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SYNCHRONOUS GRAMMARS AS TREE TRANSDUCERS

STUART M. SHIEBER

ABSTRACT. Tree transducer formalisms were developed in the formal language theory
community as generalizations of finite-state transducers from strings to trees. Indepen-
dently, synchronous tree-substitution and -adjoining grammars arose in the computational
linguistics community as a means to augment strictly syntactic formalisms to provide for
parallel semantics. We present the first synthesis of these two independently developed ap-
proaches to specifying tree relations, unifying their respective literatures for the first time,
by using the framework of bimorphisms as the generalizing formalism in which all can be
embedded. The central result is that synchronous tree-substitution grammars are equivalent
to bimorphisms where the component homomorphisms are linear and complete.

1. MOTIVATION

The typical natural-language pipeline can be thought of as proceeding by successive
transformation of various data structures, especially strings and trees. For instance, low-
level speech processing can be viewed as transduction of strings of speech samples into
phoneme strings, then into triphone strings, finally into words strings. (Because of nonde-
terminism in the process, the nondeterministic string possibilities may be represented as a
single lattice. Nonetheless, the underlying abstract operation is one of string transduction.)
Morphological processes can similarly be modeled as character string transductions. For
this reason, weighted finite-state transducers (WFST), a general formalism for string-to-
string transduction, can serve as a kind of universal formalism for representing low-level
natural-language processes (Mohri, 1997).

Higher-level natural-language processes can also be thought of as transductions, but
on more highly structured representations, for instance trees. Semantic interpretation can
be viewed as a transduction from a syntactic parse tree to a tree of semantic operations
whose simplification to logical form can be viewed as a further transduction. This raises
the question as to whether there is a universal formalism for NL tree transductions that can
play the same role there that WFST plays for string transduction.

In this paper, we investigate the formal properties of synchronous tree-substitution and
-adjoining grammars (STSG and STAG) from this perspective. In particular, we look at
where the formalisms sit in the pantheon of tree transduction formalisms. As a particular
result, we show that, contra previous conjecture, STSG is not equivalent to simple non-
deterministic tree transducers, and place for the first time STSG and STAG into the tree
transducer family. Essential to this unification of the two types of formalisms is the bimor-
phism characterization of tree transducers, little known outside the formal language theory
community.

We begin by recalling the definitions of nondeterministic top-down tree transducers
(↓TT ), and their description in terms of bimorphisms, and also provide a definition of
STSG and STAG. We show that ↓TT and STSG differ in their expressive properties; these
differences argue in favor of the synchronous formalisms for NL use. Finally, we prove
the equivalence between STSG and a new kind of bimorphism, which characterization
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2 STUART M. SHIEBER

makes some of the properties of STSG trivial. This view of STSG generalizes to provide a
bimorphism characterization of STAG as well.

This work makes several contributions to our understanding of tree transducers and the
synchronous formalisms. First, it provides the first unification of the two, placing both in a
consistent framework, that of bimorphisms. Second, it provides intuition about appropriate
properties of such formalisms for the purpose of natural-language processing applications,
which may help inform the search for a universal NL tree transduction formalism.

2. PRELIMINARIES

We start by defining the terminology and notations that we will use for strings, trees,
and the like.

We will notate sequences with angle brackets, e.g., 〈a, b, c〉, with the empty string writ-
ten ε. The number of elements in a set or sequence x will be notated |x|.

Trees will have nodes labeled with elements of a RANKED ALPHABET, a set of symbols
F , each with a non-negative integer RANK or ARITY assigned to it, say by a function
arity, determining the number of children for nodes so labeled. Symbols with arity zero
are called NULLARY symbols; with arity one, UNARY; with arity two, BINARY. We write
Fn for the set of symbols in F with arity n. To express incomplete trees, trees with “holes”
waiting to be filled, we will allow leaves to be labeled with variables, in addition to nullary
symbols.

The set of TREES OVER A RANKED ALPHABET F AND VARIABLES X , notated
T (F ,X ), is the smallest set such that

Nullary symbols at leaves: f ∈ T (F ,X ) for all f ∈ F0;
Variables at leaves: x ∈ T (F ,X ) for all x ∈ X ;
Internal nodes: f(t1, . . . , tn) ∈ T (F ,X ) for all f ∈ Fn, n ≥ 1, and t1, . . . , tn ∈

T (F ,X ).

We abbreviateT (F , ∅), where the set of variables is empty, as T (F), the set of GROUND

TREES over F . We will also make use of the set of n numerically ordered variables Xn =
{x1, . . . , xn}, and write x, y, z as synonyms for x1, x2, x3, respectively.

Trees can also be viewed as mappings from TREE ADDRESSES, sequences of integers,
to the labels of nodes at those addresses. The address ε is the address of the root, 〈1〉 the
address of the first child, 〈1, 2〉 the address of the second child of the first child, and so
forth. We will use the notation t@p to pick out the label of the node at address p in the tree
t, that is, (using · for the insertion of an element on a list)

f(t1, . . . , tn)@ε = f

f(t1, . . . , tn)@(i · p) = ti@p for 1 ≤ i ≤ n .

We can use trees with variables as CONTEXTS in which to place other trees. A tree
in T (F ,Xn) will be called a context, typically denoted with the symbol C. The notation
C[t1, . . . , tn] for t1, . . . , tn ∈ T (F) denotes the tree in T (F) obtained by substituting for
each xi the corresponding ti.

For a context C ∈ T (F ,Xn) and a sequence of n trees t1, . . . , tn ∈ T (F), the SUB-
STITUTION OF t1, . . . , tn INTO C, notated C[t1, . . . , tn], is defined inductively as follows:

(f(u1, . . . , um))[t1, . . . , tn]
= f(u1[t1, . . . , tn], . . . , um[t1, . . . , tn])

xi[t1, . . . , tn] = ti .



SYNCHRONOUS GRAMMARS AS TREE TRANSDUCERS 3

f
HHH

���
f

@@��
a f

JJ


b a

f

JJ


a b

`∗ f
ZZ��

f
cc##

f

@@��
f

JJ


a b

a

a

b

FIGURE 1. Local rotation computed by a nonlinear tree transducer

A tree t ∈ T (F ,X ) is LINEAR if and only if no variable in X occurs more than once in
t.

3. TREE TRANSDUCERS AND BIMORPHISMS

The variation in tree transducer formalisms is extraordinarily wide and the literature
vast. For the purpose of this paper, we restrict attention to simple nondeterministic tree
transducers operating top-down, which transform trees by replacing each node with a sub-
tree as specified by the label of the node and the state of the transduction at that node.

A NONDETERMINISTIC TOP-DOWN TREE TRANSDUCER (↓TT ) is a tuple
〈Q,Fin,Fout, ∆, q0〉 where

• Q is a finite set of STATES;
• Fin is a ranked alphabet of INPUT SYMBOLS;
• Fout is a ranked alphabet of OUTPUT SYMBOLS;
• ∆ is a set of TRANSITIONS each of the form

q(f(x1, . . . , xn)) → C[q1(x1), . . . , qn(xn)]

for some f ∈ Fin of arity n, q, q1, . . . , qn ∈ Q, x1, . . . , xn ∈ Xn, and C ∈
T (Fout,Xn);

• q0 ∈ Q is a distinguished INITIAL STATE.

Given a tree transducer 〈Q,Fin,Fout, ∆, q0〉 and two trees t ∈ T (Fin ∪Fout ∪Q) and
t′ ∈ T (Fin ∪Fout ∪Q), tree t DERIVES t′ IN ONE STEP, notated t ` t′ if and only if there
is a transition u → u′ ∈ ∆ with u ∈ T (Fin ∪Q,Xn) and u′ ∈ T (Fout ∪Q,Xn) and trees
C ∈ T (Fin ∪ Fout ∪ Q,X1) and u1, . . . , un ∈ T (Fin ∪ Fout), such that

t = C[u[u1, . . . , un]]

and

t′ = C[u′[u1, . . . , un]] .

The TREE RELATION defined by a ↓TT 〈Q,Fin,Fout, ∆, q0〉 is the set of all tree pairs
〈s, t〉 ∈ T (Fin) × T (Fout) such that q0(s) `∗ t.

For instance, the following rules specify a transducer that “rotates” subtrees of the form
f(t1, f(t2, t3)) to the tree f(f(t1, t2), t3). (By convention, we take the left-hand state of
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FIGURE 2. Example of local rotation in language translation divergence.
Corresponding nodes are marked with matched subscripts.

the first rule as the start state for the transducer.)

q(f(x, y)) → f(f(q(x), q1(y)), q2(y))
q1(f(x, y)) → q(x)
q2(f(x, y)) → q(y)
q(a) → a

q(b) → b

The tree f(f(a, f(b, a)), f(a, b)) is transduced to f(f(f(f(a, b), a), a), b) (as depicted
graphically in figure 1) according to the following derivation:

q(f(f(a, f(b, a)), f(a, b)))

` f(f(q(f(a, f(b, a))), q1(f(a, b))), q2(f(a, b)))

` f(f(f(f(q(a), q1(f(b, a))), q2(f(b, a))), q(a)), q(b))

` f(f(f(f(a, q(b)), q(a)), a), b)

` f(f(f(f(a, b), a), a), b)

3.1. Nonlinearity Deprecated. Note that intrinsic use is made in this example of the abil-
ity to duplicate variables on the right-hand sides of rewrite rules. Transducers without such
duplication are linear. Linear tree transducers are incapable of performing local rotations
of this sort.

Local rotations are typical of natural-language applications. For instance, many of the
kinds of translation divergences between languages, such as that exemplified in Figure 2,
manifest such rotations. Similarly, semantic bracketing paradoxes can be viewed as neces-
sitating rotations. Thus, linear tree transducers are insufficient for NL modeling purposes.

Nonlinearity per se, the ability to make copies during transduction, is not the kind of
operation that is characteristic of natural-language phenomena. Furthermore, nonlinear
transducers are computationally problematic. The following nonlinear transducer gener-
ates a perfect binary tree whose height is identical to that of its single-strand input.

q(f(x)) → g(q(x), q(x))
q(a) → a

For instance, the tree of height and size four, f(f(f(a))), transduces to
g(g(g(a, a), g(a, a)), g(g(a, a), g(a, a))), of height four but with fifteen symbols. The size
of this transducer’s output is exponential in the size of its input. (The existence of such a
transducer constitutes a simple proof of the lack of composition closure of tree transducers,
as the exponential of an exponential grows faster than exponential.)
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In summary, nonlinearity seems inappropriate on computational and linguistic grounds,
yet is required for tree transducers to express the kinds of simple local rotations that are
typical of natural-language transductions. By contrast, STSG, as described below, is in-
trinsically a linear formalism but can express rotations straightforwardly.

3.2. Tree Automata and Homomorphisms. Two subcases of tree transducers are espe-
cially important. First, tree transducers that implement the identity relation over their do-
main are TREE AUTOMATA. A tree is in the language specified by a tree automaton if it
is transduced to itself by the automaton. The tree languages so recognized are the regular
tree languages (or recognizable tree languages), and are coextensive with those definable
by context-free grammars. We take tree automata to be quadruples by dropping one of the
redundant alphabets from the corresponding tree transducer quintuple.

Second, TREE HOMOMORPHISMS are essentially tree transducers with only a single
state, so that the replacement of a node by a subtree proceeds independently of its context.
A homomorphism h : T (Fin) → T (Fout) is specified by its kernel, a functionĥ : Fin →

T (Fout,X∞) such that ĥ(f) is a tree in T (Fout,Xarity(f)) for each symbol f ∈ Fin. The

kernel ĥ is extended to the homomorphism h by the following recurrence:

h(f(t1, . . . , tn)) = ĥ(f)[h(t1), . . . , h(tn)]

that is, ĥ(f) acts as a context in which the homomorphic images of the subtrees are sub-
stituted. Further restrictions can be imposed: A tree homomorphism h is LINEAR if ĥ(f)

is linear for all f ∈ Fin; is COMPLETE if ĥ(f) contains every variable in Xarity(f) for all

f ∈ Fin; is ε-FREE if ĥ(f) 6∈ Xarity(f) for all f ∈ Fin; is SYMBOL-TO-SYMBOL if ĥ(f)
has exactly one symbol, for all f ∈ Fin; and is a DELABELING if h is complete, linear,
and symbol-to-symbol.

The import of these two subcases of tree transducers lies in the fact that the tree relations
definable by tree transducers have been shown also to be characterizable by composition
from these simplified forms, via an alternate quite distinct formalization based on bimor-
phisms. A BIMORPHISM is a triple 〈L, hin, hout〉 consisting of a regular tree language and
two tree homomorphisms. The tree relation defined by a bimorphism consists of all pairs
of trees generable by applying the homomorphisms to elements of the tree language, that
is, {〈hin(t), hout(t)〉 | t ∈ L}. Depending on the type of tree homomorphisms used in the
bimorphism, different classes of tree relations are defined. In particular, if we restrict hin

to be a delabeling, the tree relations defined are exactly those definable by ↑TT . As a con-
venient notation for bimorphisms, we write B(X, Y ) for the class of bimorphisms where
hin is restricted to have property X and hout to have property Y . We use the following
abbrevations for the properties: L[inear], C[omplete], [ε-]F [ree], S[ymbol-to-symbol],
D[elabeling], M [orphism without restriction]. Thus the tree relations B(D, M) are ex-
actly those definable by ↑TT . (See the survey by Comon et al. (1997) and works cited
therein.) Though many classes of bimorphisms have been studied, to our knowledge, the
class B(LC, LC) investigated below has not.

4. SYNCHRONOUS GRAMMARS AND BIMORPHISMS

Tree-substitution grammars are composed of a set of elementary trees over a nonter-
minal and terminal vocabulary, allowing for nonterminal nodes at the leaves at which
substitution of other elementary trees can occur (SUBSTITUTION NODES). They can be
thought of as tree-adjoining grammars with substitution but no adjunction (hence no auxil-
iary trees). A synchronous tree-substitution grammar extends a tree-substitution grammar
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with the synchronization idea presented by Shieber (1992). In particular, grammars are
composed of pairs of elementary trees, and pairs of substitution nodes, one from each tree
in a pair, are linked to indicate that substitution of trees from a single elementary pair must
occur at the linked nodes.

4.1. Tree-Substitution Grammars. A TREE-SUBSTITUTION GRAMMAR (TSG) com-
prises a set of ELEMENTARY TREES over a ranked alphabet F , where certain frontier non-
terminal (non-zero arity) nodes are marked as sites of substitution. The ability to have such
nonterminal nodes with no children means that we must augment the definition of well-
formed trees. We define the set of SUBSTITUTABLE TREES OVER A RANKED ALPHABET

F , notated T↓(F) as the smallest set such that

Nullary symbols at leaves: f ∈ T↓(F) for all f ∈ F0;
Substitution nodes at leaves: f↓ ∈ T↓(F) for all f ∈ Fn, n > 0;
Internal nodes: f(t1, . . . , tn) ∈ T↓(F) for all f ∈ Fn, n ≥ 1, and t1, . . . , tn ∈

T↓(F).

The marker ↓ marks the substitution nodes. In order to refer to the substitution nodes of
a substitutable tree, we define the substitution paths of a tree t, ↓paths(t) to comprise the
paths to substitution nodes in t.

A tree-substitution grammar, then, is a triple, 〈F , P, S〉 where F is a ranked alphabet
comprising the vocabulary of the grammar, S ∈ F is the start symbol of the grammar,
and P ⊆ T↓(F) is a set of elementary trees. In order to allow reference to a particular
tree in the set P , we associate with each tree in P a unique index, conventionally notated
with a subscripted α. This further allows us to have multiple instances of a tree in P ,
distinguished by their index. (We will abuse notation by using the index and the tree that
it names interchangably.) Furthermore, we will assume that each grammar comes with an
arbitrary ordering on the substitution node paths of a tree αi, notating this permutation of
↓paths(αi) by ↓paths(αi). We use this to mandate the child ordering of the children in
derivation trees.

As a simple example, we consider the grammar with three elementary trees

α1 S(NP↓, V P (V (like), NP↓))

α2 NP (I)

α3 NP (cake)

and start symbol S. The arities of the symbols should be clear from their usage.
A DERIVATION for a grammar G = 〈F , P, S〉 is a tree whose nodes are labeled with

(indexes of) elementary trees, that is, a tree D in T (P ), satisfying the following conditions:

(1) For each node α in the tree D with substitution paths ↓paths(α) = 〈p1, . . . , pn〉,
the node must have n immediate children α1, . . . , αn.

(2) The root node of each child tree must match the corresponding substitution node
in the parent, that is,

α@pi = (αi@ε)↓

for all i, 1 ≤ i ≤ n.
(3) The tree αr at the root of the derivation tree must be labeled at its root by the start

symbol, that is, αr@ε = S.

For example, the derivation tree α1(α3, α2) is a well-formed derivation tree for the
sample grammar above, assuming that ↓paths(α1) = 〈〈2, 2〉, 〈1〉〉. Note, for instance, that
α1@〈2, 2〉 = NP = α3@ε.
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The derived tree for a derivation tree D is generated by performing all of the requisite
substitutions. This can be defined directly, but to highlight the relationship with homo-
morphisms, we define it by mapping the substitutable trees into contexts, using a homo-
morphism kernel ĥD. For each tree α ∈ P , with ↓paths(α) = 〈p1, . . . , pn〉, ĥD(α) is the
tree generated by replacing each node at address pi by the variable xi. For example, the
context corresponding to the elementary tree S(NP↓, V P (V (like), NP↓)) with respect to
the assumed substitution path ordering 〈〈2, 2〉, 〈1〉〉 is S(x2, V P (V (like), x1)). Because
the substitution nodes of a tree all occur at its frontier, ĥD(α) is always a tree in T (F ,Xn),
and by construction is linear and complete. Hence, the associated homomorphism hD is
also linear and complete.

We define the derived tree corresponding to a derivation tree D as the application of this
homomorphism to D, that is hD(D). For the example above, the derived tree is that shown
in Figure 2(a):

hD(α1(α3, α2))

= ĥD(α1)[hD(α3), hD(α2)]
= S(x2, V P (V (like), x1))[α3, α2]
= S(NP (I), V P (V (like), NP (cake)))

4.2. Synchronous Tree-Substitution Grammars. We perform synchronization of tree-
substitution grammars as per the approach taken for synchronizing tree-adjoining gram-
mars in earlier work Shieber (1992). Synchronous grammars consist of pairs of elementary
trees with a linking relation between nodes in one tree and nodes in the other. Simultaneous
composition operations occur at linked nodes. In the case of synchronous tree-substitution
grammars, the composition operation is substitution, so the linked nodes are substitution
nodes.

We define a synchronous tree-substitution grammar, then, as a quintuple G =
〈Fin,Fout, P, Sin, Sout〉, where

• Fin and Fout are the input and output ranked alphabets, respectively,
• Sin ∈ Fin and Sout ∈ Fout are the input and output start symbols, and
• P is a set of elementary linked tree pairs, each of the form 〈t, t′, _〉, where t ∈
T↓(Fin) and t′ ∈ T↓(Fout) are input and output substitutable trees and _ ⊆
↓paths(t) × ↓paths(t′) is a relation over substitution nodes from the two trees.

In order to guarantee that derivations for the synchronized grammars are isomorphic, we
need to impose consistent orderings on the substitution nodes for paired trees. We therefore
choose an arbitrary ordering 〈pin,1 _ pout,1, . . . , pin,n _ pout,n〉 over the linked pairs,
and take ↓paths(t) = 〈pin,1, . . . , pin,n〉 and ↓paths(t′) = 〈pout,1, . . . , pout,n〉.

We define Gin = 〈Fin, Pin, Sin〉 where Pin = {t | 〈t, t′, _〉 ∈ P}; this is the left
projection of the synchronous grammar onto a simple TSG. The right projection Gout can
be defined similarly.

A synchronous derivation was originally defined as a pair 〈Din, Dout〉 where (following
Shieber (1992)):1

(1) Din is a well-formed derivation tree for Gin, and Dout is a well-formed derivation
tree for Gout.

(2) Din and Dout are isomorphic.

1In the earlier version, a third condition required that the isomorphic operations are sanctioned by links in
tree pairs. This condition can be dropped here, as it follows from the previous definitions. In particular, since
the substitution path orderings are chosen to be compatible, it follows that the isomorphic children of isomorphic
nodes are substituted at linked paths.
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The derived tree pair for a derivation 〈Din, Dout〉 is then 〈hD(Din), hD(Dout)〉.

5. THE BIMORPHISM CHARACTERIZATION OF STSG

The central result we provide relating STSG to tree transducers is this: STSG is equiv-
alent to B(LC, LC). To show this, we must demonstrate that any STSG is reducible to a
bimorphism, and vice versa.

5.1. Reducing STSG to B(LC, LC). Given an STSG G = 〈Fin,Fout, P, Sin, Sout〉,
we need to construct a bimorphism characterizing the same tree relation. All the parts are
in place to do this. We start by recasting derivations as single derivation trees from which
the left and right derivation trees can be projected via homomorphisms. Rather than taking
a derivation to be a pair of isomorphic trees Din and Dout, we take it to be the single tree
D isomorphic to both, whose element at address p is D@p = 〈Din@p, Dout@p〉. Condi-
tion (2) on the well-formedness of a synchronous derivation thus being trivially satisfied,
we simply need to require that the trees obtained by projecting this new derivation tree
on its first and second elements are well-formed derivation trees in the projected TSGs.
These projections Din and Dout can be reconstructed by homomorphisms extending hin

that projects on the first component and hout that projects on the second, respectively.
These homomorphisms are trivially linear and complete (indeed, they are mere delabel-
ings). Then the paired derived trees can be constructed as hD(hin(D)) and hD(hout(D)),
respectively. Thus the mappings from the derivation tree to the derived trees are the
compositions of two linear complete homomorphisms, hence linear complete homomor-
phisms themselves. We take the bimorphism characterizing the STSG tree relation to be
〈LD, hD ◦ hin, hD ◦ hout〉 where LD is the language of well-formed synchronous deriva-
tion trees.

To show that the language LD is a regular tree language, we construct a top-down
nondeterministic automaton 〈QG,FG, ∆G, qG〉 recognizing it. The states of the automa-
ton QG are elements of Fin × Fout, expressing the allowable pair of symbols labeling
the roots of the tree pair dominated by the state. The start state is q0 = 〈Sin, Sout〉.
The alphabet FG of the trees is composed of pairs 〈αin, αout〉 of elementary trees, such
that 〈αin, αout, _〉 ∈ P , the arity of which is the number of substitution nodes in each
tree, or equivalently, |_|. For each elementary tree pair 〈αin, αout, _〉 ∈ P , where
↓paths(αin) = 〈p1, . . . , pn〉 and ↓paths(αout) = 〈r1, . . . , rn〉, there is a single transition
in ∆G of the form:

〈αin@ε, αout@ε〉(〈αin, αout〉(x1, . . . , xn))
→ 〈αin, αout〉( 〈αin@p1, αout@r1〉(x1), . . . ,

〈αin@pn, αout@rn〉(xn) )

We must verify that for any tree D recognized by this automaton hin(D) and hout(D)
are well-formed derivation trees for their respective TSGs.

To show that hin(D) is a well-formed derivation tree (and symmetrically, for hout(D)),
we must demonstrate that the three definitional conditions hold. Consider a node in the tree
of the form 〈αin, αout〉. This node must have been admitted by virtue of some transition
of the form above.

(1) By construction, there must be an elementary tree pair 〈αin, αout, _〉 ∈ P ,
and the node must have n immediate children corresponding to ↓paths(αin) =
〈p1, . . . , pn〉.
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(2) Each child node, say the i-th, which we can notate 〈αin,i, αout,i〉,
again by construction, must be admitted by a transition of the form
〈αin@pi, αout@ri〉(〈αin,i, αout,i〉(· · · )). Any matching transition enforces the
requirement that 〈αin@pi, αout@ri〉 = 〈αin,i@ε, αout,i@ε〉 hence that αin@pi =
(αin,i@ε)↓ and αout@ri = (αout,i@ε)↓, as required.

(3) Since the start state is 〈Sin, Sout〉, the root of the derivation tree must be a node
〈αin,r, αout,r〉 such that αin,r@ε = Sin and αout,r@ε = Sout.

Thus, each of the two projection trees hin(D) and hout(D) are well-formed deriva-
tion trees for their respective grammars, and the tree relation defined by the STSG is in
B(LC, LC).

5.2. Reducing B(LC, LC) to STSG. The other direction is somewhat trickier to prove,
but can be done. Given a bimorphism 〈L, hin, hout〉 over input and output alphabets Fin

andFout, respectively, we construct a corresponding STSG G = 〈F ′
in,F ′

out, P, Sin, Sout〉.
By “corresponding”, we mean that the tree relation defined by the bimorphism is obtainable
from the tree relation defined by the STSG via delabelings of the input and output that map
F ′

in to Fin and F ′
out to Fout. (Recall that delabelings are just many-to-one renamings of

the symbols.)
As the language L is a regular tree language, it is generable by a nondeterministic top-

down tree automaton 〈Q,Fd, ∆, q0〉. We use the states of this automaton in the input and
output alphabets of the STSG. The input alphabet of the STSG is F ′

in = Fin ∪ (Q×Fin),
composed of the input symbols of the bimorphism, along with some special symbols that
pair states with the input symbols, and similarly for the output alphabet. The pair symbols
mark the places in the tree where substitutions occur, allowing control for appropriate
substitutions. In order to generate the trees actually related by the original bimorphism,
the nodes labeled with such pairs can be projected on their second component by a simple
delabeling.

The basic idea of the STSG construction is to construct an elementary tree pair for
certain sequences of transitions from ∆. However, it is easiest understood by starting with
the construction for the special case in which the homomorphisms are ε-free. In this case,
as we will see, the pertinent sequences are just the single transitions. For the nonce, then,
we assume hin and hout to be ε-free, relaxing this assumption later.

We define a simple nondeterministic transformation on trees in T (F ,Xn) controlled by
a sequence of n + 1 states in Q:

C(f(t1, . . . , tk), q, q1, . . . , qn)
= {〈q, f〉(t1, . . . , tk)[〈q1, N1〉↓, . . . , 〈qn, Nn〉↓] | N1, . . . , Nn ∈ F}

In essence, the transformation replaces the root symbol by pairing it with the state q, and
replaces the n variables with new pairs of a state qi and an arbitrarily chosen symbol Ni.
(The nondeterminism arises in the choice of the Ni.) These latter symbols are taken to
be substitution nodes in the generated tree. Importantly, this transformation is partial; it
applies to any tree in T (F ,Xn), with the exception of those trees that consist of a variable
alone.

We use the transformation C to generate elementary tree pairs corresponding to tran-
sitions in ∆. For each transition q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)) ∈ ∆, we
construct the elementary tree pairs 〈tin, tout, _〉, where tin ∈ C(ĥin(f), q, q1, . . . , qn)

and tout ∈ C(ĥout(f), q, q1, . . . , qn) and _ links the corresponding paths in the two trees,
that is, the paths at which corresponding variables occur in the trees ĥin(f) and ĥout(f).
Since hin and hout are linear and complete, this notion is well-defined. The applications
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FIGURE 3. Example of bimorphism construction

of C are well-defined only when ĥin(f) and ĥout(f) are in the domain of C, that is, it is
not a lone variable, hence the requirement that hin and hout be ε-free.

An example may clarify the construction. Take the language of the bimorphism to be
defined by the following two-state automaton:

q(f(x, y)) → f(q′(x), q′(y))
q(a) → a

q′(g(x)) → g(q(x))

This automaton uses the states to alternate g’s with f ’s and a’s level by level. For instance,
it admits the middle tree in Figure 3. With input and output homomorphisms defined by

ĥin(f) = F (x, y) ĥout(f) = D(y, D(x, N))

ĥin(g) = G(x) ĥout(g) = E(x)

ĥin(a) = A ĥout(a) = N

the bimorphism so defined generates the tree relation instance exemplified in the figure.
The construction given above generates the schematic elementary tree pairs in Figure 4

for this bimorphism. (The tree pairs are schematic in that we use a ∗ to stand for an arbitrary
symbol in the appropriate alphabet.) The reader can verify that the grammar generates a
tree pair whose delabeling is that shown in Figure 3 generated by the bimorphism.

Now, we turn to the considerably more subtle considerations of non-ε-free homomor-
phisms. In a linear complete homomorphism, the only possible case of non-ε-freeness
that is possible is for unary function symbols, that is ĥ(f) = x, so that h(f(x)) = h(x).
Intuitively speaking, such cases in bimorphisms should (and will) correspond to STSG ele-
mentary trees that have just a single node, so that they contribute no structure to the derived
trees.

If, for some symbol f , both hin and hout are non-ε-free, then any tree rooted in such
a symbol, f(t), is mapped, respectively, to hin(t) and hout(t). But in that case, we
can eliminate the unary symbol f , eliminating transitions in the automaton of the form
q(f(x)) → f(q′(x)) by adding, for all transitions with q′ on the left hand side, identical
transitions with q on the left-hand side. We then construct the STSG for the simplified
automaton.

The situation is more complicated if only one of the two homomorphisms, say hin, is
non-ε-free. In this case, we have that hin(f(x)) = hin(x) but hout(f(x)) = C[hout(x)]
for nontrivial context C, thus introducing structure on the output with no corresponding
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FIGURE 4. Generated STSG for example bimorphism

structure on the input. We will call such a unary symbol ASYMMETRIC. A sequence of
asymmetric symbols can introduce unbounded amounts of material on the output with no
corresponding material on the input (or vice versa). The key is thus to construct all possible
such sequences of asymmetric symbols and chop them into a bounded set of minimal
cycles, using these to generate single elementary tree pairs. We arrange that in such cycles,
the state and symbol at the root will be identical to the state and symbol at the end of
the sequence. For example, suppose we have asymmetric symbols f and g and an ε-free
symbol k with the following automaton transitions:

q(k(x)) → k(q(x))

q(f(x)) → f(q(x))

q(g(x)) → g(q′(x))

q′(f(x)) → f(q′(x))

q′(f(x)) → f(q′′(x))

q′(g(x)) → g(q′(x))

q′′(k(x)) → k(. . .)

There is a minimal cycle such that q′(f(g(f(x)))) = f(g(q′(f(x)))). Note that the
state q′ and symbol f at the root are duplicated at the bottom. There is a similar cycle of
the form q′(f(f(x))) = f(q′(f(x))). For each such cycle, we construct a linked tree pair
with a trivial input tree labeled with a pair of the state and an arbitrary symbol N from
the input alphabet—〈q′, N〉 in the example. The corresponding output tree is generated by
composing the nontrivial output trees and applying C to this compound tree in the obvious
way. Since the path language in the tree language of a tree automaton is regular, a decom-
position of the paths into a bounded number of bounded-length cycles can always be done,
leading to a finite number of elementary tree pairs. Note that since the label of the root for
the appropriate input tree 〈q′, f〉 is identical to the label to replace the (single) variable, the
tree pair is constructed in a way consistent with C, hence the workings of the rest of the
STSG.

In addition, for each minimal sequence starting with a symbol that is non-ε-free on
the input and leading to such a cyclic state/symbol pair, a tree pair is similarly gen-
erated. In the example, the sequence corresponding to the automaton subderivation
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q(k(f(g(f(x))))) = k(f(g(q′(f(x))))) would lead us to generate a tree pair with
〈C(ĥin(k), q, q′), C(ĥin(k)[ĥout(f)[ĥout(g)]], q, q′), _〉 where _ links the two leaf nodes
labeled with state/symbol pairs.

Similarly, we require elementary tree pairs corresponding to minimal tails of sequences
of asymmetric symbols starting in a cyclic state/symbol pair and ending in a symbol non-
ε-free on the input. These three types of sequences can be pieced together to form any
possible sequence of unary symbols admitted by the automaton, and the corresponding
tree pairs correspond to the compositions of the homomorphism trees.

6. DISCUSSION

By placing STSG in the class of bimorphisms, which have already been used to charac-
terize tree transducers, we provide the first synthesis of these two independently developed
approaches to specifying tree relations, unifying their respective literatures for the first
time. The relation between a TAG derivation tree and its derived tree is not a mere ho-
momorphism. The appropriate morphism generalizing linear complete homomorphisms
to allow adjunction can presumably be used to provide a bimorphism characterization of
STAG as well, further unifying these strands of research.

The bimorphism characterization of STSG has immediate application. First, the sym-
metry of the tree relations defined by an STSG is a trivial corollary. Second, it has been
claimed in passing that synchronous tree-substitution grammars are “equivalent to top-
down tree transducers.” Eisner (2003). This is clearly contravened by the distinction be-
tween B(LC, LC) and B(D, M). Third, the bimorphism characterization of tree trans-
ducers has led to a series of composition closure results. Similar techniques may now be
applicable to synchronous formalisms, where no composition results are known. For in-
stance, the argument for the lack of composition closure in B(LCF, LCF ) (Arnold and
Dauchet, 1982) may be directly applicable to a similar proof for B(LC, LC), hence for
STSG; the conjecture remains for future work.
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