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Generalized Multi-camera Scene Reconstruction

Using Graph Cuts

Vladimir Kolmogorov1, Ramin Zabih1, and Steven Gortler2

1 Computer Science Department, Cornell University, Ithaca, NY 14853
2 Computer Science Department, Harvard University, Cambridge, MA 02138

Abstract. Reconstructing a 3-D scene from more than one camera is a
classical problem in computer vision. One of the major sources of diffi-
culty is the fact that not all scene elements are visible from all cameras.
In the last few years, two promising approaches have been developed
[11, 12] that formulate the scene reconstruction problem in terms of en-
ergy minimization, and minimize the energy using graph cuts. These
energy minimization approaches treat the input images symmetrically,
handle visibility constraints correctly, and allow spatial smoothness to
be enforced. However, these algorithm propose different problem formu-
lations, and handle a limited class of smoothness terms. One algorithm
[11] uses a problem formulation that is restricted to two-camera stereo,
and imposes smoothness between a pair of cameras. The other algorithm
[12] can handle an arbitrary number of cameras, but imposes smooth-
ness only with respect to a single camera. In this paper we give a more
general energy minimization formulation for the problem, which allows a
larger class of spatial smoothness constraints. We show that our formu-
lation includes both of the previous approaches as special cases, as well
as permitting new energy functions. Experimental results on real data
with ground truth are also included.

1 Introduction

Reconstructing an object’s 3-dimensional shape from a set of cameras is a classic
vision problem. In the last few years, it has attracted a great deal of interest,
partly due to a number of new applications both in vision and in graphics that
require good reconstructions. The problem is quite difficult, in large part because
not all scene elements are visible from all cameras.

In this paper, we approach the scene reconstruction problem from the point of
view of energy minimization. We build upon two recent algorithms [11, 12] that
give an energy minimization formulation of the scene reconstruction problem,
and then minimize the energy using graph cuts. Both of these algorithms treat
the input images symmetrically, handle visibility constraints correctly, and allow
spatial smoothness to be enforced. Moreover, due to the use of graph cuts to
perform the energy minimization, they are fast enough to be practical. However,
the algorithms [11, 12] use different problem formulations, and handle limited
classes of smoothness terms. We propose a new problem energy minimization



approach that includes both these methods as special cases, as well as permitting
a larger class of energy functions.

We begin with a review of related work, including a discussion of the algo-
rithms of [11, 12]. In section 4 we give a precise definition of the problem that we
wish to solve, and define the energy that we will minimize. Section 5 shows that
our problem formulation contains the two previous methods [11, 12] as special
cases. In section 6 we describe how to use graph cuts to compute a strong local
minimum of our energy. Experimental data is presented in section 7.

2 Related work

The problem of reconstructing a scene from multiple cameras has received a
great deal of attention in the last few years. One extensively-explored approach
to this problem is voxel occupancy. In voxel occupancy [16, 21] the scene is
represented as a set of 3-dimensional voxels, and the task is to label the individual
voxels as filled or empty. Voxel occupancy is typically solved using silhouette
intersection, usually from multiple cameras but sometimes from a single camera
with the object placed on a turntable [6]. It is known that the output of silhouette
intersection even without noise is not the actual 3-dimensional shape, but rather
an approximation called the visual hull [15].

2.1 Voxel coloring and space carving

Voxel occupancy, however, fails to exploit the consistent appearance of a scene
element between different cameras. This constraint, called photo-consistency,
is obviously quite powerful. Two well-known recent algorithms that have used
photo-consistency are voxel coloring [19] and space carving [14].

Voxel coloring makes a single pass through voxel space, first computing the
visibility of each voxel and then its color. There is a constraint on the camera
geometry, namely that no scene point is allowed to be within the convex hull
of the camera centers. As we will see in section 4, our approach handles all
the camera configurations where voxel coloring can be used. Space carving is
another voxel-oriented approach that uses the photo-consistency constraint to
prune away empty voxels from the volume. Space carving has the advantage of
allowing arbitrary camera geometry.

One major limitation of voxel coloring and space carving is that they lack
a way of imposing spatial coherence. This is particularly problematic because
the image data is almost always ambiguous. Another (related) limitation comes
from the fact that these methods traverse the volume making “hard” decisions
concerning the occupancy of each voxel they analyze. Because the data is am-
biguous, such a decision can easily be incorrect, and there is no easy way to undo
such a decision later on.
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2.2 Energy minimization approaches

It is well known that stereo, like many problems in early vision, can be elegantly
stated in terms of energy minimization. The energy minimization problem has
traditionally been solved via simulated annealing [2, 8], which is extremely slow
in practice.

While energy minimization has been widely used for stereo, only a few pa-
pers [10, 17, 20] have used it for scene reconstruction. The energy minimization
formalism has several advantages. It allows a clean specification of the problem
to be solved, as opposed to the algorithm used to solve it. In addition, energy
minimization naturally allows the use of soft constraints, such as spatial coher-
ence. In an energy minimization framework, it is possible to cause ambiguities to
be resolved in a manner that leads to a spatially smooth answer. Finally, energy
minimization avoids being trapped by early hard decisions.

In the last few years powerful energy minimization algorithms have been
developed based on graph cuts [4, 5, 9, 11, 17]. These methods are fast enough
to be practical, and yield quite promising experimental results for stereo [18,
22]. Unlike simulated annealing, graph cut methods cannot be applied to an
arbitrary energy function; instead, for each energy function to be minimized, a
careful graph construction must be developed. In this paper, instead of building
a special purpose graph we will use some recent results [13] that give graph
constructions for a quite general class of energy functions.

Although [17] and [20] use energy minimization via graph cuts, their focus is
quite different from ours. [17] uses an energy function whose global minimum can
be computed efficiently via graph cuts; however, the spatial smoothness term is
not discontinuity preserving, and so the results tend to be oversmoothed. Visi-
bility constraints are not used. [20] computes the global minimum of a different
energy function as an alternative to silhouette intersection (i.e., to determine
voxel occupancy). Their approach does not deal with photoconsistency at all,
nor do they reason about visibility.

Our method is also related to the work of [10], which also relies on graph
cuts. They extend the work of [5], which focused on traditional stereo matching,
to allow an explicit label for occluded pixels. While the energy function that
they use is of a similar general form to ours, they do not treat the input images
symmetrically. While we effectively compute a disparity map with respect to each
camera, they compute a disparity map only with respect to a single camera.

3 Graph cut algorithms for scene reconstruction

The results we will present generalize two recent papers: an algorithm for two-
camera stereo with occlusions [11], and an algorithm for multi-camera scene
reconstruction [12]. Both of these algorithms treat the input images symmetri-
cally, handle visibility constraints correctly, and allow spatial smoothness to be
enforced. The major difference between them lies in their problem formulations,
and in the class of smoothness terms they permit.
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The stereo with occlusions algorithm of [11] uses a problem formulation that
is restricted to two cameras. In their representation, a pair of pixels from the two
images that may potentially correspond is called an assignment. An assignment
is active when the corresponding scene element is visible in both images. The
goal of the algorithm is to find the set of active assignments. There is a hard
constraint that a given pixel is involved in at most one active assignment. A
pixel that is involved in no active assignments is occluded, and there is a term
in the energy function that introduces a penalty for each occluded pixel. Spatial
smoothness is imposed with a term that involves assignments; hence, smoothness
involves a pair of cameras at a time.

The multi-camera scene reconstruction algorithm given in [12] can handle an
arbitrary number of cameras. The problem is represented with a set of depth
labels (typically planes). Each pixel in each camera must be assigned a depth
label, such that the energy is minimized. Spatial smoothness is imposed with a
term that involves a single camera at once.

3.1 Graph cuts

Let G = 〈V , E〉 be a weighted graph with two distinguished terminal vertices
{s, t} called the source and sink. A cut C = Vs,Vt is a partition of the vertices into
two sets such that s ∈ Vs and t ∈ Vt. (Note that a cut can also be equivalently
defined as the set of edges between the two sets.) The cost of the cut, denoted
|C|, equals the sum of the weights of the edges between a vertex in Vs and a
vertex in Vt.

The minimum cut problem is to find the cut with the smallest cost. This
problem can be solved very efficiently by computing the maximum flow between
the terminals, according to a theorem due to Ford and Fulkerson [7]. There are
a large number of fast algorithms for this problem (see [1], for example). The
worst case complexity is low-order polynomial; however, in practice the running
time is nearly linear for graphs with many short paths between the source and
the sink, such as the one we will construct.

3.2 The expansion move algorithm

Energy minimization algorithms that rely on graph cuts essentially perform a
problem reduction. The algorithms with the best performance [5, 11, 12] rely on
the expansion move algorithm introduced by [5]. For a given disparity α, an
expansion move increases the set of pixels that are assigned the disparity α. The
algorithm selects (in a fixed order or at random) a disparity α, and then finds
the configuration within a single α-expansion move. If this decreases the energy,
then we go there; if there is no α that decreases the energy, we are done. The
expansion move algorithm is thus a simple local improvement algorithm, that
computes a local minimum in a strong sense: the output is a configuration such
that no expansion move can decrease the energy.

The only difficult part of the expansion move algorithm is to find the con-
figuration within a single expansion move that most decreases the energy. This
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is done by computing the minimum cut on an appropriately defined graph. The
precise details vary depending upon the technical definition of a configuration
and the exact form of the energy function.

4 Problem formulation

Now we will formalize the problem we are trying to solve. We will introduce two
mappings describing the geometry of the scene, and enforce hard constraints
between them. These mappings will be similar to the ones used in [12] and [11],
respectively.

Suppose we are given n calibrated images of the same scene taken from
different viewpoints (or at different moments of time). Let Pi be the set of pixels
in the camera i, and let P = P1 ∪ . . .∪Pn be the set of all pixels. A pixel p ∈ P
corresponds to a ray in 3D-space. Our first mapping f will describe depths
for all pixels. More formally, the labeling f is a mapping from P to L where
L is a discrete set of labels corresponding to different depths. In the current
implementation of our method, labels correspond to increasing depth from a
fixed camera.

A pair 〈p, l〉 where p ∈ P , l ∈ L corresponds to some point in 3D-space. We
will refer to such pairs as 3D-points.

Our method has the same limitation as the earlier graph cut multi-camera
algorithm [12] and voxel coloring [19]. Namely, there must exist a function D :
R3 �→ R such that for all scene points P and Q, P occludes Q in a camera i
only if D(P ) < D(Q). If such a function exists then labels correspond to level
sets of this function. In our current implementation, we make a slightly more
specific assumption, which is that the cameras must lie in one semiplane looking
at the other semiplane. The interpretation of labels will be as follows: each label
corresponds to a plane in 3D-space, and a 3D-point 〈p, l〉 is the intersection of
the ray corresponding to the pixel p and the plane l.

Let us introduce the set of interactions I consisting of (unordered) pairs of
3D-points 〈p1, l1〉, 〈p2, l2〉 “close” to each other in 3D-space. Several possible
criteria for “closeness” are discussed in [12]. In general, I can be an arbitrary
set of pairs of 3D-points satisfying the following constraint:

– Only 3D-points at the same depth can interact, i.e.if {〈p1, l1〉, 〈p2, l2〉} ∈ I
then l1 = l2.

To simplify the notation, we will denote interactions in I as 〈p, q, l〉 where p, q
are pixels and l is a depth label.

Since 3D-points 〈p, l〉 and 〈q, l〉 are close to each other, the interaction 〈p, q, l〉
approximately corresponds to a single point in 3D-space (it can be, for example,
the middle point between 〈p, l〉 and 〈q, l〉). We can describe the geometry of
the scene by specifying which interactions are visible. Let us introduce another
mapping g : I → {0, 1}. g(〈p, q, l〉) will be 1 if this interaction is visible in
both pixels p and q, and 0 otherwise. This mapping allows us to introduce the
data term (i.e. the photoconsistency constraint) very naturally: we will enforce
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photoconsistency between p and q only if the interaction 〈p, q, l〉 is active, i.e.
g(〈p, q, l〉) = 1.

The mapping g is very similar to the mapping used in the stereo with occlu-
sions method [11]. Note that in their work each assignment is characterized by
a disparity qx − px, which generalizes to a depth label in our framework.

4.1 Our energy function

Now we will define the energy function that we minimize. It will consist of five
terms:

E(f, g) = Edata(g) + E
(1)
smooth(f) + E

(2)
smooth(g) + Evis(f) + Econsistency(f, g)

The terms E
(1)
smooth and Evis were used in [12]. The terms E

(2)
smooth and Edata

are similar to the ones used in [11]. The new term Econsistency will enforce
consistency between the mappings f and g.

Data term The data term will be

Edata(g) =
∑
i∈I

Di(g(i))

where Di(0) = K for some constant K and Di(1) depends on intensities of pixels
p and q involved in the interaction i. We can have, for example, D〈p,q,l〉(1) =
(Intensity(p) − Intensity(q))2.

Smoothness terms Two smoothness terms enforce smoothness on two fields
f and g, respectively. They involve a notion of neighborhood; we assume that
there are two neighborhood systems: one on pixels

N1 ⊂ {{p, p′} | p, p′ ∈ P}

and one on interactions

N2 ⊂ {{i, i′} | i, i′ ∈ I}.

N1 can be the usual 4-neighborhood system: pixels p and p′ are neighbors if they
are in the same image and |p′x − px|+ |p′y − py| = 1. N2 can be defined similarly;
interactions 〈p, q, l〉 and 〈p′, q′, l〉 are neighbors if p and p′ are neighbors (or they
are the same pixel): |p′x − px| + |p′y − py| ≤ 1. The only requirement on N2 is
that neighboring interactions must have the same depth label.

We will write the first smoothness term as

E
(1)
smooth(f) =

∑
{p,p′}∈N1

V{p,p′}(f(p), f(p′))
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We will require the term V{p,q} to be a metric. This imposes smoothness while
preserving discontinuities, as long as we pick an appropriate robust metric. For
example, we can use the robustified L1 distance V (l1, l2) = min(|l1 − l2|, R) for
constant R. Note that this smoothness term involves only a single camera, as
does [12].

The second smoothness term can be written as

E
(2)
smooth(g) =

∑
{i,i′}∈N2

V{i,i′} · T (g(i) 	= g(i′))

where T (·) is 1 if its argument is true and 0 otherwise. Note that this smoothness
term involves pairs of cameras, as does [11].

Visibility term This term will encode the visibility constraint: it will be zero
if this constraint is satisfied, and infinity otherwise. We can write this using
another set of interactions Ivis which contains pairs of 3D-points violating the
visibility constraint:

Evisibility(f) =
∑

〈p,f(p)〉,〈q,f(q)〉∈Ivis

∞

We require the set Ivis to meet following condition:

– Only 3D-points at different depths can interact, i.e. if {〈p1, l1〉, 〈p2, l2〉} ∈ Ivis

then l1 	= l2.

The visibility constraint says that if a 3D-point 〈p, l〉 is present in a config-
uration f (i.e. l = f(p)) then it “blocks” views from other cameras: if a ray
corresponding to a pixel q goes through (or close to) 〈p, l〉 then its depth is at
most l. Again, we need a definition of “closeness”. We will use the set I for this
purpose. Thus, the set Ivis can be defined as follows: it will contain all pairs of
3D-points 〈p, l〉, 〈q, l′〉 such that 〈p, l〉 and 〈q, l〉 interact (i.e. they are in I) and
l′ > l.

Consistency term The last term will enforce consistency between two map-
pings f and g. It can be formulated as follows: if an interaction 〈p, q, l〉 is active,
then the label for pixels p and q must be l. We can write this as

Econsistency(f, g) =
∑

〈p,q,l〉∈I

∞ · T (g(〈p, q, l〉) = 1 ∧ (f(p) 	= l ∨ f(q) 	= l))

5 Relation to previous methods

In this section we show that multi-camera reconstruction algorithm of [12] and
the stereo with occlusions algorithm of [11] are special cases of our general frame-
work.
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5.1 Multi-camera reconstruction algorithm

Let us consider our energy function with the second smoothness term E
(2)
smooth

omitted. We now show that this is equivalent to the energy used in the multi-
camera reconstruction algorithm [12].

We can view our energy as function of only one mapping f if we assume that
g is determined from the minimality condition:

Ẽ(f) = E(f, g(f)) with g(f) = arg min
g

E(f, g)

Let us consider an interaction i = 〈p, q, l〉 ∈ I. Since g is not involved in the
smoothness constraint, the value g(i) will depend only on f(p) and f(q). Namely,
if f(p) 	= l or f(q) 	= l then g(i) must be 0 because of the consistency constraint
between f and g. Now suppose that f(p) = f(q) = l. In this case the value g(i)
will be determined from the minimality condition: it will be 0 if Di(0) < Di(1),
and it will be 1 if Di(0) > Di(1). Thus, the data term for interaction i becomes

Ẽdata(i)(f) = Di(0) + D(p, q) · T (f(p) = f(q) = l)

where D(p, q) = min(Di(1) − Di(0), 0). This is exactly the expression for data
term used in [12] except for the constant Di(0).

5.2 Stereo with occlusions algorithm

Now let us consider our energy with the first smoothness term E
(1)
smooth omitted.

We will show that in the case of stereo our formulation is equivalent to the stereo
with occlusions algorithm [11].

As before, we will view our energy as a function of only one mapping g
(with f determined from the minimality condition). It is easy to see that the
smoothness term E

(2)
smooth is equivalent to the smoothness term used in [11], and

the sum of two terms Evis(f(g))+ Econsistency(f(g), g) is equivalent to the hard
uniqueness constraint in [11]. (The uniqueness constraint says that each pixel
can be involved in at most one active assignment).

[11] has an additional term which basically counts the number of occlusions.
However, it is easy to see that having a penalty C for an occlusion is equivalent
to having a penalty C/2 for an interaction (or assignment) being inactive. Thus,
our data term term is equivalent to the sum of data and occlusion terms in [11],
which concludes the argument.

6 Graph construction

We now show how to efficiently minimize E among all configurations using graph
cuts. The output of our method will be a local minimum in a strong sense. In
particular, consider an input configuration (f , g) and a disparity α. Another
configuration (f ′, g′) is defined to be within a single α-expansion of (f , g) if two
conditions are satisfied:
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– All pixels must either keep their depth labels, or change it to α. In other
words, for any pixel p ∈ P either f ′(p) = f(p) or f ′(p) = α.

– All inactive interactions whose depth is different from α must remain inac-
tive. In other words, for any interaction 〈p, q, l〉 ∈ I conditions g(〈p, q, l〉) = 0
and l 	= α imply g′(〈p, q, l〉) = 0.

This notion of an expansion move was proposed by [5], and forms the basis for
several very effective stereo algorithms [5, 10, 11].

Our algorithm is very straightforward; we simply select (in a fixed order or
at random) a disparity α, and we find the unique configuration within a single
α-expansion move (our local improvement step) that gives the largest decrease
in the energy E(f, g). If this decreases the energy, then we go there; if there is
no α that decreases the energy, we are done. Except for the problem formulation
and the choice of energy function, this algorithm is identical to the methods of
[5, 11].

One restriction on the algorithm is that the initial configuration must satisfy
the visibility and consistency constraints (i.e. the initial energy must be finite).
This will guarantee that all subsequent configurations will have finite energies,
i.e. they will satisfy these constraints as well.

The critical step in our method is to efficiently compute the α-expansion with
the smallest energy. In this section, we show how to use graph cuts to solve this
problem.

6.1 Energy minimization using graph cuts

Instead of doing an explicit problem reduction, we will use a result from [13]
which says that for energy functions of binary variables of the form

E(x1, . . . , xn) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj) (1)

it is possible to construct a graph for minimizing it if and only if each term Ei,j

satisfies the condition

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0). (2)

If these conditions are satisfied then the graph G is constructed as follows. We
add a node vi for each variable xi. For each term Ei(xi) and Ei,j(xi, xj) we add
edges as described in [13].

Every cut on such a graph corresponds to some configuration x = (x1, . . . , xn),
and vice versa: if vi ∈ Vs then xi = 0, otherwise xi = 1. Edges on a graph were
added in such a way that the cost of any cut is equal to the energy of the corre-
sponding configuration plus a constant. Thus, the minimum cut on G yields the
configuration that minimizes the energy.
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6.2 α-expansion

In this section we will show how to convert our energy function into the form of
equation 1. Note that it is not necessary to use only terms Ei,j for which i < j
since we can swap the variables if necessary without affecting condition 2.

In an α-expansion, active interactions may become inactive, and inactive in-
teractions whose depth is α may become active. Suppose that we start off with an
initial configuration (f0, g0) satisfying the visibility and consistency constraints.
The active interactions for a new configuration within one α-expansion will be
a subset of I0 ∪ Iα, where I0 = {〈p, q, l〉 ∈ I | g0(〈p, q, l〉) = 1 and l 	= α} and
Iα = {〈p, q, α〉 ∈ I}.

It is easy to see that any configuration (f, g) within a single α-expansion
of the initial configuration (f0, g0) can be encoded by two binary vectors x =
{xp | p ∈ P} and y = {yi | i ∈ Iα ∪ I0}. We will use the following formula for
correspondence between binary vectors and configurations:

∀p ∈ P f(p) =
{

f0(p) if xp = 0
α if xp = 1

∀i ∈ I0 g(i) = 1 − yi

∀i ∈ Iα g(i) = yi

∀i /∈ I0 ∪ Iα g(i) = 0

Let us denote a configuration defined by vectors (x, y) as (fx, gy). We now
have the energy of binary variables:

Ẽ(x, y) = Ẽdata(y) + Ẽ
(1)
smooth(x) + Ẽ

(2)
smooth(y) + Ẽvis(x) + Ẽconsistency(x, y)

where
Ẽdata(y) = Edata(gy),

Ẽ
(1)
smooth(x) = E

(1)
smooth(fx),

Ẽ
(2)
smooth(y) = E

(2)
smooth(gy),

Ẽvis(x) = Evis(fx),

Ẽconsistency(x, y) = Econsistency(fx, gy).

We can now consider each term separately, and show that each satisfies condi-
tion (2).

1. Data term.

Ẽdata(y) =
∑
i∈I0

Di(1 − yi) +
∑
i∈Iα

Di(yi)

Condition (2) is satisfied since each term in this sum depends only on one vari-
able.
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2. First smoothness term.

Ẽ
(1)
smooth(x) =

∑
{p,p′}∈N1

V{p,p′}(fx(p), fx(p′)).

Let’s consider a single term Ep,p′
(xp, xp′) = V{p,p′}(fx(p), fx(p′)). We assumed

that V{p,p′} is a metric; thus, V{p,p′}(α, α) = 0 and V{p,p′}(f(p), f(p′)) ≤ V{p,p′}(f(p), α)+
V{p,p′}(α, f(p′)), or Ep,p′

(1, 1) = 0 and Ep,p′
(0, 0) ≤ Ep,p′

(0, 1) + Ep,p′
(1, 0).

Therefore, condition (2) holds.
3. Second smoothness term.

Ẽ
(2)
smooth(y) =

∑
{i,i′}∈N2

V{i,i′} · T (gy(i) 	= gy(i′))

Let’s consider a single term Ei,i′(yi, yi′) = V{i,i′} · T (gy(i) 	= gy(i′)). Since the
depths of i and i′ are the same, they either both belong to I0 or both belong
to Iα. In both cases condition gy(i) 	= gy(i′) is equivalent to condition yi 	= yi′ .
Thus, Ei,i′(0, 0) = Ei,i′(1, 1) = 0 and Ei,i′(0, 1) = Ei,i′(1, 0) = V{i,i′} ≥ 0, so
condition (2) holds.

4. Visibility term.

Ẽvis(x) =
∑

〈p,fx(p)〉,〈q,fx(q)〉∈Ivis

∞

=
∑

〈p,lp〉,〈q,lq〉∈Ivis

T (fx(p) = lp ∧ fx(q) = lq) · ∞.

Let’s consider a single term Ep,q(xp, xq) = T (fx(p) = lp ∧ fx(q) = lq) · ∞.
Ep,q(0, 0) must be zero since it corresponds to the visibility cost of the initial
configuration and we assumed that the initial configuration satisfies the visibility
constraint. Also Ep,q(1, 1) is zero (if xp = xq = 1, then fx(p) = fx(q) = α and,
thus, the conditions fx(p) = lp and fx(q) = lq cannot both be true since Ivis

includes only pairs of 3D-points at different depths). Therefore, condition (2)
holds since Ep,q(0, 1) and Ep,q(1, 0) are non-negative.

5. Consistency term.

Ẽconsistency(x, y) =
∑

〈p,q,l〉∈I

∞ · T (gy(〈p, q, l〉) = 1 ∧ (fx(p) 	= l ∨ fx(q) 	= l))

The term involving interaction i = 〈p, q, l〉 can be rewritten as the sum Ep,i(xp, yi)+
Eq,i(xq, yi) where Ep,i(xp, yi) = ∞·T (gy(i) = 1 ∧ fx(p) 	= l) and Eq,i(xq , yi) =
∞· T (gy(i) = 1 ∧ fx(q) 	= l). Let’s consider one of the terms, for example Ep,i.
Two cases are possible:

5A. l 	= α. If f0(p) 	= l then Ep,i ≡ 0, otherwise Ep,i(xp, yi) = ∞ · T (yi =
0 ∧ xp = 1), so Ep,i(1, 0) = ∞ and Ep,i(0, 0) = Ep,i(1, 1) = Ep,i(0, 1) = 0.

5B. l = α. In this case Ep,i(xp, yi) = ∞·T (yi = 1 ∧ xp = 0), so Ep,i(0, 1) = ∞
and Ep,i(0, 0) = Ep,i(1, 1) = Ep,i(1, 0) = 0.
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7 Experimental results

We performed experiments for the two special cases discussed in section 5. We
will refer to the case in section 5.1 as “algorithm I” and the case in section 5.2
as “algorithm II”.

We used the same datasets used in [12]: the “head and lamp” image from
Tsukuba University, the flower garden sequence and the Dayton sequence. We
also used the same geometry, i.e. depth labels, interaction sets I and Ivis and the
neigborhood system N1 for algorithm I. Our choice of the neighborhood system
N2 for algorithm II is a slight variation of that of [11]: interactions 〈p1, q1, l〉 and
〈p2, q2, l〉 are neighbors if pixels p1 and p2 in a specified camera are neighbors
according to N1.

Our choice of parameters for algorithms I and II is the same as in [12] and
[11], respectively. In both cases the energy depends only on one parameter λ,
which we picked empirically for different datasets. As in [12], we stop after three
iterations.

The results for algorithm II on the flower garden and Dayton datasets contain
scattered pixels with no depth labels (or, more precisely, assigning any depth
label to such pixels results in the same value of the energy function). Such pixels
are probably due to the high noise in these datasets (or their miscalibration).
We performed some postprocessing of the results: we assign to such pixels the
label of the closest labeled pixel.

The table below show dataset sizes, number of interacting pairs of cameras
that we used, and running times obtained on 450MHz UltraSPARC II processor.
For all datasets we used 16 depth labels. The max flow implementation we used
is one specifically designed for the kinds of graphs that arise in vision [3].

dataset number of number of image running running
images interactions size time (I) time (II)

Tsukuba 5 4 384 x 288 369 secs 532 secs
Tsukuba 5 10 384 x 288 837 secs 1584 secs
Flower garden 8 7 352 x 240 693 secs 680 secs
Dayton 5 4 384 x 256 702 secs 481 secs

We have computed the error statistics for the Tsukuba dataset, which are
shown in the table below.

Errors Gross errors
4 interactions (I) 6.13% 2.75%
4 interactions (II) 5.02% 1.40%
10 interactions (I) 4.53% 2.30%
10 interactions (II) 5.30% 2.36%
Boykov-Veksler-Zabih [5] 9.76% 3.99%

We determined the percentage of the pixels where the algorithm did not compute
the correct disparity (the “Errors” column), or a disparity within ±1 of the
correct disparity (“Gross errors”). For comparison, we have included the results
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from the best known algorithm for stereo reported in [22], which is the method
of [5].

The images are shown in figure 1. The image at bottom right shows the
areas where algorithm I differs from ground truth (black is no difference, gray is
a difference of ±1, and white is a larger difference). Inspecting the image shows
that we in general achieve greater accuracy at discontinuities; for example, the
camera in the background and the lamp are more accurate. The major weakness
of our output is in the top right corner, which is an area of low texture. The
behavior of our method in the presence of low texture needs further investigation.

8 Conclusions and Future Work

We have described a new energy minimization framework for multi-camera scene
reconstruction. The energy can be efficiently minimized using graph cuts, and
gives good experimental results. Furthermore, the new framework generalizes two
previous algorithms, as well as permitting new energy functions that combine
two distinct kinds of spatial smoothness constraints. More work is needed to
determine if these new energy functions have experimental advantages over the
previous methods that we have generalized.

Acknowledgements

This research was supported by the National Science Foundation under grant
IIS-9900115.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993.

2. Stephen Barnard. Stochastic stereo matching over scale. International Journal of
Computer Vision, 3(1):17–32, 1989.

3. Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-
cut/max-flow algorithms for energy minimization in computer vision. In Workshop
on Energy Minimization Methods in Computer Vision and Pattern Recognition,
volume 2134 of LNCS, pages 359–374, September 2001.

4. Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov Random Fields with ef-
ficient approximations. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 648–655, 1998.

5. Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy mini-
mization via graph cuts. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23(11):1222–1239, November 2001.

6. R. Cipolla and A. Blake. Surface shape from the deformation of apparent contours.
International Journal of Computer Vision, 9(2):83–112, November 1992.

7. L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, 1962.
8. S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the

Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 6:721–741, 1984.

13



Center image Ground truth

alg. I - 4 interactions alg. I - 10 interactions

alg. II - 4 interactions alg. II - 10 interactions

Boykov-Veksler-Zabih results [5] Comparison of alg. I result with ground truth

Fig. 1. Results on Tsukuba dataset.

14



Middle image alg. I result alg. II result

Fig. 2. Results on the flower garden sequence.

Middle image alg. I result alg. II result

Fig. 3. Results on the Dayton sequence.

15



9. H. Ishikawa and D. Geiger. Occlusions, discontinuities, and epipolar lines in stereo.
In European Conference on Computer Vision, pages 232–248, 1998.

10. S.B. Kang, R. Szeliski, and J. Chai. Handling occlusions in dense multi-view stereo.
In IEEE Conference on Computer Vision and Pattern Recognition, 2001.

11. Vladimir Kolmogorov and Ramin Zabih. Visual correspondence with occlusions
using graph cuts. In International Conference on Computer Vision, pages 508–515,
2001.

12. Vladimir Kolmogorov and Ramin Zabih. Multi-camera scene reconstruction via
graph cuts. In European Conference on Computer Vision, volume 3, pages 82–96,
2002.

13. Vladimir Kolmogorov and Ramin Zabih. What energy functions can be minimized
via graph cuts? In European Conference on Computer Vision, volume 3, pages
65–81, 2002. Revised version to appear in IEEE Transactions on Pattern Analysis
and Machine Intelligence

14. K.N. Kutulakos and S.M. Seitz. A theory of shape by space carving. International
Journal of Computer Vision, 38(3):197–216, July 2000.

15. A. Laurentini. The visual hull concept for silhouette-based image understanding.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(2):150–162,
February 1994.

16. W.N. Martin and J.K. Aggarwal. Volumetric descriptions of objects from multiple
views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(2):150–
158, March 1983.

17. S. Roy and I. Cox. A maximum-flow formulation of the n-camera stereo corre-
spondence problem. In International Conference on Computer Vision, 1998.

18. Daniel Scharstein and Richard Szeliski. A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms. International Journal of Computer Vi-
sion, 47:7–42, April 2002.

19. S.M. Seitz and C.R. Dyer. Photorealistic scene reconstruction by voxel coloring.
International Journal of Computer Vision, 35(2):1–23, November 1999.

20. Dan Snow, Paul Viola, and Ramin Zabih. Exact voxel occupancy with graph cuts.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 345–352,
2000.

21. R. Szeliski. Rapid octree construction from image sequences. Computer Vision,
Graphics and Image Processing, 58(1):23–32, July 1993.

22. Richard Szeliski and Ramin Zabih. An experimental comparison of stereo algo-
rithms. In B. Triggs, A. Zisserman, and R. Szeliski, editors, Vision Algorithms:
Theory and Practice, number 1883 in LNCS, pages 1–19, Corfu, Greece, September
1999. Springer-Verlag.

16


