 7|p = (1|g)oc

then d = m,, +m,,. For this and the proof of the next lemma see [Sel].
We will call a continuous character

X Gal (F/F) — Q
algebraic if it is de Rham at all places above .
Lemma 4.1.3 Let 1: Q, = C. Let F be a number field. Let

X:Ap/F* — C*
be an algebraic character and for T € Hom (F,C) let m, € Z satisfy
Mzp@) =[] @™
reHom (F,C)
Then there is a continuous character
ra(x) : Gal (F/F) — Q;

with the following properties.

1. For every prime vl of F we have

71:(X) | Gal (Fy/F,) — Xv© Art El

2. If v[l is a prime of F then ri,(X)|ga (F,/r,) 8 potentially semistable
(in fact potentially crystalline), and if x, is unramified then it is crys-
talline.
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3. If v|l is a prime of F and if 7: F — Q, lies above v then
dimg, ar*(r,(x) ®r.r, Bpr) (Fo/Fo) —
unless 1 = m,, in which case
dimg, gr'(ri,(x) -, Bor) ™™ (Fo/Fo) = 1.
Any continuous algebraic character v : Gal (F/F) — le arises in this
way.
The character 7;,(x) is explicitly xgyoArt z' where x : A% JFX(FX)0 —

le is given by

xoy(z) = I '@ | I @)™ | x@

T€Hom (F,C) T€Hom (F,C)

Lemma 4.1.4 Let F' be an imaginary CM field with maximal totally real
subfield F*. Let S be a finite set of primes of F* which split in F. Let I
be a set of embeddings F — C such that I]]Ic is the set of all embeddings
F— C. For Tt €I let m,; be an integer. Suppose that

X 1A% (FH) — O

is algebraic, unramified at S and such that x,(—1) is independent of v|oc.
Then there is an algebraic character

Y ALJF* — C*
which 1s unramified above S and satisfies
Y oNp/p+ =x0oNp/p+

and

Uleg = [ 7" (eryo ™

Tel

for some w.
Proof: From the discussion before lemma 4.1.3 we have that

Mrgyp =117

Tel

for some integer w. Choose an algebraic character

¢:AL/F* — C*
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which is unramified above S and such that

Ol = [ 7 ().

Tel

Replacing x by x¢|y. we may suppose that x has finite order and that
F
m, =0 for all 7€ I.
Let Us = [[,e5 OF,, and Ug =[]

O;m;- It suffices to prove that

vES vES

X’(NF/F+AI§)HUSFXF§O =1

If v € F* and z; € F} and ~vx; tends to an element of AIXHUS7 then for
large i the ratio v¢/v; € F’NF/F*:1 is a unit at all primes above S and tends

Ny =1
to 1 in (AZ®)*. As O,”""" is the group of roots of unity in F and hence
is finite, we conclude that for ¢ sufficiently large 7§/v; = 1, i.e. v; € F*. Thus

(Np/p+AR) NUsEXFX = (Np/pe AR) NUG (F+)*(FS)*.

We know that y is trivial on (Ng/p+AR) NUS(F+)*((FE)*)°.

Note that A%, /(Np/p+Ap)(F*)*(FL)* corresponds under the Artin
map to the maximal quotient of Gal (F/F*) in which all complex conju-
gations are trivial. Hence A}, = (Np/p+Ap)(F+)*(FL)* and we have an
exact sequence

(0) = (Npype AR) VUG (EH) < (FL)) [(Npype AR) QUG (FH)*((F5)*)°)
= (F5)*(Npype AD) /UG (FF)((FL)*)” — ALy JU (FH)*(FE)) — (0).

If M/F* denotes the maximal abelian extension unramified in S and if L/F*
denotes the maximal totally real abelian extension unramified in S, then by
class field theory this exact sequence corresponds to the exact sequence

(0) —» Gal (M/LF) — Gal (M/F) — Gal (L/F*) — (0).

If vjoo write ¢, for a complex conjugation at v. As Gal(M/LF) is gener-
ated by elements ¢, c,, where v; and v, are infinite places we see that the
image of (Npyp+Ag) VUG (FF)*(FE)*)/(Npypr Ap) N Ug (FF)*((F£)*)°) in
(FH)(Nppe AR) UG (FH)((F4)*)? is generated by elements (—1)y,(—1),,,
where v; and vy are two infinite places. Thus y will be trivial on the inter-
section (Np/p+ AR) NUS(F*)*(F$)* if and only if x,, (—1)xw(—1) =1 for
all infinite places v; and vy. The lemma follows. [J
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Lemma 4.1.5 Let F' be an imaginary CM field with mazximal totally real
subfield F*. Let I be a set of embeddings F — Q, such that I[I¢ is the set
of all such embeddings. Choose an integer m, for all T € I. Choose a finite
set S of primes of F™ which split in F' and do not lie above l. Suppose that

X : Gal (F/F*) — Q/

1s a continuous algebraic character which is unramified above S, crystalline at
all primes above | and for which x(c,) is independent of the infinite place v of
F*. (Here ¢, denotes complex conjugation at v.) Then there is a continuous
algebraic character

¢ : Gal(F/F) — Q/
which is unramified above S and crystalline above l, such that
VY = Xl F/r)

and B
gr™ (Qz(l/}) ®r Fyir, BDR)Gal (Fo(r)/Fo(ry) #(0)
for all T € 1. (Here v(T) is the place above | induced by T.)

Proof: This is the Galois theoretic analogue of the previous lemma. It
follows from lemmas 4.1.3 and 4.1.4. [J

A slight variant on these lemmas is the following.

Lemma 4.1.6 Suppose that | > 2 is a rational prime. Let F' be an imaginary
CM field with mazimal totally real subfield F*. Let S be a finite set of finite
places of F containing all primes above | and satisfying S¢=S. Let

x:Gal(F/FT) — 05
and 3 o -
0:Gal(F/F) —F,

be continuous characters with 00  equal to the reduction of Xlca F/r)- For
veS, let B

vy : Gal (F,/F,) — O%

l

be a continuous character lifting 0|q,, (F,/F,) Such that

(%wgc)
Suppose also that if T: F < Q, lies above v € S then

Ip, — X’IF.U'

dlm@ gr mr (wv ®T,Fu BDR)Gal (Fu/Fy) _ 1,



122 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

and that m, + Mo s independent of T.
Then there is a continuous character

0:Gal(F/F) — O%

lifting 6 and such that
00° = X|Gal (F/F)
and, for all v € S,
Olrr, = ¥lis, -

In particular 6 s algebraic.

Proof: Choose an algebraic character ¢ of Gal (F/F) such that if 7 :
F — Q, lies above v € S then

dimg, gr ™" (¢ @7, R, Bpg) S F/F0) = 1.

Replace 9, by quﬁ\é:ﬂ (Fo/F) 0 by 0¢~'; and x by x¢y ', where ¢y denotes ¢

composed with the transfer Gal (F/F*)*® — Gal (F/F)®. Then we see that

we may suppose that y has finite image and each v,|r, has finite image.
Using the Artin map, think of x as a character of Ay, /(F*+)*((F5)*)°;

0 as a character of AL/F*FX; and 1, as a character of Of,. Let Us =

HUES Olii,w U;r = HvGS O;"',v and Q/} :_H’UGS ¢U : US - QZX Note that w|U;' =
X]U;, that the reduction of x equals # on Np/p+ Ay and that the reduction

of 1 equals 0 on Us.
We get a character

X = X0t UsNiype AR/ (U Ny s A7) 0 (FD((FDF)0) — O

The reduction of y’ equals the restriction of # to the domain of x’. As in
the proof of lemma 4.1.4 we see that

U5<NF/F+A;<;) NF*FY = U;(NF/F-s-A;) N (FH)*(F)x.
However

(U (Npype AR) O (FF)(FL)*) /(U Npype Aj) 0 (FF)*((F5))°)

is a 2-group on which # vanishes. As [ > 2 we see that Y’ also vanishes on
this group.
Extend X’ to a continuous character

X AFJFXEY — le
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and let X’ denote its reduction. Then 0(}')~" is a continuous character

AL/ (Us(Npypr AW FXEX — F,
Lift it to a continuous character
X"t AL/ (Us(Np/ps AL FAES — Q).
Then 6 = x'x” will suffice. [

4.2. CM fields.. — Let F be a CM field. By a RACSDC (regu-
lar, algebraic, conjugate self dual, cuspidal) automorphic representation 7 of
GL,(Ar) we mean a cuspidal automorphic representation such that

— V¥ = 7¢ and

— T has the same infinitesimal character as some irreducible algebraic

representation of the restriction of scalars from F' to Q of GL,.

Let a € (Z™)Hom (F'C) gatisfy

— Gry 2> ... > Qry, and
= Qrci = —OQrp41—i-

Let =, denote the irreducible algebraic representation of GLI™FC) which
is the tensor product over 7 of the irreducible representations of GL, with
highest weights a,. We will say that a RACSDC automorphic representation
m of GL,(Ar) has weight a if m. has the same infinitesimal character as
-V

Let S be a finite set of finite places of F. For v € S let p, be an
irreducible square integrable representation of GL,(F,). We will say that a
RACSDC automorphic representation m of GL,(Ar) has type {p,}ves if for
each v € S, 7, is an unramified twist of p,.

The following is a restatement of theorem VII.1.9 of [HT].

Proposition 4.2.1 Let +: Q, = C. Let F be an imaginary CM field, S a
finite non-empty set of finite places of F and, for v € S, p, a square integrable
representation of GLy(F,). Let a € (ZM)H™(FC) be as above. Suppose that
is a RACSDC automorphic representation of GL,(Ar) of weight a and type
{pv}ves. Then there is a continuous semisimple representation

()« Gal (F/F) — GL,(Q)
with the following properties.

1. For every prime vl of F we have

Tl,z(w)lsc;sal (Fv/Fv) = 7dl(z_lﬂ—v)v(l - n)ss'
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2. 1 ()¢ = r(m)Ve .

5. If v|l is a prime of F' then ri,(7)|ga 7, r,) i potentially semistable,
and if m, is unramified then it is crystalline.

4. If v|l is a prime of F and if 7: F — Q, lies above v then

dimg, gr'(r..(7) @, Bpg) G (Fe/F) —
unless 1 = a,;; +n —j for some j =1,....,n in which case
dimg, gr'(r.(7) @, Bpg) G (Fe/Fo) = 1.
Moreover if i : AL /F* — C* is an algebraic character satisfying Y oc =

P~ then
T1.(m @ (¢ o det)) = 1y, (1) @ 11,().
Proof: We can take r;,(7) = Ry(7")(1—n) in the notation of [HT]. Note

that the definition of highest weight we use here differs from that in [HT].
U

The representation r;,(7) can be taken to be valued in GL,(O) where
O is the ring of integers of some finite extension of Q;. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

T1.(m) : Gal (F/F) — GL,(F;)

which is independent of the choices made. Note that if r,(7) (resp. 7,(7))
is irreducible it extends to a continuous homomorphism

riu(m): Gal (F/F*) — G,(Q)
(resp. B B
Tr.(m) : Gal (F/F) — G, (F))).
Let 1: Q; = C. Suppose that a € (Z")Hom(FQ) gatisfies
— Qr1 > ... > Grp, and
= OQrei = —Arpt+1—i-
Then we define 2,a by
(Z*a')zr,i = Ar;-

Suppose that a € (Z")Hom(FQ) gatisfies the conditions of the previous
paragraph, that S is a finite set of finite places of F' not containing any
prime above [ and that p, is a discrete series representation of GL,(F,) over
Q, for all v € S. We will call a continuous semisimple representation

r:Gal(F/F) — GL,(Q)
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(resp. _ —
7:Gal(F/F) — GL,(F))

automorphic of weight a and type {p,}ves if there is an isomorphism 1 : Q, =
C and a RACSDC automorphic representation 7 of GL,(Af) of weight u.a
and type {1p,}ves (resp. and with m; unramified) such that r = r;,(7) (resp.
7=7,(r)). We will say that r is automorphic of weight a and type {p,}ves
and level prime to | if there is an isomorphism 2 : Q; = C and a RACSDC
automorphic representation m of GL,(Ar) of weight w.a and type {19, }ves
and with m unramified such that r = 7, (7).
The following lemma is standard.

Lemma 4.2.2 Suppose that E/F is a soluble Galois extension of CM fields.
Suppose that a -
r:Gal(F/F)— GL,(Q))

is a continuous semisimple representation and that v|q, 7 gy s irreducible and
automorphic of weight a and type {p,}ves. Let Sp denote the set of places of
F which lie under an element of S. Then we have the following.

1. a; = ay if T|p = 7'l so we can define ap by ap, = az for any
extension o of o to F.

2. r is automorphic over F of weight arp and type {p)}ves, for some
square integrable representations p.,.

Proof: Inductively we may reduce to the case that E/F is cyclic of
prime order. Suppose that Gal(E/F) = (o) and that r = r,(7), for =
a RACSDC automorphic representation of GL,(Ag) of weight a and level
{pv}tves. Then r|éa1(F/E) X 7|Gar(7/m) S0 that 77 = 7. By theorem 4.2 of [AC]
7 descends to a RACSDC automorphic representation mp of GL,(Ar). As
r and 7y,(mp) are irreducible and have the same restriction to Gal (F/FE)

we see that r = r,(mp) @ x = 1,(7F ® (x 0 Art p)) for some character x of
Gal (E/F). The lemma follows. O

4.3. Totally real fields. — Now let F'* denote a totally real field. By a
RAESDC (regular, algebraic, essentially self dual, cuspidal) automorphic rep-
resentation m of GL,(Ap+) we mean a cuspidal automorphic representation
such that

— w2 xm for some character y : (F7)*\A7, — C* with x,(—1) inde-
pendent of v|oo, and

— T has the same infinitesimal character as some irreducible algebraic
representation of the restriction of scalars from F* to Q of GL,.
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One can ask whether if these conditions are met for some x : (F*)*\Ayx, —
C*, they will automatically be met for some such x’ with x/(—1) indepen-
dent of v|oo. This is certainly true if n is odd. (As then x™ is a square, so
that x,(—1) =1 for all v|oc.) It is also true if n =2 (As in this case we can
take x to be the inverse of the central character of m and the parity con-
dition is equivalent to the fact that if a holomorphic Hilbert modular form
has weight (k;)rctom (7+r) then k: mod 2 is independent of 7.)

Let a € (Z™)Hom (F7.C) gatisfy
ar 1 Z Z Q7 n

Let =, denote the irreducible algebraic representation of GLY™ #C) which
is the tensor product over 7 of the irreducible representations of GL, with
highest weights a,. We will say that a RAESDC automorphic representation
m of GL,(Ap) has weight a if 7, has the same infinitesimal character as
Z). In that case there is an integer w, such that

Qr + Qrnt+1—i = Wq

for all 7 € Hom (F*,C) and all i =1,...,n.

Let S be a finite set of finite places of FT. For v € S let p, be an
irreducible square integrable representation of GL,(F,). We will say that a
RAESDC automorphic representation m of GL,(Ap+) has type {py}ves if for
each v € S, m, is an unramified twist of p.

Proposition 4.3.1 Let 1: Q, = C. Let F'* be a totally real field, S a finite
non-empty set of finite places of F* and, for v € S, p, a square integrable
representation of GLy(F). Let a € (Z")H"(F"C) be as above. Suppose that
7w is a RAESDC automorphic representation of GL,(Ap+) of weight a and
type {pv}ves. Specifically suppose that " = wx where x : AL, /(FT)* — C*.
Then there is a continuous semisimple representation

ria(m) s Gal (F'/F") — GL(Q)
with the following properties.
1. For every prime vfl of F™ we have
rl’l(ﬂ-”SCjal T = ri(e )Y (1 — n)®.
2. 1 (m)Y = (m)e L (x).

3. If v|l is a prime of F* then the restriction rlﬂ<7r>‘c;a1(F+/F+)
tentially semustable, and if m, is unramified then it is crystalline.

1S po-
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4. If v|l is a prime of F™ and if 7: F* < Q, lies above v then

: % al (F) /Fyf
dimg, gr'(ri, () @, 5 Bor) /") = 0

unless @ = a,r; +n —j for some j=1,...,n in which case

. : P
dimgy, gr’(ri,(m) ®, g+ Bpr) % /) =1,

Moreover if ¢ : AL /(F*)* — C* is an algebraic character then

7’172(7T ® (w © det)) = 7“1,1(71') ® Tl,z(w>'

Proof: Let F' be an imaginary CM field with maximal totally real sub-
field F*, such that all primes above [ and all primes in S split in F/F*.
Choose an algebraic character ¢ : Ap/F* — C* such that y o Npp+ =
¢ o Np/p+. (See lemma 4.1.4.) Let 7p denote the base change of 7 to F.
Applying proposition 4.2.1 to mp¢p, we obtain a continuous semi-simple rep-
resentation

rp: Gal(F' /F) — GL.(Q)
such that for every prime vl of F we have

- Tl(l_lﬂ'v‘F_‘_)v(l —n)*®

rr| Gal (F) /F,)

Ss
Gal (F, /Fy)

Letting the field F' vary we can piece together the representations rp to ob-
tain r. (See the argument of the second half of the proof of theorem VII.1.9
of [HT].) O

The representation r;,(7) can be taken to be valued in GL,(O) where
O is the ring of integers of some finite extension of Q;. Thus we can reduce
it modulo the maximal ideal of O and semisimplify to obtain a continuous
semisimple representation

Tro(m) : Gal (F' JF") — GL,(F))

which is independent of the choices made. B
Let 2: Q, = C. Suppose that a € (Z")Hom(F".Q0) satisfies

Gr1 2 2 Q7 p .

Then we define 12,a by

(Z* a)m‘,i = Qrj-

Suppose that a € (Z")Hom(F "Q) gatisfies the conditions of the previous
paragraph, that S is a finite set of finite places of F© not containing any
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prime above [ and that p, is a discrete series representation of G'L,(F,") over
Q,; for all v € S. We will call a continuous semisimple representation

r: Gal (F+/F+) — GL,(Q)

(resp.
7:Gal(F'JF') — GL,(F))

automorphic of weight a and type {p,}ves if there is an isomorphism 1 : Q, =
C and a RAESDC automorphic representation 7 of GL,(Ap+) of weight 2.a
and type {1p,}ves (resp. and with m unramified) such that r = r;,(7) (resp.
7 =7,(m)). We will say that r is automorphic of weight a and type {p,}ves
and level prime to | if there is an isomorphism 2 : Q; = C and a RAESDC
automorphic representation m of GL,(Ap+) of weight 2.a and type {1p,}ves
and with 7, unramified such that r = r; (7).
The following two lemmas are proved just as lemma 4.2.2.

Lemma 4.3.2 Let ET/FT be a soluble Galois extension of CM fields. Sup-
pose that

r:Gal(F' /F") — GL,(Q)

18 a continuous semisimple representation and that T\Gal( 18 1rreducible

F/EY)
and automorphic of weight a and type {p,}ves. Let Sp+ denote the set of

places of F™ under an element of S. Then we have the following.

1. a; = ap if T|p+ = T'|p+ so we can define ap+ by ap+, = az for
any extension o of o to ET.
. . + . /
2. v is automorphic over F'* of weight ap+ and type {p,}ves,, for
some square integrable representations pl,.

Lemma 4.3.3 Let F be a CM field with mazximal totally real subfield FT.
Suppose that ¢ : Gal (F/F) — le is a continuous algebraic character and
that

r:Gal(F/F") — GL,(Q,)

is a continuous semisimple representation and that v|q, F/p @Y is irreducible
and automorphic of weight a and type {p,}ves. Let Sp+ denote the set of
places of F* under an element of S. Then r is automorphic over FT of
weight b and type {pfu}veSFJr for some square integrable representations p., and

for some b. Moreover, for all 7: F — Q, and all i =1,....,n, the co-ordinate
ari equals by, ; plus the unique number j such that gr’ (v ®, p, Bpr) # (0)
(where v is the place of F induced by T).
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4.4. Modularity lifting theorems: the minimal case. — In this section we
use base change to translate theorem 3.5.1 into a modularity lifting theorem
on GL(n). The results here are entirely superseded by the results of [Tay]
and for the reader interested only in the main results of [Tay] and [HSBT]
this section could be skipped.

We start with a lemma about congruences which is analogous to a trick
invented by Skinner and Wiles in the case of GLy, see [SW].

Lemma 4.4.1 Let F* be a totally real field of even degree and E an imagi-
nary quadratic field such that F = FYE/F* is unramified at all finite primes.
Let n € Zsy and let | > n be a prime which splits in E. Let 1 : Q, = C and
let S; denote the set of primes of F above l. Let m be a RACSDC auto-
morphic representation of GL,(Ar) of weight a and type {p,}tves where S
is a finite non-empty set of primes split over F*. Assume that 4|#(S U S°).
Suppose that m, is unramified if v is not split over F* or if v|l. Let R be a
finite set of primes of F such that if v € R then

—v g SUSUS,

— v is split over F'T,

— Nv =1mod [,

— ' £ (0).
Let S, be a non-empty finite set of primes of F such that S, = S5 and
S,N(RUSUS) = 0.

Then there is a RACSDC' automorphic representation ©' of GL,(AFr) of

weight a and type {p,}tves with the following properties:

- ?l,z<7r) = Fl,z(ﬂl>;
—if v¢ S, and 7, is unramified then T, is unramified;
—if v in R then ri(x))Y(1 —n)(Ig,) is finite.

Proof: Let S(B) denote the set of primes of F'* below an element of
S. Choose B and i as at the start of section 3.3. These define an algebraic
group G. Consider open compact subgroups U =[], U, of G(A%,) where

— if v is inert in F, then U, is a hyperspecial maximal compact sub-
group of G(F));

— if v is split in F' and v lies below S then U, = G(Op+,);

— if v does not lie below RUS,, if v is split in F' and if 7, is unramified
then U, = G(Op+,);

— if v lies below R and if w is a prime of F above v then U, =
i Tw(w);

— if v lies below S, then U, contains only one element of finite order,
namely 1.
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We now apply lemma 3.4.1 with x, = 1 and x|, = [[L, xi,,; for all v € R,
where we choose x;,; each of l-power order and with x;,; # x,; for i # j.
(This is possible as [ > n.) The lemma then follows from lemma 3.1.6 and
proposition 3.3.2. (The fact that the x;; are distinct gives the finiteness of
the image of intertia at v.) O

Next we prove a ‘minimal’ modularity lifting theorem over a CM field.
Theorem 4.4.2 Let F be an imaginary CM field and let F* denote its maz-

imal totally real subfield. Let n € Z>y and let | > n be a prime which is

unramified in F. Let B .
r:Gal(F/F) — GL,(Q))

be a continuous irreducible representation with the following properties. Let T
denote the semisimplification of the reduction of r.

1 re Vel .
2. r is unramified at all but finitely many primes.
3. For all places v|l of F, 7|quF,/r,) s crystalline.

4. There is an element a € (Zm)Hom () sych that
— for all 7 € Hom (F,Q;) we have

l—l—nZCLT,lZ---ZClT,nZO

or
l_l_nzafc,l 2 ZaTC,n 207

— for all 7 € Hom (F,Q,) and all i =1,...,n

Qrei = —Qrn+1—i;
— for all 7 € Hom (F,Ql) above a prime v|l of F,
dimg, gr'(r ®.p, BDR)Gal (Fo/Fo) —

unless © = a,; +n —j for some j=1,...,n in which case

dimg gr'(r ®.p, Bpg) /) = 1.

5. There is a non-empty finite set S of places of F not dividing | and
for each v € S a square integrable representation p, of GL,(F,) over Q,
such that

T|S(§a1(E/F,U) = 7r(py)" (1 —n)®.
If py =Sp,,, () then set
o= ()] [0/,
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Note that r|g. F,/r,) has a unique filtration Fil? such that

J _ ~ > ]
g7 Gal (Fo/Fy) — Tw€

for j = 0,...m, —1 and equals (0) otherwise. We assume that Ty has
irreducible reduction T,. Then T|q, 7, r,) inherits a filtration ﬁi with

seiml ~
ng’Gm(FU/FU) = Tv€

for 7 =0,....m, — 1. Finally we suppose that for j =1,...,m, we have

Ty EToe.
6. For all finite places v/l with v & SUS® the image r(Ip,) is finite.
7. T does not contain F ().
8. The image T(Gal (F/F((;))) is big in the sense of definition 2.5.1.

9. The representation T is irreducible and automorphic of weight a and
type {pv}ves with S # 0.
Then 1 is automorphic of weight a and type {py}tves and level prime to

Proof: Suppose that 7 = 7,(), where 2 : Q; — C and where 7 is a
RACSDC automorphic representation of GL,(Ar) of weight 2,a and type
{1py}ves and with m; unramified. Let S; denote the primes of F' above [. Let
R denote the primes of F' outside S°U S US; at which r or 7 is ramified.

—=ker ad 7 . . :
Because F does not contain F((;), we can choose a prime v; of F' with

the following properties

- g RUSUSUSS,

— vy is unramified over a rational prime p for which [F((,) : F] > n,
— v; does not split completely in F((),

— ad7(Frob,,) = 1.

(We will use primes above v; as auxiliary primes to augment the level so
that the open compact subgroups of the finite adelic points of certain unitary
groups we consider will be sufficiently small. The properties of v; will ensure
that the Galois deformation problems we consider will not change when we
allow ramification at primes above v;.)

Choose a CM field L/F with the following properties

— L =L"TE with E an imaginary quadratic field and L™ totally real.
— 4|[LT : FT].

— L/F is Galois and soluble.

— L is linearly disjoint from er”(gl) over F.
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— L/L" is everywhere unramified.

— [ splits in E and is unramified in L.

— v; and vf split completely in L/F and in L/L*.

— All primes in S split completely in L/F and in L/L™.

— Let 7y denote the base change of m to L. If v is a prime of L not
lying above S U S¢ then ") (0).

— If v is a place of L above R then 7|q, /) is unramified at v.

Let S(L) (resp. S;(L)) denote the set of places of L above S (resp. [). Let
ar, € (ZM)Hm Q) he defined by ar, = a,,. By theorem 4.2 of [AC] we
know that 7|q, F, 1) 18 automorphic of weight ay, and type {pu|, }vesr)- (The
base change must be cuspidal as it is square integrable at finite places in
S.) By lemma 4.4.1 there is a RACSDC automorphic representation 7’ of
GLn(Ap) of weight a; and type {pu, }ves) and level prime to [ such that

= TlgarF/r) = T1u(7'), and
— 1,(7’) is finitely ramified at all primes outside S(L) U S(L)°U Si(L).

(If vlvy or vf then 7,(n') is unramified at v and all the eigenvalues of
the matrix 7,,(7")(Frob,) are equal. As Nv # 1mod! we see that r;,(7)
is finitely ramified at v.)

Choose a decomposition Sy(L) = S(L) [ Si(L)°. Also choose an alge-
braic character ¢ : A7 /L* — C* such that

— o Np/p+ =1
— 1 is unramified at S;(L)U S(L); and
— 7' ® 1 has weight 12,a’ where

l=1-n>a,,>..>da,>0

for all 7: L < Q, lying over an element of S;(L).

(This is possible by lemma 4.1.4. The point of this step is to arrange that
for each place v|l of F' the weights a, for 7 above v are all in the same
range of length [ —1—n. This was assumed in theorem 3.5.1, so as we could
apply Fontaine-Laffaille theory to calculate the local deformation ring, see
section 2.4.1.)

Choose a CM field M/L with the following properties.

— M/L is Galois and soluble.

— M is linearly disjoint from er”((l) over L.
— [ is unramified in M.

— vy splits completely in M/F.

— All primes in S split completely in M/L.
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— Let (7' ® ¢)) denote the base change of 7' ® (¥ odet) to M. If v is
a prime of M not lying above SU S¢ then (7' ® ¢)pr, is unramified.

— If v is a place of M not lying above S(L)U S(L)°US;(L) then (r®
1(¥)|Gar 71y 18 unramified at v.

Let S(M) denote the set of places of M above S. Let a), € (Z")Hom(MQ)
be defined by a, . =al, . Let S(M") denote the set of places of M* below
an element of S(M). Then #S(M™) is even and every element of S(MT)
splits in M. Choose a division algebra B/M and an involution I of B as at
the start of section 3.3, with S(B) = S(M™"). Let S;(M™) denote the primes
of M* above [ and let S,(M™) denote the primes of M™ above vy|p+. Let
T(M*)=SMT)US(M*T)US,(MT). Tt follows from proposition 3.3.2 and
theorem 3.5.1 that 7|, F/ar @ 71,.(¥)|Gai#F/ar 18 automorphic of weight af,

and type {py|, Jvesuy. The theorem now follows from lemma 4.2.2. O

Let us say a few words about the conditions in this theorem. The first
condition ensures that r is conjugate self-dual. Only for such representations
will the numerology behind the Taylor-Wiles argument work. Also it is only
for such representations that one can work on a unitary group. Indeed when-
ever one has a cuspidal automorphic representation of GL,(Afr) for which
one knows how to construct a Galois representation, that Galois representa-
tion will have this property. The second condition should be necessary, i.e. it
should hold for any Galois representation associated to an automorphic form.
A weakened form of the third condition which required only that these re-
strictions are de Rham is also expected to be necessary. The stronger form
here (requiring the restrictions to be crystalline), the assumption that [ is
unramified in F' and the bounds on the Hodge-Tate numbers in condition
four are all needed so that we can apply the theory of Fontaine and Laf-
faille to calculate the local deformation rings at primes above [. Condition
four also requires the Hodge-Tate numbers to be distinct. Otherwise the nu-
merology behind the Taylor-Wiles method would fail. The fifth condition is
there to ensure that the corresponding automorphic form will be discrete
series at some places (ie those in S). With the current state of the trace
formula this is necessary to move automorphic forms between unitary groups
and GL, and also to construct Galois representations for automorphic forms
on GL,. The exact form of condition five is also designed to also make the
deformation problem at the places v € S well behaved. The sixth condition
is designed so that we can use base change to put us in a situation where
we can apply a minimal R =T theorem. In chapter 4 we will show that a
conjecture about mod/ automorphic forms on unitary groups which we call
“Thara’s lemma” implies that we could remove this condition. The seventh
condition is to allow us to choose auxiliary primes which can be used to
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augment the level and ensure that certain level structures we work with are
sufficiently small. The eighth condition is to make the Cebotarev argument
used in the Taylor-Wiles argument work. It seems to be often satisfied in
practice.

Now we turn to the case of a totally real field.

Theorem 4.4.3 Let F™ be a totally real field. Let n € Z>, and let | >n be
a prime which is unramified in F*. Let

r: Gal (FJF/FJF) — GL,(Q)

be a continuous irreducible representation with the following properties. Let T
denote the semisimplification of the reduction of r.

1. vV 2 re™tx for some character x : Gal (F+/F+) — Q," with x(cy)
independent of v|oco. (Here ¢, denotes a complex conjugation at v.)

2. r ramifies at only finitely many primes.

3. For all places v|l of FT, T’Gal(Fj/Fj) is crystalline.

4. There is an element a € (Zm)Hom (F.Q0) sych that
— for all T € Hom (F*,Q,) we have

[—1-— n+a'7,n Z Gr1 Z Z Q7 ny
— for all T € Hom (F*,Q,) above a prime v|l of FT,

: i al(F. JF}
dlm@ ot (7" ®T,FJ BDR)G 1(Fy /F) — 0

unless © = a,; +n —j for some j=1,...,n in which case

. =+
dimg, gr"(r ®, pr Bpg) % /B = 1,
5. There is a finite non-empty set S of places of F™ not dividing [

and for each v € S a square integrable representation p, of GLy(F)) over
Q,; such that

T COM Ui

If py =Sp,,, (p),) then set

o= l()Y] [0,

Note that T\Gal( ) has a unique filtration Fil? such that

Fy/FS

J . ~ ]
87 | ot (7 ) = Toe
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for j = 0,...m, —1 and equals (0) otherwise. We assume that 7, has
wrreducible reduction T, such that
Ty E T

for 7=1,...,m,. Then F‘Gal(f+/F+) inherits a unique filtration ﬁi with
~ 7€l

BT gl (71 /)

for 7=0,...,m, — 1.
6. If v S and vl then r(Ip+) is finite.
7. (FJr)k’a““dF does not contain FT(().

8. The image 7(Gal (FJF/FJF(Q))) is big in the sense of definition 2.5.1.
9. 7 is irreducible and automorphic of weight a and type {p,}ves with

S £ .

Then 1 is automorphic of weight a and type {py}tves and level prime to

Proof: Choose an imaginary CM field F' with maximal totally real sub-
field F'* such that

— all primes above [ split in F/F™T,
— all primes in S split in F/F*, and
— F is linearly disjoint from (F ' )<7((;) over F*.

Choose an algebraic character
b:Gal(F'/F) — Q
such that

- X|Gal(F+/F) = Pye,

— 1) is unramified above S,

— @ is crystalline above [, and

— for each 7: F* — Q, there exists an extension 7 : F < Q, such that

or _“T’"(Ql@/’) ®% 7z BDR)Gal (Fo@) /Fow)) +(0),
where v(7T) is the place of F' above [ determined by 7.

(This is possible by lemma 4.1.5.) Now apply theorem 4.4.2 to T|Gal(F+/F)¢
and this theorem follows from lemma 4.3.3. [

As the conditions of this theorem are a bit complicated we give a spe-
cial case as a corollary.
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Corollary 4.4.4 Let n € Z>, be even and let | > max{3,n} be a prime. Let
S be a finite non-empty set of primes such that if ¢ € S then q # | and
¢ #Z1modl fori=1,..,n. Let

r: Gal(Q/Q) — GSpn(Z;)

be a continuous irreducible representation with the following properties.

1. r ramifies at only finitely many primes. B

2. 7|gai g, qu 8 crystalline and dimg, gr'(r ®q, Bpgr)®(Q/Q) =0 un-
less i € {0,1,...,n — 1}, in which case it has dimension 1.

3. If g€ S then 7’|SGSQq is unramified and 7’|SC§Qq (Frob,) has eigenvalues
{ag': i=0,1,....,n— 1} for some «.

4. If ¢ € SU{l} then r(Iq,) is finite.

5. The image of r mod | contains Sp,(F).

6. rmod [ is automorphic of weight 0 and type {Sp,(1)}4es-

Then r is automorphic of weight 0 and type {Sp,(1)}qy and level prime
to [.

Proof: Let 7 = rmod (. As PSp,(F;) is simple, the maximal abelian
quotient of ad7(Gq) is
7(Gq)/(F(Gq) NF;)Spu(F1) C PGSpu(F1)/PSpa(Fy) — (F;)/(F))*.
—kerad7

Thus Q does not contain Q((;).
The corollary now follows from lemma 2.5.5 and theorem 4.4.3. [
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5. Thara’s lemma and the non-minimal case

The results of this chapter are not required for the proofs of the main
theorems in [Tay] and [HSBT]. It could be skipped by those only interested
in these applications.

5.1. GL, over a local field: finite characteristic theory II. — We will
keep the notation and assumptions of section 3.2. Following Vigneras we also
make the following definition.

Definition 5.1.1 We will call | quasi-banal for GL,(F,) if either we have
L J#GL,(k(w)) (the banal case), or we have | > n and q, = 1 mod [l (the

limit case).

Suppose that U is an open subgroup of GL,(Op,) and that
¢ : k[GL,(Or, )\GLn(Fy,)/GL,(OR,)] — k
is a k-algebra homomorphism. Set

K[GLy(Fu)/GL,(OF,)]s -
= k[GLn(Fu)/GLn(OF,)] @FGL,.(0n \CLn(Fu)/GLn (06 K

and

[UNG Ly (F)/GLn(OF, )]s
[U\GL,(F,)/GL,(O

If V is any smooth k[GL,(F,)-module and if v € V& (©Oru) satisfies Tv =
¢(T)v for all T € k[GL,(Op,)\GL,(Fy,)/GL,(OF,)], then there is a unique
map of k[GL,(F,)]-modules

k[GLn(Fw)/GLn(OFw)]¢ —V

k
=k Fu)] ORGLn (O \GLn (Fu)/GLn (O, st &

sending [G'L,(OF,)] to v, and a unique map of k[U\GL,(F,)/U]-modules
E[U\NGLy(F,)/GLn(OF,)]ls — VY

sending [GL,,(OF,)] to v. (These observations were previously used in a sim-
ilar context by Lazarus [La].)

Fix an additive character v : F,, — k with kernel Op,. Let B, denote
the Borel subgroup of GL,, consisting of upper triangular matrices and let N,
denote its unipotent radical. Let P, denote the subgroup of GL, consisting
of matrices of the form

ab
(i)
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with a € GL,,_1. We will think of ¢ as a character of N,(F,) by

lLajg a3 ... aip—1 a1p
01 ass ... Aop—1 Qop

00 1 .. azn—1 A3n

(g S : — (a2 + ags + ... + Ap-1p)-
00 0 1 an_1n
00 0 0 1

We will denote by gen, the compact induction c-Ind P”(F“’))w and by W, the

No(F
induction Ind gf?;ﬁ“)w We will use the theory of derivatives over k as it is

developed in section III.1 of [V1]. Note that if 7 is a smooth k[GL,(F,)-
module then

Hom g, (p,) (7, Wa) Z 7N, (1) = Hom p,(p,)(gen,,, 7)",

where V denote linear dual and 7, (r,), denotes the maximal quotient of
7w on which N,(F,) acts by ¢. If 7 is irreducible we will call it generic if
these spaces are non-trivial.

The next lemma is proved exactly as in characteristic zero (see [Sh]).

Lemma 5.1.2 Suppose that ¢ : k[GL,(Op,)\GL,(F,)/GL.(Op,)] — k is a

n OFw

homomorphism. Then the ¢ eigenspace in wg 1s one dimensional and

spanned by a function Wg with Wd?(l) =1.

The next lemma is due to Vignéras, see parts 1 and 3 of theorem 1 of
her appendix to this article.

Lemma 5.1.3 (Vignéras) Suppose that | is quasi-banal for GL,(F,). Then
the functor V — V™) s an equivalence of categories from the category of
smooth k[GLy,(F,)]-modules generated by their Iw(w)-fized vectors to the cal-
egory of k[Iw(w)\GL,(F,)/Iw(w)]-modules. Moreover the category of smooth
k[GL,(F,)]-modules generated by their Tw(w)-fized vectors is closed under pas-
sage to subquotients (in the category of smooth k[GL,(F,)]-modules).

Lemma 5.1.4 Suppose that | is quasi-banal for GL,(F,) and that
¢ : k[GL,(Or, )\GLn(Fy,)/GL,(OR,)] — k

is a k-algebra homomorphism. Then k|GL,(F,)/GL,(Ok,))s has finite length
(as a smooth k|GL,(F,)]-module) and its Jordan-Holder constituents are the
same as those of any unramified principal series representation w for which
k[GL,(Op, )\GL,(F,)/GL,(OF,)] acts on 7 Or) by &. In particular the
smooth representation k[GL,(F,)/GL,(OF,)]s has ezactly one generic irre-
ducible subquotient.
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Proof: In the banal case this is due to Lazarus [Lal. By lemma 5.1.3 the
Iw(w)-invariants functor is exact on the category of subquotients of smooth
k|GL,(F,)]-modules generated by their Iw(w)-fixed vectors. The k[GL,(F,)]-
module k[GL,(F,)/GL,(OF,)] is generated by its Iw(w)-fixed vectors.
Let the elements T}, ..., T}, 41 generate k[GL,(Op,)\GLn(Fy)/GL,(OF,)]
as a k-algebra. Then we have a right exact sequence

> (Ti=o(Ty))
—

D k[GLu(F,)/GL,(0Op,)] E[GL,(F.)/GLy(OF,)] —

— K[GLu(F.)/GLn(OF,)ls — (0).
Taking Iw(w)-invariants, we get an exact sequence

D! FlIw(w)\GL (F,) [GLy(0r,)]) ="

R[Iw(w)\GLn(F,)/GLy(Op,)] — K[GLy(F,)/GLy(Op,)]3" — (0).
We deduce that

(K[GLa(Fu)/GLa(OF, )]o)™") = k[Iw(w)\G La(Fu) /GLa(OF, )]s.

(We thank a referee for pointing out that the original argument we gave for
this was needlessly complex.)

Following Kato and Lazarus [La] we see that the Satake isomorphism
extends to an isomorphism

k[Iw(w)\GLn(Fy)/GLn(Or,)] = kX7, .., X;]

as k[GL,(Op,)\GL,(Fy,)/GL,(OF,)] = k[X;, ..., X% -modules. We deduce
immediately that

dimg k[Iw(w)\G L,(F,)/GL.(OF,)]s = n!

and hence (from lemma 5.1.3) that k[GL,(F,)/GL,(OF,)]s has finite length.
Moreover the argument of section 3.3 of [La] then shows that the Jordan-
Holder constituents of k[GL,(F,)/GL,(OF,)]s are the same as the Jordan-
Holder constituents of any unramified principal series representation 7 for
which k[GL,(Op, )\GL,(F,)/GL,(OF,)] acts on 7% (©ru) by ¢. The final
assertion of the lemma then follows from the results of section IIL.1 of [V1].
O

We will now recall some results of Russ Mann [Manl] and [Man2]. See
also appendix A of this article.
The first result follows at once from proposition 4.4 of [Manl].
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Lemma 5.1.5 (Mann) Suppose that xi,...,Xxn are unramified characters

Fr — K and set © = n-Ind gf&éf;”)
of the operators UL (for j=1,...,n—1) on 7" are parametrised by sub-
sets A C {1,...,n} of cardinality less than n. Let ug) denote the eigenvalue

(X1, s Xn)- The simultaneous eigenspaces

of U on the eigenspace corresponding to A. Then

X — g2 D Xt (L)l 2D Xy
n— n—1)/2 (n—1 n—
o (=) g0 X = X AT (X — a(wow).

Moreover the generalised eigenspace corresponding to a subset A has dimen-
. n—1
sion < ny )

The next two results are proved in [Man2]. As this is not currently
available, the proofs are repeated in appendix A.

Lemma 5.1.6 (Mann) Suppose that

¢ : k[GL,(Or, )\GLn(F,)/GL,(Op,)] — k
18 a homomorphism. Then the map

E[U (w"\GLn(Fy)/GLn(Or, )]s — Wi
Tr— TW(g

1S an injection.
Let 7, denote the diagonal matrix diag(l,...,1,"). Then there is a
bijection " :
Z[1/qu|[Ur(w" \GLn(Fu) /G Ln(OF, )] = Z[1/¢u][GLn(Op, )\G Ly (Fu) /Ui (w")]
[U1(w")gG Ln(OF,)] = [GLn(Op,) gn, Ur (w")].

(This is because Uy(w™) = n,'Ur(w™)n,t.)

w

Proposition 5.1.7 (Mann) There exists an element
en,w € Zl[Ul(wn)\GLn(Fw)/GLn(OF,w)]

with the following properties.

1. For i=1,....,n—1 we have US)H,W = 0.
2. For any homomorphism ¢ : k|GL,(Op, )\GL,(F,)/GL.(OR,)] — k
we have Op,WJ #0 in W,.



Title Suppressed Due to Excessive Length 141

3. If X1,..., Xn are unramified characters F)\ — K> such that the in-

duced representation m = n-Ind GLn( FS”)(Xl,. o Xn) 18 trreducible and if v is

a nonzero element of WGL”(OFM)

n 1 n—1
ZU (™), U = =Uf =0

, then Onwv s nonzero and so a basis of

4. The composite
B € Z1|G Ly (Op, \GLy(F)/GLu(OR,)]
has Satake transform
qw2(n 1)/2( —(n+1) HH qu X
=1 j=1

Corollary 5.1.8 Suppose that 7 is an irreducible unramified representation of
GL,(F,) over K such that r/(m)V(1 —n) is defined over K. If 0n7w9n7w acts
on WGL"(OFw) by a then v € O and

lgn, O/a > gy HY(Gal (Fo,/Fy), (adry(m)¥ (1 — n)) @0 (K/O)(-1)).

Definition 5.1.9 Let M be an admissible k[GL,(F,)]-module. We will say
that M has the Thara property if for every v € Mn(Oru) which is an eigen-

vector of k|G L,(Op,)\GL,(F,)/GL,(Or,)], every irreducible submodule of the
k[GL,(F,)]-module generated by v is generic.

Lemma 5.1.10 Suppose that | is quasi-banal for GL,(F,). Suppose also that
M is an admissible k|G L, (F,)]-module with the Ihara property and that

ker (6, : MEE©Oru) — £
is a k[GL,(Op,)\GLn(F,)/GL,(Og,)]-module. Then
0. - MGLn(Or,) MU1(w"),U&”:...:U&”*”:o
18 1njective.

Proof: Suppose 0,,,, were not injective on M GLn(Orw) We could choose
a k[GL,(Op, )\GL,(F,)/GL,(Og,)]-eigenvector 0 # v € ker@,,,,, say

Tv=¢(T)v

where

¢ : k[GLn(Op,)\GLn(Fy)/GLy(OF,)] — k

is a k-algebra homomorphism.
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Let A denote the kernel of the map

T+ TWd?'

Thus A has no generic subquotient and k[GL,(F,)/GL,(OF,)]s/A has a
unique irreducible submodule B/A. The module B/A is generic, but no sub-
quotient of k[GL,(F,)/GL,(OF,)]s/B is generic.

Now consider the map

k[GLn(Fw)/GLn<OFw)]¢ — M
T+—— Tv.

As M has the Thara property, any irreducible submodule of the image is
generic. Thus A is contained in the kernel and moreover the induced map

FIGLu(F) [GLo(Or,))o/A — M
must be injective. Thus we have an injection
<GLn(Fw)W£> — M
Wg — .
Proposition 5.1.7 then tells us that 6,,,v # 0, a contradiction. [J

We would conjecture that the previous lemma remains true without the
quasi-banal hypothesis. In fact, it is tempting to conjecture that the natural
map

E[GLo(F)/GLu(OF,)]y — W

is in general injective.
5.2. Duality. — Keep the notation of section 3.3. In this section we
will develop a duality theory for automorphic forms on G. It will actually

pair automorphic forms on G with automorphic forms on another related
group G'. So first we define an algebraic group G'/F*t by setting

G'(R)={g€ B®®p+ R: g*®'g=1}
for any FT-algebra R. Note that there is an isomorphism

I1:G=5 ¢

gr— g .
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Our choice of an order Op in B gives a model of G’ over Op+. If
v =ww® splits in F then i, : OF = M,(Op,) and we get an identification

it GUER) 5 QLo (Fy)

(i) (o, ')

with &t G'(Op+ ) = GL,(OFy) and i, o I ="(i,)' = coiye. If v e S(B) and
w is a prime of F' above v we get an isomorphism
i G'(F[) — (B)”

with 7, G'(Op+ ) = Opep -
Given an n-tuple of integers a = (ay,...,a,) with a; > ... > a, there is
a (unique up to scalar multiples) perfect pairing

<7 >a:WaXWa—>Q

such that

<£a(g)w7w/>ll = <w7§a<tg)w/>a
for all w,w" € W, and g € GL,(Q). Let M, C W, denote the ( , ), dual of
M, and

¢ GL, — GL(M))
the corresponding model over Z of &,.
If a € Wt,, then there is an irreducible representation
& G'(F") — GL(W,)
g = H’TETL 50'7’ (Tzig)

The representation &, contains a G'(Op+;)-invariant O-lattice M, such that
there is a perfect pairing

(, )a:Myx M, — O
with
(Cal9)z, & (1(9))y)a = (T, Y)a-
For v € S(B), let M, = Hom(M,,,O) and define pi, : G(F)) —
GL(M, ) by
Pu(9)(@)(y) = z(p(I7(9)) " y)-
If we identify G(F)) = B and G'(F)) = (B%®)* and if g € B and ¢ €
(B2P)* have the same characteristic polynomials then trp,(g) = trp,(¢'). We

have JL (p} 0 iy') = Sp .. (Tw)-
For v € R let Uj, be an open compact subgroup of G'(F;") and let

X, U(')’U — O*
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be a homomorphism with open kernel.
Let A denote an (-algebra. Suppose that a € Wt,, and that for v €
S(B), p, is as in section 3.3. Set

Mofpyio =M@ | Q) M, | ® (@ 0(X2)> :

veS(B) vER

If U’ is an open compact subgroup of G'(A%) x II,crUs, and either A is
a K-algebra or the projection of U’ to G'(F}") is contained in G'(Op+,) we
define

aloor e} (U5 A)
to be the space of functions
frGFONG(AF) — A®o M 4,3 40
such that
flgu) = ugllLJS(B)URf(g)
for all w € U’' and g € G'(A%,). As in section 3.3 we extend this to define
o ipo) iy (Vs A) for V' any compact subgroup of G'(AT) x TL,en Up,, and

define actions of ¢’ € G'(Al) x [I,cr Us, and of Hecke operators [Ujg'Us)].

Lemma 3.3.1, proposition 3.3.2, corollary 3.3.3 and proposition 3.3.4 all
remain true for G’.

Suppose that U is an open compact subgroup of G(A?fo X [Iper Uow)

and that n € G'(A¥,). Suppose also that for v an element of R we have
Ulo =, 1(Uso)ny and

X;(u;) = (Xv o [71)(771)“;77171)71'

If A is not a K-algebra further assume that 1, € G'(Op+,) and that for all
u e U we also have w € G(Op+,). Set U' =n~'I(U)n. Define a pairing
< ) >U,77 : Sa,{pv}7{Xu}(Ua A) X S:z,{pv},{xg}(U/?A) — A
by
<f7 f/>U,17 - Z <f(g>»nSlUS(B)f/(l(g)n)>a,{pv}~

9EG(FH)\G(AX,)/U

If U is sufficiently small, or if A is a K-algebra, this is a perfect pairing. If
we have two such pairs (Uy,n;) and (Us, 1) with each U; sufficiently small,
if U/ =n'I(U)n and if g € G(A%,) (with g € G(Op+;) if A is not a
K-algebra) then

(9Ol f, [ Yovm = [Uanz ' 1(9) " mUILf Vv -
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Now suppose that
! / l 00
U = H UU cG ( F+)
v

is a sufficiently small open compact subgroup , that 7" 2> S(B)UR and that,
if v ¢ T splits in F, then U] = G(Op+,). We will denote by

T
To ooty (U

the O-subalgebra of End ( ;’{M}’{X,}(U'7 O)) generated by the Hecke operators

T (or strictly speaking (it)~'(T¥) x (U')’) and (T{")~! for j = 1,..,n

and for w a place of F which is split over a place v € T of F*. (Again
T = (Tlg,n))_lT,S}"ﬁ), so we need only consider one place w above a given
place v of. F*.)_ If X' is a Ti{pv}(U’)’—stable subspace of S, 1\ (U, K)
then we will write
TT(X/)/

for the image of T:‘f’{pv}{x,}(U’)’ in End ;(X’). Note that T7(X’)" are finite
and free as O-modules and is reduced.

Proposition 3.4.2 remains true for G’. We call a maximal ideal m’ of
TQT,{ pv}7{x,}(U’)’ Fisenstein if T,y is absolutely reducible. Then proposition

3.4.4, corollary 3.4.5 and lemma 3.4.1 also remain true for G'.

5.3. Thara’s lemma and raising the level. — Keep the notation and
assumptions of sections 3.4 and 5.2.

In this section we will discuss congruences between modular forms of
different levels. Unfortunately we can not prove anything. Rather we will
explain how the congruence results we expect would follow from an analogue
of Thara’s lemma for elliptic modular forms (see [I], [Ri]). Let us first describe
this conjecture more precisely.

Conjecture I Let G, I, T and U be as in section 3.4 with U sufficiently
small. Suppose that v e T — (S(B)US,) with U, = G(Op+,) and that m is a
non-Fisenstein mazimal ideal of Ta{l},{l}(U)' If f€ Soquym(U.k)m] and if
7 is an irreducible G(F,)-submodule of

(G(FN)f) C Soquy3 (U, k)
then m 1s generic.

In fact we suspect something stronger is true. Although we will not
need this stronger form we state it here. We will call an irreducible G(F;)-
submodule 7 of S, (p.1.(x.1({1}, k) Fisenstein if for some (and hence all) open
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compact subgroups U = [[, U, with 7V # (0) there is a finite set 7" D
RU S US(B)U{v} of split primes and an Eisenstein maximal ideal m of
T (U, k) with 7 # (0).

a{pz} {x=}

Conjecture II Let G and | be as in section 3.3. Suppose that v ¢ S(B)US,U
R is a prime of FT which splits in F. Let m be a non-Eisenstein irreducible
G(F})-submodule of So1y,113({1}, k). Then 7 is generic.

We should point out that these conjectures are certainly false if we re-
place ‘submodule’ by ‘subquotient’. If we replace k by K and TOT’I{I}V{l}(U )
by TOT’/{1}7{1}(U)®@ K, then the conjectures would be true by part 7 of propo-
sition 3.3.4. In the case m = 2 the conjecture is an easy consequence of the
strong approximation theorem for G. We also believe that we can prove many
cases of conjecture I in the case n = 3. We hope to return to the case n =3
in another paper.

Lemma 5.3.1 Conjecture II (and hence conjecture 1) is true if n = 2.

Proof: Let G; denote the derived subgroup of G. Then we have exact

sequences
det

(0) — G(F*) — G(F*) 2 pNeyre !
and
det NF/F+:1

(0) — Gi(AF) — G(AF:) — Ap

Suppose 7 is as in the statement of conjecture II, but 7 is not generic.
Then 7 is one dimensional and trivial on G1(F, ). Let 0 # f € m be invariant
by an open compact U. Then for all g € G(A%,), the function f is constant
on

G(FT)gUGH(F]) = G(FT)G1(AF:)gU
(by the strong approximation theorem). Thus f factors through
det : G(FH\G(AZ) /U — det G(FH)\(AZ)N=1/ det U.
Thus we can find a character
X det GFONAZDN=/ det U — &~
such that

> x(9) " f(g) # 0.

g€ (det G(F1))\(det G(A;f’Jr ))/(detU)

It follows that, for all but finitely many places w of F' which are split over
F*, 7u(Frob,) has characteristic polynomial

(X = x(@w /w3, )X — qux(ww/@,)).
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We deduce that
(adT)* =c '@l 1De
Thus 7, is reducible and m is Eisenstein. I
Lemma 5.3.2 Let G be as in the section 3.4. Suppose conjecture I holds for
all T and U with U sufficiently small. Let T, U, a, {p.} and {x.} be as in
section 8.4. Let v € T — (S(B)U S, UR) with U, = G(Op+,) and let m be

a non-FEisenstein mazimal ideal of Tf’{pzh{xz}(U). If € Sutpatinat (U, k) [m]
and if m is an irreducible G(F,")-submodule of

<G(F;r)f> C Say{ﬁx}v{Xw}(Uv7E)
then m 1s generic.

Proof: We need only prove the lemma for U small, because its truth for
some U implies its truth for all U’ D U. But for U small enough we have

Sav{pz}v{Xz}(Uv E) = SO,{l}y{l}(U, E)T
for some r. O

We now turn to the construction of ‘raising the level’ congruences. Let
m be a non-Eisenstein maximal ideal of T;  ,  (U) and let

. T
¢ Loyt (U)m — O

We will consider subsets S C T'—(S(B)US,UR) such that U, = G(Op+ ,)
for all v € S. For such S set

Us)=v°[[iz'ti(@)

veES
and
1
95 = H (1 9n75
vER
and

Xs = Sa o303 (U(S), O)mn

where n denotes the maximal ideal
(A, Ug(l), ...,Uﬂ(n_l) cvels)
of (’)[Ug(l), oy U;En_l) : v € S]. Further set
Ts =T (Xs),



148 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

so that Ty = Ti{px},{Xm}(U)m. If S; C Sy are such sets then we get an
injection

952_51 . Xgl — XSQ'
(To see that this map is an injection we may suppose that Sy = S;U{v}. Let
7 be an irreducible constituent of S ¢,.3..1({1}, K) with 7N Xg, # (0). Be-

cause m is not Eisenstein we see that m, is generic (see part 7 of proposition
3.3.4). Thus by proposition 5.1.7

2'519,%5 N Xg, — WﬂXSQ.)
Thus we also have a surjection

T52 —> T51

which takes T to 7Y for all w (a prime of F which is split over a prime
of F* not in T) and j (=1,...,n). Let ¢5 denote the composite

¢SZTS—»T@LO.

We will be interested in congruences between ¢ and other homomorphisms
Tg — K. In particular we will be interested in how these congruences vary
with S. A useful measure of these congruences is provided by the ideal c¢g(¢),
defined by

¢s : Ts/(ker ¢g + Annpg ker pg) — O/cs().

Let Xg[¢] denote the subspace of Xg where Tg acts via ¢g. Let ig :
Xg[¢] — X denote the canonical inclusion and let 7g : Xg — Xg[¢)] denote
the Tg-equivariant projection. (This exists because Tg is reduced.) The next
lemma is now clear.

Lemma 5.3.3 Keep the above notation. The module Xg[p]/msisXs[¢] is an
O/cs(¢p)-module. If Xg is free over Tg then Xg[p|/msisXs|[p] is free over
O/cs(d).

Lemma 5.3.4 Keep the above notation. Then
Os : Xo[g] ®0 K — Xs[¢] @0 K.

Proof: 1t suffices to prove that if 7 is an irreducible constituent of the
space Sq {p.}.4x.1 ({1}, K) then

Os : (X@[(;S] Ro F) nr— (X5[¢] ®o F) .

As ¢ry is unramified at v € S, proposition 3.3.4 tells us that if (Xg[¢] ®o
K)Nn7 # (0) then m, is unramified. In particular (Xp[¢] ®o K) N7 # (0). If
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(Xp[¢] ®o K) N # (0) then for v € S the representation m, is unramified
and, by part 7 of proposition 3.3.4, generic. Write

Ty O Z'E_l = n-Ind gf?;;g)(Xu,ly cee Xv,n)

with each x,; unramified. Again by proposition 3.3.4 we see that for v € S,
each x,i(wy) € O%. From lemma 5.1.5 we deduce that

U(s)

Ty

is the subspace of 7V(5) on which iglUféj) = 0 for each v € § and each
7 =1,...,n—1. Proposition 5.1.7 then tells us that

fg : 7O =, 7U()

as desired. O

Proposition 5.3.5 Keep the above notation and assumptions. In particular
assume that U is sufficiently small. Let S C T — (S(B)US,UR) be such that
Uy = G(Op+,) and G'(Op+ ) for all x € S. Suppose that conjecture I is true
for the groups G and G', for I, for T, for v € S, and for the various open
compact subgroups Ug, with S; C S — {v}. Also suppose that Xy is free over
Ty. Finally suppose that for each v € S, | is quasi-banal for G(F,)). Then

180 O/cs(¢) > 180 O/co(¢) + Y lgo H(Gal (Fy/Fy), (ad 1) @1, 6 K/O(e)).

veS

Proof: Let nyp € G'(A%.) equal 1 at all places in (SUS(B)U.S;) and all
places outside 7. If S; C S set

tv-1 [ 1n—1 O
ns, =m J[ @)~ ( olwﬂ>
VEST v

and

U(S1) =g U(S1)ns, = (U®)) x [ (%)t @").

VES]
Let m’ denote the ideal of Ti{pv}(U(Sl)’)’ generated by A and T\ —a when-

ever a € O, w is a prime of I split above a prime of F * not in T and
TY —a € m. Then m’ is either maximal or the whole Hecke algebra. Set

Xgl = S;,{pﬁ},{Xx}(U(Sﬂ,, O
where n denotes the maximal ideal

O oty
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of O[UW, ..., U" V], and

v ]

Ty, = T'(Xg, ).

0(91 - H (i%)_lenﬂ

vEST

Also set

and

vEST

If S; C Sy, C S then we get an injection
fg2—51 : Xé1 - ng
and exactly as in the proof of lemma 5.3.4 we see that
9%2_51 . Xévl XKoo K AN Xév2 Ko K.
Also by corollary 3.4.5

A/,S’l 951 H Z en Uen v

vEST

acts on Xy by an element of Ty.
Under the perfect pairing

< ) >U(51)77lsl : Saa{Px}a{Xx}<U(Sl)7O) X SC/L,{pz},{XI}(U<Sl)/7O) — 0
we have that:

— for v € Sy the adjoint of iglUéj) is (i%)_lUéj), and
— for w a prime of F' split over a prime of F* not in T, the adjoint
of TV is TY.

Thus Tg, = T (with T matching T for w a prime of F split over a
prime of F* not in T), and ( , )u(s;)ns, induces a perfect pairing

< s >512X51 XXgl—>O
under which the actions of Tg = T are self-adjoint. If S; C S, C S, then
5{92_51 : st — XSI

is the adjoint of 0, g .
It follows from conjecture I and lemma 5.1.10 that

Oy« Xs, — Xg,up0)



Title Suppressed Due to Excessive Length 151

has torsion free cokernel, and that
«9%1)} . Xglu{v} — Xgl

is surjective. Thus
95 : X@ — XS

has torsion free cokernel, and
0y Xs — Xy
is surjective. In particular

Os + Xy[g] — Xsl],

and we may take
is =0go0igo 6’5&3[@

and
s = 95’|X@[¢] o7y © 019

Thus N
Xslo]/msisXs[o] = Xo[o]/¢(050s)moio Xo[¢]
= Xo[¢]/ (ITes @5 (Onibn ) moio Xo[6).

The proposition follows from corollary 5.1.8. [J

5.4. R="T theorems: the non-minimal case. — In this section we will
show how conjecture I would imply a generalisation of theorem 3.5.1 to a
less restrictive set of deformation problems S&. Such a generalisation would
be very much more useful in practice than theorem 3.5.1. After this paper
was written, one of us (R.L.T.) found an unconditional proof of a slight
weakening of theorem 5.4.1 below (see [Tay]). This seems to be sufficient
for most current applications. However we present this conditional argument
here because it would provide a stronger result. For instance it shows that
the Galois deformation ring is a reduced complete intersection, which might
be pertinent for special value conjectures. This information does not appear
to be available by the methods of [Tay].

For the sake of clarity we recap the notation.

Fix a positive integer n > 2 and a prime [ > n.

Fix an imaginary quadratic field E in which [ splits and a totally real
field F'* such that

— F=F"E/F* is unramified at all finite primes, and
— F7/Q is unramified at [.
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Fix a finite non-empty set of places S(B) of places of F™ with the
following properties:

— Every element of S(B) splits in F.
— S(B) contains no place above .
— If n is even then

n[F*t: Q]/2+ #S(B) = 0 mod 2.
Choose a division algebra B with centre F' with the following properties:
— dimp B = n?.
- B*=B®g.E.
— B splits outside S(B).
— If w is a prime of F' above an element of S(B), then B, is a division
algebra.

Fix an involution { on B and define an algebraic group G/F* by
G'(A)={ge B A: ¢"®¥'g=1}
such that
- ilr=c

— for a place vjoo of F™ we have G(F)) =2 U(n), and
— for a finite place v € S(B) of FT the group G(F)") is quasi-split.

Also define an algebraic group G'/F* by setting
G'(A)={geBP®p+ A: ¢"®g =1}

for any F'-algebra A.

Choose an order Op in B such that Ofg = Op and Op, is maximal
for all primes w of F' which are split over F'*. This gives a model of G over
Op+. If v ¢ S(B) is a prime of F™ which splits in F' choose an isomorphism
iy : Opy — M, (OF,) such that i,(z%) =%, (x)° If w is a prime of F above v
this gives rise to an isomorphism i, : G(F,) = GL,(F,) as in section 3.3. If
v € S(B) and w is a prime of F above v choose isomorphisms i, : G(F,) =
By such that iye = i,," and i,G(Op+,) = OF .-

Let S; denote the set of primes of F™ above . Let S, denote a non-
empty set, disjoint from S;U S(B), of primes of F™ such that

— if v €S, then v splits in F, and
— if v € S, lies above a rational prime p then [F((,) : F] > n.

Let S denote a set, disjoint from S;US(B)US,, of primes of F* such that
— if v € S then v splits in F, and
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— if v € S then either Nv =1mod ! or [ f#GL,(k(v)).

Let T=SUS(B)US,US,. Let T denote a set of primes of F above T such
that THTC is the set of all primes of F' above T. If v € T we will let v
denote the prime of T above v. If T, CT we will let Tvl denote the set of v
for v € 1.

If Sy S let U(S))=1]][,U(S1), denote an open compact subgroup of
G(A%)) such that

— if v is not split in F' then U(Sy), is a hyperspecial maximal compact
subgroup of G(F,),

—if v ¢ S, US; splits in F then U(S1), = G(Op+ ),

— if v € Sy then U(S)), = i; Uy ("), and

—if v € S, then U(S)), = z'gl ker(GL,(Or3) — GL,(Opz/(wy"))) for
some m, > 1.

Then U(S;) is sufficiently small. If S} =0 we will drop it from the notation,
ie. we will write U =[], U, for U(0).

Let K/Q; be a finite extension which contains the image of every em-
bedding F'+ < K. Let O denote its ring of integers, A\ the maximal ideal of
O and k the residue field O/\.

For each 7:F — K choose integers a,1,...,a,, such that

= Qrci = —OQrn41—iH and
— if 7 gives rise to a place in S; then

l—1-n>a;>..>a;,>0.

For each v € S(B) let p,: G(F,}) — GL(M,,) denote a representation
of G(F;") on a finite free O-module such that p, has open kernel and M, ®o
K is irreducible. For v € S(B), define m,, 7 and 75 by

JL (py 0 igl) = Sp , (75)

and
5 = (] |(n/ma—1)(1—ma)/2)_

We will suppose that

75 Gal (Fy/Fy) — GLy i, (O)

(as opposed to GLym.(K)), that the reduction of 7 mod A is absolutely
irreducible and that for ¢ =1,...,m, we have

?5 XRo k % ’775 Ko k(el)



154 LAURENT CLOZEL, MICHAEL HARRIS, RICHARD TAYLOR

Let m be a non-Eisenstein maximal ideal of TaT,{ s10(U) with residue
field £ and let -
Tm: Gal(F/FY) — G,(k)

be a continuous homomorphism associated to m as in propositions 3.4.2 and

3.4.4. Note that
l—nél»ﬂm

VOoTy =€ FIF+

where p/p+ is the non-trivial character of Gal (F/F") and where juy € Z/2Z.
We will assume that 7, has the following properties.

— Tw(Gal (F/F*(())) is big in the sense of section 2.5.
— If ve S, then 7, is unramified at v and

H(Gal (Fi5/F5), (ad Tw)(1)) = (0).
We will also assume that Tg{ pv},@(U ) admits a section

¢ Togppal) = O.
For S; C S write Xy s, for the space
Sa,{pv},@(U(Sl)a O)m,n

where n is the maximal ideal
AWUW, U g e s))

of (’)[Ufél),...,US”*l) . v € Sy]. Also write Ty, for the algebra T7 (X g,).

v

Thus Tng is a quotient of va{pv}@(U (51))m, and these two algebras are

equal if S; = (. The algebra Ty, is a local, commutative sub-algebra of
End o(Xms, ). It is reduced and finite free as an O-module. Let

Tms, @ Gal (F/Fﬂ — G (Ths,)

denote the continuous lifting of 7y, provided by proposition 3.4.4. Then Ty, g,
is generated as an (Q-algebra by the coefficients of the characteristic polyn-
imials of 7, (0) for o € Gal (F/F).

For S; C S, consider the deformation problem Sg, given by

(F/F+7 T7 f? 07 Fma 61_n6¢7‘7p+7 {D’U}UET)
where:

— For v e S,, D, will consist of all lifts of Tyy|q, (Fs/Fy) and

L, = H'(Gal (F3/F5),ad7y) = H' (Gal (F3/F5) /I, ad Ty,).
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— For v € S;, D, and L, are as described in section 2.4.1 (i.e. consists
of crystalline deformations).

— For v € S(B), D, consists of lifts which are 75-discrete series as de-
scribed in section 2.4.5. In this case L, is also described in section 2.4.5.

— For v € S-Sy, D, will consist of all unramified lifts of Tw|q. (7, /r,)

and
L, = H'(Gal (F3/F5) /I, ad Ty,).
— For v € 51, D, will consist of all lifts of Tw|qu 7, k) and
L, = H(Gal (F3/F;),ad Ty).
Also let

umv Gal(F/F+)—>gn( univ)

m51 m,S1

denote the universal deformation of 7, of type Ss,. By proposition 3.4.4 there
is a natural surjection

univ

S1 - Tm751
such that ri'g pushes forward to rmg,.

Theorem 5.4.1 Keep the notation and assumptions of the start of this sec-
tion. Assume also that conjecture I is true for G and G'. Then

univ

m,S Tm75'
15 an isomorphism of complete intersections.

Proof: As in section 5.3 we see that we have a commutative diagram

univ

mS Tm75

l !

RYY 5 Ty -2 0.

The lower left map is an isomorphism by theorem 3.5.1. Let ¢g denote
the composite Tps — Twmg %, 0. Let cp(¢) (resp. cg(¢)) be the ideals
p(Anng, ,ker@) (resp. ¢s(Anny, g kergg)). Also let @y (resp. @s) denote

univ
m,

univ

the kernel of the composite — T <50 (resp. Ry — Tius s, 0).

By theorem 3.5.1 the map Rum" = Ty is an isomorphism of complete
intersections and the main theorem of [Le] implies that

lgo @@/@% = lgo O/cy().
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Hence by lemma 2.3.2 and proposition 5.3.5 we see that

Igo 95/ 9% _
<lgo po/9f + D ues 180 H(Gal (F5/Fy), (ad rm) @, .6 K/O(e7))
<lgp O/cs(9).

Another application of the main theorem of [Le] tells us that Ru'y — Tns
is an isomorphism of complete intersections. [J

5.5. Conditional modularity lifting theorems. — In this section we ap-
ply theorem 5.4.1 to deduce conditional modularity lifting theorems in the
non-minimal case. The following theorem is proved in exactly the same way
as theorem 4.4.2, except that we appeal to theorem 5.4.1 instead of theorem
3.5.1.

Theorem 5.5.1 Let F be an imaginary CM field and let F* denote its maz-
imal totally real subfield. Let n € Zsy and let | > n be a prime which is
unramified in F. Let

r:Gal (F/F) — GL,(Q,)

be a continuous irreducible representation with the following properties. Let T
denote the semisimplification of the reduction of r.

1. re Vel
2. r is unramified at all but finitely many primes.
5. For all places v|l of F, 7|gyF,/r,) i crystalline.

4. There is an element a € (Z7)Hom (FQ) sych that
— for all 7 € Hom (F,Q;) we have

l—1-n>a312>...20,>0

or
l_l_nza’ﬂ'c,l Z zaan 20,

— for all 7 € Hom (F,Q;) and all i =1,...,n
Qrei = —Qrn+1—i;
— for all T € Hom (F,Q,) above a prime v|l of F,

dimg, gr’(r @5, Bpr) /") = 0
unless i = a,; +n —j for some j=1,...,n in which case

dimg, gr'(r @5, Bpr) /M) = 1.
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5. There is a non-empty finite set S of places of F not dividing | and
for each v € S a square integrable representation p, of GL,(F,) over Q
such that

|Gal F’U/F'u) (pv)\/(l - n)ss'
If po =SSP, (p,) then set
= ()] [0,

Note that r|g. F,/r,) has a unique filtration Fil? such that

J _ ~ ]
g7 Gal (Fo/F,) — Tw€

for j = 0,..m, —1 and equals (0) otherwise. We assume that 7, has

irreducible reduction Ty. Then T|gy 7, r,) inherits a filtration Fil? with

T _ ~ =
grvT’Gal(FU/Fv) = Tv€

for 7=0,....m, — 1. Finally we suppose that for j =1,....m, we have
Ty ETye

ker ad 7

6. F does not contain F(().

7. The image 7(Gal (F/F(())) is big in the sense of definition 2.5.1.

8. The representation T is irreducible and automorphic of weight a and
type {pv}ves with S # 0.

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then 1 is automorphic of weight a and type {py}tves and level prime to
l.

Exactly as we deduced theorem 4.4.3 from theorem 4.4.2 we can deduce
the following variant of theorem 5.5.1 for totally real fields.

Theorem 5.5.2 Let F'* be a totally real field. Let n € Zsy and let | >n be
a prime which is unramified in F*. Let

r:Gal(F'/FT) — GL,(Q)

be a continuous irreducible representation with the following properties. Let T
denote the semisimplification of the reduction of r.

1. Y 2 ren 1y for some character x : Gal(F' JF*) — Q," with x(c,)
independent of vioo. (Here ¢, denotes a complex conjugation at v.)
2. r ramifies at only finitely many primes.
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3. For all places v|l of FT, r’Gal(Fj/Fj'L is crystalline.
4. There is an element a € (Zm)Hom (FT.Q0) sych, that
— for all T € Hom (F*,Q,) we have

[—1- n_'_aT,TL Z Gr1 Z Z Q7 n;
— for all 7 € Hom (F*,Q,) above a prime v|l of F*,

: ) al(F JF}
dimg, gr'(r ®, p+ Bpg) ¥ e /B —

unless i = a,; +n —j for some j=1,...,n in which case

dlmal gri(r ®7.7F’:> BDR)Gal (f;’_/FJ—) =1.

5. There is a finite non-empty set S of places of F™ not dividing [
and for each v € S a square integrable representation p, of GL,(FE}) over
Q; such that

Ml ey = 1(P0) (L =)™
If py =Sp,,, (p,) then set

Ry = ri((p])] [0/ 0o,

Note that 7|, FE) has a unique filtration Fil? such that

807l ot 7ty = o
for j = 0,...m, —1 and equals (0) otherwise. We assume that T, has
wrreducible reduction 7, such that
Ty 2 Toe

for 7=1,....m,. Then T|Gal(f+/F+) inherits a unique filtration ﬁf} with

I . ~ = ]
BT ot (71 /5y = To

for 7=0,...,m, — 1.
6. (F+)kerad? does not contain FT(().
7. The image 7(Gal (F+/F+(Cl))) is big in the sense of definition 2.5.1.
8. T is irreducible and automorphic of weight a and type {p,}ves with
S # 0.
Assume further that conjecture I is valid (for all unitary groups of the type

considered there over any totally real field.)
Then r is automorphic of weight a and type {p,}tves and level prime to

l.
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5.6. A conditional modularity theorem. — We would like to apply the-
orems 5.5.1 and 5.5.2 in situations where one knows that 7 is automorphic.
One such case is where 7: Gal (F/F) — GL,(k) is induced from a (suitable)
character over some cyclic extension. However it will be useful to have such
a theorem when p, is Steinberg for v € S. Because the lift of 7 which we
know to be automorphic is an automorphic induction it can not be Steinberg
at any finite place (although it can be cuspidal at a finite place). Thus we
have a problem in applying theorems 5.5.1 or 5.5.2 directly. We shall get
round this by applying proposition 2.7.4 to construct a second lift r; of 7
which is Steinberg at v € S, but which is also cuspidal at some other finite
places S’. We first show that r; is automorphic using the places in S’. The
result is that we succeed in ‘raising the level’ for the automorphicity of 7.
We can then apply theorem 5.5.1 or 5.5.2 a second time. A further compli-
cation arises because we want to treat 7 which do not look as if they could
have a lift which is cuspidal at any finite place. We will do so under an
assumption that 7 extends to a representation of Gal(Q/Q) which looks as
if it could have a lift which is cuspidal at some finite place.

More precisely we will consider the following situation.

— M/Q is a Galois imaginary CM field of degree n with Gal (M/Q)
cyclic generated by an element 7.
—I>1+(n—-1)((n+2)"2 = (n—2)"2)/2"7! (e.g. | > 8((n+2)/4)'*/?)
is a prime which splits completely in M and is = 1 mod n.
— p is a rational prime which is inert and unramified in M.
— q # [ is a rational prime, which splits completely in M and which
satisfies ¢ 2 1 mod [ for i =1,....,n — 1.
— 0:Gal(Q/M) — F, is a continuous character such that
— 09" = el=m
— there exists a prime w|l of M such that for i =0,....,n/2 —1 we
have 6|, , =€
—if vy,...,v, are the primes of M above ¢ then {f(Frob,)} =
{agq™?: j=0,..,n—1} for some o, € F,:

— —rJ .
*_G‘Gal(ﬁp/Mp) # 0 ‘Gal(ﬁp/Mp) for j=1,..,n—-1 B
Let S(0) denote the set of rational primes above which M or 6 is ramified.

— E/Q is an imaginary quadratic field linearly disjoint from the Galois

closure of Mkera((’l) /Q in which every element of S(A)U{l,q,p} splits; and

such that the class number of E is not divisible by [.

Theorem 5.6.1 Keep the notation and assumptions listed above. Let F/F
be a Galois extension of imaginary CM fields with F linearly disjoint from
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the normal closure of Mkera((’l) over Q. Assume that | is unramified in F

and that there is a prime v,o of Fy split above p. Let
r:Gal(F/F) — GL,(Q))

be a continuous irreducible representation with the following properties. Let T
denote the semisimplification of the reduction of r.

Gal (/)0 1Gal (F/ )
¢~ rvel—n.
r ramifies at only finitely many primes.

For all places v|l of F, 7|quF,/r,) i crystalline.
For all 7 € Hom (F,Q,) above a prime v|l of F,

72 Ind Gal(F/F) 3
(
r

Gt o =

dim@ gI‘i(T Rr.F, BDR)Gal (Fo/Fo) _ 1
fori1=0,...n—1 and =0 otherwise.
6. There is a place v, of F above q such that (#k(v,))’ # 1 mod

for 7 =1,...n, and such that r|2§al(qu/qu) 1s unramified, and such that

r Frob,,) has eigenvalues {o(#k(vy))? : j = 0,...,n — 1} for

SS o (
Gal (Fu,/Fog)

some « € le

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then v is automorphic over F of weight 0 and type {Sp, (1)}, and
level prime to .

Proof: Replacing F' by FEF if necessary we may suppose that F D F
(see lemma 4.2.2).
Choose a continuous character

0 : Gal (M/M) — O}
!

such that
— 0 lifts 0;
o 9—1 — En—lec;

—for i=0,..,n/2—1 we have 0|;,, =€ and
— Lf#0(1,) for all places v|p of M.

(See lemma 4.1.6.) We can extend 0|, 5 pa to @ continuous homomorphism

0:Gal(E/(EM)") — Gi(Og,)
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with vo# == We will let 6 also denote the reduction
0:Gal(E/(EM)T) — G\ (F))

of . Consider the pairs Gal(E/(EM)") D Gal (E/(EM)) and Gal (E/Q) D

Gal (E/E). Set

ro = Ind gaiEZ&M 0:Gal(E/Q) — G,(O )

Note also that

7”0|Ga1(E/E) = (( nd . 1(E/M >|Ga1 (E/E)> € l_n)~

By proposition 2.7.4 there is a continuous homomorphism
r: Gal (B/Q) — Gn(Oq,)
with the following properties.

Gal(E/Q),e! "5
— oy lifts Ind o | E/(EM)+)6'
—vor; =€
— For all places w|l of E, 1lga,,/r,) is crystalline.

— For all 7 € Hom (E,Q,) corresponding to prime w|l,

dimg, gr'(r1 ®r., Bpr) @ Fw/Fe) = 1

for 1 =0,...,n—1 and =0 otherwise.

— ¥ Gal (Bay /Euy) is unramified and r[g, \(Boy/ qu)(Frobvq‘ ») has eigenvalues

{ag7: 7=0,...,n—1} for some a € Ql )

— 71lgal (B, /E,,) 18 an unramified twist of Ind gai E Q”;EP 0] cal @,/My)"

Let v, be a prime of F' above v,, and let Fy C F denote the fixed
field of the decomposition group of v, in Gal (F/Fp). Thus v,|p is split over
p and F'/F; is soluble.

The restriction ro|g, z/ ) i automorphic of weight 0, level prime to [
and type {pp}{v,| b for a suitable cuspidal representation p, (by theorem 4.2
of [AC]). Applying lemma 2.7.5 and theorem 5.5.1 we deduce that 11|, 7 5
is automorphic of weight 0 and type {pp}{u,| ) and level prime to [. It fol-
lows from corollary VIL.1.11 of [HT] that 71|, F/r) is also automorphic of
weight 0 and type {Sp,(1)}{y|s} and level prime to I. (The only tempered
representations m of GL;(F1 ) for which ry(m)"(1 — n)* unramified and
ri(m)¥ (1 —n)*(Frob,,|, ) has eigenvalues of the form {ag™/: j=0,..,n—1}
are unramified twists of Sp,(1).) From theorem 4.2 of [AC| we deduce that
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T'1|Ga (7/r) 18 automorphic of weight 0 and type {Sp,(1)},} and level prime
to [. (The base change must be cuspidal as it is square integrable at one
place.)

Finally we again apply theorem 5.5.1 to deduce that r is automorphic
of weight 0 and type {pp}{,} and level prime to I. The verification that
7(Gp+()) is big is exactly as above. O

We also have a version for totally real fields.

Theorem 5.6.2 Keep the notation and assumptions listed at the start of this

section. Let F*/F)" be a Galois extension of totally real fields with F* linearly

disjoint from the Galois closure of E(()M ker0 over Q. Suppose that that | is

unramified in F* and that there is a prime v,o of Fy split over p. Let
r:Gal (FY/F') — GL,(Q,)

be a continuous representation such that

Gal(Q/Q) g
o (I dGlQ/M )lGal Q/F+)
- rv  pen=ls
— r is unramified at all but finitely many primes;

— For all places v|l of FT, T|Ga1(Fj/FU+) is crystalline.

— For all 7 € Hom (F*,Q,) above a prime v|l of FT,
: i al(F. JF}
dlm@ ot (’I“ ®T,FJ BDR)G L(F, /F) —
for i=0,...n—1 and =0 otherwise.
— There is a place vylq of 't such that
— #k(v,)) Z1modl for j=1,...,n—1,

s _ 18 unramified, and
|Ga1(qu/th1) fied,

- T‘Zsal(qu/val)(FrOb”q) has eigenvalues {a(#k(vy)) : j=0,...,n—1}

for some a € le

Assume further that conjecture I is valid (for all unitary groups of the type
considered there over any totally real field.)

Then r is automorphic over F* of weight 0 and type {Sp,(1)},y and
level prime to L.

Proof: Apply theorem 5.6.1 to FF'= FTE and use lemma 4.3.3. [
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APPENDIX A: The level raising operator after Russ Mann.

In this appendix we will explain Russ Mann’s proof of lemma 5.1.6 and
proposition 5.1.7. A preliminary write-up of most of the arguments can be
found in [Man2], but as Russ has left academia it seems increasingly unlikely
that he will finish [Man2]. Hence this appendix. Russ actually found more
general results concerning level raising for forms of level greater than 1, which
we do not report on here. We stress that the arguments of this appendix are
entirely due to Russ Mann, though we of course take responsibility for any
errors in their presentation.

Write B,, for the Borel subgroup of GL, consisting of upper triangu-
lar matrices and write N, for its unipotent radical. Also write 7, for the
maximal torus in GL, consisting of diagonal matrices and write P, for the
subgroup of GL, consisting of matrices with last row (0,...,0,1).

Let F,, be a finite extension of Q, with ring of integers Op,. Let w :
Fy — Z denote the valuation, let w, denote a uniformiser of Op, and let
qw = #O0p,/(wy). Also let O denote the subring of C generated by 4w’
and all p-power roots of 1. Let S, denote the symmetric group on n letters
and set

RS = 0[Xy,.., X,]°" C R, = O[X;, ..., X%,

n

where S,, permutes the variables X;. Sometimes we will want to consider
R, and R,,_; at the same time. To make the notation clearer we will write
Ry = O . VES 1 and R | = O[Yy, ..., Y, 1]%1. We will also set

RQ—I = O[Dfl’ e Y;L—IHSTH1

and R>™ to equal to the O-submodule of R, , consisting of polynomials of
degree < m in each variable separately.
Let aj = w,1; @ 1,—; and let T (@) denote the double coset

Let GL,(OF,)" denote the sub-semigroup of GL,(F,) consisting of matrices
with entries in Op,. Then

O|GL,(Op, )\GL,(F)" /GL,(Op,)] = OTW 7@ T
and
O[GLn (O, \GLn(Fy)/GLn(OF,)] = O[TN, T® 1M (TM™)71).
Define ~ from O[GLy,(Op,)\GLy(Fy)/GLn(OF,)] to itself by
[GLw(OF,)9GLn(OF,)]” = [GLy(OF,)g ' GLn(OF,)].
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Then (T0)~ = (T™)=17m=3),
There is an isomorphism (a certain normalisation of the the Satake iso-
morphism)
S : OlGL(Op, \GLu(Fo) [GLA(Or, )] = R,

which sends 7V to ¢ J1=D/2 times the 4" elementary symmetric function in
the X;’s (i.e. to the sum of all products of j distinct X;’s). We have

S(O[GLA (O, \GLy(Fu)" /GLn(OF,)]) = Ry

n

and
S(T)( Xy, Xn) = S (g ' X7 g XY,

If we write
OlGL, 1 (Op,)\GLy1(Fu)" /GLy1(OF,)]<m
for the submodule of O[GL,_1(Op,)\GLy_1(Fy)"/GL,-1(Or,)] spanned by
the double cosets
GLyn—1(Op,)diag(ty, ..., tn—1)GLy—1(OF,),
where m > w(ty) > ... > w(t,—1) > 0, then
S(O[GLy1(Op)\GLyp1(Fy)"/GLy_1(OF,)]<m) = (O[Y1, ..., Yy_1]"»1)=™.

Let U;(w™) denote the subgroup of GL,(Opg,) consisting of elements
which reduce modulo @ to an element of P,(Op, / (@w). For j=1,...,n—1
let

Uv = p P,(Op,)a;P,(OF,).
Note that UY /P, (OF,) has finite cardinality. If 7 is a smooth representation
of GL,(F,) and if m € Z>; then

— the operators UY) on 7(©rw) commute, and
— the action of UY preserves 7V1(*™) and in fact acts the same way
as

Ur(w™)a; Uy (w™)
on this space.

(This is proved by writing down explicit coset decompositions, see for in-
stance proposition 4.1 of [Manl] .)
Let A be an O-module and suppose that

T = Z a;GLn1(0r,)9:G Ly 1(OF,)
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is in A[GL,_1(Op, )\GL,_1(Fy,)"/GL,_1(OF,)]. Define

-1
V(D) = Yol deta P, 0n) (%)) GL.(OR).

2

Note that if h € GL,_1(F,)" and
GLy-1(Op,)h ' GL\1(OF,) = [ [ GLn-1(OF,)
J

then

P,(Or,) (hol (1)) GLy(Or,) =[] (}g (1)) GLu(OF,)-

J

Similarly if m € Z>; and if

T = Z aiGLn,l(OFw)giGLn,l((’)Fw)
is in A[GLn_l(OFw)\GLn_l(Fw)Jr/GLn_l(OFw)}Sm define
-1
Vou(T) =)~ ag| det g;|" Uy (w™) (gio ?) GL.(Op,).

Note that if h € GL,_1(F,)" is such that GL, 1(Op,)hGL,_1(OF,) lies in
AlGL, - 1(Op, )\GLy—1(Fy,)"/GLy-1(OF,)]<m, and if

GLy-1(OF,)h ™' GL\1(OF,) = [ [ GLn-1(OF,)
J

then

J

i) (")) 6t0n) =TT (1) 6La(0n).

We deduce that if 7 is any smooth representation of GL,(F,) and if T €
A[GL, 1(Op, )\GL,_1(F,)*/GL,1(OF,)|<m then V(T) preserves the space
V1™ and acts on it via V,,(T). In the case A = R, the map V,, induces
a map, which we will also denote V,,, from the module

Rn[GLn—l(OFw)\GLn—l(Fw)+/GLn—1<OFw)]§m
to O[U(w™)\GL,(F,)/GL,(OF,)] given by the formula
Vi (32, ailGLy—1(Op,)9:GLn-1(OF,)])

=S ldet g7 U (%) GLa(OR) | 05 @
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Proposition 5.2 of [Manl] says that the set of
Vm(GLn_l(OFw)diag(tl, ceey tn—l)GLn—l(OFw))u

where t € T,,_1(Fy,)/T-1(Og,) with m > w(t;) > ... > w(t,—1) > 0 is a basis
of O[U;(w™)\GL,(F,)/GL,(OF,)| as a right R,-module. Hence the map V,,
from

Ru|GLy-1(Op, )\GLy-1(Fu)"/GLn-1(OF, )] <m

to O[Uy(w™)\GL,(Fy)/GL,(OF,)] is an isomorphism of free R,-modules.
Let
Y By, — O

be a continuous character with kernel Op,. We will also think of ¥ as a
character of N, (F,) by setting
Y(u) = P(ure + Uz + .. + Up10).
If Ais an O-algebra we will write W, (A, ) for the set of functions
W :GL,(F,) — A
such that

— W(ug) = (u)W(g) for all g € GL,(F,) and u € N,(F,),
— and W is invariant under right translation by some open subgroup
of GL,(Fy).

Thus W, (A, ) is a smooth representation of GL,(F,) (acting by right trans-
lation).

There is a unique element W0 (1)) € W, (R, ¥)*(©r) such that

- W (¥)(1,) =1 and

= TWR() = S(T)W,(¢) for all T € O[GLn(Op,)\GLn(Fy)/GLi(OF,)]-
Moreover if the last row of g is integral then W?()(g) € R. (These facts
are proved exactly as in [Sh].)

Suppose again that A is an O-algebra. If W € W,(A,¢)"Or) we
heuristically define ®(W) € A®o R} | = A[[Y1, ..., Yo 1]]""1 by

0 — S—n
son) = | w (80 W) det gl g
Nn—l(Fw)\GLn—l(Fw)

s=0

where the implies Haar measures give GL,_1(Op,) and N,_1(Op,) volume 1.
Rigorously one can for instance set

t 0 - s—n —n —n n—
@m=ZW@JMMwWMM\W%FMﬁ4mn2
t
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where t = diag(t,...,t,—1) runs over elements of T,,_1(Fy)/T,-1(OF,) with
w(ty) > w(te) > ... > w(t,—1) > 0.

For such ¢ the value W? ,(¢"!)(t) is a homogeneous polynomial in the Y;’s
of degree w(dett) and these polynomials are linearly independent over A for
t €T, 1(Fy)/Th-1(0OpF,) with w(tl) > w(ty) > ... > w(ty—1) > 0. (As in [Sh].)
In particular if W € W, (4,¢)(©F) then @(W) determines W|p, (p,). As in
section (1.4) of [JS2] we see that

oWP(y)) =[]0 - Xxiv;)™"

0]

Fix an embedding ¢ : R, — C. There is a unique irreducible smooth rep-
resentation m of GL,(F,) such that O[GL,(Op,)\GL,(F\,)/GL,(OF,)] acts
on 7¢(Or.) via 105, Moreover there is an embedding 7 < W, (C, ) which
is unique up to C*-multiples. It follows from [Sh] that W?(¢)) is in the
image of w. It follows from sections (3.5) and (4.2) of [JPSS] that

D (Ry[GLy ()W) Or) — TT(1 = X3Y)) ' Ra[Vh, oo, Yo )5

From corollary 3.5 of [Manl] we see also see that

dime (Rn[GLn(Fu)]W, (1)) @, , C < dime 77" = (m+n— 1)'

n—1

If W € (Ru[GLny(F)W02(1))©r) and ¢(W) = 1 then we see that
Wlp,(r,) is supported on N,(F,)P,(Op,) and that W(l,) = 1. Thus we
have (U9YW)|p, (7, = 0. (Recall that we only have to check this at ele-
ments diag(tl,... tn—1,1) and that any element of W, (R,,v) will vanish at
diag(ty, ..., tn—1,1) unless w(t;) > 0 for all . To check at the remaining diag-
onal matrlces one uses the explicit single coset decomposition in proposition
4.1 of [Manl].) Hence @(UVW) =0 and so UYW = 0.

Recall that if h € GL,_1(F,)" and

GLy-1(Op,)h ' GLy1(OF,) = [ [ h;GLu-1(OF,)

then

P,(Or,) (hol (1)) GL.(0r,) =]] (%ﬂ (1)) GLn(OF,).
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From this and a simple change of variable in the integral defining &, we

see that if T is in A[GL,—1(Or,)\GLp-1(Fy)*/GL,-1(OF,)] and f is in
Wi (A, )En(Or0) then

Thus we have

Rp[GLy 1(Op \GLy_1(Fy)* /G Lu1(Or.)]<m T
! !
(Rn[GLn(Fw)]lWS(w))Ul(wm) Vi (D)W (4) Vf
[T,,(1 = X;Y)) ' Ry[Yi, ..., Yy ]S O(W).

The composite sends
T— S(T) ] - X))
0]
The composite is an isomorphism to its image:
[ = X)) (Ra¥a, o, Y5 ) =,
Y]

which is a direct summand of [, (1 — X,Y;))'R,[Y1, ..., Yy q]%—t and which

is free over R,, of rank
m+n-—1
n—1 ’

dimc(RGL(F) V)™ ) on,, © < (

As
m-+n—1
n—1 ’

we deduce that

Bo[GLor(Or, NG L1 (Fu)* /G La (O, )<
= O[U (w™)\GLy(Fy)/GLn(OF,)]
5 (R G Ly (F) W2 (1)) 1)
— [, (1 = XaY)) " (Bu[Yr, oo, Yo [5) =

Lemma 5.1.6 follows immediately from this.
Let 0 denote the element of

OlU1(w"N\G Ly (Fu)/GLy(OF,)]
which is V,,(I; ;(1 = XiY})). Then
OW,) () = 1.



Title Suppressed Due to Excessive Length 171

Moreover UWOW?O(1p) = 0 and so UWH =0 for j =1,....,n—1. Thus 0 satisfies
the first three parts of proposition 5.1.7.
We now turn to the proof of the final part of proposition 5.1.7. Write

0= Z[Ul (w")diag(w,*, ..., w, "', 1)GL,(OF,)| T,

where T, € O[GL,(Op,)\GL,(F,)/GL,(OF,)] and where a = (ay,...,a,1)

runs over elements of Z"~! with
n>a > ..>a,  >0.
As
S S(T)S(GLy 1 (O )ding(w - @i )G Ly 1(Op,)) = [[(1 - X))

i’j
we see that

77777

e Ti,.n) = qZ(”_l)z/Q(T(”))"_l. Let n =1, ® =" and define 6 as we did
just before proposition 5.1.7. Thus we have

0= (T")™"T,[GL,(Op,)diag(w@ly ™, .. @l ", 1)Uy (w")].

a

Again 7 denote the GL,(F,)-subrepresentation of W, (C,1) generated
by «W?(¢)). Define 7 : R, — C to be the O-linear map sending X; to
¢ M(X;)"!. Let T denote the GL,(F,)-subrepresentation of W, (C,¢!) gen-
erated by 2(W?(¢"!)). Then 7 is the contragredient of 7. Write gen, for

;Z((I;z))C(@D). It follows from proposition 3.2 and

lemma 4.5 of [BZ] that gen embeds in 7|p,(r,) and in 7|p,(p,). Moreover it
follows from proposition 3.8 and lemma 4.5 of [BZ] that any P,(F,) bilinear
form

the compact induction c-Ind

(,):mxm—C

restricts non-trivially to gen, x gen,. Hence there is a unique such bilinear
form up to scalar multiples and so any P, (F,)-bilinear pairing 7 x 7 — C is
also GL,(F,)-bilinear. Such a pairing is given by

<mﬁ6:/ W (g)W ()| det gl*dg
Np(Fu)\Pn(Fuw) s=0

Here we use a Haar measure on N, (F,) giving N,(Op,) volume 1 and a
right Haar measure on P,(F,) giving P,(OpF,) volume 1. The integral may
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not converge for s = 0, but in its domain of convergence it is a rational
function of ¢; and so has meromorphic continuation to the whole complex
plane.

We will complete the proof of proposition 5.1.7 by evaluating

(BOW;) (), W ()
in two ways. Firstly moving the 0 to the other side of the pairing we obtain

[GL,(Op,) : Ui(w™)] 3,70 S(Tu(T™)")
(OW2(¥),3[U (w")diag(wl ™, ..., i1, 1)GLa(Op, )W (¥ ).

The restriction (6W.(¢))|p,(r,) is supported on N, ( w)Pn(OF,) and equals
1 on P,(Op,). Thus (8W°(1), W) simply equals W (1,). We deduce that

OIWO (), WO (1)) = (g — Vg™V 32, 7o S(Tu(T™)™)
WU (w)diag(w ™, ..o, @17, )G Lo (Op, )IWE(™)) (L)

The terms of this sum are zero except for the term a; = ... = a,_1 = n which
gives
(aty = D" VTS (2T,

1.e.
<q3) . 1)q1(ﬂn+2)n(n71)/22(X1.“Xn)fl
On the other hand
OOW2 (1), W2 (47))
equals

U S(0)0) (W2 (1), W2 ().

We consider the integral

/ W ()17 (g)| detg"dg
N (Fuw)\Pn(Fuw)

with the Haar measures described above. It equals

D W) EEWR( ™)) [t F o] |,

t

where the sum runs over t = diag(ty,...,t,) € T,,(Fy)/T(Op,) with

w(tl) Z w(tg) > UJ( ) 0.



Title Suppressed Due to Excessive Length 173

Because 2(W2()(#))1(W2(x»~1)(¢)) is invariant under the multiplication of ¢
by an element of F¢ this in turn equals

(1 =g, D) YW () @)U (™ ) (D) a5t

t

where now the sum runs over t = diag(ty, ..., t,) € T,,(Fy)/T,(OFr,) with

—n(s+1) )

This in turn equals (1 — guw times

U/“ (W) (@) V() (9))((0, ... 0, 1)g)] det g+ dg,
Np(Fuw)\GLn(Fuw)

where ¢ is the characteristic function of O% and where we use the Haar
measures on N,(F,) (resp. GL,(F,)) which give N,(Opg,) (resp. GL,(Og,))
volume 1. As in proposition 2 of [JS1] this becomes

. —ns+1) ﬁﬁ 1—ZX/X 1+s))

=1 j5=1

Thus

@IOW2 (1), W2 (1) = u(SO)0) (1 — ;™) [T ] — o(Xi/X)a") ™"

=1 j=1
Thus we conclude that
S(00) = g " V(X0 X)) "I T T [ (gw X — X5),
i=1 j=1

and we have completed the proof of proposition 5.1.7.
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APPENDIX B: Unipotent representations of GL(n,F') in the quasi-
banal case.

By M.-F.Vigneras

Let F be a local non archimedean field of residual characteristic p and
let R be an algebraically closed field of characteristic 0 or ¢ > 0 different from
p. Let G = GL(n, F). The category ModrG of (smooth) R-representations of
G is equivalent to the category of right modules Hr(G) for the global Hecke
algebra (the convolution algebra of locally constant functions f: G — R with
compact support, isomorphic to the opposite algebra by f(g) — f(g7').)

ModrG ~ ModHg(G).

Definitions. We are in the quasi-banal case when the order of the max-
imal compact subgroup of G is invertible in R (the banal case), or when
g=1in R and the characteristic of R is ¢ > n (the limit case).

A block of ModgG is an abelian subcategory of ModrG which is a
direct factor of Modgr(G and is minimal for this property. One proves that
ModgG is a product of blocks [V2, III.6]. The unipotent block Bri(G) is
the block containing the trivial representation. An R-representation of G is
unipotent if it belongs to the unipotent block.

Notations. Let I, B =TU be a standard Iwahori, Borel, diagonal, stritly
upper triangular subgroup of G, T, the maximal compact subgroup of T, I,
the pro-p-radical of I. The functor Indg : ModgB — ModgrG is the nor-
malised induction. The group I has a normal subgroup I of pro-order prime
to ¢ and a finite ¢ subgroup I, such that I = I‘I,. To get a uniform no-
tation, we set I* = I, I, = {1} when the characteristic of R is 0. We have
I=1%1,={1} in the banal case and I # I, I, # {1} in the limit case. Let
ModHRg(G,I) be the category of right modules for the Iwahori Hecke algebra
(isomorphic to its opposite)

Hg(G,I) == End e R[I\G] ~r R[I\G/I).

Let Modgr(G,I) be the category of R-representations of G generated by their
I-invariant vectors.
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1 Theorem In the quasi-banal case,

1) The category Modgr(G,I) is stable by subquotients.

2) For any V € Modg(G,I), one has V¥ = V! in particular R[I\G] is
projective in Modg(G, I).

3) The I-invariant functor

V — V! Modg(G,I) — ModHg(G,I)

is an equivalence of categories.
4) The I*-invariant functor on the unipotent block Bg1(G)

V = VT Bri(G) — ModHg(G, 1Y)

is an equivalence of categories.

5) In the banal case, Modgr(G,I) is the unipotent block.

6) In the limit case, Modgr(G,I) is not the unipotent block.

7) The parabolically induced representation Indgl is semi-simple (hence
also Ind$1 for all parabolic subgroups P of G). In the limit case, Ind X is
semi-simple for any unramified R-character X :T/T, — R* of T.

8) In the limit case, the R-algebra Hr(G,I;) is isomorphic to the nat-
ural twisted tensor product of Hr(G,I) and R[I‘].

The proof of the theorem uses some general results (A), ..., (H), valid
in the non quasi-banal case (except (E) and (G)) and for most of them when
G is a general reductive connected p-adic group. We recall them first.

(A) The algebra R[T/T,] is identified to its image in Hgr(G,I) by the
Bernstein embedding

(1) tp: R[T/T,] — Hr(G,I)
such that the U-coinvariants induces a R[T/T,]-isomorphism
(2) Vi (V)"
for any V € ModgG [V2, 11.10.2].
(B) By [Dat]|, we have a (G, R[T/T,])-isomorphism
(3) RII\G] =~ Ind 5 R[T/T,]

when R[T/T,] is embedded in Hg(G,I) by the Bernstein embedding i3 :
R[T/T,] — Hg(G,I), defined by the opposite (lower triangular) B of B as
in (A), where R[T'/T,] is the universal representation of 7' inflated to B.
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Hence for any character X : T/T, — R* i.e. an algebra homomorphism
R[T/T,] — R

(4) R ®x,ri1/T,) 45 RII\G] ~ Ind GX
(5) R ®x rir/1.)05 Hr(G, 1) ~ (Ind §X)".

(C) The compact induction from an open compact subgroup K of G to
G has a right adjoint the restriction from G to K [V1, 1.5.7]. In particular,
a representation generated by its [-invariant vectors is a quotient of a direct
sum of R[I\G] (denoted ®R[I\G]).

(D) The double cosets of G modulo ([,,I) are in bijection with the
double cosets of G modulo (I, ). This is clear by the Bruhat decomposition.
In particular, the I,-invariants of R[I\G] is equal to the I-invariants.

(E) In the quasi-banal case, every cuspidal irreducible representation of
every Levi subgroup of G is supercuspidal [V1, II1.5.14].

(F) The irreducible unipotent representations are the irreducible sub-

quotients of R[I\G] by [V2, 1V.6.2].

(G) When ¢ =1 in R, the Iwahori-Hecke algebra is the group algebra
of the affine symmetric group

N/T,~W.(T/T,) ~ S,Z"

(semi-direct product) where N is the normalizer of 7" in G and W := N/T
with its natural action on T'/T,. Naturally T/T, ~ Z" by choice of a uni-
formising parameter pr of F' and W ~ S,, the symmetric group on n letters
with its natural action on Z". The natural embedding

(6) R[T/To] - HR(G’ ]) = R[W(T/To)]

is equal to tp = t. These properties are deduced without difficulty from [V1,
1.3.14], [V2, IL.8].

(H) When ¢ =1 in R, let m; be an irreducible R-representation of the
group GL(n;d;, F) with cuspidal support ®"o;, for an irreducible cuspidal
R-representation o; of GL(d;, F') for all 1 < i < k. Suppose that o; is not
equivalent to o; if i # j. Then the representation of GL(D_, n;d;, F') parabol-
ically induced from m ® ...® 7 is irreducible by [V2, V.3].
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Proof of the theorem 1 ~ We suppose that we are in the quasi-banal
case.

a) We prove that any irreducible subquotient V' of R[I\G] has a non
zero [-invariant vector. The U-coinvariants Vi of any irreducible subquotient
V' of the representation (3) have a non zero vector invariant by T,, by (E).
By (2), V has a non zero [-invariant vector.

b) We prove that if W C V are subrepresentations of @R[I\G], then
W =V! implies W =V, and VI = V. The geometric property (D) implies
that the I,-invariants of any subrepresentation of @R[I\G] is equal to its I-
invariants. Hence W1 = W' VI = V. The functor of I,-invariants is exact
and any irreducible subquotient of R[I\G] has a non zero [,-invariant vector
by a). Hence W’ = V% implies W = V.

c) We prove the property 1) of the theorem. The property is trivial
with quotient instead of subquotient. Let Y € X and p: @R[I\G] — X a
surjective G-homomorphism. Let us denote by V the inverse image of Y by
p, and by W the subrepresentation of V generated by V!. We have W’ = V!
by construction, hence W =V by b). Hence V' is generated by its I-invariant
vectors. The same is true for its quotient Y.

d) We prove the property 2) of the theorem. In ¢) V is a subrepre-
sentation of @R[I\G] hence we have V! = VI» by b). The functor of I,-
invariants is exact hence p(VI*) = Y. As Y C Y and p(V!) C Y we
have Y! =Y = p(V1). This is valid for any Y hence for any representation
of Modg(G,I).

e) We prove the property 3) of the theorem. All the conditions of the
theorem of Arabia [A, th.4 2) (b-2)] are satisfied.

f) We prove the property 4) of the theorem. Let V' be a unipotent rep-
resentation. Then V' is generated by %48 by (F). The irreducible subquotients
of the action of I on V' are trivial, because I /1% is an (-group. Conversely
let V' be a representation generated by V', Then the irreducible subquotients
of V' are unipotent, and a representation such that all its irreducible subquo-
tients are unipotent is unipotent. As the pro-order of I’ is invertible in R,
and the unipotent block is generated by Ind %1z = R[I'\G], the I‘-invariant
functor is an equivalence of category with the Hecke algebra Hpy(G, I).

g) We prove the property 5) of the theorem. In the banal case I = I*
and compare the properties 3) and 4) of the theorem.

h) We prove the property 6) of the theorem. In the limit case, I # I°.
The I-invariants of Ind?gl can be computed using the decomposition of the
parahoric restriction-induction functor [V3, C.1.4] and the simple property

dim(Ind %, 1)’ = 1.
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One finds that the [-invariants of Ind?gl are the [-invariants of its proper
subrepresentation Ind ¢1 = R[I\G]. Hence the unipotent representation Ind %1
is not generated by its [-invariant vectors.

i) We prove the property 7) of the theorem. In the banal case Indgl
is irreducible. We suppose that we are in the limit case. By (4), Ind %1 is
generated by its [-invariant vectors. Hence by the property 3) of the theorem,
Indgl is semi-simple if (Indgl)] is a semi-simple right Hg(G, I)-module. By
(5) for the trivial character of T, we have

(Ind$1)! ~ R @1, R/ T 05 Hr(G, ).

By (6), the action of Hgp(G,I) ~ R[W.(T/T,)] on (Ind§1)! restricted to
R[T/T,] is trivial. As R[W] is semi-simple, (Ind%1)! is a semi-simple right
Hg(G, I)-module.

Every parabolic subgroup of G is conjugate to a parabolic group P
which contains B, and the isomorphism class of Indgl does not change when
P is replaced by a conjugate in G. We have an inclusion Indgl C Indgl in
ModgG. As Ind %1 is semi-simple, the same is true for Ind %1.

Let X be an unramified R-character of 7. Modulo conjugaison X =
®;X; is the external product of characters X; := x;1 of the diagonal sub-
groups T; of G; := GL(n;, F), which are different multiples of the identity
character, z; # z; € R* if i # j and ) ,n; = n. The parabolic induction
Modpg HZ G; — ModgrG sends any irreducible subquotient of ®;Ind gim to
an irreducible representation of G by (H). This implies the semi-simplicity of
Ind $X.

j) We prove the property 8). Let V' be an R-vector space with an action
o: 1 — GLg(V) of I trivial on I,. We have I = T,,. The Weyl group
W ~ S, embedded in G as usual, acts on T, by conjugation. By inflation,
the affine Weyl group W.(T'/T,) acts on T,. For w € w,.(T/T,) with w, € W,
one denotes by Intw.V the space V with the action of I such that k € t,1,
acts by o(wyt,w,?') for t, € T,. The endomorphism algebra End RglndIGV is
isomorphic as an R-module to ([V2, I1.2 page 562] and [V3, C.1.5]):

(8) End peInd §V ~ @yew v/, Hom gr(V, Intw.V).

A function in Ind?V with support Ig and value v € V at g € G is denoted
by [Ig,v]. We have g~'[I,v] = [Ig,v]. The endomorphism T, 4 corresponding
to w e WAT/T,), A € Hom g;(V,Intw.V) in (8) is defined by [V2, I1.2, page
562]:

(9)  Typall,v] = > [Twz, A(v)] = > (wz) I, A(v)]

ze(IpNnw= I w)\Ip z€(IpNw= I w)\Ip
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because Twl = Uycr,nw-1,w)ni, [T is a disjoint decomposition and [, acts
trivially on V. The product in End rglnd IGV is given by

TwraTwall,v] = > (wz) " (w'y) [, (A 0 A)(v)],

z€(Ipnw=1Ipw)\Ip,ye(IpN(w') ~ Iw" )\Ip

or equivalently,

(10) Tw/7A/Tw7A[I, ?)] = Z [Iw'ywx, (A/ o A) (U)]

z€(Ipnw=1Iw)\Ip,ye(IpN(w’)~L,w )\Ip

The Iwahori-Hecke algebra Hg(G,I) is the R-algebra of RG-endomorphisms
of Ind¥15z. We denote T, for Twia in Hr(G,I). The Hecke algebra Hgp(G,I*)
is the R-algebra of RG-endomorphisms of Ind¥V where V = R[I/I] with
the regular action o of I. Let 4, be the R-linear automorphism of V =~
k[I;] given by conjugation by w € W.(T/T,). The R-linear map A + i, 0 A
from End g;(V) to Hom g;(V,Intw.V') is an isomorphism. We have Ty ;04 =
Twi,Ti.a in Hr(G,I°) and the R-linear map defined by

Tw®Avrs Ty Tia: Hr(G, 1) @g End (V) — Hg(G, 1Y)

is an isomorphism. The injective R-linear map A — Tj 4 : End g/ (V) —
Hpr(G, I% respects the product. In the limit case, the injective R-linear map
such that T, — Ty, : Hr(G,I) — Hgp(G,I") respects also the product be-
cause Ty Ty = Ty in Hp(G,I) and Ty aTown = Ty itonroion i Hr(G, I).
We have End gV = End g1,V = R[I;]. <

Let Jr be the annihilator of R[G/I|. The Schur R-algebra of G is
Morita equivalent to Hgr(G)/Jr [V3, 2]. It is clear that Jr annihilates the
abelian category Modg(G,I).

2 Theorem  In the quasi-banal case, the category Modg(G,I) is
the category of representations of G which are annihilated by [Jgr. In other
terms, the Schur R-algebra of G is Morita equivalent to the Iwahori-Hecke
R-algebra of G.

This is already known in the banal case. The proof of the theorem
results from properties of the Gelfand-Graev representation [’ and of the
Steinberg representation Str of GL(n,F,).

We need more notation.
a) The subcategory Modr1GL(n,F,;) of ModgGL(n,F,) generated by
(the irreducible subquotients of) R[GL(n,F,)/B(F,)] is a sum of blocks by
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a theorem of Broué-Malle. Representations in Modg1GL(n,F,) are called
unipotent. The annihilator Jr(q) of R|GL(n,F,)/B(F,)] in R|GL(n,F,)] is
the Jacobson radical of the unipotent part of the group algebra R[GL(n,F,)],
because the representation R[GL(n,F,)/B(F,)] is semi-simple.

b) Let ¢ : F, — R* be a non trivial character. We extend ¢ to a
character (u;;) — ¥(>_ u;41) of the strictly upper triangular subgroup U(F,)
of GL(n,F,), still denoted by 1. The representation of GL(n,F,) induced
by the character ¢ of U(F,) is the Gelfand-Graev representation Ig. Its
isomorphism class does not depend on 3. We denote by Iz; the unipotent
part of I'g.

c) The Steinberg representation Strp of GL(n,F,) is the unique irre-
ducible R-representation such that, as a right module for the Hecke algebra
Hr(GL(n,F,),B(F,)), its module of B(F,)-invariants is isomorphic to the
sign representation.

d) The inflation followed by the compact induction is an exact functor

i : ModgGL(n,F,) — ModrGL(n,Or) — ModrG
e) The global Hecke algebra Hr(G) contains the Hecke algebra
?% = HR(GL(TL7 OF)7 1+ pFM(n7 OF))

isomorphic via inflation to the group algebra R[GL(n,F,)]. The Jacobson rad-
ical Jr(q) of the unipotent part of the group algebra R[GL(n,F,)] identifies
with a two-sided ideal of H%.

We recall [V3, theorem 4.1.4]:

(I) The representation of GL(n,F,) on the 1+ppM(n,Op)-invariants of
R[G/I] is isomorphic to a direct sum ®&R[GL(n,F,)/B(F,)].

(J) i9V is generated by its [-invariant vectors if V € ModgGL(n,F,)
is generated by its B(F,)-invariant vectors.

4 Lemma  Suppose that we are in the quasi-banal case. Then

1) Jr is the Jacobson radical of the unipotent bloc of ModgrG (same
for Jr(q) and GL(n,F,)).

2) The unipotent part I'p; of the Gelfand-Graev R-representation of
the group GL(n,F,) is the projective cover of the Steinberg R-representation
Stg of GL(n,F,).

3) I'r1Jr(q) is the kernel of the map I'p; — Stg.

1) Jr(q) C Tk-
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5) iy /(i%T'r1)Jr is a quotient of i“Stgr and is generated by its I-
invariant vectors.

Proof of the lemma This is known in the banal case, hence we suppose
that we are in the limit case.

We prove the property 1). The semi-simplicity of Ind gX for all un-
ramified characters (theorem 1 7)) implies with (3) that Jg is the Jacobson
radical of the unipotent bloc. This means that [Jr is the intersection of the
annihilators in the global Hecke algebra Hg(G) of the irreducible unipotent
R-representations of G.

We prove the property 2). The induced representation Ind g(LPE:{LSFq)l R IS
semi-simple, and Sty is the unique subquotient which is isomorphic to a
quotient of the Gelfand-Graev representation I'r. By the uniqueness theorem,

dimR HOHIR(;(FR,StR) =1.

The unipotent part I'r; of the Gelfand-Graev representation I'r is projective
(because the characteristic of R is different from p) and is a direct sum
of indecomposable projective representations of GL(n,F,). In the quasi-banal
case, the two properties of uniqueness imply that Iz, is projective cover of
Stg.

The property 3) results from 1) and 2) by general results [CRI 18.1].

The property 4) results from e) and (I).

We prove the property 5). By definition (i%I'z)Jr = I'r Qno, Tk

By 4) I'n ®ng, Tr(Q)Hr(G) C I'r @ng, Tr-

We have [V1 1.5.2.c)] I'z®ne Jr(Q)Hr(G) = T'rJr(q) @ng Hr(G) = i“W
where W = I'rJr(q). Clearly i%I'r/(i“I'r)Jr is a quotient of i¢I'y/i%W.

The functor i is exact hence i“I'y/iW ~i%(I'r/W). By 3) I'n/W =~
Str. Hence i“I'r/(i%I's)Jr is a quotient of i“Stgr. By c), Stg is irreducible
and has a non zero vector invariant by B(F,). By (J), i“Stg is generated
by its [-invariant vectors. ¢

Lemma 4 extends to the standard Levi subgroups M,(F,) of GL(n,F,),
quotients of the parahoric subgroup P)(Op). These groups are parametrised
by the partitions A of n. The group GL(n,F,) corresponds to the partition
(n). One denotes by an index A the objects relative to A.

We recall:

(K) Qr :=Tr/T'rJr is a projective generator of ModHr(G)/Jr where
Tr = ®xi{ g [V3, theorem 5.13].

Proof of the theorem 3 By lemma 4 for the group M,(F,), the quo-
tient iff R /sz rAJR of ifStRM\ is generated by its [-invariant vectors. Hence
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the progenerator Qr of ModHg(G)/Jr is generated by its [-invariant vec-
tors. ©
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