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ON ESTIMATION OF NON-SMOOTH FUNCTIONALS 1

Abstract. Let a function f be observed with noise. In the present paper we

concern the problem of nonparametric estimation of some non-smooth functionals

of f , more precisely, Lr -norm kfkr of f . Existing in the literature results on

estimation of functionals deal mostly with two extreme cases: estimation of a

smooth (di�erentiable in L2 ) functional or estimation of a singular functional

like the value of f at a certain point or the maximumof f . In the �rst case, the

rate of estimation is typically n�1=2 , n being the number of observations. In the

second case, the rate of functional estimation coincides with the nonparametric

rate of estimation of the whole function f in the corresponding norm.

We show that the case of estimation of kfkr is in some sense intermediate

between the above extreme two. The optimal rate of estimation is worse than

n�1=2 but better than the usual nonparametric rate. The results depend on the

value of r . For r even integer, the rate occurs to be n��=(2�+1�1=r) where � is

the degree of smoothness. If r is not even integer, then the nonparametric rate

n��=(2�+1) can be improved only by some logarithmic factor.

1. Introduction

The problem of estimation of a functional is one of the basic problems in statistical
inference. Below we consider this problem in the nonparametric set-up. Let a
function f be observed with noise. The goal is to estimate by observed data
some real functional F (f) . Clearly the quality of estimation depends heavily
on smoothness properties of the functional F . The theory for estimating linear
functionals is in some sense the most developed. Hardest one dimensional subfamily

arguments yield both linear estimators with smallest maximum risk among linear
estimators and also show that this maximum risk is only a small multiple of the
minimax risk, see Levit (1974, 1975), Koshevnik and Levit (1976), Ibragimov and
Khasminski (1981, 1987) and Donoho and Liu (1991).
Another well studied situation concerns the case of \smooth" functionals. This

is typically understood in the sense that F is di�erentiable in L2 . It was shown in
Levit (1978), Hasminski and Ibragimov (1979), Ibragimov, Nemirovski and Khas-
minski (1986) that if F is smooth and the underlying function f is also smooth

enough then F (f) can be estimated with the parametric rate n�1=2 , see also
Ibragimov and Khasminski (1991), Birg�e and Massart (1995). The problem of es-
timation of quadratic functionals is studied in details in Hall and Marron (1987),
Bickel and Ritov (1988), Donoho and Nussbaum (1990), Fan (1991), Efroimovich
and Low (1996), Laurent (1996) among others. Estimation of functionals of the

type
R
f3 is discussed in Kerkyacharian and Picard (1996).

The problem of estimation of non-smooth functionals is not well developed so far
and there are very few results of this sort in the literature. Ibragimov and Khas-
minski (1980) established the rate of estimation of the maximum of f , Korostelev
(1990) studied the problem of estimating L1 -norm of f . Korostelev and Tsybakov
(1994) considered some functional estimation problems relying on the image model
like estimation of the length of the image boundary or estimation of the size of
image.
In the present paper we are focusing on the problem of estimating Lr -norm kfkr

with some r � 1 . It is worth to mention that at least three cases with r = 1; 2
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and 1 have very natural interpretation. The case with r = 1 corresponds to
estimation of the maximum of f . Ibragimov and Khasminski (1980) shown that
the rate of estimation of F (f) = kfk1 coincides with the rate of global estimation

of the function f and one may therefore use plug-in estimator F̂ = kf̂k1 where

f̂ is a rate-optimal estimator of f .

Korostelev (1990) claimed the similar qualitative result for estimating of L1 -

norm kfk1 =
R jf(t)j : plug-in estimator

R jf̂(t)j provides with the optimal rate

n��=(2�+1) . However, the inspection of the proof shown a gap in establishing the
lower bound. By more detailed analysis it was found out that the result itself is not

correct: some improvement of the nonparametric rate is possible. Note meanwhile
that this improvement is only by some log-factor and it is therefore unessential for
practical application.
Another interesting phenomenon is met in estimating Lr -norm for r > 1 . It

turns out that both the results and the methods di�er essentially between the
cases with r even integer and the remaining cases. In the �rst case the rate of
estimation can be substantially improved compared with the nonparametric one, it
is about n��=(2�+1�1=r) , for the remaining situations the result is not better than
for L1 -norm.

The �nal remark concerns the question of correspondence between the problems
of estimating Lr -norm and the nonparametric hypothesis testing problem when
the distance between the null hypothesis and the alternative set is measured in Lr -
norm, see Ingster (1982, 1993), Lepski and Spokoiny (1995) or Spokoiny (1996).
The origin of this question is very natural. When considering the testing problem,
one may �rst estimate the corresponding Lr -norm and then use the estimate as
test statistic. Particularly, this recipe is correct for r = 2 . However, by comparison
the above mentioned results one can see that the case with r = 2 is the only one
when this recipe \works". For other cases, the rates in testing and estimation

problems are di�erent.
The paper is organized as follows. In Section 2 we state the results separately

for r even integer and for the remaining cases. The estimation procedures for
r = 1 and for even integer r are presented in Section 3. The proofs are deferred
to Section 4.

2. Problem and main results

We begin by formulating the problem. Throughout the paper we consider the
idealized \signal + white noise" model. Suppose we are given data X(t) , t 2 [0; 1]
obeying the stochastic di�erential equation

dX(t) = f(t)dt+ n�1=2dW (t) (2.1)

where f is the unknown function, W = (W (t); t 2 [0; 1]) is the standard Wiener
process, and the parameter n is taken by analogy with more realistic statistical
models like regression or distribution density models where n is the number of
observations. We consider further the asymptotic set-up when the parameter n
tends to in�nity. The function f is assumed to possess some smoothness proper-

ties. Namely, we suppose that f belongs to the H�older class �(�;L) with known
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parameters �;L . De�ne m as the maximal integer number less than � . Then
�(�;L) is the set of functions f such that

jf (m)(t)� f (m)(s)j � Ljt� sj��m; t; s 2 R1:

Here f (m) means the m-th derivative of f . For technical reason, we assume also
that our function f is uniformly bounded by some constant % < 1 ,

f 2 �%(�;L) = ff 2 �(�;L) : kfk1 � %g:
Given r � 1 , we are interested to estimate Lr -norm of f ,

kfkr =
�Z 1

0

jf(t)jrdt
�1=r

:

For an estimate f̂n of kfkr , let
R(f̂n) = sup

f2�%(�;L)

E l
�
f̂n � kfkr

�
where l(�) is a loss function. For our results, it is enough to require that l is a
homogeneous function satisfying the standard conditions, see e.g. Ibragimov and
Khasminski (1981, Section 2.3). However, to simplify our exposition, we prefer to
be more de�nitive and suppose that l(z) = jzj . Therefore,

R(f̂n) = sup
f2�%(�;L)

E
���f̂n � kfkr

��� :
Set also

R�(n) = inf
f̂n

sup
f2�%(�;L)

E
���f̂n � kfkr

���
where inf is taken over the class of all measurable functions of the observation X .
We are about to state our results starting from the case with r = 1 .

Theorem 2.1. Let r = 1 . There exist estimators f̂n and a positive constant
C > 0 which depend on � only such that for all large enough values of n , one has

R(f̂n) � CL1=(2�+1)(n log n)��=(2�+1): (2.2)

This result shows that L1 -norm can be estimated with a better rate than the
nonparametric rate n��=(2�+1) but the improvement is only by some log-factor.
The next result claims that more substantial improvement is impossible. This
lower bound is valid for an arbitrary norm Lr when r is not even integer.

Theorem 2.2. Let r 6= 2k , k = 1; 2; : : : . Then for n large enough

L�1=(2�+1)(n log n)�=(2�+1)R�

n � c= log n

with some positive c > 0 depending only on � .

Finally we present the result concerning the estimation of the norm Lr when r
an is even integer.

Theorem 2.3. Let r = 2k , k = 1; 2; : : : . Then there are positive constants c; C

depending possibly on � and such that for n large enough,

c � L�(1�1=r)=(2�+1�1=r)n�=(2�+1�1=r)R�(n) � C:
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3. Estimation procedures

In this section we present two estimation procedures: one for estimation of L1 and
another one for estimation of Lr -norm with r even integer.
We begin with the case of r = 1 . First we explain the idea behind the construc-

tion. The function jtj is not smooth because of the irregularity at the point t = 0 .

However, this function can be approximated by Fourier series
PN

k=1 ck cos(�kt)

with the accuracy about N�1 . Therefore, our functional
R jf(t)jdt can be ap-

proximated by the sum

NX
k=1

ck

Z 1

0

cos(�kf(t))dt

and each term in this sum is already a smooth functional estimated with the rate
n�1=2 . To do this, one may use the method proposed in Ibragimov, Nemirovski and

Khasminski (1986). Let ~f (t) be a proper nonparametric estimator of f(t) , e.g. a

kernel estimator, with the variance � . Then the estimator F̂k of
R 1
0
cos(�kf(t))dt

can be taken in the form

F̂k = E�

Z 1

0

cos(�k( ~f(t) + i��))dt =

Z 1

0

cos(�k ~f(t)) expf�2k2�2=2gdt:
Here � means a standard normal random variable independent of our observation
X and E� is the expectation w.r.t. � . It remains to select the number N in the

Fourier expansion in an optimal way to balance the error of approximation and the
stochastic error.
Our estimation procedure just follows this program. Let m = b�c and let K be

a compactly supported kernel of order m i.e. K is a continuous function satisfying
the conditions

(K:1) K(t) = 0 for jtj > 1 ;
(K:2)

R
K(t)dt = 1;

(K:3)
R
tiK(t) = 0 for i = 1; : : : ;m .

By kKk we denote L2 -norm of K ,

kKk2 =
Z

K2(t)dt: (3.1)

Let also h be a bandwidth, h 2 (0; 1) . We make more precise the choice of h a

bit later. De�ne a standard kernel estimation ~ff of f by

~fh(t) =
1

h

Z 1

0

K

�
t� u

h

�
dX(u):

As usual in kernel estimation, the kernel K is to be corrected near edge-points 0; 1 .
With the aim to make our exposition more readable, we use the same notation for
the original kernel K and for the boundary corrected one. The necessary changes
in the exposition are obvious and we omit them everywhere.

Due to (2.1), the estimate ~fh(t) admits the standard decomposition into deter-
ministic and stochastic components,

~fh(t) = fh(t) + �h�h(t); (3.2)
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where

fh(t) =
1

h

Z 1

0

K

�
t� u

h

�
f(u)du;

�h =
kKkp
nh

;

�h(t) =
1

kKkph

Z 1

0

K

�
t� u

h

�
dW (u):

Obviously �h(t) is standard normal and hence

E ~fh(t) = fh(t);

Var ~fh(t) = E
�
~fh(t)� fh(t)

�2
= �2h:

Let now

h =
�
L2n log n

�
�1=(2�+1)

; (3.3)

N = �L�1=(2�+1)(n log n)�=(2�+1) (3.4)

where

� =
1

�kKkp2� + 1
:

Without loss of generality we will suppose that N is an integer number.
For all k = 1; 2; : : : ; N and � > 0 , de�ne functions �k;�(�) by

�k;�(t) = cos(�kt) expf�2k2�2=2g: (3.5)

Set now

QN;�(t) = c0 +

NX
k=1

ck�k;�(t) (3.6)

where ck are the Fourier coe�cients of the function �(t) = jtj ,

ck = 2

Z 1

0

t cos(�kt)dt =

8><
>:
1 k = 0;

0 k = 2; 4; 6; : : : ;

4(�k)�2 k = 1; 3; 5; : : : :

(3.7)

Finally we de�ne the estimator F̂ of kfk1 as follows.

F̂n =

Z 1

0

QN;�h(
~fh(t))dt = c0 +

Z 1

0

NX
k=1

ck�k;�h(
~fh(t))dt:

3.1. Estimation of kfkr for an even integer r

The di�erence between this case and the above considered is based on the trivial
observation that the function jtjr is analytical only for even integer r . This fact

will be essentially used in the construction.
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Let us consider �rst the functional �r(f) = F r
r (f) :

�r(f) = kfkrr =
Z 1

0

f r(t)dt:

This functional is smooth and it can be estimated (under some mild conditions)

by observations X with the rate n�1=2 .

Let ~fh(t) be the kernel estimator of f from the above. Applying the method
from Ibragimov, Nemirovski and Khasminski (1986), we arrive at the following

estimator �̂n of �r(f) :

�̂n = E�

Z 1

0

�
~fh(t) + i�h�

�r
dt =

Z 1

0

r=2X
j=0

b2j�
2j
h j ~fh(t)jr�2jdt: (3.8)

Here i =
p�1 , � means a standard Gaussian random variable independent of

observations X , and E� is the expectation w.r.t. � , so that

b2j = (�1)jE��
2j: (3.9)

We specify

h = (L2n)
�

1

2�+1�1=r (3.10)

and de�ne the estimator F̂n of kfkr by

F̂n = (maxf0; �̂ng)1=r:

4. Proofs

Below we present detailed proofs of Theorem 2.1 through 2.3. Everywhere { with
indices and not denote appropriate positive quantities depending on r only.

4.1. Proof of the upper bound in Theorem 2.1

We begin with some technical lemmas. Let the functions �k;� be de�ned by (3.5),
�k;�(t) = cos(�kt) expf�2k2�2=2g , k � 1 .

Lemma 4.1. Let z 2 [�1; 1] , � > 0 and let � be a standard Gaussian random
variable. Then for all k � 1 ,

E �k;�(z + ��) = cos(�kz): (4.1)

If �k;�(t) is de�ned by

�2k;�(t) � Var �k;� = E j�k;�(z + ��) � cos(�kz)j2 ;
then

�k;�(t) � �k� expf�2k2�2=2g:
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Proof. Let '(x) = (2�)�1=2 expf�x2=2g be the standard normal density. Then

E �k;�(z + ��) =

Z
�k;�(z + �x)'(x)dx

= expf�2k2�2=2g
Z

cos(�k(z + �x))'(x)dx

= (2�)�1=2Re

�Z
expf�2k2�2=2 + i�k(z + �x)� x2=2gdx

�

= Re

�
expfi�kzg (2�)�1=2

Z
expf�(x� i�k�)2=2gdx

�
= cos(�kz)

and (4.1) follows.
Next, proceeding as above we obtain

�2k;�(t) �
Z
(�k(z + �x)� cos(�kz))2'(x)dx

=

Z
�2k(z + �x)'(x)dx� cos2(�kz)

= expf�2k2�2g
Z

0:5f1 + cos(2�kz + 2�k�x)g'(x)dx� cos2(�kz)

= 0:5 expf�2k2�2g �1 + cos(2�kz) expf�2�2k2�2g�� 0:5 [1 + cos(2�kz)]

= 0:5
�
expf�2k2�2g � cos(2�kz)

� � [1� expf��2k2�2g]
� �2k2�2 expf�2k2�2g;

as required.

Lemma 4.2. Let � > 0 be �xed and let QN;� be de�ned by (3.6). Then for every
z 2 [�1; 1]

EQN;�(z + ��) = c0 +

NX
k=1

ck cos(�kz);

VarQN;�(z + ��) � {
2
1�

2 expf�2N2�2g log2(N + 1):

with {1 � 2=� .

Proof. The �rst statement follows directly from the de�nition of QN;� and Lemma 4.1.
Next, clearly

[VarQN;�(z + ��)]
1=2 �

NX
k=1

ck [Var �k;�(z + ��)]
1=2
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and we get by application of Lemma 4.1

[VarQN;�(z + ��)]
1=2 �

NX
k=1

ck�k� expf�2k2�2=2g

� �� expf�2N2�2=2g
NX
k=1

kck

� 2���1 expf�2N2�2=2g log(N + 1)

and the assertion follows.

Lemma 4.3. Let ck; k = 0; 1; : : : be due to (3.7). Then, for each N � 1 and all
z 2 [�1; 1] , �����jzj � c0 �

NX
k=1

ck cos(�kz)

����� � {2N
�1

with {2 = 2��2 .

Proof. One has by de�nition of ck

jzj = c0 +

1X
k=1

ck cos(�kz)

and therefore�����jzj � c0 �
NX
k=1

ck cos(�kz)

����� �
1X

k=N+1

ck � 1

2

1X
k=N+1

4

(�k)2
� 2��2N�1

as required.

Now we turn directly to the proof of the result. We use the decomposition (3.2)

of the kernel estimate ~fh(t) . Note �rst that the H�older constraint f 2 �(�;L)
implies in a usual way, see e.g. Ibragimov and Khasminski (1981), that

jfh(t)� f(t)j � {3Lh
� (4.2)

where {3 depends on � and the kernel K only. Along with the constraint kfk1 �
% , this provides for n large enough and hence h small enough that jfh(t)j � 1 .

This allows to apply Lemmas 4.1 and 4.2 with z = fh(t) and � = �h .
Denote


n(t) = QN;�h(
~fh(t))

so that F̂n =
R 1
0

n(t)dt . Then, in view of the decomposition (3.2) and by

Lemma 4.2

E 
n(t) = c0 +

NX
k=1

ck cos(�kfh(t)):

Using also Lemma 4.3 and (4.2), we get

jE 
n(t)� f(t)j � jE 
n(t)� fh(t)j+ jfh(t)� f(t)j � {2N
�1 + {3Lh

�
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and hence����E
Z 1

0


n(t)dt� kfk1
���� �

Z 1

0

jE 
n(t)� f(t)j � {2N
�1 + {3Lh

�:

Next we estimate the variance of our estimator F̂n .
The de�nition of ~fh(t) and the condition (K:1) yield that ~fh(t) and ~fh(t

0)
are independent random variables when jt � t0j � 2h . Let Cov ��0 means the
covariance E(� � E �)(�0 � E�0) between two random variables �; �0 . Using the
Cauchy-Schwarz inequality and Lemma 4.2 and we have

Cov(
n(t); 
n(t
0)) � [Var 
n(t)Var 
n(t

0)]
1=2

1(jt� t0j � 2h)

� 0:5 (Var 
n(t) + Var 
n(t
0)) 1(jt� t0j � 2h):

This gives

Var F̂n = Var

�Z 1

0


n(t)dt

�
=

Z 1

0

Z 1

0

Cov(
n(t); 
n(t
0))dt dt0

� 0:5

Z 1

0

Z 1

0

(Var 
n(t) + Var 
n(t
0)) 1(jt� t0j � 2h) dt dt0

� 4h

Z 1

0

Var 
n(t)dt:

Using Lemma 4.2 we get

Var F̂n � {
2
14kKk2n�1 expf�2N2kKk2=(nh)g log2(N + 1):

Now

E
���F̂n � kfk1

��� � E
���E F̂n � kfk1

���+ E
���F̂n � E F̂n

���
� E

���E F̂n � kfk1
���+ hVar F̂n

i1=2
� {2N

�1 + {3Lh
� + 2{1kKkn�1=2 log(N + 1) exp

�
�2N2kKk2

2nh

�
: (4.3)

By substituting h;N from (3.3), (3.4) respectively, we �nd out that

�N�1 = Lh� = L1=(2�+1)(n log n)��=(2�+1)

and

expf�2N2kKk2=(2nh)g = expf0:5�2kKk2�2 log ng = n1=(4�+2):

Summing up all these estimates we arrive at (2.2).

4.2. Proof of the upper bound in Theorem 2.3

First we study the behavior of the estimator �̂n of �r(f) , see (3.8).

Lemma 4.4. Let fh(t) be due to (3.3). Then

E �̂n =

Z 1

0

f rh(t)dt = kfhkrr;

Var �̂n � {4n
�1maxf�2r�2h ; kfhk2r�22r�2g
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where {4 depends only on r and the kernel K .

Proof. We begin by observing that for every two independent standard normal
random variables � and �0 and for all j > 0 , one has

E(� + i�0)j = 0:

(Here i =
p�1 .) This implies also for each numbers z; �

E(z + �� + i��0)j = zj:

Now using the decomposition (3.2) of the kernel estimator ~ft(t) , we have clearly

E �̂n = E

Z 1

0

E� (fh(t) + �h�h(t) + i�h�)
r
dt =

Z 1

0

f rh(t)dt:

Set


n(t) = E�( ~fh(t) + i�h�)
r:

Then E
n(t) = jfh(t)jr . Using again the decomposition (3.2) we may write


n(t)� E 
n(t) = E� (fh(t) + �h�h(t) + i�h�)
r � jfh(t)jr

=

rX
j=1

Cj
rf

r�j
h (t)�jhE� (�h�h(t) + i�h�)

j
:

This yields

Var 
n(t) � �2h

rX
j=1

aj�
2j�2
h jfh(t)j2r�2j

with some positive numbers aj depending only on r . Now using (4.3) and Jensen's
inequality we obtain

Var �̂n � 4h

Z 1

0

Var 
n(t)dt

� 4h�2h

rX
j=1

Z 1

0

aj�
2j�2
h jfh(t)j2r�2jdt

� 4kKk2n�1
rX

j=1

aj�
2j�2
h kfhk2r�2j2r�2

and the assertion follows in an obvious way.

Lemma 4.5. There exists a constant {5 depending only on r and the kernel K

such that

kfhk2r�22r�2 � {5h
�1+1=rkfkr�1r kfhkr�1r :
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Proof. By application of Minkovski's inequality one get

jfh(t)jr�1 =

����
Z

f(u)h�1K

�
t� u

h

�
du

����
r�1

�
"�Z

jf(u)jrdu
�1=r�

h�r=(r�1)
Z
jK((t� u)=h)jr=(r�1)du

�(r�1)=r
#r�1

= {5h
�1+1=rkfkr�1r

where {5 =
R jK(u)jr=(r�1)du . Now with the help of Jensen's inequality we derive

kfk2r�22r�2 =

Z 1

0

jfh(t)j2r�2dt

� {5h
�1+1=rkfkr�1r

Z 1

0

jfh(t)jr�1dt

� {5h
�1+1=rkfkr�1r kfhkr�1r

as required.

Now we are ready to complete the proof of the theorem. Denote

%n = L
1�1=r

2�+1�1=r n
�

�

2�+1�1=r : (4.4)

Then %n is exactly the rate shown in the theorem and it is easy to check that
%n = Lh� for h from (3.10).
First we recall that the H�older smoothness constraint implies the bound

kf � fhkr � {3Lh
� = {3%n (4.5)

and particularly kfhkr � kfkr +{3%n . Below we separate between two cases with
kfkr � 2%n and kfkr > 2%n . If kfkr � 2%n , then

EjF̂n � kfkrj � EjF̂nj+ 2%n

� (E �̂2
n)

1=(2r)+ 2%n

� [Var �̂n + (E �̂n)
2]1=(2r)+ 2%n

� (Var �̂n)
1=(2r) + (E �̂n)

1=r + 2%n:

It is easily seen that %n < �2h = kKk2=(nh) at least for n large enough and using
the results of Lemma 4.4 we may bound

EjF̂n � kfkrj � ({4n
�1�2r�2h )1=(2r)+ kfhkr + 2%n:

By substituting �h = (nh)�1=2 and h from (3.10) and using the bound (4.5), we

get the assertion of the theorem for the considered case.
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For the case with kfkr > 2%n , one has also kfhkr � kfkr � %n � %n and

EjF̂n � kfkrj � EjF̂n � kfhkrj+ {3%n

� EjF̂ r
n � kfhkrrj
kfhkr�1r

+ {3%n

� Ej�̂n � E �̂nj
kfhkr�1r

+ {3%n

� (Var �̂n)
1=2

kfhkr�1r

+ {3%n:

The result of Lemma 4.4 and (4.5) allow to bound

Var �̂n)
1=2 � {6n

�1=2(�r�1h + h�(r�1)=(2r)kfhkr�1r )

and we end up with

EjF̂n � kfkrj � {6n
�1=2(�r�1h %�r+1n + h�(r�1)=(2r)) + {3%n

and the theorem follows by straightforward calculation.

4.3. Proof of the lower bound in Theorem 2.3

To get the lower bound announced in Theorem 2.3, we change the original non-
parametric set by a high-dimensional parametric subset. Let g be a function from
the set �%(�; 1) vanishing outside the interval [0; 1] and with kgk2 = R

g2 > 0 .

Let some positive number h < 1 be �xed such that N = h�1 is an integer. We
make more precise the choice of h later on. Note that by standard renormalization
argument, each function of the form ga;b(t) = b��g(a+bt) also belongs to �%(�;L)

for all a and all positive b .
Let now I = fIi; i = 1; : : : ; Ng be the partition of the interval [0; 1] into

N = h�1 subintervals of length h . By ti we denote the left end-point of each
subinterval Ii . For every point � = (�1; : : : ; �N) from N -dimensional cube BN =
[�1; 1]N , introduce a function f�(�) by

f�(t) =

NX
i=1

�ih
�g((t� ti)=h)1(t 2 Ii):

Then obviously f� 2 �%(�;L) for N large enough and

kf�krr = h�r
NX
i=1

j�ijr
Z
Ii

����g
�
t� ti

h

�����
r

dt =
�kgkrh�Fr(�)

�r
(4.6)

where

Fr(�) =

 
1

N

NX
i=1

j�ijr
!1=r

: (4.7)

Denote also for i = 1; : : : ; N

Yi =

p
n

kgkph

Z
Ii

g

�
t� ti

h

�
dX(t):
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Using the model equation (2.1) one can write for f = f� from above

Yi = �(N)�i + �i; i = 1; : : : ; N; (4.8)

where

�(N) = kgkn1=2h�+1=2 = kgkn1=2N���1=2;

�i =
1

kgkph

Z
Ii

g

�
t� ti

h

�
dW (t):

Clearly � = (�1; : : : ; �N ) is a collection of independent standard normal random
variables. It is also straightforward to see that the set of statistics Yi; i = 1; : : : ; n
is su�cient for the parametric submodel (with f 2 ff�; � 2 BNg ). Therefore,
when denoting si = �(N)�i , i = 1; : : : ; N , the original \signal + white noise"
model (2.1) is transferred into the \sequence space" model

Yi = si + �i; i = 1; : : : ; N; (4.9)

with s = (s1; : : : ; sN) from the cube SN = B
�(N)

N = [��(N); �(N)]N . By this
transformation, the original estimation problem is reduced to estimating the quan-
tity Fr(s) due to (4.7) by observations Y . Let Rs(N) be the corresponding
minimax risk:

Rs(N) = inf
F̂

sup
s2SN

EsjF̂ � Fr(s)j;

the in�mum being taken over all Borel functions F̂ = F̂ (y) on RN and Es being
the expectation under s . Then one gets from (4.6) and (4.8)

R�(n) � kgkrh���1(N)Rs(N) = {g

p
N=nRs(N) (4.10)

where {g = kgkr=kgk .
Now we are going to establish the following

Proposition 4.1. Let �(N) = N�1=(2r) . Then, for all large enough values of N ,

Rs(N) � {7�(N); (4.11)

where {7 > 0 depends on r only.

The proof of this assertion will be given below. Before doing this, we show how
it implies the statement of the theorem. We set

N = (L2n)
1

2�+1�1=r :

Then (4.10) and (4.11) give

R�(n) � {8

p
N=nN�1=(2r) = {8L

1�1=r

2�+1�1=r n
�

2�

2�+1�1=r

as required.

Proof of Proposition 4.1 is based on the following idea. We introduce two prior
measures �N;0 and �N;1 on the parameter set SN and denote by PN;0 and PN;1

the corresponding Bayes measures on RN ,

PN;j = �N;j � L(�); j = 0; 1:
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Let also K(PN;0; PN;1) be the Kullback information between PN;0 and PN;1

K(PN;0; PN;1) =

Z
log

�
dPN;1

dPN;0

�
dPN;1:

We will estimate the minimax risk from below by the maximum of two risks under
PN;0 and PN;1 . For this we use the following technical assertion which can be
deduced from more general Fano's lemma. However, we prefer to give a direct
proof.

Lemma 4.6. Let prior measures �N;0 and �N;1 be such that the Kullback infor-
mation K(PN;0; PN;1) satis�es the condition

K(PN;0; PN;1) � { (4.12)

with some positive { . Let now � be some function on the parametric set SN and
let

vN;j =

Z
�(s)�N;j(ds); (4.13)

d2N;j =

Z
(�(s) � vN;j)

2�N;j(ds); (4.14)

for j = 0; 1 , then

R(N) � inf
�̂

sup
s2SN

Esj�̂� �(s)j � 0:5jvN;0 � vN;1je�{ �maxfdN;0; dN;1g:

Proof. First we note that, for an arbitrary prior measure � and each estimator �̂
of �(s) , one has

sup
s2SN

Esj�̂� �(s)j � EN;�j�̂� �(s)j

� EN;�j�̂� EN;��(s)j � EN;�j�(s)� EN;��(s)j
� EN;�j�̂� EN;��(s)j � dN;�:

Here EN;� means the expectation w.r.t. the Bayes measure PN;� corresponding
to prior � and dN;� is due to (4.14). This clearly implies

R(N) � inf
�̂

max
n
EN;0j�̂� vN;0j � dN;0; EN;1j�̂� vN;1j � dN;1

o
� inf

�̂

max
n
EN;0j�̂� vN;0j; EN;1j�̂ � vN;1j

o
�maxfdN;0; dN;1g: (4.15)

Next we use the fact that the maximum likelihood test T̂N = 1(dPN;1=dPN;0 > 1)
is optimal for testing the hypothesis H0 : L(Y ) = PN;0 versus the alternative
H1 : L(Y ) = PN;1 , see Lehmann (1959): for an arbitrary test TN ,

maxfPN;0(TN = 1); PN;1(TN = 0)g � max
n
PN;0(T̂N = 1); PN;1(T̂N = 0)

o
:
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Set ZN = dPN;0=dPN;1 . Then T̂N = 1(ZN � 1) and, since the function log(z) is
concave, using Jensen's inequality we get

log max
n
PN;0(T̂N = 1); PN;1(T̂N = 0)

o
� logPN;0(ZN � 1)

= log

Z
ZN1(ZN � 1)dPN;1

�
Z

log(ZN )1(log(ZN ) � 0)dPN;1

� �K(PN;0; dPN;1) � �{:
Let now �̂ be an estimator of �(s) . Consider the following test

TN = 1(�̂� v�;0 > �N)

where

�N = (vN;1� vN;0)=2:

(Here we assume that vN;1 > vN;0 .) By application of the above inequalities we
obtain

maxfPN;0(TN = 1); PN;1(TN = 0)g � e�{

or

max
n
PN;0(�̂� vN;0 > �N ); PN;1(�̂� vN;1 < ��N)

o
� e�{:

We end up by use of (4.15) and of Chebyshev's inequality.

We will apply this lemma with �(s) = N�1(sr1+ : : :+ srN) to two prior measures
�N;0 and �N;1 with product structure,

�N;0 = �N0 ;

�N;1 = �N1 :

We construct these measures in such a way that (4.12) holds with some �xed {

and the di�erence jvN;1 � vN;0j will be as large as possible.
First we note that, for j = 0; 1 ,

vN;j =
1

N

Z NX
i=1

jsijr�N;j(ds) =

Z
jsjr�j(ds) = vj

and similarly

d2N;j =
1

N2

Z NX
i=1

(jsij2r � v2j )�N;j(ds) = N�1

Z
(jsj2r � v2j )�j(ds) = N�1d2j

where

vj =

Z
jsjr�j(ds) � �r(N)

d2j =

Z
jsj2r�j(ds) � v2j � �2r(N):
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In the same way we can estimate the Kullback distance between the Bayes mea-
sures PN;0 and PN;1 . The product structure of the model (4.9) and of the priors
�N;0; �N;1 implies that

K(PN;0; PN;1) = N

Z
log(p�0(y)=p�1(y))p�0(y)dy (4.16)

where, for each measure � on [0; 1]

p�(y) =

Z
'(y � t)�(dt);

'(y) = (2�)�1 expf�y2=2g be the standard Gaussian density on the axis.

Now the application of Lemma 4.6 gives under condition (4.12) the following

bound of the risk of an arbitrary estimate �̂ of �(s)

sup
s2SN

Esj�̂� �(s)j � 0:5jv1 � v0je�{ � �r(N)N�1=2: (4.17)

Next we observe what follows from this bound for the risk Rs(N) in estimating

Fr(s) . If F̂ is an estimate of Fr(s) , then �̂ = F̂ r can be viewed as an estimate

of �(s) = F r
r (s) . We may assume that jF̂ j � �(N) and hence

Esj�̂� �(s)j = EsjF̂ r � F r
r (s)j � r�r�1(N)EsjF̂ � Fr(s)j:

Now the bound (4.17) yields

Rs(N) � (r�r�1(N))�1(0:5jv1 � v0je�{ � �r(N)N�1=2)

= r�1�(N)(0:5��r(N)jv1 � v0je�{ �N�1=2): (4.18)

Next we specify the choice of measures �0; �1 mentioned above.

Let � be the distance (in the uniform norm on [�1; 1]) from the function tr to
the space of polynomials of degree � r�2. By the standard separation arguments,
there exists a measure � with variation 2 on [�1; 1] such thatZ

tl�(dt) = 0; l = 0; 1; :::; r� 2;Z
tr�(dt) = 2�:

Note that if � possesses the indicated properties, so is the \re
ected" measure ��

(��(A) = �(�A)) and hence the measure (�+ ��)=2; therefore � may be assumed
to be symmetric. Let �+;��� be the positive and the negative components of �,
respectively. Then �+ and �� are symmetric probability distributions on [�1; 1]
such that � = �+ � �� andZ

tl�+(dt) =

Z
tl��(dt); l = 0; 1; :::; r� 2; (4.19)Z

tr�+(dt) =

Z
tr��(dt) + 2�:

We assign �0; �1 by rescaling the measures �+; �� respectively into the interval
[��(N); �(N)] ,

�0([a; b]) = �+([a=�(N); b=�(N)]); a; b 2 [��(N); �(N)];
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and similarly for �1 . Obviously

v0 � v1 = �r(N)

Z
jtjr�(dt) = 2��r(N)

and now the bound (4.18) looks like

Rs(N) � r�1�(N)(�e�{ �N�1=2): (4.20)

To complete the proof, we have only to verify (4.12).
Let us associate with a symmetric probability distribution � on [�1; 1] and a real

� the distribution F �
� on the axis with the density

p�(�; y) =

Z
'(y � �t)�(dt) = '(y)

Z
ch(�tx) expf��2t2=2g�(dt):

Note that this relation de�nes a function p�(�; y) for an arbitrary (not necessarily
nonnegative) symmetric measure � on [�1; 1].
Set

K(�) =
Z

log(p�+ (�; y)=p��(�; y))p�+(�; y)dy

for the Kullback distance from p�+ (�; �) to p��(�; �).
Lemma 4.7. The function K(�) is in�nitely di�erentiable and it has zero of order
at least 2r at the point � = 0.

Proof. It is clearly seen that one may di�erentiate K(�) arbitrarily many times and
that

K(l)(�) =

Z
@l

@�l

�
log

�
p�+(�; y)

p�
�

(�; y)

�
p�+(�; y)

�
dy

for all l. Note that

p�+(�; y) = p�
�

(�; y) + p�(�; y):

To begin by, we show that for all x

@lp�(�; y)

@�l

����
�=0

= 0; l = 0; 1; :::; r � 1: (4.21)

Indeed, one clearly has

@lp�(�; y)

@�l

����
�=0

= '(x)

Z " lX
i=0

Ci
l

�
@i expf��2t2=2g

@�i

��
@l�ich(�ty)

@�l�i

�#
�(dt)

�����
�=0

=

Z
tl(a0 + a1y + : : :+ aly

l)�(t) = 0:

Here a0; : : : ; al are some numbers and we have used (4.19). This yields (4.21).
According to (4.21), p�(�; y) can be represented in the form

p�(�; y) = �rw(�; y)

with smooth function w(�; �) (which, as it is easily seen, is a summable function of
y). Since

R
p�(�; y)dy = 0 for all �, so is also for w(�; y) ,Z

w(�; y)dy = 0; 8�:
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Now we have

log

�
p�
�

(�; y)

p�+ (�; y)

�
= log

�
1 � �rw(�; y)

p�+(�; y)

�
= ��qw(�; y)

p�
�

(�; y)
� �2rv(�; y);

v being a smooth function of y; �. Hence

K(�) = �
Z

log

�
p�
�

(�; y)

p�+(�; y)

�
p�+(�; y)dy

= �r

Z
w(�; y)dy + �2r

Z
v(�; y)p�+(�; y)dy

= �2r
Z

v(�; y)p�+(�; y)dy

and the assertion follows.

The result of this lemma means that, for � small, the following bound holds true

K(�) � {�2r:

Particularly, by letting �(N) = N�1=(2r) , we get

K(�) � {N�1; 8� � �(N) (4.22)

and the assertion (4.12) follows in view of (4.16).

4.4. Proof of the lower bound in Theorem 2.2

Now we establish the lower bound from the Theorem 2.2 for the case when r is
not an even integer.
We follow the line of the proof of the similar result in Theorem 2.3. The only

di�erence is in construction of two priors �0 and �1 .
We begin by translation of the problem into the \sequence space" model (4.9).

We apply now

N = L2=(2�+1)(n log n)�=(2�+1):

The bound (4.10) for R�(n) is still valid and the statement of the theorem fol-
lows from this bound and the next proposition which delivers some information
about accuracy of estimation of the functional Fr(s) = (N�1(sr1 + : : :+ srN)

1=r by
observation Y from the sequence space model (4.9).

Proposition 4.2. Let �(N) = (100 logN)�1 and SN = [��(N); �(N)]N . Then
for all large enough values of N ,

Rs(N) � inf
F̂

sup
s2SN

EsjF̂ � Fr(s)j � {9(logN)�r�1=2 (4.23)

where {9 > 0 depends on r only.

Proof. The most important step in the proof deals with constructing two mea-
sures �+ and �� . Denote by Pk the space of polynomials of degree k , and let
�(k) be the distance (in the uniform norm on [�1; 1]) from the function jtjr to

the space P2k . It is known (see, e.g., Timan A.F., Theory of approximation of
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functions of real variable, Moscow, 1960, p.430) that if k is a nonnegative integer,
then

�(k) � {10k
�r:

Given a positive integer N > 3, let us set

k(N) = blogNc:
By the standard separation arguments, for a given N there exists a measure �N
with variation 2 on [�1; 1] such that

Z
tl�N (dt) = 0; l = 0; 1; :::; 2k(N); (4.24)Z

jtjr�N (dt) = 2�(k(N)) � 2{10k
�r(N):

Arguing as in the proof of Proposition 4.1 we may assume from the beginning that
the measure �N is symmetric and so are its positive and negative components �+
and �� (i.e. �N = �+ � �� ).
We de�ne now measures �0 and �1 by rescaling �+ and �� into the inter-

val [��(N); �(N)] . Also we set �N;0 = �N0 , �N;1 = �N1 and Bayes measures

PN;0; PN;1 correspond to these priors. Following the arguments from the proof of
Theorem 2.3 we arrive at the bound (4.20)

Rs(N) � r�1�(N)(�(N)e�{ �N�1=2): (4.25)

under the condition

K(PN;0; PN;1) � {: (4.26)

If this condition holds true with some positive { depending only on r , then the
bound (4.25) yields the desirable assertion. Therefore, it remains to check (4.26).
Recall that the Kullback distance K(PN;0; PN;1) satis�es

K(PN;0; PN;1) = NK(�(N)) (4.27)

where by de�nition, for � 2 [�1; 1] and a measure �

K(�) =
Z

log(p�+(�; y)=p��(�; y))p�+(�; y)dy;

p�(�; y) =

Z
'(y � �t)�(dt) = '(y)

Z
ch(�tx) expf��2t2=2g�(dt):

Set for T > 0

KT (�) =

Z
jyj�T

log(p�+ (�; y)=p��(�; y))p�+(�; y)dy: (4.28)

Lemma 4.8. For every T > 0

dlKT (�)

d�l

����
�=0

= 0; l = 0; :::; 2k(N):

Proof basing on (4.24) repeats the �rst part of the proof of Lemma 4.7.
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Remark 4.1. Lemma 4.7 claims more strong assertion: if (4.24) holds for all l � 2k ,
then K(�) has zero of order 2 � 2k at zero. For this we use except (4.24) also the
property

R
p�(�; y)dy = 0 which is not available when dealing with KT (�) .

The next lemma deliversmore information about behavior of the function KT (�) .

Lemma 4.9. For every T � 20 and all � 2 [�1; 1], one has

K(�) � expf�(T � 1)2=2g +KT (�): (4.29)

The function KT (�) can be extended analytically onto the circle j�j � (10T )�1, and
in this circle

jKT (�)j � 2=3:

Proof. We clearly have

K(�) = KT (�) +RT ;

RT =

Z
jyj>T

log(p�+(�; y)=p��(�; y))p�+(�; y)dy:

Now, RT is a convex functional of the distributions �+; ��; therefore its supremum,
over all (even non-symmetric) probability distributions on [�1; 1] is the same as

its supremum over distributions on the same segment with singleton supports.
For a distribution of this latter type, with �+ concentrated at a point t and ��
concentrated at a point � (t; � 2 [�1; 1]), we have

RT =

Z
jyj>T

�
�(y � �t)2

2
+

(y � �� )2

2

�
expf�(y � �t)2

2
g 1p

2�
dy

=

Z
fy��T��tg[fy�T��tg

�
�(t� � )y + �2(t� � )2=2

�
'(y)dy

= �(t� � )(2�)�1=2
�
expf�(T � �t)2=2g � expf�(T + �t)2=2g�

+2(2�)�1=2�2(t� � )2(T � 1)�1 expf�(T � 1)2=2g
� (2�)�1=2(2 + 8(T � 1)�1) expf�(T � 1)2=2g
� expf�(T � 1)2=2g

(we have taken into account that T � 20). Consequently, RT � expf�(T �1)2=2g,
and (4.29) follows.
Now let us look at the function KT . Let y be a real with jyj < T , and let

t be a real with jtj � 1. The absolute value of the derivative of the function
g(�) = expf��2t2=2gch(�ty) in the circle j�j � z � 1 clearly does not exceed (T +
1) expfzT+z2=2g, and therefore jg(�)�1j = jg(�)�g(0)j � (zT+z) expfzT+z2=2g
in this circle. It follows that in the circle j�j � z � (10T )�1 we have����

Z
expf��2t2=2gch(�ty)�(dt)� 1

����
� (zT + z) expfzT + z2=2g � 1=5 expf0:105g � 1=4;

both for � = �+ and for � = ��. Consequently, for the indicated z and j�j � z we
have ����p�+(�; y)p�

�

(�; y)
� 1

���� � 1=3:
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We see that if y is real with jyj � T , then the function log(p�+(�; y)=p��(�; y)),
regarded as a function of �, can be extended as an analytic function from the
segment j�j � z = (10T )�1 of the real axis onto the circle j�j � z in the complex
plane, and the absolute value of the extended function does not exceed in this circle
the quantity

1X
m=1

1

m

�
1

3

�m

= log(3=2):

By the same reasons, for real y with jyj � T and � from the circle j�j � z we have
jp�+(�; y)j � 5=4'(y), and we see that indeed KT is an analytic function in the

circle j�j � sT with absolute value in the circle not exceeding 5=4 log 3=2 � 2=3.

According to results of Lemmas 4.7 and 4.8, KT (�) is an analytic function of � in
the circle j�j � z = (10T )�1 which is bounded in absolute value in this circle by 2=3
and has zero of order at least 2k(N) at the origin; since this function is even, the

order of zero is at least 2k(N)+1. Applying to the functionKT (�)z
2k(N)+2��2k(N)�2

the Maximum Principle, we come to

KT (�) � 2

3

�2k(N)+2

z2k(N)+2
; �z � � � z: (4.30)

Now let us look what (4.30) implies for �(N) = (100
p
logN)�1. We have

�(N)

z
� 1 +

p
2

10
� expf�1g;

and (4.30) implies that

KT (�(N)) � expf�2k(N) � 2g � N�2: (4.31)

From this inequality using also (4.29) and (4.27) we conclude that the Kullback
distance K(PN;0; PN;1) does not exceed N�1+N expf�(T (N)�1)2=2g = N�1+1.
This yields (4.26) and the assertion follows by (4.25).



22 LEPSKI, O., NEMIROVSKI, A., AND SPOKOINY, V.

References

[1] Birg�e, L. and Massart, P. (1995). Estimation of integral functionals of a density. Ann. Statist.

23, 11{29.

[2] Bickel, P.J. and Ritov, Y. (1988) Estimating integrated squared density derivatives: sharp

best order of convergence estimates. Sankhya, 50, 381{393.

[3] Donoho, D.L. and Nussbaum, M. (1990). Minimax quadratic estimation of a quadratic func-

tional. J. Complexity, 6, 290{323.

[4] Donoho, D.L. and Liu, R.C. (1991). Geometrizing rate of convergence, III. Ann. Statist. 19,

668{701.

[5] Efroimovich, S. and Low, M. (1996). On Bickel and Ritov's conjecture about adaptive esti-

mation of the integral of the square of density derivative. Ann. Statist. 24, 682{686.

[6] Fan, J. (1991). On the estimation of quadratic functionals. Ann. Statist. 19, 1273{1294.

[7] Hall, P. and Marron, J.S. (1987). Estimation of integrated squared density derivatives. Statist.

and Prob. Letters, 6, 109{115.

[8] Hasminski, R.Z. and Ibragimov, I.A. (1979). On the nonparametric estimation of func-

tionals. In Proceedings of the Second Prague Symp. on Asymptotic Statistics (P.Mandl and

M.Huskova eds.) North-Holland, Amsterdam. 41{51.

[9] Hasminski, R.Z. and Ibragimov, I.A. (1980). Some estimation problems for stochastic di�er-

ential equations. Lecture Notes Control Inform. Sci. Springer, New York. 25, 1{12.

[10] Ibragimov, I.A. and Khasminski, R.Z. (1980). On the estimation of distribution density. Zap.

Nauch. Sem. LOMI, 98, 61{85.

[11] Ibragimov, I.A. and Khasminski, R.Z. (1981). Statistical Estimation: Asymptotic Theory.

Springer. Berlin, Heidelberg, New York.

[12] Ibragimov, I.A. and Nemirovski and Khasminski, R.Z. (1986). Some problems on nonpara-

metric estimation in Gaussian white noise. Theory Probab. Appl., 31, 391{406.

[13] Ibragimov, I.A. and Khasminski, R.Z. (1987). Estimation of linear functionals in Gaussian

noise. Theory Probab. Appl., 32, 30{39.

[14] Ibragimov, I.A. and Khasminski, R.Z. (1991). Asymptotic normal families of distributions

and e�ective estimation. Ann. Statist., 19, 1681{1724.

[15] Ingster, Yu.I. (1982). Minimax nonparametric detection of signals in white Gaussian noise.

Problems Inform. Transmission, 18 130 { 140.

[16] Ingster, Yu.I. (1993). Asymptotically minimax hypothesis testing for nonparametric alterna-

tives. I{III. Math. Methods of Statist. 2 (1993) 85 { 114, 3 (1993) 171 { 189, 4 (1993) 249 {

268.

[17] Kerkyacharian, J. and Picard, D. (1996). Estimating nonquadratic functionals of a density

using Haar basis. Ann: Statist., 24, 485{508.

[18] Korostelev, A.P. (1990). On the accuracy of estimation of non-smooth functionals of regres-

sion. Theory Probab. Appl., 35, 768{770.

[19] Korostelev, A.P. and Tsybakov, A.B. (1994). Minimax Theory of Image Reconstruction.

Lecture Notes in Statist. Springer, New York.

[20] Koshevnik, Yu. and Levit, B. Ya. (1976). On a nonparametric analogue of the information

matrix. Theory Probab. Appl., 21, 738{753.

[21] Laurent, B. (1996) E�cient estimation of integral functionals of a density. Ann: Statist., 24,

659{682.

[22] Lehmann, E.L. (1959) Testing Statistical Hypothesis Wiley, New York.

[23] Lepski, O. and Spokoiny, V. (1995). Minimax nonparametric hypothesis testing: the case of

an inhomogeneous alternative. Bernoulli, to appear.

[24] Levit, B.Ya. (1974). On optimality of some statistical estimates. In Proceedings of the Prague

Symp. on Asymptotic Statistics (J. Hajek, ed.) Univ. Karlova, Prague. 2, 215{238.

[25] Levit, B.Ya. (1975). E�ciency of a class of nonparametric estimates. Theory Probab. Appl.,

20, 738{754.

[26] Levit, B.Ya. (1978). Asymptotically e�cient estimation of nonlinear functionals. Problems

info. Transmission, 14, 65{72.



ON ESTIMATION OF NON-SMOOTH FUNCTIONALS 23

[27] Spokoiny, V. (1996). Adaptive hypothesis testing using wavelets. Annals of Statistics, 26.

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39,

10117 Berlin, Germany


