

RESEARCH OUTPUTS / RÉSULTATS DE RECHERCHE

Synthesis, crystal structure and conformational analysis of an unexpected [1,5]dithiocine product of aminopyridine and thiovanillin

Mambourg, Kalina; Bodart, Laurie; Tumanov, Nikolay; Lanners, Steve; Wouters, Johan

Published in: Acta Crystallographica Section C: Structural Chemistry

DOI: 10.1107/s2053229620000996

Publication date: 2020

Document Version Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (HARVARD):

Mambourg, K, Bodart, L, Tumanov, N, Lánners, S & Wouters, J 2020, 'Synthesis, crystal structure and conformational analysis of an unexpected [1,5]dithiocine product of aminopyridine and thiovanillin', *Acta Crystallographica Section C: Structural Chemistry*, vol. 76, pp. 205-211. https://doi.org/10.1107/s2053229620000996

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- · You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Received 20 December 2019 Accepted 24 January 2020

Edited by M. Gardiner, Australian National University, Canberra, Australia

Keywords: 2-mercapto-3-methoxybenzaldehyde; synthesis; [1,5]dithiocine; crystal structure; thiovanillin; condensation; conformational study.

CCDC reference: 1979894

Supporting information: this article has supporting information at journals.iucr.org/c

© 2020 International Union of Crystallography

Synthesis, crystal structure and conformational analysis of an unexpected [1,5]dithiocine product of aminopyridine and thiovanillin

Kalina Mambourg,* Laurie Bodart, Nikolay Tumanov, Steve Lanners and Johan Wouters*

Departement of Chemistry, University of Namur, Rue de Bruxelles 61, Namur 5000, Belgium. *Correspondence e-mail: kalina.mambourg@unamur.be, johan.wouters@unamur.be

The condensation reaction of 2-mercapto-3-methoxybenzaldehyde with 3-aminopyridine afforded an unexpected *N*-alkylated [1,5]dithiocine instead of the *N*salicylideneaniline. The proposed mechanism for this condensation involves a strong intramolecular hydrogen bond between the thiol and the amine groups, leading to a second condensation. The corresponding product, *i.e.* 4,10-dimethoxy-13-(pyridin-3-yl)-6*H*,12*H*-6,12-epiminodibenzo[*b*,*f*][1,5]dithiocine methanol 0.463solvate, C₂₁H₁₈N₂O₂S₂·0.463CH₃OH, was characterized by single-crystal X-ray diffraction analysis. The supramolecular structure shows π - π stacking and S···S interactions in the crystal packing. Within the asymmetric unit, two geometries of the N atom are observed. Although a planar geometry should be expected, a pyramidal one is observed due to the crystal packing. The presence of the two geometries was further supported by density functional theory (DFT) calculations that show an electronic energy difference of less than 2 kJ mol⁻¹ between the two conformers.

1. Introduction

As part of our interest in photo- and thermochromic cocrystals (Carletta *et al.*, 2015, 2016, 2018), the investigation of compounds analogous to the already studied *N*-salicylideneaniline derivatives of *o*-vanillin could lead to a better understanding of the factors influencing photo- and thermochromic behaviour. Indeed, the impact of the intramolecular hydrogen bond with regard to external stimuli (temperature and light) should affect the properties of new analogues. For that purpose, 2-mercapto-3-methoxybenzaldehyde, referred to as *o*-thiovanillin in this article, was studied (see structure **1b** in Scheme 1). The significant difference between **1a** and **1b** lies in the possibility of forming a stronger intramolecular hydrogen bond (O-H…N versus S-H·…N), as sulfur is a better base than oxygen.

Moreover, cocrystallization and salification are modern alternatives to chemical modification in order to induce the photochromic behaviour of *N*-salicylideneaniline derivatives (Hutchins *et al.*, 2014; Carletta *et al.*, 2016; Jacquemin *et al.*, 2015). In the case of the compound studied in this article, chalcogen bonding could be a possible interaction to increase the tendency of *N*-salicylideneaniline toward cocrystal formation. This noncovalent interaction has attracted much attention as it has been demonstrated that chalcogen bonds can be strong enough to be an effective tool in crystal engineering (Vogel *et al.*, 2019; Scilabra *et al.*, 2019).

Unexpectedly, our synthetic approach (Scheme 1 shows the structures and retrosynthesis of *N*-salicylideneaniline deriva-

research papers

tives) led to a product derived from the double condensation. [1,5]Dithiocine compounds, known for their V-shaped molecular cleft, were studied in the late 1990s for the purpose of applications in molecular recognition and supramolecular chemistry. They were then synthesized by an *ortho* formylation of the appropriate thiol *via* directed *ortho*-lithiation (Toste, 1995; Still *et al.*, 1999; Brieaddy & Donaldson, 1995). Recently, Dai *et al.* (2019) showed that double condensation can take place in phosphate-buffered saline with tris(2-carboxyethyl)phosphine at room temperature. In that respect, a new synthetic pathway for a novel [1,5]dithiocine derivative was discovered. We present here the synthesis, structure and conformational analysis of this product.

2. Experimental

2.1. General information

All reagents were purchased from Sigma–Aldrich (Schnelldorf, Germany).

Reactions were monitored by thin-layer chromatography (TLC) on 2 mm silica coated ($60 F_{254}$) Merck aluminium plates revealed under UV light at 254 nm or with a solution of *para*-anisaldehyde (0.5 ml of *para*-anisaldehyde, 100 ml of acetic acid, 85 ml of methanol and 5 ml of concentrated sulfuric acid).

Flash chromatography was performed either on Silica gel 60 Merck (particle size 40–63 μ m, 230–400 mesh) or on demetallated silica gel obtained through the protocol described by Hubbard & Harris (1981).

NMR spectra were recorded on a JEOL spectrometer (JNM EX-400). The samples were prepared in deuterated solvents at room temperature. Spectra were analysed with the *Delta* program (Jeol; https://www.jeol.co.jp/en/products/detail/Delta5.html). Chemical shifts (δ) – calibrated from the solvent – are given in ppm. The multiplicities are described as *s* (singlet), *d* (doublet), *t* (triplet) and *m* (multiplet).

LC-MS analysis was performed on an alliance HPLC Waters 2695 coupled with UV-Vis Waters 2489 and Acquity

qda Water detectors. The apparatus was equipped with an XBridge C18 3.5 μ M 2 \times 1 \times 50 mm Waters column. A water/ acetonitrile mixture was used as solvent (gradient from 90/10 to 20/80). Masses were determined using electron spray ionisation (ESI) in positive mode. The program used was *MassLynx* (Version 4.2; https://www.waters.com/waters/).

Microwave (MW) reactions were performed in 10 ml sealed vials in a CEM Discover focused microwave oven with temperature and pressure monitoring.

Powder X-ray diffraction (PXRD) data were collected on a Stoe MP in transmission mode using Cu $K\alpha_1$ radiation ($\lambda = 1.54060$ Å). The data were collected at room temperature from a 4 to 40° 2θ angle. Calculated powder patterns were generated with *Mercury CSD* (Version 3.10.3; Macrae *et al.*, 2020).

Scheme 2

2.2. Synthesis and crystallization

2.2.1. O-(2-Formyl-6-methoxyphenyl) dimethylcarbamothioate. In an oven-dried round-bottomed two-necked flask, *o*-vanillin, **2a** (5.00 g, 32.9 mmol, 1.0 equiv.), *N*,*N*-dimethylthiocarbamoyl chloride (DMTCl; 12.2 g, 98.6 mmol, 3.0 equiv.) and 1,4-diazabicyclo[2.2.2]octane (DABCO; 11.1 g, 98.6 mmol, 3.0 equiv.) were dissolved in anhydrous *N*,*N*-dimethylformamide (DMF; 53.0 ml). The mixture was heated to 50 °C and stirred for 3 h. The reaction mixture was poured into cooled water, extracted with dichloromethane and washed consecutively with HCl (1 *M*), NaOH (0.1 *M*) and brine. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The resulting crude product was purified by flash column chromatography

research papers

Table 1

Z

The proposed mechanism for the double condensation of o-vanillin and 3-aminopyridine.

over demetallated silica gel, eluting with cyclohexane/ethyl acetate (8:2 v/v) to yield a pale-yellow powder (yield 5.64 g, 72%). If the purity is not good enough, recrystallization from boiling cyclohexane is an alternative.

¹H NMR (CDCl₃): δ 3.43 (*s*, 3H, NCH₃), 3.48 (*s*, 3H, NCH₃), 3.86 (s, 3H, OCH₃), 7.21 (dd, 1H, H_{arom}), 7.34 (t, 1H, H_{arom}), 7.50 (*dd*, 1H, H_{arom}), 10.10 [*s*, 1H, H(C=O)].

Spectral data were in agreement with the reference (Stefański et al., 2018).

2.2.2. S-(2-Formyl-6-methoxyphenyl) dimethylcarbamothioate. In a sealed 10 ml microwave vial, a solution of O-thiocarbamate (130 mg, 0.54 mmol) dissolved in N-methyl-2-pyrrolidone (1.2 ml) was irradiated in a microwave oven (power 200 W; temperature 230 °C; ramp time 2 min; time 3 min). The residue was then extracted with ethyl acetate and washed several times with water to remove N-methyl-2-pyrrolidone. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under vacuum. The resulting crude product was purified by flash column chromatography over demetallated silica gel, eluting with cyclohexane/ethyl acetate (7:3 v/v) to yield a yellow-brown solid (yield 68.6 mg, 58%).

¹H NMR (CDCl₃): δ 3.02 (s, 3H, NCH₃), 3.21 (s, 3H, NCH₃), 3.92 (s, 3H, OCH₃), 7.20 (dd, 1H, H_{arom}), 7.53 (t, 1H, H_{arom}), 7.63 (*dd*, 1H, H_{arom}), 10.46 [*s*, 1H, H(C=O)].

Spectral data were in agreement with the reference (Stefański et al., 2018).

2.2.3. 2-Mercapto-3-methoxybenzaldehyde, 2b. In a roundbottomed flask containing a solution of S-thiocarbamate (550 mg, 2.30 mmol) in methanol (7.8 ml), NaOH (3 M, 8.2 ml) was added dropwise at room temperature. The mixture

Experimental details. Crystal data Chemical formula $C_{21}H_{18}N_2O_2S_2{\cdot}0.463CH_4O$ 409.34 Μ. Crystal system, space group Triclinic, P1 Temperature (K) 295 a, b, c (Å) 14.7387 (4), 16.6445 (3), 17.8970 (4) $\begin{array}{l} \alpha, \ \beta, \ \gamma \ (^{\circ}) \\ V \ (\text{\AA}^{3}) \end{array}$ 84.662 (2), 73.498 (2), 68.886 (2) 3926.80 (17) 8 Radiation type Cu Ka μ (mm⁻¹) 264Crystal size (mm) $0.46 \times 0.27 \times 0.06$ Data collection Diffractometer Rigaku Xcalibur Ruby Gemini Ūltra Absorption correction Analytical [CrysAlis PRO (Rigaku OD, 2018), based on expressions derived by Clark & Reid (1995)] 0.414 0.865 T_{\min}, T_{\max} No. of measured, independent and 33207, 13626, 12152 observed $[I > 2\sigma(I)]$ reflections 0.023 R_{int} $(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$ 0.598 Re R[I

Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.036, 0.102, 1.03
No. of reflections	13626
No. of parameters	1184
No. of restraints	838
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e} {\rm \AA}^{-3})$	0.49, -0.34

Computer programs: CrysAlis PRO (Rigaku OD, 2018), SHELXT2014 (Sheldrick, 2015a), SHELXL2016 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), ShelXle (Hübschle et al., 2011) and Mercury (Macrae et al., 2020).

Figure 1

was then heated under reflux and stirred for 2 h. The resulting solution was cooled to room temperature, acidified with H_2SO_4 (3 *M*) to a pH of 5, extracted with ethyl acetate and washed with brine. The combined organic phases were dried over anhydrous Na₂SO₄ and concentrated under vacuum. The resulting crude product was purified by flash column chromatography over silica gel, eluting with cyclohexane/ethyl acetate (9:1 v/v) to yield a yellow pasty solid (yield 265 mg, 68%).

¹H NMR (CDCl₃): δ 3.96 (*s*, 3H, OCH₃), 5.72 (*s*, 1H, SH), 7.06 (*dd*, 1H, H_{arom}), 7.26 (*t*, 1H, H_{arom}), 7.40 (*dd*, 1H, H_{arom}), 10.10 [*s*, 1H, H(C=O)].

Spectral data were in agreement with the reference (Akine et al., 2010).

2.2.4. 4,10-Dimethoxy-13-(pyridin-3-yl)-6H,12H-6,12-epiminodibenzo[b,f][1,5]dithiocine, 4. In an oven-dried roundbottomed flask fitted with a condenser, under an argon atmosphere, a solution of thiovanillin, 2b (81.4 mg, 0.484 mmol, 1.0 equiv.), dissolved in absolute ethanol (1.0 ml) was added to a solution of 3-aminopyridine, 3 (46.2 mg, 0.490 mmol, 1.0 equiv.), dissolved in absolute ethanol (1.0 ml) under an argon atmosphere. The mixture was heated under reflux and stirred for 1 h. The resulting solution was cooled to room temperature and left in a fridge overnight. The precipitate was filtered off and washed with pentane. The resulting crude product was purified by flash column chromatography over silica gel, eluting with cyclohexane/ethyl acetate (3:1 v/v)to afford a white solid (yield 34.4 mg, 29%). The product, 4, was crystallized by slow evaporation from methanol, which afforded colourless plates suitable for single-crystal X-ray diffraction analysis (SCXRD).

¹H NMR (CDCl₃): δ 3.80 (*s*, 6H, OCH₃), 6.15 (*s*, 2H, CH), 6.65 (*dd*, J_1 = 8.0, J_2 = 1.1 Hz, 2H, CH_{arom}), 7.04 (*dd*, J_1 = 7.8,

Figure 2

The asymmetric unit of the crystal structure of compound **4**, with displacement ellipsoids drawn at the 50% probability level. Disordered molecules are not shown for clarity. The four molecules in the asymmetric unit are labelled **4a–4d**.

 $J_2 = 1.1$ Hz, 2H, CH_{arom}), 7.10 (*dd*, $J_1 = 8.0$, $J_2 = 7.8$ Hz, 2H, CH_{arom}), 7.24 (*m*, 1H, CH_{pyr}), 7.39 (*dd*, $J_1 = 8.4$, $J_2 = 1.7$ Hz, 1H, CH_{pyr}), 8.26 (*s*, 1H, CH_{pyr}), 8.48 (*s*, 1H, CH_{pyr}). ¹³C NMR (CDCl₃): δ 56.1, 59.2, 108.9, 119.5, 121.4, 125.2, 126.8, 134.0, 141.5, 143.3, 154.9 LC–MS (ES⁺): 395 (*M* + 1).

The batch product was characterized by powder X-ray diffraction (PXRD) and compared to the calculated pattern (see supporting information). The difference between the two patterns is most certainly caused by the solvate, obtained after recrystallization.

2.3. Single-crystal X-ray diffraction (SCXRD)

Crystal data, data collection and structure refinement details are summarized in Table 1. Atoms N4, N6 and N2 were modelled in the same positions as C39, C60 and C17, respectively, because three of the four aminopyridine rings are disordered. In addition, H atoms were fixed for the methanol molecules. The occupancy factors of the two methanol molecules and atom N6 were fixed at the same value because they are involved in the same hydrogen-bond network. Some of the H atoms were localized according to electron-density difference maps and those bonded to disordered atoms were calculated geometrically. All H atoms were refined using a riding model, with C-H = 0.93 (aromatic), 0.96 (methyl) or 0.98 Å (tertiary carbon) and O-H = 0.82 Å. The isotropic atomic displacement parameters of the H atoms were set at $1.5U_{eq}$ of the parent atom for the methyl and alcohol groups, and at $1.2U_{eq}$ otherwise.

2.4. Computational details

Full structure optimizations were carried out with GAUS-SIAN16 (Frisch *et al.*, 2016) on the geometries obtained by SCXRD. The density functional theory (DFT) method was selected with exchange-correlation functional M06 (Zhao & Truhlar, 2008) and 6-31G* as basis set. The calculations were done in the gas phase with default parameters and a tight convergence criterion. Frequency calculations were performed on the optimized structure at the same level of approximation. The energies were taken after structure optimization.

3. Results and discussion

3.1. Synthesis

The synthesis of *o*-thiovanillin was achieved in three steps, shown in Scheme 2, and follows closely that reported by Romagnoli *et al.* (2010).

Commercially available *o*-vanillin was treated with *N*,*N*-dimethylthiocarbamoyl chloride (DMTCl) in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) in *N*,*N*-dimethylformamide (DMF) and gave the desired *O*-thiocarbamate. This reaction was followed by a Newman–Kwart rearrangement with heating under microwave irradiation. Initially, the reaction was performed without solvent (Romagnoli *et al.*, 2010), but with *N*-methyl-2-pyrrolidone (NMP) as solvent, less degradation was observed (Moseley *et al.*, 2006); thus, a better

Figure 3

The four molecules (4a-4d) present in the asymmetric unit (viewed perpendicular to the red plane formed by two C atoms and the N atom of amine).

yield of the corresponding S-thiocarbamate was obtained. o-Thiovanillin, **2b**, was finally obtained by hydrolysis of the thiocarbamoyl group in the presence of sodium hydroxide.

In order to obtain the desired Schiff base, i.e. 1b, a condensation with 3-aminopyridine in ethanol was performed. Unexpectedly, the reaction led to a double condensation, resulting in compound 4 instead of the desired molecule 1b. The low yield could probably be caused by the instability of starting material 2b but could be improved, as the reaction was not optimized since it was an unexpected product not needed for further study. The proposed mechanism is described in Fig. 1, where the key intermediates described by the group of Still can be found (Toste, 1995; Still et al., 1999). The strong intramolecular hydrogen bond with the N atom, which increases the electrophilicity of the imine, leads to an attack and the formation of the first stereogenic centre. At that point, two nucleophilic entities could reversibly attack the benzaldehyde, *i.e.* the thiophenol or the amine. In the case of the amine, a more stable ring (six-membered versus eightmembered) is obtained. The last step should be the cyclization of the [3.3.1]bicyclic ring system, which leads to a diastereoselective product.

3.2. Crystal structure analysis

Compound **4** crystallizes in the space group $P\overline{1}$ as plate-like colourless crystals. The crystal data, the data collection and the structure refinement details are summarized in Table 1 and the asymmetric unit of the structure is shown in Fig. 2.

The asymmetric unit contains four molecules as a racemic mixture, where three of the four aminopyridine groups are

Table 2		
Interactions	observed in the crystal structure.	

Interaction type	Atoms involved	Distance (Å)	Angle (°)
Hydrogen bond	O9−H9···O10	1.757	166.9
Hydrogen bond	O10−H10A…N6	2.105	143.0
Chalcogen bond	C64-S8S5	3.531	167.0
Chalcogen bond	C14-S2S3	3.575	175.5
π -stacking	py 4a · · · py 4b	3.555*	4.2**

Notes: (*) distance between centroids; (**) angle between two planes formed by the pyridine rings.

disordered, and two molecules of methanol. The disorder is caused by two possible conformations of the aminopyridine group, differing by a 180° flip. Occupancy factors are provided in the supporting information.

In the case of atoms N2 and N4, the occupancy factors are around 0.5 because there are two possible conformations of the aminopyridine group with similar probability. For N6, the value is close to 1 due to the presence of methanol. Hence, for one of the two conformations, atom N6 is included in a hydrogen bond with one molecule of methanol. Apart from the weak hydrogen bonds presented in Table S1 of the supporting information, the other interactions observed in the crystal structure are summarized in Table 2. Figures highlighting these interactions are provided in the supporting information.

Contacts between pairs of S atoms are observed in the crystal packing as the S···S distance is shorter than the sum of the van der Waals radii. Besides, chalcogen bonds require angles close to 180° (Vogel *et al.*, 2019). This is the case for C14-S2···S3, with an angle of 175° , and to a lesser extent for the second C64-S8···S5 interaction, where the angle is 167° .

Figure 4

Representation of the deviation distance (in green) between the N atom of the amine group and the plane (in blue) formed by three atoms highlighted with grey balls. The numerical values are reported in Table 3.

research papers

3.3. Conformational study

Different geometries of the N atom are observed for the molecules in the asymmetric unit (Fig. 3). Interestingly, only molecule **4c** shows a planar geometry, while molecules **4a**, **4b** and **4d** show a pyramidal one.

Normally, it would be expected that the geometry is planar because of the conjugation of the N-atom electron pair with π orbitals of the pyridine group. Thus, the difference in geometry could be explained by the different interactions present in the crystal packing.

Indeed, as mentioned above (Table 2), π -stacking is observed between molecules **4a** and **4b**, which could constrain the pyridine ring and force the pyramidal geometry. Indeed, other pyramidal N atoms involved in π -stacking for this type of molecule with a V-shaped molecular cleft have been observed (Aslam *et al.*, 2012). The pyramidal N atom in molecule **4d** could be explained by the presence of methanol.

The geometry can be characterized by the deviation distance between the N atom and the plane resulting from the three atoms highlighted in Fig. 4. A structure optimization was performed in order to compare the distances obtained after geometry optimization with those from the crystal structure (Table 3).

For molecules **4a**, **4b** and **4d**, similar deviation distances are observed after geometry optimization, compared with those in the crystal structures (a superposition of these structures is shown in the supporting information). Besides, after optimization, the molecules have converged into the same geometry of the N atom (deviation distance = 0.280 Å).

In contrast, after geometry optimization, molecule 4c has a deviation distance slightly greater compared to that in the crystal structure. Moreover, after optimization, molecule 4c appears to converge into a different geometry of the N atom (deviation distance = 0.123 Å), a more planar geometry compared to the other.

Interestingly, these results demonstrate that the four molecules converge into two distinct minima, with a difference in energy of less than 2 kJ mol⁻¹. This supports the presence of two geometries in the crystal structure as they have similar energies. A deeper study of this using more sophisticated computational approaches is now possible but beyond the scope of the present work.

Acknowledgements

This work was performed on XRD equipment from the PC2 platform at UNamur and PXRD equipment has been funded by FRS–FNRS. The authors thank Andrea Carletta for his help in general and François Simon for his help on the thiovanillin synthesis. We also acknowledge Jean Quertinmont for his help with the geometry optimization calculations. Tom Leyssens (Université Catholique de Louvain) and Benoît Champagne (Université de Namur) are gratefully acknowledged for fruitful discussions. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by FRS–FNRS and by the Walloon Region. This research was supported by the Actions de la

Table 3

Free energy after geometry optimization and comparison of the deviation distance (see Fig. 4 for definition) in the crystal structure and after geometry optimization for the four molecules present in the asymmetric unit.

Molecule	Deviation	Deviation	ΔE after
	distance	distance after	geometry
	in the crystal	geometry	optimization
	structure (Å)	optimization (Å)	(kJ mol ⁻¹)
4a, 4b, 4d	0.304, 0.208, 0.329	0.280	0
4c	0.007	0.123	1.9

Recherche Concertées (ARC) de la Direction générale de l'Enseignement non obligatoire et de la recherche scientifique – Direction de la Recherche scientifique – Communauté Française de Belgique.

Funding information

Funding for this research was provided by: FRS-FNRS (grant Nos. U.N013.17 and 2.5020.11).

References

- Akine, S., Akimoto, A. & Nabeshima, T. (2010). Phosphorus Sulfur Silicon, 185, 1000–1007.
- Aslam, M., Anis, I., Afza, N., Ibrahim, M. & Yousuf, S. (2012). Acta Cryst. E68, 0440.
- Brieaddy, L. E. & Donaldson, K. H. (1995). J. Heterocycl. Chem. 32, 1683–1686.
- Carletta, A., Buol, X., Leyssens, T., Champagne, B. & Wouters, J. (2016). J. Phys. Chem. C, **120**, 10001–10008.
- Carletta, A., Dubois, J., Tilborg, A. & Wouters, J. (2015). CrystEngComm, **17**, 3509–3518.
- Carletta, A., Zbačnik, M., Van Gysel, M., Vitković, M., Tumanov, N., Stilinović, V., Wouters, J. & Cinčić, D. (2018). *Cryst. Growth Des.* 18, 6833–6842.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Dai, Y., Weng, J., George, J., Chen, H., Lin, Q., Wang, J., Royzen, M. & Zhang, Q. (2019). Org. Lett. 21, 3828–3833.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Frisch, M. J., et al. (2016). GAUSSIAN16. Revision A.3. Gaussian Inc., Wallingford, CT, USA. http://www.gaussian.com.
- Hubbard, J. S. & Harris, T. M. (1981). J. Org. Chem. 46, 2566–2570.
- Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.
- Hutchins, K. M., Dutta, S., Loren, B. & MacGillivray, L. R. (2014). *Chem. Mater.* **26**, 3042–3044.
- Jacquemin, P.-L., Robeyns, K., Devillers, M. & Garcia, Y. (2015). *Chem. Eur. J.* **21**, 6832–6845.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Moseley, J. D., Sankey, R. F., Tang, O. N. & Gilday, J. P. (2006). *Tetrahedron*, **62**, 4685–4689.
- Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Romagnoli, R., Baraldi, P. G., Carrion, M. D., Cruz-Lopez, O., Tolomeo, M., Grimaudo, S., Di Cristina, A., Pipitone, M. R., Balzarini, J., Brancale, A. & Hamel, E. (2010). *Bioorg. Med. Chem.* 18, 5114–5122.
- Scilabra, P., Terraneo, G. & Resnati, G. (2019). Acc. Chem. Res. 52, 1313–1324.

- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Stefański, T., Mikstacka, R., Kurczab, R., Dutkiewicz, Z., Kucińska, M., Murias, M., Zielińska-Przyjemska, M., Cichocki, M., Teubert, A., Kaczmarek, M., Hogendorf, A. & Sobiak, S. (2018). Eur. J. Med. Chem. 144, 797–816.
- Still, I. W. J., Natividad-Preyra, R. & Toste, F. D. (1999). Can. J. Chem. 77, 113–121.
- Toste, F. D. (1995). Tetrahedron Lett. 36, 6619-6622.
- Vogel, L., Wonner, P. & Huber, S. M. (2019). Angew. Chem. Int. Ed. 58, 1880–1891.
- Zhao, Y. & Truhlar, D. G. (2008). Theor. Chem. Acc. 120, 215-241.

Acta Cryst. (2020). C76 [https://doi.org/10.1107/S2053229620000996]

Synthesis, crystal structure and conformational analysis of an unexpected [1,5]dithiocine product of aminopyridine and thiovanillin

Kalina Mambourg, Laurie Bodart, Nikolay Tumanov, Steve Lanners and Johan Wouters

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2018); cell refinement: *CrysAlis PRO* (Rigaku OD, 2018); data reduction: *CrysAlis PRO* (Rigaku OD, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2016* (Sheldrick, 2015b), OLEX2 (Dolomanov *et al.*, 2009) and ShelXle (Hübschle *et al.*, 2011); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *SHELXL2016* (Sheldrick, 2015b).

4,10-Dimethoxy-13-(pyridin-3-yl)-6H,12H-6,12-epiminodibenzo[b,f][1,5]dithiocine methanol 0.463-solvate

Crystal data

 $\begin{array}{l} C_{21}H_{18}N_2O_2S_2\cdot 0.463CH_4O\\ M_r = 409.34\\ Triclinic, P\overline{1}\\ a = 14.7387~(4) Å\\ b = 16.6445~(3) Å\\ c = 17.8970~(4) Å\\ a = 84.662~(2)^{\circ}\\ \beta = 73.498~(2)^{\circ}\\ \gamma = 68.886~(2)^{\circ}\\ V = 3926.80~(17) Å^3 \end{array}$

Data collection

Rigaku Xcalibur Ruby Gemini Ultra diffractometer Radiation source: fine-focus sealed X-ray tube, Enhance Ultra (Cu) X-ray Source Detector resolution: 5.1856 pixels mm⁻¹ ω scans Absorption correction: analytical [CrysAlis PRO (Rigaku OD, 2018), based on expressions derived by Clark & Reid (1995)]

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.102$ S = 1.0313626 reflections Z = 8 F(000) = 1715 $D_x = 1.385 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 18138 reflections $\theta = 2.8-67.0^{\circ}$ $\mu = 2.64 \text{ mm}^{-1}$ T = 295 K Plate, colourless $0.46 \times 0.27 \times 0.06 \text{ mm}$

 $T_{\min} = 0.414, T_{\max} = 0.865$ 33207 measured reflections
13626 independent reflections
12152 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.023$ $\theta_{\text{max}} = 67.1^{\circ}, \theta_{\text{min}} = 2.6^{\circ}$ $h = -17 \rightarrow 16$ $k = -19 \rightarrow 17$ $l = -21 \rightarrow 21$

1184 parameters 838 restraints Primary atom site location: dual Secondary atom site location: dual Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.056P)^2 + 0.8423P]$	$\Delta \rho_{\rm max} = 0.49 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. A crystal of suitable size was mounted on an Oxford Diffraction Gemini Ultra R system (4-circle kappa platform, Ruby CCD detector) using Cu $K\alpha$ ($\lambda = 1.54184$ Å). The data were collected at room temperature. Analytical absorption correction was performed on SCXRD data using *CrysAlis PRO* 1.171.40.16b (Rigaku, 2018). Analytical numeric absorption correction used a multifaceted crystal model based on expressions derived by R.C. Clark and J.S. Reid. (Clark *et al.*, 1995). Empirical absorption correction used spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. The structure was solved over $|F|^2$ using SHELXT (Sheldrick, 2015a) and then refined using SHELXL-2016/6 (Sheldrick, 2015b) within Olex2 (Dolomanov *et al.*, 2009) and ShelXle (Hubschle *et al.*, 2011).

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C64	0.08042 (14)	0.55515 (11)	0.75957 (10)	0.0463 (4)	
C65	0.09081 (15)	0.51419 (12)	0.83084 (10)	0.0511 (4)	
C66	0.02928 (16)	0.46910 (12)	0.86924 (11)	0.0574 (5)	
H66	0.037246	0.441494	0.915802	0.069*	
C67	-0.04446 (16)	0.46549 (13)	0.83752 (12)	0.0582 (5)	
H67	-0.087168	0.436143	0.863603	0.070*	
C68	-0.05554 (15)	0.50463 (12)	0.76803 (11)	0.0526 (4)	
H68	-0.105910	0.501757	0.747856	0.063*	
C69	0.00802 (13)	0.54882 (11)	0.72715 (10)	0.0450 (4)	
C70	-0.00116 (13)	0.58184 (11)	0.64687 (10)	0.0458 (4)	
H70	-0.004343	0.534895	0.619648	0.055*	
C71	0.10757 (13)	0.66314 (11)	0.63837 (10)	0.0453 (4)	
H71	0.159047	0.680088	0.599293	0.054*	
C72	0.01953 (14)	0.74484 (11)	0.66779 (10)	0.0454 (4)	
C73	0.04123 (16)	0.81288 (13)	0.69039 (11)	0.0552 (4)	
H73	0.107440	0.805774	0.688343	0.066*	
C74	-0.03465 (17)	0.88987 (14)	0.71552 (13)	0.0638 (5)	
H74	-0.019672	0.934065	0.731581	0.077*	
C75	-0.13350 (17)	0.90235 (13)	0.71717 (12)	0.0610 (5)	
H75	-0.184364	0.955144	0.732878	0.073*	
C76	-0.15560 (15)	0.83583 (12)	0.69533 (11)	0.0528 (4)	
C77	-0.07977 (14)	0.75541 (11)	0.67222 (10)	0.0464 (4)	
N7	0.08640 (11)	0.60072 (10)	0.60150 (8)	0.0475 (3)	
C78	0.11464 (13)	0.59155 (11)	0.51981 (10)	0.0447 (4)	
C79	0.13717 (19)	0.65327 (14)	0.46891 (12)	0.0648 (5)	
H79	0.129250	0.706458	0.487404	0.078*	
C80	0.1718 (2)	0.63497 (17)	0.38985 (12)	0.0755 (6)	
H80	0.188707	0.675518	0.354788	0.091*	
C81	0.1810 (2)	0.55816 (18)	0.36362 (12)	0.0747 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H81	0.203890	0.547246	0.310232	0.090*
N8	0.1588 (2)	0.49789 (15)	0.41064 (11)	0.0880 (7)
C82	0.1272 (2)	0.51496 (15)	0.48697 (12)	0.0710 (6)
H82	0.112719	0.472366	0.520444	0.085*
C83	-0.3312 (2)	0.91837 (19)	0.7212 (2)	0.0990 (10)
H83A	-0.322271	0.964111	0.686469	0.149*
H83B	-0.332718	0.932009	0.772619	0.149*
H83C	-0.393688	0.911676	0.722560	0.149*
C84	0.1859 (2)	0.48126 (18)	0.92531 (14)	0.0795 (7)
H84A	0.204247	0.420287	0.919109	0.119*
H84B	0.126588	0.501967	0.968095	0.119*
H84C	0.240439	0.493004	0.935602	0.119*
S5	0.65327(3)	0.28897 (3)	0.32598(3)	0.05113 (11)
S6	0.40368(3)	0.31152 (3)	0.23192(2)	0.05010 (11)
05	0.74023(12)	0.11954(10)	0.25192(2) 0.36693(10)	0.0697 (4)
06	0.77023(12) 0.47293(10)	0.26822 (9)	0.07428 (7)	0.0538 (3)
C43	0.58723(14)	0.20022(3)	0.35064(9)	0.0230(3)
C44	0.56725(14) 0.64160(15)	0.21025(12) 0.13350(13)	0.37211(11)	0.0472(4)
C45	0.04100(19) 0.59500(19)	0.13330(13) 0.07344(15)	0.37211(11) 0.39721(13)	0.0547(4)
U45	0.631107	0.018676	0.33721 (13)	0.080*
1145 C46	0.051197 0.4040(2)	0.018070 0.00562(17)	0.411328 0.40082(14)	0.0743 (6)
U40 H46	0.4940(2) 0.462010	0.055796	0.418774	0.089*
C47	0.402010 0.4000(17)	0.055790	0.410774 0.37833 (13)	0.0645 (5)
U47	0.372813	0.17540(15)	0.37033 (13)	0.077*
1147 C48	0.372013 0.48625 (14)	0.100040 0.22699(12)	0.380273 0.35254(10)	0.077°
C48	0.48023(14) 0.42224(12)	0.23088(12) 0.22205(12)	0.33234(10) 0.22661(10)	0.0492(4)
C49	0.42334 (13)	0.32293 (12)	0.32001(10)	0.0487 (4)
П49 С50	0.550/40	0.339943 0.27215 (11)	0.304462	0.038°
C30	0.30447(13)	0.37213(11) 0.424716	0.27830 (10)	0.0460 (4)
H50	0.580015	0.424/10	0.275894	0.033*
C51	0.58390 (13)	0.34496 (11)	0.19580 (10)	0.0430(4)
C52	0.51802(12)	0.31080(11)	0.1/141(9)	0.0422(4)
C53	0.54267 (13)	0.29329 (11)	0.09295 (10)	0.0450 (4)
C54	0.6304/(15)	0.29682 (13)	0.04036 (10)	0.0543 (4)
H54	0.646506	0.280161	-0.011329	0.065*
C55	0.69404 (15)	0.32543 (14)	0.06568 (11)	0.0575 (5)
H55	0.752688	0.328659	0.030461	0.069*
C56	0.67177 (14)	0.34915 (12)	0.14208 (11)	0.0511 (4)
H56	0.715437	0.368113	0.158142	0.061*
C62	0.4914 (2)	0.24535 (17)	-0.00487 (12)	0.0712 (6)
H62A	0.499768	0.292434	-0.037951	0.107*
H62B	0.435243	0.232698	-0.010877	0.107*
H62C	0.551666	0.195519	-0.019087	0.107*
C63	0.8038 (2)	0.03451 (17)	0.37855 (19)	0.0895 (8)
H63A	0.801031	-0.004582	0.343779	0.134*
H63B	0.781318	0.017896	0.431438	0.134*
H63C	0.872056	0.032860	0.368260	0.134*
N5	0.46035 (11)	0.39317 (10)	0.32316 (8)	0.0494 (3)
C58	0.4293 (4)	0.4427 (2)	0.3925 (2)	0.0570 (9) 0.927 (3)

C59	0.4258 (3)	0.5261 (2)	0.3878 (2)	0.0748 (10)	0.927 (3)
H59	0.443452	0.550414	0.339409	0.090*	0.927 (3)
C60	0.3962 (3)	0.5741 (3)	0.4545 (3)	0.0966 (12)	0.927 (3)
H60	0.394054	0.630812	0.451940	0.116*	0.927 (3)
C61	0.3701 (3)	0.5368 (3)	0.5244 (2)	0.1037 (15)	0.927 (3)
H61	0.350115	0.569470	0.569488	0.124*	0.927 (3)
N6	0.3717(2)	0.4559 (3)	0.53177 (16)	0.1016 (11)	0.927 (3)
C57	0.4013(3)	0.4097(3)	0.46604 (19)	0.0755 (10)	0.927(3)
H57	0.403127	0.353044	0.469972	0.091*	0.927 (3)
C58A	0.450(5)	0.446(2)	0.389(3)	0.052 (8)	0.073(3)
C57A	0.460(2)	0.5261(16)	0.3681(16)	0.047(6)	0.073(3)
H57A	0.486258	0.537772	0.316202	0.056*	0.073(3)
N6A	0.433(2)	0.5854(16)	0.4228(15)	0.061 (6)	0.073(3)
C61A	0.133(2) 0.384(4)	0.570 (3)	0.1220(13) 0.4935(17)	0.001(0) 0.067(7)	0.073(3)
H61A	0.366828	0.611919	0.531351	0.081*	0.073(3)
	0.357(3)	0.511919	0.537357	0.061	0.073(3)
	0.320390	0.494027	0.567740	0.082*	0.073(3)
C50A	0.320390	0.494027 0.438 (2)	0.307740	0.082°	0.073(3)
U50A	0.365802	0.438 (2)	0.400 (2)	0.001 (7)	0.073(3)
ПЈ9А С1	0.303892	0.391231	0.409403	0.074°	0.075 (3)
51	0.29790(3)	0.22144(3) 0.12004(3)	0.00911(3) 0.92255(3)	0.05201(11) 0.05232(12)	
01	0.08393(3) 0.12071(12)	0.13094(3)	0.82233(3)	0.03333(12)	
01	0.13071(12) 0.22260(10)	-0.04512(9)	0.85755(10)	0.0679(4)	
02 C1	0.23309(10) 0.17205(12)	0.27133(9)	1.04379(8)	0.0390(3)	
	0.17205(13)	0.24770(11)	0.94654 (10)	0.0457(4)	
C2	0.15205 (14)	0.26946 (11)	1.02509 (10)	0.0489 (4)	
03	0.05649 (16)	0.28/63 (13)	1.0/494 (11)	0.05/1(5)	
H3	0.044041	0.300911	1.12/0/2	0.069*	
C4	-0.02084 (16)	0.28580 (14)	1.04622 (12)	0.0592 (5)	
H4	-0.085318	0.297210	1.0/9613	0.0/1*	
C5	-0.00336 (15)	0.26736 (12)	0.96908 (11)	0.0533 (4)	
H5	-0.056293	0.267326	0.950607	0.064*	
C6	0.09320 (13)	0.24866 (10)	0.91814 (10)	0.0447 (4)	
C7	0.10471 (13)	0.23246 (11)	0.83375 (10)	0.0468 (4)	
H7	0.050073	0.278954	0.818375	0.056*	
C8	0.28639 (14)	0.17615 (12)	0.80390 (10)	0.0498 (4)	
H8	0.345608	0.175048	0.761084	0.060*	
C9	0.29041 (14)	0.08360 (12)	0.81643 (10)	0.0487 (4)	
C10	0.38256 (15)	0.01951 (14)	0.81800 (12)	0.0607 (5)	
H10	0.438692	0.034613	0.813897	0.073*	
C11	0.39092 (17)	-0.06595 (14)	0.82557 (13)	0.0685 (6)	
H11	0.452768	-0.107831	0.826370	0.082*	
C12	0.30878 (17)	-0.09012 (13)	0.83199 (12)	0.0639 (5)	
H12	0.315318	-0.147930	0.836656	0.077*	
C13	0.21729 (16)	-0.02812 (12)	0.83142 (11)	0.0548 (4)	
C14	0.20750 (14)	0.05929 (11)	0.82362 (10)	0.0476 (4)	
C20	0.1297 (2)	-0.12809 (15)	0.85624 (18)	0.0842 (7)	
H20A	0.149385	-0.145938	0.903599	0.126*	
H20B	0.176160	-0.166966	0.814689	0.126*	

H20C	0.062889	-0.128516	0.863009	0.126*	
C21	0.2196 (2)	0.28976 (17)	1.12571 (13)	0.0749 (6)	
H21A	0.196715	0.247822	1.158202	0.112*	
H21B	0.170133	0.346187	1.139396	0.112*	
H21C	0.282451	0.287482	1.133160	0.112*	
N1	0.19848 (12)	0.23498 (10)	0.78101 (8)	0.0503 (3)	
C15	0.1964 (9)	0.2295 (8)	0.7014 (6)	0.049 (2)	0.565 (19)
C16	0.1250 (8)	0.2907 (7)	0.6706 (5)	0.068 (2)	0.565 (19)
H16	0.073597	0.334462	0.702519	0.082*	0.565 (19)
C17	0.1290 (6)	0.2879 (6)	0.5927 (4)	0.0727 (17)	0.565 (19)
H17	0.081151	0.329563	0.571950	0.087*	0.565 (19)
C18	0.2047 (5)	0.2225 (7)	0.5467 (3)	0.080(2)	0.565 (19)
H18	0.207210	0.220860	0.494315	0.096*	0.565 (19)
N2	0.2749 (6)	0.1612 (6)	0.5736 (4)	0.080(2)	0.565 (19)
C19	0.2696 (10)	0.1664 (8)	0.6492 (6)	0.0645 (19)	0.565 (19)
H19	0.318842	0.124247	0.668274	0.077*	0.565 (19)
C15A	0.2092 (13)	0.2456 (10)	0.6998 (7)	0.051 (3)	0.435 (19)
C16A	0.2788 (14)	0.1856 (11)	0.6454 (8)	0.080 (5)	0.435 (19)
H16A	0.326375	0.137337	0.660018	0.096*	0.435 (19)
C17A	0.2772 (11)	0.1982 (12)	0.5685 (7)	0.101 (4)	0.435 (19)
H17A	0.323737	0.159233	0.529757	0.121*	0.435 (19)
C18A	0.2042 (9)	0.2705 (13)	0.5513 (5)	0.101 (4)	0.435 (19)
H18A	0.203024	0.279209	0.499397	0.121*	0.435 (19)
N2A	0.1360 (8)	0.3280 (11)	0.6026 (5)	0.113 (5)	0.435 (19)
C19A	0.1387 (12)	0.3153 (11)	0.6765 (6)	0.085 (4)	0.435 (19)
H19A	0.091031	0.355333	0.713946	0.102*	0.435 (19)
S7	-0.11929 (3)	0.67424 (3)	0.65003 (3)	0.05137 (11)	~ /
S 8	0.16431 (4)	0.61018 (3)	0.71764 (3)	0.05265 (12)	
07	0.16600 (11)	0.52340 (9)	0.85602 (8)	0.0611 (3)	
08	-0.24999 (11)	0.84059 (10)	0.69471 (10)	0.0689 (4)	
S3	0.16816 (4)	0.73602 (3)	0.17146 (3)	0.05830(13)	
S4	0.36065 (4)	0.87559 (3)	0.20142 (3)	0.05927 (13)	
03	0.27865 (11)	0.56991 (9)	0.11139 (9)	0.0636 (3)	
O4	0.38711 (14)	0.99543 (10)	0.08896 (11)	0.0809 (5)	
C22	0.29443 (13)	0.67976 (11)	0.17353 (10)	0.0472 (4)	
C23	0.34053 (15)	0.59696 (12)	0.13919 (11)	0.0531 (4)	
C24	0.43987 (16)	0.54959 (13)	0.13520 (13)	0.0618 (5)	
H24	0.470126	0.495236	0.111905	0.074*	
C25	0.49446 (16)	0.58373 (13)	0.16627 (14)	0.0640 (5)	
H25	0.561941	0.552286	0.163125	0.077*	
C26	0.45007 (15)	0.66329 (13)	0.20156 (12)	0.0559 (4)	
H26	0.487715	0.684982	0.222437	0.067*	
C27	0.34923 (14)	0.71222 (12)	0.20662 (10)	0.0480 (4)	
C28	0.30499 (14)	0.79599 (13)	0.25160 (10)	0.0524 (4)	
H28	0.323617	0.783331	0.300919	0.063*	
C29	0.15567 (15)	0.84168 (13)	0.20586 (10)	0.0548 (4)	
H29	0.083078	0.873514	0.225135	0.066*	
C30	0.19693 (15)	0.89597 (13)	0.14223 (10)	0.0560 (5)	

C31	0.28102 (16)	0.91649 (12)	0.13911 (11)	0.0558 (5)	
C32	0.30480 (18)	0.97772 (14)	0.08506 (13)	0.0674 (6)	
C33	0.2477 (2)	1.01518 (17)	0.03347 (14)	0.0821 (7)	
H33	0.264183	1.055369	-0.002290	0.098*	
C34	0.1664 (2)	0.99236 (19)	0.03563 (14)	0.0871 (8)	
H34	0.128298	1.016764	0.000480	0.104*	
C35	0.14022 (19)	0.93385 (17)	0.08904 (12)	0.0731 (6)	
H35	0.084601	0.919424	0.089789	0.088*	
C41	0.4012 (3)	1.07159 (18)	0.0513 (2)	0.1141 (12)	
H41A	0.340842	1.120438	0.069477	0.171*	
H41B	0.415551	1.065343	-0.004017	0.171*	
H41C	0.456626	1.080006	0.063391	0.171*	
C42	0.3207(2)	0.48624 (15)	0.07724 (16)	0.0769 (6)	
H42A	0.346186	0.444714	0.114036	0.115*	
H42B	0.374792	0.484398	0.031580	0.115*	
H42C	0.269447	0.473076	0.063018	0.115*	
N3	0.19655 (12)	0.83109 (12)	0.27132 (9)	0.0601 (4)	
C36	0 1396 (13)	0.8510(19)	0.3493(7)	0.054(3)	0.57(2)
C40	0.0396 (11)	0.8587 (15)	0.3744 (8)	0.072 (3)	0.57(2)
H40	0.009405	0.847659	0.339235	0.087*	0.57(2)
C39	-0.0178(13)	0.8822 (17)	0.4503 (10)	0.084 (4)	0.57(2)
H39	-0.085971	0.888941	0.467071	0.100*	0.57 (2)
C38	0.0325 (14)	0.8946 (17)	0.4982 (7)	0.091 (4)	0.57(2)
H38	-0.002111	0.906415	0.550511	0.109*	0.57 (2)
N4	0.1265 (12)	0.8912 (12)	0.4762 (7)	0.107 (4)	0.57 (2)
C37	0.1816 (12)	0.8694 (12)	0.4033 (7)	0.084 (3)	0.57 (2)
H37	0.248561	0.866306	0.388318	0.101*	0.57 (2)
C36A	0.1322 (17)	0.855 (2)	0.3447 (10)	0.047 (3)	0.43 (2)
C37A	0.0333 (11)	0.8536 (17)	0.3654 (9)	0.055 (3)	0.43 (2)
H37A	0.007685	0.841030	0.327907	0.066*	0.43 (2)
N4A	-0.0234 (13)	0.8699 (18)	0.4387 (9)	0.073 (3)	0.43 (2)
C38A	0.0112 (15)	0.8852 (19)	0.4940 (10)	0.072 (3)	0.43 (2)
H38A	-0.032060	0.897735	0.544033	0.086*	0.43 (2)
C39A	0.1080 (16)	0.8837 (15)	0.4813 (9)	0.071 (3)	0.43 (2)
H39A	0.133258	0.891089	0.521289	0.085*	0.43 (2)
C40A	0.1650 (14)	0.8703 (13)	0.4052 (9)	0.063 (3)	0.43 (2)
H40A	0.230167	0.871283	0.393579	0.075*	0.43 (2)
O10	0.4006 (3)	0.3545 (3)	0.66304 (18)	0.1835 (19)	0.927 (3)
H10A	0.381772	0.366617	0.623160	0.275*	0.927 (3)
C86	0.3265 (3)	0.3825 (3)	0.7211 (2)	0.1127 (13)	0.927 (3)
H86A	0.265708	0.387530	0.708254	0.169*	0.927 (3)
H86B	0.322173	0.438001	0.735884	0.169*	0.927 (3)
H86C	0.334799	0.343374	0.763623	0.169*	0.927 (3)
O9	0.5502 (3)	0.2112 (3)	0.6408 (2)	0.248 (3)	0.927 (3)
H9	0.496918	0.252311	0.650218	0.372*	0.927 (3)
C85	0.5579 (4)	0.1672 (5)	0.5778 (4)	0.209 (4)	0.927 (3)
H85A	0.599446	0.184440	0.532174	0.314*	0.927 (3)
H85B	0.491928	0.179559	0.571032	0.314*	0.927 (3)

H85C	0.587940	0.106	547	0.585531	0.314*	0.927 (3)
Atomic a	lisplacement parc	ameters $(Å^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C64	0.0489 (9)	0.0441 (9)	0.0434 (9)	-0.0150 (7)	-0.0098 (7)	-0.0009(7)
C65	0.0563 (11)	0.0470 (10)	0.0459 (9)	-0.0143 (8)	-0.0123 (8)	-0.0008 (7)
C66	0.0654 (12)	0.0508 (11)	0.0482 (10)	-0.0171 (9)	-0.0090 (9)	0.0053 (8)
C67	0.0603 (12)	0.0522 (11)	0.0569 (11)	-0.0237(9)	-0.0034 (9)	0.0022 (8)
C68	0.0531 (10)	0.0502 (10)	0.0542 (10)	-0.0212 (8)	-0.0088 (8)	-0.0032 (8)
C69	0.0452 (9)	0.0423 (9)	0.0446 (9)	-0.0147 (7)	-0.0074 (7)	-0.0040 (7)
C70	0.0488 (9)	0.0477 (9)	0.0443 (9)	-0.0209(8)	-0.0111 (7)	-0.0032 (7)
C71	0.0490 (9)	0.0518 (10)	0.0397 (8)	-0.0229(8)	-0.0119 (7)	0.0001 (7)
C72	0.0534 (10)	0.0493 (9)	0.0391 (8)	-0.0221(8)	-0.0157 (7)	0.0007 (7)
C73	0.0579 (11)	0.0592 (11)	0.0576 (11)	-0.0258(9)	-0.0202 (9)	-0.0057 (8)
C74	0.0727 (14)	0.0567 (12)	0.0695 (13)	-0.0272 (10)	-0.0202 (11)	-0.0134 (9)
C75	0.0628 (12)	0.0533 (11)	0.0639 (12)	-0.0149 (9)	-0.0159 (10)	-0.0116 (9)
C76	0.0529 (11)	0.0554 (11)	0.0513 (10)	-0.0185 (9)	-0.0154 (8)	-0.0033 (8)
C77	0.0520 (10)	0.0498 (10)	0.0416 (9)	-0.0204 (8)	-0.0153 (7)	-0.0001 (7)
N7	0.0528 (8)	0.0546 (8)	0.0400 (7)	-0.0263 (7)	-0.0089 (6)	-0.0039 (6)
C78	0.0434 (9)	0.0494 (9)	0.0412 (8)	-0.0139 (7)	-0.0142 (7)	-0.0005 (7)
C79	0.0895 (16)	0.0530 (11)	0.0506 (11)	-0.0250 (11)	-0.0184 (10)	0.0051 (9)
C80	0.1017 (18)	0.0828 (16)	0.0465 (11)	-0.0411 (14)	-0.0191 (11)	0.0123 (10)
C81	0.0873 (16)	0.1109 (19)	0.0417 (10)	-0.0549 (15)	-0.0124 (10)	-0.0071 (11)
N8	0.1224 (19)	0.1004 (15)	0.0554 (11)	-0.0683 (15)	-0.0002 (11)	-0.0226 (10)
C82	0.0988 (17)	0.0679 (13)	0.0518 (11)	-0.0460 (13)	-0.0037 (11)	-0.0086 (9)
C83	0.0603 (15)	0.0874 (19)	0.141 (3)	-0.0016 (13)	-0.0319 (16)	-0.0450 (18)
C84	0.0902 (17)	0.0949 (18)	0.0597 (13)	-0.0319(14)	-0.0368 (12)	0.0209 (12)
S5	0.0480 (2)	0.0589 (3)	0.0517 (2)	-0.0191 (2)	-0.02117 (19)	0.00163 (19)
S6	0.0435 (2)	0.0713 (3)	0.0375 (2)	-0.0216 (2)	-0.01090 (17)	-0.00263 (18)
05	0.0623 (9)	0.0635 (9)	0.0868 (11)	-0.0152 (7)	-0.0372 (8)	0.0104 (7)
06	0.0597 (8)	0.0674 (8)	0.0379 (6)	-0.0242 (6)	-0.0140 (5)	-0.0052 (5)
C43	0.0511 (10)	0.0578 (10)	0.0355 (8)	-0.0198 (8)	-0.0137 (7)	-0.0023 (7)
C44	0.0583 (11)	0.0594 (11)	0.0489 (10)	-0.0181 (9)	-0.0213 (8)	0.0002 (8)
C45	0.0807 (15)	0.0607 (12)	0.0645 (13)	-0.0265 (11)	-0.0289 (11)	0.0101 (10)
C46	0.0831 (16)	0.0782 (15)	0.0735 (14)	-0.0437 (13)	-0.0238 (12)	0.0161 (12)
C47	0.0590 (12)	0.0808 (15)	0.0593 (12)	-0.0334 (11)	-0.0144 (9)	0.0056 (10)
C48	0.0492 (10)	0.0634 (11)	0.0348 (8)	-0.0197 (8)	-0.0098 (7)	-0.0028 (7)
C49	0.0402 (9)	0.0663 (11)	0.0352 (8)	-0.0156 (8)	-0.0055 (7)	-0.0058 (7)
C50	0.0459 (9)	0.0472 (9)	0.0444 (9)	-0.0133 (7)	-0.0139 (7)	-0.0035 (7)
C51	0.0427 (9)	0.0411 (9)	0.0420 (8)	-0.0098 (7)	-0.0129 (7)	0.0004 (6)
C52	0.0406 (8)	0.0436 (9)	0.0370 (8)	-0.0089 (7)	-0.0100 (7)	0.0007 (6)
C53	0.0475 (9)	0.0450 (9)	0.0391 (8)	-0.0115 (7)	-0.0129 (7)	0.0003 (7)
C54	0.0553 (11)	0.0641 (11)	0.0357 (8)	-0.0152 (9)	-0.0079 (8)	0.0010 (8)
C55	0.0459 (10)	0.0722 (13)	0.0469 (10)	-0.0190 (9)	-0.0054 (8)	0.0071 (9)
C56	0.0447 (9)	0.0563 (11)	0.0512 (10)	-0.0175 (8)	-0.0124 (8)	0.0039 (8)
C62	0.0939 (17)	0.0881 (16)	0.0422 (10)	-0.0439 (13)	-0.0157 (10)	-0.0085 (10)
C63	0.0762 (16)	0.0721 (16)	0.115 (2)	-0.0106 (13)	-0.0446 (16)	0.0199 (14)

N5	0.0456 (8)	0.0568 (9)	0.0408 (7)	-0.0108 (7)	-0.0098 (6)	-0.0109 (6)
C58	0.042 (2)	0.0719 (16)	0.0508 (15)	-0.0035 (12)	-0.0173 (12)	-0.0201 (12)
C59	0.064 (2)	0.0718 (18)	0.080 (2)	-0.0018 (14)	-0.0265 (16)	-0.0256 (14)
C60	0.072 (3)	0.095 (2)	0.113 (3)	0.0091 (17)	-0.040 (3)	-0.057 (2)
C61	0.055 (2)	0.142 (4)	0.092 (2)	0.013 (2)	-0.0263 (19)	-0.072(2)
N6	0.0713 (17)	0.156 (3)	0.0582 (14)	-0.010 (2)	-0.0139(12)	-0.0437 (17)
C57	0.063 (2)	0.106 (2)	0.0453 (13)	-0.012(2)	-0.0112 (12)	-0.0220 (15)
C58A	0.033 (15)	0.057 (10)	0.055 (11)	0.004 (9)	-0.011 (10)	-0.034 (9)
C57A	0.032 (13)	0.052 (9)	0.058 (11)	0.002 (9)	-0.023(9)	-0.041 (8)
N6A	0.039 (12)	0.069 (10)	0.071 (11)	0.000 (9)	-0.017(9)	-0.054 (9)
C61A	0.048 (12)	0.089 (12)	0.070 (11)	-0.015 (10)	-0.019 (11)	-0.056 (11)
C60A	0.041 (12)	0.094 (12)	0.068 (11)	-0.014(11)	-0.009(10)	-0.049(10)
C59A	0.046(12)	0.078(12)	0.058(11)	-0.012(11)	-0.014(9)	-0.032(9)
S1	0.0466(2)	0.0613(3)	0.0469(2)	-0.0161(2)	-0.01069(18)	-0.00248(19)
S2	0.0484(2)	0.0488(2)	0.0601(3)	-0.00791(19)	-0.0207(2)	-0.00444(19)
01	0.0693(9)	0.0505(8)	0.0843(10)	-0.0185(7)	-0.0246(8)	0.0015(7)
02	0.0099(9)	0.0202(0)	0.0013(10)	-0.0191(7)	-0.0164(6)	-0.0093(6)
C1	0.0200(0) 0.0487(9)	0.0713(9) 0.0397(9)	0.0430(9)	-0.0109(7)	-0.0098(7)	0.0099(0)
C^2	0.0407(9)	0.0397(9) 0.0441(9)	0.0471(9)	-0.0131(8)	-0.0146(8)	-0.0010(7)
C2	0.0551(10) 0.0618(12)	0.0441(9)	0.0471(9)	-0.0171(0)	-0.0063(8)	-0.0086(8)
C4	0.0010(12)	0.0500(11)	0.0435(5)	-0.0184(9)	-0.0003(8)	-0.0074(9)
C5	0.0311(11) 0.0475(10)	0.0001(12)	0.0510(11)	-0.0147(8)	-0.0105(8)	-0.0074(9)
C5 C6	0.0475(10)	0.0333(11) 0.0378(8)	0.0330(10)	-0.0095(7)	-0.0103(3)	0.0024(8)
C0 C7	0.0473(9)	0.0378(8)	0.0437(9)	-0.0093(7)	-0.0120(7)	0.0021(7)
C°	0.0437(9)	0.0431(9)	0.0438(9)	-0.0000(7)	-0.0133(7)	0.0019(7)
	0.0438(9)	0.0301(10)	0.0398(9)	-0.0113(8)	-0.0080(7)	0.0010(7)
C9	0.0473(10)	0.0300(10)	0.0570(8)	-0.0031(8)	-0.0102(7)	-0.0021(7)
C10 C11	0.0472(10)	0.0642(13)	0.0578(11)	-0.0049(9)	-0.0134(9)	-0.0003(9)
	0.0576(12)	0.0559 (12)	0.0/12(13)	0.0059 (10)	-0.0188 (10)	-0.0009 (10)
C12	0.0688 (13)	0.0466 (11)	0.0619 (12)	-0.0029(9)	-0.01/8(10)	-0.0013(9)
C13	0.0613 (12)	0.0492 (10)	0.0463 (10)	-0.0096 (9)	-0.0150 (8)	-0.0018 (7)
CI4	0.0481 (10)	0.0465 (9)	0.0385 (8)	-0.0050 (7)	-0.0116 (7)	-0.0015 (7)
C20	0.103 (2)	0.0554 (13)	0.103 (2)	-0.0337 (13)	-0.0358 (16)	0.0050 (12)
C21	0.0793 (15)	0.0918 (17)	0.0563 (12)	-0.0260 (13)	-0.0215 (11)	-0.0189 (11)
N1	0.0497 (8)	0.0518 (8)	0.0410 (8)	-0.0100 (7)	-0.0116 (6)	0.0061 (6)
C15	0.053 (4)	0.052 (4)	0.045 (2)	-0.024 (3)	-0.013 (2)	0.013 (2)
C16	0.077 (3)	0.060 (4)	0.056 (3)	-0.007 (3)	-0.025 (2)	0.005 (2)
C17	0.084 (3)	0.083 (4)	0.055 (3)	-0.026 (3)	-0.034 (3)	0.021 (3)
C18	0.093 (4)	0.099 (5)	0.045 (2)	-0.033 (4)	-0.019 (2)	0.009 (3)
N2	0.086 (3)	0.100 (5)	0.044 (2)	-0.025 (3)	-0.0117 (18)	0.004 (3)
C19	0.073 (4)	0.070 (4)	0.041 (3)	-0.020 (3)	-0.011 (2)	0.006 (2)
C15A	0.059 (5)	0.062 (6)	0.038 (3)	-0.032 (4)	-0.010 (3)	0.011 (3)
C16A	0.078 (6)	0.093 (9)	0.049 (4)	-0.012 (5)	-0.013 (4)	0.009 (4)
C17A	0.124 (8)	0.114 (9)	0.038 (4)	-0.023 (7)	-0.006 (4)	-0.002 (5)
C18A	0.123 (7)	0.132 (11)	0.044 (4)	-0.037 (7)	-0.034 (4)	0.020 (5)
N2A	0.121 (6)	0.131 (9)	0.061 (4)	-0.014 (6)	-0.033 (4)	0.028 (5)
C19A	0.098 (7)	0.083 (8)	0.044 (4)	0.001 (5)	-0.021 (4)	0.013 (4)
S7	0.0505 (2)	0.0523 (2)	0.0588 (3)	-0.0216 (2)	-0.0212 (2)	0.00005 (19)
S8	0.0537 (3)	0.0613 (3)	0.0527 (2)	-0.0277 (2)	-0.0224 (2)	0.0102 (2)

O7	0.0694 (9)	0.0700 (9)	0.0513 (7)	-0.0276 (7)	-0.0264 (7)	0.0114 (6)
08	0.0502 (8)	0.0632 (9)	0.0912 (11)	-0.0108 (7)	-0.0215 (7)	-0.0182 (7)
S3	0.0506 (3)	0.0678 (3)	0.0560 (3)	-0.0145 (2)	-0.0222 (2)	0.0014 (2)
S4	0.0629 (3)	0.0503 (3)	0.0648 (3)	-0.0161 (2)	-0.0217 (2)	-0.0009 (2)
03	0.0693 (9)	0.0560 (8)	0.0716 (9)	-0.0203 (7)	-0.0305 (7)	0.0013 (6)
O4	0.0865 (12)	0.0570 (9)	0.0919 (12)	-0.0263 (8)	-0.0156 (9)	0.0137 (8)
C22	0.0485 (10)	0.0514 (10)	0.0393 (8)	-0.0149 (8)	-0.0146 (7)	0.0101 (7)
C23	0.0601 (11)	0.0518 (10)	0.0513 (10)	-0.0219 (9)	-0.0214 (9)	0.0121 (8)
C24	0.0634 (12)	0.0459 (10)	0.0726 (13)	-0.0112 (9)	-0.0246 (10)	0.0051 (9)
C25	0.0532 (11)	0.0534 (12)	0.0811 (14)	-0.0095 (9)	-0.0259 (10)	0.0085 (10)
C26	0.0543 (11)	0.0543 (11)	0.0610 (11)	-0.0169 (9)	-0.0234 (9)	0.0078 (9)
C27	0.0499 (10)	0.0515 (10)	0.0407 (9)	-0.0157 (8)	-0.0153 (7)	0.0108 (7)
C28	0.0533 (10)	0.0607 (11)	0.0408 (9)	-0.0140 (9)	-0.0172 (8)	0.0013 (8)
C29	0.0475 (10)	0.0679 (12)	0.0396 (9)	-0.0079 (9)	-0.0131 (8)	-0.0012 (8)
C30	0.0548 (11)	0.0594 (11)	0.0393 (9)	-0.0041 (9)	-0.0098 (8)	-0.0044 (8)
C31	0.0602 (12)	0.0460 (10)	0.0462 (10)	-0.0042 (8)	-0.0089 (8)	-0.0049 (7)
C32	0.0719 (14)	0.0510 (11)	0.0596 (12)	-0.0075 (10)	-0.0063 (10)	0.0003 (9)
C33	0.0846 (18)	0.0744 (15)	0.0615 (14)	-0.0108 (13)	-0.0078 (12)	0.0161 (11)
C34	0.0872 (18)	0.1011 (19)	0.0510 (12)	-0.0096 (15)	-0.0214 (12)	0.0183 (12)
C35	0.0685 (14)	0.0935 (16)	0.0468 (11)	-0.0149 (12)	-0.0196 (10)	0.0086 (11)
C41	0.126 (3)	0.0622 (16)	0.142 (3)	-0.0353 (17)	-0.021 (2)	0.0258 (17)
C42	0.0884 (17)	0.0643 (14)	0.0861 (16)	-0.0225 (12)	-0.0388 (14)	-0.0065 (11)
N3	0.0517 (9)	0.0833 (12)	0.0368 (8)	-0.0123 (8)	-0.0126 (7)	-0.0033 (7)
C36	0.062 (5)	0.048 (6)	0.036 (4)	-0.002 (4)	-0.009 (4)	-0.003 (4)
C40	0.073 (5)	0.080 (5)	0.054 (5)	-0.009 (4)	-0.025 (4)	0.000 (4)
C39	0.077 (5)	0.092 (7)	0.047 (5)	0.006 (4)	-0.008 (4)	-0.008 (4)
C38	0.104 (9)	0.100 (8)	0.042 (4)	-0.003 (7)	-0.017 (4)	-0.014 (4)
N4	0.105 (6)	0.138 (8)	0.058 (4)	-0.012 (5)	-0.020 (4)	-0.034 (5)
C37	0.085 (6)	0.110 (7)	0.054 (4)	-0.022 (4)	-0.018 (3)	-0.031 (4)
C36A	0.055 (5)	0.042 (6)	0.039 (5)	-0.009 (5)	-0.016 (4)	0.006 (4)
C37A	0.042 (4)	0.074 (6)	0.032 (4)	-0.005 (4)	-0.004 (3)	0.003 (4)
N4A	0.064 (4)	0.091 (8)	0.038 (5)	-0.007 (4)	-0.002 (3)	-0.005 (4)
C38A	0.070 (6)	0.080 (6)	0.046 (6)	-0.016 (5)	0.001 (5)	-0.006 (5)
C39A	0.080 (7)	0.092 (6)	0.043 (4)	-0.037 (6)	-0.005 (4)	-0.013 (4)
C40A	0.066 (5)	0.070 (6)	0.054 (6)	-0.028 (4)	-0.012 (3)	-0.005 (4)
O10	0.134 (3)	0.243 (4)	0.0893 (19)	0.035 (3)	-0.0257 (18)	-0.024 (2)
C86	0.088 (2)	0.109 (3)	0.118 (3)	-0.028 (2)	-0.012 (2)	0.034 (2)
09	0.181 (3)	0.314 (5)	0.191 (4)	0.089 (3)	-0.140 (3)	-0.158 (4)
C85	0.130 (4)	0.292 (8)	0.185 (5)	0.012 (4)	-0.078 (4)	-0.140 (6)

Geometric parameters (Å, °)

C64—C69	1.389 (3)	C3—C4	1.387 (3)	
C64—C65	1.411 (3)	С3—Н3	0.9300	
C64—S8	1.7585 (18)	C4—C5	1.373 (3)	
C65—O7	1.369 (2)	C4—H4	0.9300	
C65—C66	1.378 (3)	C5—C6	1.396 (3)	
C66—C67	1.382 (3)	С5—Н5	0.9300	

С66—Н66	0.9300	C6—C7	1.510 (2)
C67—C68	1.373 (3)	C7—N1	1.448 (2)
С67—Н67	0.9300	С7—Н7	0.9800
C68—C69	1.400 (3)	C8—N1	1.456 (2)
С68—Н68	0.9300	C8—C9	1.518 (3)
C69—C70	1.515 (2)	C8—H8	0.9800
C70—N7	1.440 (2)	C9—C14	1.389 (3)
C70—S7	1.8522 (19)	C9—C10	1.399 (3)
С70—Н70	0.9800	C10—C11	1.380 (3)
C71—N7	1.446 (2)	C10—H10	0.9300
C71-C72	1.511(3)	C11-C12	1 380 (3)
C71—S8	1.8437(17)	C11—H11	0.9300
C71 H71	0.0800	C_{12} C_{13}	1.374(3)
C72 $C77$	1 380 (3)	C12 H12	1.374(3)
C72 - C72	1.309(3)	C_{12} $-C_{14}$	1.407(2)
C72 - C73	1.403(3)	C13-C14	1.407 (3)
$C_{73} = C_{74}$	1.575 (5)	C20—H20A	0.9600
С/3—Н/3	0.9300	C20—H20B	0.9600
C/4—C/5	1.388 (3)	C20—H20C	0.9600
С74—Н74	0.9300	C21—H21A	0.9600
C75—C76	1.378 (3)	C21—H21B	0.9600
С75—Н75	0.9300	C21—H21C	0.9600
C76—O8	1.368 (2)	N1—C15A	1.418 (12)
C76—C77	1.405 (3)	N1	1.446 (10)
C77—S7	1.7665 (18)	C15—C16	1.379 (10)
N7—C78	1.409 (2)	C15—C19	1.391 (10)
C78—C79	1.377 (3)	C16—C17	1.382 (9)
C78—C82	1.383 (3)	C16—H16	0.9300
C79—C80	1.383 (3)	C17—C18	1.370 (10)
С79—Н79	0.9300	C17—H17	0.9300
C80—C81	1.351 (3)	C18—N2	1.333 (9)
C80—H80	0.9300	C18—H18	0.9300
C81—N8	1 321 (3)	N2-C19	1 341 (9)
C81_H81	0.9300	C19H19	0.9300
N8 C82	1.334(3)	C_{15} C_{16}	1 368 (13)
10-02	1.334(3)	C15A = C10A	1.308(13) 1.374(13)
C_{02} C_{02} C_{02}	1,419(2)	C15A - C17A	1.374(13)
	1.418 (3)	C16A - U16A	1.378 (13)
C83—H83A	0.9600	CI6A—HI6A	0.9300
C83—H83B	0.9600		1.3/4 (12)
C83—H83C	0.9600		0.9300
C84—O7	1.419 (2)	C18A—N2A	1.310 (11)
C84—H84A	0.9600	C18A—H18A	0.9300
C84—H84B	0.9600	N2A—C19A	1.329 (11)
C84—H84C	0.9600	C19A—H19A	0.9300
S5—C43	1.7641 (19)	S3—C22	1.7660 (18)
S5—C50	1.8598 (18)	S3—C29	1.846 (2)
S6—C52	1.7603 (17)	S4—C31	1.764 (2)
S6—C49	1.8360 (17)	S4—C28	1.838 (2)
O5—C44	1.364 (2)	O3—C23	1.370 (2)

O5—C63	1.423 (3)	O3—C42	1.421 (3)
O6—C53	1.368 (2)	O4—C32	1.369 (3)
O6—C62	1.426 (2)	O4—C41	1.433 (3)
C43—C48	1.393 (3)	C22—C27	1.393 (3)
C43—C44	1.403 (3)	C22—C23	1.409 (3)
C44—C45	1.382 (3)	C23—C24	1.375 (3)
C45—C46	1.382 (3)	C24—C25	1.386 (3)
C45—H45	0.9300	C24—H24	0.9300
C46-C47	1 370 (3)	$C_{25} - C_{26}$	1370(3)
C46—H46	0.9300	C25—H25	0.9300
C47 - C48	1 396 (3)	C_{26} C_{27}	1 395 (3)
C47 - H47	0.9300	$C_{26} = 0.27$	0.9300
C_{48} C_{49}	1 514 (3)	C27 C28	1 508 (3)
C_{40} N5	1.314(3) 1.447(2)	$C_{27} = C_{28}$	1.308(3) 1.437(3)
$C_{49} = 103$	1.447(2)	C_{28} H_{28}	0.0800
C50 N5	1.444(2)	C_{20} H_{20}	0.9800
C50—IN3	1.444(2)	C_{29} C_{30} C_{30}	1.433(2) 1.515(2)
	1.505 (2)	$C_{29} = C_{30}$	1.515 (3)
C50—H50	0.9800	C29—H29	0.9800
C51—C52	1.392 (2)	C30—C31	1.385 (3)
C51—C56	1.397 (3)	C30—C35	1.401 (3)
C52—C53	1.404 (2)	C31—C32	1.407 (3)
C53—C54	1.384 (3)	C32—C33	1.380 (4)
C54—C55	1.383 (3)	C33—C34	1.372 (4)
C54—H54	0.9300	С33—Н33	0.9300
C55—C56	1.373 (3)	C34—C35	1.378 (4)
С55—Н55	0.9300	C34—H34	0.9300
С56—Н56	0.9300	С35—Н35	0.9300
C62—H62A	0.9600	C41—H41A	0.9600
С62—Н62В	0.9600	C41—H41B	0.9600
С62—Н62С	0.9600	C41—H41C	0.9600
С63—Н63А	0.9600	C42—H42A	0.9600
С63—Н63В	0.9600	C42—H42B	0.9600
С63—Н63С	0.9600	C42—H42C	0.9600
N5—C58	1.423 (4)	N3—C36A	1.380 (14)
N5—C58A	1.47 (4)	N3—C36	1.408 (10)
C58—C59	1.367 (4)	C36—C40	1.375 (11)
C58—C57	1.387 (5)	C36—C37	1.394 (11)
C59—C60	1.371 (5)	C40—C39	1.386 (11)
C59—H59	0.9300	C40—H40	0.9300
C60—C61	1 362 (6)	C_{39} C_{38}	1.355(11)
C60 - H60	0.9300	C39_H39	0.9300
C61N6	1 332 (6)	C38_N4	1 309 (10)
C61 H61	0.0300	C38 H38	0.0300
N6 C57	1 342 (4)	NA C37	1 320 (10)
C57 H57	0.0200	$\begin{array}{ccc} 1 & 1 \\ 1 & -$	0.0200
C_{2}	1 270 (16)	$C_{2}(-\Pi_{2})$	0.9300
$C_{20A} = C_{27A}$	1.5/0(10) 1.202(10)	$C_{26A} = C_{27A}$	1.3/8(13) 1.400(13)
$C_{50A} = C_{57A}$	1.393 (10)	$C_{27A} \rightarrow V_{4A}$	1.409 (13)
CJ/A—N6A	1.328 (14)	C3/A—N4A	1.332 (11)

С57А—Н57А	0.9300	С37А—Н37А	0.9300
N6A—C61A	1.318 (15)	N4A—C38A	1.316 (11)
C61A—C60A	1.367 (15)	C38A—C39A	1.371 (12)
C61A—H61A	0.9300	C38A—H38A	0.9300
C60A—C59A	1.382 (15)	C39A—C40A	1.372 (12)
C60A—H60A	0.9300	С39А—Н39А	0.9300
С59А—Н59А	0.9300	C40A—H40A	0.9300
<u>\$1</u> _C1	1 7620 (18)	010-086	1 252 (4)
S1—C8	1 8372 (19)	010—H10A	0.8200
\$2 C14	1.0572(19) 1.7620(18)	C86 H86A	0.0200
S2-C7	1.7029(10) 1.9447(10)	C_{00} H_{00}	0.9000
52-01	1.644/(19) 1.250(2)		0.9600
01-012	1.339 (3)	C80—H80C	0.9600
01	1.427 (3)	09-085	1.358 (5)
02	1.368 (2)	09—H9	0.8200
O2—C21	1.431 (2)	C85—H85A	0.9600
C1—C6	1.389 (3)	C85—H85B	0.9600
C1—C2	1.406 (2)	C85—H85C	0.9600
С2—С3	1.379 (3)		
C69C64C65	119 44 (16)	C1 - C6 - C7	123 73 (16)
C69 C64 S8	124.90(13)	$C_1 = C_0 = C_7$	123.75(10) 117.00(16)
C65 C64 S8	124.90(13) 115.65(14)	N1 C7 C6	117.00(10) 114.21(15)
C03 - C04 - 58	113.03(14) 124.00(17)	NI = C7 = C0	114.21(13)
0/000	124.99 (17)	NI-C7-S2	111.21 (12)
0/	114.07 (16)	C6—C7—S2	110.75 (12)
C66—C65—C64	120.94 (18)	N1—C7—H7	106.7
C65—C66—C67	119.02 (18)	С6—С7—Н7	106.7
C65—C66—H66	120.5	S2—C7—H7	106.7
С67—С66—Н66	120.5	N1—C8—C9	115.38 (16)
C68—C67—C66	120.92 (18)	N1—C8—S1	108.97 (12)
С68—С67—Н67	119.5	C9—C8—S1	112.20 (12)
С66—С67—Н67	119.5	N1—C8—H8	106.6
C67—C68—C69	120.86 (19)	С9—С8—Н8	106.6
С67—С68—Н68	119.6	S1—C8—H8	106.6
С69—С68—Н68	119.6	C14—C9—C10	118.49 (18)
C64—C69—C68	118.76 (16)	C14—C9—C8	122.93 (15)
C64 - C69 - C70	123 33 (15)	C10-C9-C8	118 54 (18)
C68 - C69 - C70	117 77 (16)	C_{11} C_{10} C_{9}	120.6(2)
N7 C70 C60	117.77(10) 112.25(14)	$C_{11} = C_{10} = C_{10}$	120.0(2)
N7 C70 S7	112.23(14) 111.65(12)	$C_1 = C_1 $	119.7
N = C = 0	111.03(12) 112.77(12)		119.7
C69—C70—S7	112.77 (12)		120.92 (19)
N/—C/0—H/0	106.6	C12—C11—H11	119.5
C69—C/0—H/0	106.6	C10—C11—H11	119.5
S7—C70—H70	106.6	C13—C12—C11	119.5 (2)
N7—C71—C72	116.08 (15)	C13—C12—H12	120.3
N7—C71—S8	108.84 (12)	C11—C12—H12	120.3
C72—C71—S8	110.52 (11)	O1—C13—C12	125.39 (19)
N7—C71—H71	107.0	O1—C13—C14	114.26 (16)
C72—C71—H71	107.0	C12—C13—C14	120.3 (2)

S8—C71—H71	107.0	C9—C14—C13	120.21 (16)
С77—С72—С73	119.49 (17)	C9—C14—S2	124.76 (14)
C77—C72—C71	123.25 (15)	C13—C14—S2	115.02 (15)
C73—C72—C71	117.25 (16)	O1—C20—H20A	109.5
C74—C73—C72	120.41 (19)	O1—C20—H20B	109.5
С74—С73—Н73	119.8	H20A-C20-H20B	109.5
С72—С73—Н73	119.8	O1—C20—H20C	109.5
C73—C74—C75	120.60 (19)	H20A—C20—H20C	109.5
С73—С74—Н74	119.7	H20B-C20-H20C	109.5
С75—С74—Н74	119.7	O2—C21—H21A	109.5
C76—C75—C74	119.40 (19)	O2—C21—H21B	109.5
С76—С75—Н75	120.3	H21A—C21—H21B	109.5
С74—С75—Н75	120.3	O2—C21—H21C	109.5
08-C76-C75	124.57 (18)	$H_{21}A - C_{21} - H_{21}C$	109.5
08-C76-C77	114.45 (16)	H21B-C21-H21C	109.5
C75—C76—C77	120.98 (18)	C15A - N1 - C7	120.9 (7)
C72—C77—C76	119.02 (16)	C15—N1—C7	109.6 (5)
C72 - C77 - S7	124 62 (14)	C15A - N1 - C8	1163(7)
C76-C77-S7	116 36 (14)	C15-N1-C8	117.4(5)
C78 - N7 - C70	119 21 (14)	C7-N1-C8	117.1(3) 112.19(13)
C78 - N7 - C71	121 27 (14)	C16-C15-C19	115 3 (8)
C70 - N7 - C71	113 27 (14)	C16-C15-N1	121 8 (9)
C79 - C78 - C82	116 45 (17)	C19 - C15 - N1	122.8 (8)
C79 - C78 - N7	12373(17)	C_{15} $-C_{16}$ $-C_{17}$	120.8 (8)
C82-C78-N7	119 70 (16)	C_{15} $-C_{16}$ $-H_{16}$	119.6
C78 - C79 - C80	119.0 (2)	C17-C16-H16	119.6
C78—C79—H79	120.5	$C_{18} - C_{17} - C_{16}$	118 8 (7)
C80—C79—H79	120.5	C_{18} $-C_{17}$ $-H_{17}$	120.6
C81 - C80 - C79	119.9 (2)	C16—C17—H17	120.6
C81—C80—H80	120.0	N2-C18-C17	122.9 (6)
C79—C80—H80	120.0	N2-C18-H18	118.5
N8-C81-C80	122.7(2)	C17—C18—H18	118.5
N8—C81—H81	118.6	C_{18} N_{2} C_{19}	116.8 (8)
C80—C81—H81	118.6	N2-C19-C15	125.4(10)
C81 - N8 - C82	117.3 (2)	N2-C19-H19	117.3
N8—C82—C78	124 6 (2)	C_{15} C_{19} H_{19}	117.3
N8—C82—H82	117.7	C16A - C15A - C19A	119.2 (11)
C78—C82—H82	117.7	C16A - C15A - N1	$123 \pm (12)$
08—C83—H83A	109.5	C19A - C15A - N1	117.3 (12)
08—C83—H83B	109.5	C15A - C16A - C17A	118.7 (13)
H83A—C83—H83B	109.5	C15A-C16A-H16A	120.6
08-C83-H83C	109.5	C17A - C16A - H16A	120.6
H83A - C83 - H83C	109.5	C18A - C17A - C16A	120.0 117.5(11)
H83B - C83 - H83C	109.5	C18A - C17A - H17A	121.3
07—C84—H84A	109.5	C16A—C17A—H17A	121.3
07—C84—H84B	109.5	N2A—C18A—C17A	124.7 (8)
H84A—C84—H84B	109.5	N2A—C18A—H18A	117.6
07—C84—H84C	109.5	C17A— $C18A$ — $H18A$	117.6

H84A—C84—H84C	109.5	C18A—N2A—C19A	117.2 (9)
H84B—C84—H84C	109.5	N2A—C19A—C15A	122.7 (11)
C43—S5—C50	98.21 (8)	N2A—C19A—H19A	118.7
C52—S6—C49	98.56 (8)	C15A—C19A—H19A	118.7
C44—O5—C63	118.35 (18)	C77—S7—C70	97.69 (8)
C53—O6—C62	117.70 (15)	C64—S8—C71	98.01 (8)
C48—C43—C44	119.49 (17)	C65—O7—C84	118.59 (17)
C48—C43—S5	124.48 (15)	C76—O8—C83	117.60 (18)
C44—C43—S5	116.00 (14)	C22—S3—C29	97.93 (9)
O5—C44—C45	124.65 (19)	C31—S4—C28	97.56 (9)
O5—C44—C43	114.78 (17)	C23—O3—C42	117.01 (17)
C45—C44—C43	120.56 (19)	C32—O4—C41	117.9 (2)
C44—C45—C46	119.3 (2)	C27—C22—C23	119.36 (17)
C44—C45—H45	120.4	C27—C22—S3	124.14 (14)
C46—C45—H45	120.4	C23—C22—S3	116.50 (14)
C47—C46—C45	120.9 (2)	O3—C23—C24	124.70 (19)
C47—C46—H46	119.5	O3—C23—C22	114.55 (17)
C45—C46—H46	119.5	C24—C23—C22	120.75 (18)
C46—C47—C48	120.6 (2)	C23—C24—C25	119.3 (2)
C46—C47—H47	119.7	C23—C24—H24	120.4
C48—C47—H47	119.7	C25—C24—H24	120.4
C43—C48—C47	119.09 (18)	C26—C25—C24	120.72 (19)
C43—C48—C49	123.08 (17)	С26—С25—Н25	119.6
C47—C48—C49	117.83 (17)	C24—C25—H25	119.6
N5—C49—C48	116.41 (15)	C25—C26—C27	120.94 (19)
N5—C49—S6	109.24 (12)	С25—С26—Н26	119.5
C48—C49—S6	110.28 (12)	С27—С26—Н26	119.5
N5—C49—H49	106.8	C22—C27—C26	118.90 (18)
C48—C49—H49	106.8	C22—C27—C28	124.00 (16)
S6—C49—H49	106.8	C26—C27—C28	117.04 (17)
N5-C50-C51	113.47 (14)	N3—C28—C27	113.38 (16)
N5—C50—S5	112.61 (12)	N3—C28—S4	111.30 (14)
C51—C50—S5	109.57 (12)	C27—C28—S4	111.75 (13)
N5—C50—H50	106.9	N3—C28—H28	106.6
С51—С50—Н50	106.9	С27—С28—Н28	106.6
S5-C50-H50	106.9	S4—C28—H28	106.6
C52—C51—C56	119.53 (16)	N3—C29—C30	112.91 (17)
C52—C51—C50	123.08 (15)	N3—C29—S3	110.34 (14)
C56—C51—C50	117.39 (16)	C30—C29—S3	113.90 (13)
C51—C52—C53	119.08 (15)	N3—C29—H29	106.4
C51—C52—S6	124.42 (13)	С30—С29—Н29	106.4
C53—C52—S6	116.47 (13)	S3—C29—H29	106.4
O6—C53—C54	124.39 (16)	C31—C30—C35	119.1 (2)
O6—C53—C52	114.72 (15)	C31—C30—C29	123.33 (17)
C54—C53—C52	120.89 (17)	C35—C30—C29	117.2 (2)
C55—C54—C53	119.16 (17)	C30—C31—C32	119.27 (19)
С55—С54—Н54	120.4	C30—C31—S4	125.35 (15)
C53—C54—H54	120.4	C32—C31—S4	115.31 (18)

ar(are ar)	100.00 (17)	A	
C56—C55—C54	120.92 (17)	O4—C32—C33	124.7 (2)
С56—С55—Н55	119.5	O4—C32—C31	114.4 (2)
С54—С55—Н55	119.5	C33—C32—C31	121.0 (2)
C55—C56—C51	120.42 (18)	C34—C33—C32	119.1 (2)
С55—С56—Н56	119.8	С34—С33—Н33	120.4
C51—C56—H56	119.8	С32—С33—Н33	120.4
O6—C62—H62A	109.5	C33—C34—C35	121.1 (2)
06-C62-H62B	109.5	C33—C34—H34	119 5
H62A - C62 - H62B	109.5	C_{35} C_{34} H_{34}	119.5
06 C62 H62C	100.5	$C_{33}^{24} = C_{35}^{25} = C_{30}^{20}$	117.3 120.4(3)
	109.5	$C_{34} = C_{35} = C_{30}$	120.4 (3)
H62A—C62—H62C	109.5	C34—C35—H35	119.8
H62B—C62—H62C	109.5	С30—С35—Н35	119.8
O5—C63—H63A	109.5	O4—C41—H41A	109.5
O5—C63—H63B	109.5	O4—C41—H41B	109.5
H63A—C63—H63B	109.5	H41A—C41—H41B	109.5
O5—C63—H63C	109.5	O4—C41—H41C	109.5
H63A—C63—H63C	109.5	H41A—C41—H41C	109.5
H63B—C63—H63C	109.5	H41B—C41—H41C	109.5
C58—N5—C50	116.8 (2)	O3—C42—H42A	109.5
C58—N5—C49	117.03(19)	03—C42—H42B	109 5
C_{50} N5 C_{49}	113.08(14)	H42A - C42 - H42B	109.5
C_{50} N5 C_{58A}	105(2)	$O_3 C_{42} H_{42}C$	109.5
C_{30} N5 C_{58A}	103(2) 127.2(12)	$H_{42A} = C_{42} = H_{42C}$	109.5
C49 - N3 - C38A	127.5(15)	H42A - C42 - H42C	109.5
$C_{59} = C_{58} = C_{57}$	117.7 (3)	H42B - C42 - H42C	109.5
C59—C58—N5	119.8 (3)	C36A—N3—C29	119.6 (11)
C57—C58—N5	122.5 (3)	C36—N3—C29	125.4 (8)
C58—C59—C60	120.1 (4)	C36A—N3—C28	126.4 (10)
С58—С59—Н59	119.9	C36—N3—C28	120.6 (8)
С60—С59—Н59	119.9	C29—N3—C28	114.00 (15)
C61—C60—C59	118.4 (4)	C40—C36—C37	117.2 (9)
С61—С60—Н60	120.8	C40-C36-N3	122.1 (11)
С59—С60—Н60	120.8	C37—C36—N3	120.6 (11)
N6—C61—C60	123.6 (3)	C36—C40—C39	122.2 (11)
N6—C61—H61	118.2	C36—C40—H40	118.9
C60-C61-H61	118.2	C_{39} C_{40} H_{40}	118.9
C61 - N6 - C57	117.3 (3)	C_{38} C_{39} C_{40}	115.2(12)
N6 C57 C58	117.5(3) 122.9(4)	C_{38} C_{30} H_{30}	122 4
NG-C57-U57	110 4	$C_{30} = C_{30} = H_{30}$	122.4
NO - C3 / - H3 / C50 - C57 - H57	118.0	C40 - C39 - H39	122.4
C38—C57—H57	118.6	N4-C38-C39	124.6 (10)
C59A—C58A—C57A	119 (2)	N4—C38—H38	117.7
C59A—C58A—N5	118 (3)	С39—С38—Н38	117.7
C57A—C58A—N5	115 (3)	C38—N4—C37	120.3 (10)
N6A—C57A—C58A	119.9 (19)	N4—C37—C36	120.4 (11)
N6A—C57A—H57A	120.0	N4—C37—H37	119.8
С58А—С57А—Н57А	120.0	С36—С37—Н37	119.8
C61A—N6A—C57A	117.5 (18)	C40A—C36A—N3	122.1 (14)
N6A—C61A—C60A	126.9 (19)	C40A—C36A—C37A	115.5 (11)
N6A—C61A—H61A	116.5	N3—C36A—C37A	121.7 (13)

C60A—C61A—H61A	116.5	N4A—C37A—C36A	120.0 (13)
C61A—C60A—C59A	114.7 (18)	N4A—C37A—H37A	120.0
C61A—C60A—H60A	122.6	С36А—С37А—Н37А	120.0
C59A—C60A—H60A	122.6	C38A—N4A—C37A	121.8 (12)
C58A—C59A—C60A	120 (2)	N4A—C38A—C39A	123.0 (11)
С58А—С59А—Н59А	120.1	N4A—C38A—H38A	118.5
С60А—С59А—Н59А	120.1	C39A—C38A—H38A	118.5
C1—S1—C8	98.63 (9)	C38A—C39A—C40A	114.9 (13)
C14—S2—C7	98.13 (8)	C38A—C39A—H39A	122.6
C13—O1—C20	118.18 (18)	C40A—C39A—H39A	122.6
$C_{2} = O_{2} = C_{2}$	117 41 (16)	C39A—C40A—C36A	124.6(13)
C6-C1-C2	119 31 (16)	C39A - C40A - H40A	117 7
C6-C1-S1	123 64 (13)	C_{36A} C_{40A} H_{40A}	117.7
C_{2} C_{1} S_{1}	123.01(13) 117.05(14)	C86-O10-H10A	109 5
02 - 02 - 03	124 56 (17)	010-C86-H86A	109.5
02 - 02 - 03	124.50(17) 114 53 (16)	010 - C86 - H86B	109.5
$C_2 = C_2 = C_1$	114.55(10) 120.00(18)	H86A C86 H86B	109.5
$C_2 = C_2 = C_1$	120.90(18) 110.04(18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_2 = C_3 = C_4$	119.04 (10)		109.5
$C_2 = C_3 = H_2$	120.5		109.5
C4 - C3 - H3	120.3 120.92(18)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{5} = C_{4} = C_{5}$	120.85 (18)	$C_{83} = C_{9} = H_{9}$	109.5
$C_3 = C_4 = H_4$	119.0	$O_{2} = C_{3} = H_{3}A$	109.5
$C_3 - C_4 - H_4$	119.0	09-03-03B	109.5
C4 - C5 - C6	120.39 (18)	H85A—C85—H85B	109.5
C4—C5—H5	119.7	09—C85—H85C	109.5
C6-C5-H5	119.7	H85A—C85—H85C	109.5
C1 - C6 - C5	119.25 (16)	H85B—C85—H85C	109.5
C69—C64—C65—O7	178 62 (16)	C1	113 15 (16)
88—C64—C65—O7	-0.5(2)	$C_{5} - C_{6} - C_{7} - S_{2}^{2}$	-68.27(18)
C69 - C64 - C65 - C66	-0.9(3)	$C_{14} = S_{2} = C_{7} = N_{1}$	47.09(13)
88-C64-C65-C66	179.98(15)	$C_{14} = S_{2} = C_{7} = C_{6}$	-81.03(13)
07 C65 C66 C67	179.70 (13)	C1 = S1 = C7 = C0	48 42 (13)
C_{64} C_{65} C_{66} C_{67}	-10(3)	$C_1 = S_1 = C_2 = C_1$	-80.63(14)
C65 C66 C67 C68	1.0(3)	1 - 51 - 63 - 69	-143(2)
C66 C67 C68 C69	1.3(3)	S1 C8 C9 C14	14.3(2)
C65 C64 C69 C68	0.4(3)	$S1 - C_0 - C_7 - C_{14}$	111.27(17) 163.28(16)
C03 - C04 - C09 - C08	2.0(3) -178 42 (14)	N1 - C8 - C9 - C10	-71, 11, (10)
56 - C04 - C09 - C08	-172.02(17)	51-60-69-610	(1.11(19))
C03 - C04 - C09 - C70	-1/2.93(17)	C14 - C9 - C10 - C11	0.0(3)
58 - 04 - 09 - 070	0.1(3)	$C_{0} = C_{10} = C_{11} = C_{12}$	-1/0.90(18)
C67 - C68 - C69 - C64	-2.5(3)	$C_{2} = C_{10} = C_{11} = C_{12}$	-0.2(3)
C67 - C68 - C69 - C70	1/3.41(1/)	C10-C11-C12-C13	-0.5(3)
C(9 - C(0 - C70 - N7))	14.1(2)	$C_{20} = 01 = C_{13} = C_{14}$	$\delta./(3)$
$C_{00} - C_{00} - C_{10} - N / C_{10} - C_{10}$	-101.43(10)	$C_{20} = 01 = 013 = 014$	-1/1.62 (19)
$C_{0} = C_{0} = C_{0$	-113.0/(17)	C11 - C12 - C13 - O1	-1/9.8(2)
Cos - Coy - C/0 - S/	/1.39 (18)	C11 - C12 - C13 - C14	0.0 (3)
N = C/1 = C/2 = C/7	10.7 (2)	C10-C9-C14-C13	-0.7 (3)
S8—C71—C72—C77	-113.83 (16)	C8—C9—C14—C13	176.95 (16)

N7—C71—C72—C73	-168.39 (15)	C10—C9—C14—S2	-179.75 (14)
S8—C71—C72—C73	67.06 (18)	C8—C9—C14—S2	-2.1 (2)
C77—C72—C73—C74	-1.1 (3)	O1—C13—C14—C9	-179.68 (16)
C71—C72—C73—C74	178.08 (18)	C12—C13—C14—C9	0.0 (3)
C72—C73—C74—C75	-1.6 (3)	O1—C13—C14—S2	-0.5 (2)
C73—C74—C75—C76	1.8 (3)	C12—C13—C14—S2	179.16 (15)
C74—C75—C76—O8	179.9 (2)	C7—S2—C14—C9	-12.75 (16)
C74—C75—C76—C77	0.7 (3)	C7—S2—C14—C13	168.13 (14)
C73—C72—C77—C76	3.4 (3)	C6-C7-N1-C15A	-161.9 (8)
C71—C72—C77—C76	-175.67 (16)	S2-C7-N1-C15A	71.8 (8)
C73—C72—C77—S7	-177.04 (14)	C6-C7-N1-C15	-172.9 (5)
C71—C72—C77—S7	3.9 (2)	S2—C7—N1—C15	60.9 (5)
O8—C76—C77—C72	177.42 (16)	C6—C7—N1—C8	54.79 (19)
C75—C76—C77—C72	-3.3 (3)	S2—C7—N1—C8	-71.44 (16)
O8—C76—C77—S7	-2.2 (2)	C9—C8—N1—C15A	-92.1 (7)
C75—C76—C77—S7	177.16 (16)	S1—C8—N1—C15A	140.6 (7)
C69—C70—N7—C78	149.67 (15)	C9—C8—N1—C15	-75.4 (5)
S7—C70—N7—C78	-82.57 (17)	S1—C8—N1—C15	157.3 (5)
C69—C70—N7—C71	-57.75 (19)	C9—C8—N1—C7	52.9 (2)
S7—C70—N7—C71	70.01 (16)	S1—C8—N1—C7	-74.32 (16)
C72—C71—N7—C78	102.29 (18)	C7—N1—C15—C16	60.9 (9)
S8—C71—N7—C78	-132.31 (14)	C8—N1—C15—C16	-169.6 (6)
C72—C71—N7—C70	-49.7 (2)	C7—N1—C15—C19	-123.9 (8)
S8—C71—N7—C70	75.75 (16)	C8—N1—C15—C19	5.7 (11)
C70—N7—C78—C79	131.6 (2)	C19—C15—C16—C17	-0.6 (11)
C71—N7—C78—C79	-18.8 (3)	N1—C15—C16—C17	175.0 (8)
C70—N7—C78—C82	-52.7 (3)	C15—C16—C17—C18	0.6 (10)
C71—N7—C78—C82	157.02 (19)	C16—C17—C18—N2	0.1 (10)
C82—C78—C79—C80	-1.0 (3)	C17—C18—N2—C19	-0.8 (11)
N7—C78—C79—C80	174.9 (2)	C18—N2—C19—C15	0.8 (15)
C78—C79—C80—C81	1.4 (4)	C16—C15—C19—N2	-0.2 (15)
C79—C80—C81—N8	-0.5 (4)	N1—C15—C19—N2	-175.7 (10)
C80—C81—N8—C82	-0.8 (4)	C7—N1—C15A—C16A	-118.8 (10)
C81—N8—C82—C78	1.2 (4)	C8—N1—C15A—C16A	23.1 (13)
C79—C78—C82—N8	-0.3 (4)	C7—N1—C15A—C19A	54.3 (12)
N7—C78—C82—N8	-176.4 (2)	C8—N1—C15A—C19A	-163.9 (9)
C50—S5—C43—C48	-16.77 (16)	C19A—C15A—C16A—C17A	1.2 (14)
C50—S5—C43—C44	165.55 (14)	N1—C15A—C16A—C17A	174.2 (12)
C63—O5—C44—C45	8.3 (3)	C15A—C16A—C17A—C18A	-0.7 (14)
C63—O5—C44—C43	-172.6 (2)	C16A—C17A—C18A—N2A	-0.2 (19)
C48—C43—C44—O5	178.93 (16)	C17A—C18A—N2A—C19A	1 (2)
S5—C43—C44—O5	-3.3 (2)	C18A—N2A—C19A—C15A	0.1 (19)
C48—C43—C44—C45	-1.9 (3)	C16A—C15A—C19A—N2A	-0.9 (18)
S5—C43—C44—C45	175.88 (16)	N1—C15A—C19A—N2A	-174.3 (12)
O5—C44—C45—C46	179.2 (2)	C72—C77—S7—C70	12.72 (16)
C43—C44—C45—C46	0.2 (3)	C76—C77—S7—C70	-167.72 (14)
C44—C45—C46—C47	1.4 (4)	N7—C70—S7—C77	-47.12 (13)
C45—C46—C47—C48	-1.2 (4)	C69—C70—S7—C77	80.36 (13)

C44—C43—C48—C47	2.1 (3)	C69—C64—S8—C71	9.10 (17)
S5—C43—C48—C47	-175.47 (15)	C65—C64—S8—C71	-171.86 (14)
C44—C43—C48—C49	-176.89 (16)	N7—C71—S8—C64	-45.45 (13)
S5—C43—C48—C49	5.5 (2)	C72—C71—S8—C64	83.13 (13)
C46—C47—C48—C43	-0.6(3)	C66—C65—O7—C84	2.4 (3)
C46—C47—C48—C49	178.5 (2)	C64—C65—O7—C84	-177.08 (19)
C43—C48—C49—N5	-19.3 (2)	C75—C76—O8—C83	-2.5 (3)
C47—C48—C49—N5	161.69 (16)	C77—C76—O8—C83	176.8 (2)
C43—C48—C49—S6	105.87 (17)	C29—S3—C22—C27	9.62 (16)
C47—C48—C49—S6	-73.15 (19)	C29—S3—C22—C23	-170.48(13)
C52—S6—C49—N5	46.58 (13)	C42—O3—C23—C24	1.0 (3)
C52—S6—C49—C48	-82.55 (13)	C42—O3—C23—C22	-179.02(18)
C43—S5—C50—N5	45.89 (14)	C27—C22—C23—O3	177.36 (15)
C43—S5—C50—C51	-81.41 (13)	<u>S3-C22-C23-O3</u>	-2.5(2)
N5-C50-C51-C52	-19.0(2)	C_{27} C_{22} C_{23} C_{24}	-2.7(3)
S5-C50-C51-C52	107.84 (16)	S3-C22-C23-C24	177.40(15)
N5-C50-C51-C56	160 65 (15)	$03-C^{23}-C^{24}-C^{25}$	-17930(19)
S5-C50-C51-C56	-7254(18)	C^{22} C^{23} C^{24} C^{25}	0.8(3)
$C_{56} = C_{51} = C_{52} = C_{53}$	0.0(2)	C_{23} C_{24} C_{25} C_{25} C_{26}	0.0(3)
C_{50} C_{51} C_{52} C_{53}	17960(15)	C_{24} C_{25} C_{26} C_{27}	-0.5(3)
$C_{56} = C_{51} = C_{52} = S_{53}$	-177.95(13)	C_{23} C_{22} C_{27} C_{26} C_{27} C_{26}	30(2)
$C_{50} = C_{51} = C_{52} = S_{6}$	17(2)	S_{3} C_{22} C_{27} C_{26}	-177 11 (13)
C49 = 86 = C52 = C51	-1435(16)	C^{23} C^{22} C^{27} C^{27} C^{28}	-173.90(16)
C49 = 86 = C52 = C53	167 67 (13)	S_{3} C_{22} C_{27} C_{28}	60(2)
$C_{4,7}^{(2)} = 06 - C_{5,2}^{(2)} - C_{5,4}^{(2)}$	-0.9(3)	C_{25} C_{26} C_{27} C_{20} C_{20}	-14(3)
$C_{02} = 00 = C_{03} = C_{04}$	17855(17)	$C_{25} = C_{20} = C_{27} = C_{22}$	175 66 (18)
$C_{02} = 00 = C_{03} = C_{02}$	-17875(14)	$C_{23} = C_{20} = C_{27} = C_{28} = N_3$	173.00(10) 12.2(2)
S6-C52-C53-06	-0.7(2)	$C_{22} = C_{27} = C_{26} = N_3$	-164.77(16)
50 - 652 - 653 - 00	0.7(2)	$C_{20} = C_{27} = C_{20} = R_{3}$	-114.61(17)
S6 C52 C53 C54	0.7(3) 178.81(14)	$C_{22} = C_{21} = C_{20} = S_{4}$	68 46 (18)
06 C53 C54 C55	178.01(14) 178.20(17)	$C_{20} = C_{27} = C_{20} = S_{7}$	-42.99(14)
C_{52} C_{53} C_{54} C_{55}	-11(3)	$C_{31} = S_{4} = C_{28} = C_{27}$	42.99(14)
$C_{32} - C_{33} - C_{34} - C_{35}$	1.1(3)	$C_{22} = S_{2} = C_{20} = N_{20}^{2}$	-45.32(14)
$C_{55} - C_{54} - C_{55} - C_{50}$	0.0(3)	$C_{22} = S_{3} = C_{29} = N_{3}$	-43.32(13)
$C_{54} = C_{55} = C_{50} = C_{51}$	-0.2(3)	$N_{22} = S_{3} = C_{29} = C_{30}$	62.00(14)
$C_{52} = C_{51} = C_{50} = C_{55}$	-0.3(3)	$N_{3} = C_{29} = C_{30} = C_{31}$	13.9 (3)
$C_{50} - C_{51} - C_{50} - C_{55}$	-1/9.90(17) -162.0(2)	$S_{3} = C_{29} = C_{30} = C_{31}$	-112.94(19) -150.42(19)
C_{31} C_{30} N_{5} C_{58}	-102.0(2)	$N_{3} = C_{29} = C_{30} = C_{33}$	-139.42(19)
53-0.50-0.58	72.8(3)	53-029-030-035	73.7(2)
$C_{31} = C_{30} = N_{3} = C_{49}$	57.70(19)	$C_{33} = C_{30} = C_{31} = C_{32}$	2.9 (3)
53-0.50-0.5-0.49	-6/.50(16)	$C_{29} = C_{30} = C_{31} = C_{32}$	-1/0.36(18)
C_{51} C_{50} N_{5} C_{58A}	-160(2)	$C_{35} - C_{30} - C_{31} - S_{4}$	1/9.69 (1/)
S5-C50-N5-C58A	/5 (2)	$C_{29} = C_{30} = C_{31} = S_{4}$	6.5(3)
C48 - C49 - N5 - C58	-88.2(3)	$C_{28} = S_{4} = C_{31} = C_{30}$	/.35 (18)
50-049-100-058	140.1(3)	$C_{20} = 54 = C_{31} = C_{32}$	-1/5.72(15)
C48 - C49 - N5 - C50	51.98 (19) 72 70 (15)	C41 - C4 - C32 - C33	15.9 (4)
50-049-N5-050	-/3./0(15)	C41 - C4 - C32 - C31	-164.1(2)
C48—C49—N5—C58A	-80(4)	$C_{30} - C_{31} - C_{32} - O_{4}$	1/7.68 (18)
S6-C49-N5-C58A	154 (4)	S4—C31—C32—O4	0.5 (2)

C50—N5—C58—C59	67.2 (5)	C30—C31—C32—C33	-2.3 (3)
C49—N5—C58—C59	-154.2 (3)	S4—C31—C32—C33	-179.44 (18)
C50—N5—C58—C57	-113.2 (4)	O4—C32—C33—C34	-179.6 (2)
C49—N5—C58—C57	25.5 (6)	C31—C32—C33—C34	0.4 (4)
C57—C58—C59—C60	0.6 (6)	C32—C33—C34—C35	1.0 (4)
N5-C58-C59-C60	-179.8 (4)	C33—C34—C35—C30	-0.4 (4)
C58—C59—C60—C61	-0.5 (6)	C31—C30—C35—C34	-1.6 (3)
C59—C60—C61—N6	0.0 (5)	C29—C30—C35—C34	172.0 (2)
C60—C61—N6—C57	0.3 (5)	C30—C29—N3—C36A	123.5 (16)
C61—N6—C57—C58	-0.2 (6)	S3—C29—N3—C36A	-107.8 (16)
C59—C58—C57—N6	-0.2 (7)	C30—C29—N3—C36	125.3 (14)
N5-C58-C57-N6	-179.9 (4)	S3—C29—N3—C36	-106.0 (14)
C50—N5—C58A—C59A	-144 (5)	C30—C29—N3—C28	-55.5 (2)
C49—N5—C58A—C59A	-9 (8)	S3—C29—N3—C28	73.22 (19)
C50—N5—C58A—C57A	66 (5)	C27—C28—N3—C36A	126.8 (17)
C49—N5—C58A—C57A	-159 (3)	S4—C28—N3—C36A	-106.2 (17)
C59A—C58A—C57A—N6A	18 (8)	C27—C28—N3—C36	124.9 (13)
N5—C58A—C57A—N6A	167 (4)	S4—C28—N3—C36	-108.0 (13)
C58A—C57A—N6A—C61A	-9 (6)	C27—C28—N3—C29	-54.3 (2)
C57A—N6A—C61A—C60A	-1 (7)	S4—C28—N3—C29	72.70 (19)
N6A—C61A—C60A—C59A	2 (7)	C29—N3—C36—C40	20 (3)
C57A—C58A—C59A—C60A	-16 (9)	C28—N3—C36—C40	-159 (2)
N5-C58A-C59A-C60A	-165 (5)	C29—N3—C36—C37	-155.9 (17)
C61A—C60A—C59A—C58A	7 (8)	C28—N3—C36—C37	25 (3)
C8—S1—C1—C6	-12.88 (16)	C37—C36—C40—C39	-1 (4)
C8—S1—C1—C2	167.76 (14)	N3—C36—C40—C39	-177 (2)
C21—O2—C2—C3	3.2 (3)	C36—C40—C39—C38	-2 (4)
C21—O2—C2—C1	-177.46 (18)	C40-C39-C38-N4	5 (4)
C6-C1-C2-O2	-176.22 (15)	C39—C38—N4—C37	-4 (4)
S1—C1—C2—O2	3.2 (2)	C38—N4—C37—C36	1 (3)
C6-C1-C2-C3	3.1 (3)	C40-C36-C37-N4	2 (4)
S1—C1—C2—C3	-177.47 (15)	N3—C36—C37—N4	178 (2)
O2—C2—C3—C4	178.06 (18)	C29—N3—C36A—C40A	-161 (2)
C1—C2—C3—C4	-1.2 (3)	C28—N3—C36A—C40A	18 (4)
C2—C3—C4—C5	-0.9 (3)	C29—N3—C36A—C37A	29 (4)
C3—C4—C5—C6	1.0 (3)	C28—N3—C36A—C37A	-152 (2)
C2-C1-C6-C5	-2.9 (2)	C40A—C36A—C37A—N4A	3 (5)
S1—C1—C6—C5	177.72 (14)	N3—C36A—C37A—N4A	174 (3)
C2-C1-C6-C7	175.62 (16)	C36A—C37A—N4A—C38A	-2 (5)
S1—C1—C6—C7	-3.7 (2)	C37A—N4A—C38A—C39A	-2 (5)
C4—C5—C6—C1	0.9 (3)	N4A—C38A—C39A—C40A	4 (4)
C4—C5—C6—C7	-177.75 (17)	C38A—C39A—C40A—C36A	-3 (4)
C1C6C7N1	-13.3 (2)	N3—C36A—C40A—C39A	-171 (2)
C5—C6—C7—N1	165.25 (15)	C37A—C36A—C40A—C39A	-1 (4)

D—H···A	<i>D</i> —Н	$H \cdots A$	D···· A	D—H··· A
C28—H28…O9 ⁱ	0.98	2.41	3.222 (3)	140
C29—H29…S2 ⁱⁱ	0.98	2.88	3.601 (2)	131
C41—H41A····O2 ⁱⁱⁱ	0.96	2.51	3.367 (3)	148
O10—H10A…N6	0.82	2.11	2.804 (5)	143
O9—H9…O10	0.82	1.76	2.569 (5)	167

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) -*x*, -*y*+1, -*z*+1; (iii) *x*, *y*+1, *z*-1.