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Abstract

The aim of this paper is to extend the classical maximal convergence theory of Bernstein and
Walsh for holomorphic functions in the complex plane to real analytic functions in RN . In
particular, we investigate the polynomial approximation behavior for functions F : L → C,
L = {(Re z, Im z) : z ∈ K}, of the type F = gh, where g and h are holomorphic in a neigh-
borhood of a compact set K ⊂ CN . To this end the maximal convergence number ρ(Sc, f)
for continuous functions f defined on a compact set Sc ⊂ CN is connected to a maximal con-
vergence number ρ(Sr, F ) for continuous functions F defined on a compact set Sr ⊂ RN . We
prove that ρ(L,F ) = min{ρ(K,h)), ρ(K, g)} for functions F = gh if K is either a closed Eu-
clidean ball or a closed polydisc. Furthermore, we show that min{ρ(K,h)), ρ(K, g)} ≤ ρ(L,F )
if K is regular in the sense of pluripotential theory and equality does not hold in general.
Our results are achieved by methods based on the theory of plurisubharmonic Green’s function
with pole at infinity and Lundin’s formula for the extremal function Φ. Further, an important
role plays a properly chosen transformation of Joukowski structure.

1 Introduction and main results

1.1 Maximal convergence

An important field in constructive approximation theory is the investigation of the relation be-
tween the smoothness of a function and the speed at which it can be approximated by polyno-
mials. Classical one dimensional results in this context are for instance Jackson theorems and
maximal convergence theorems of Bernstein and Walsh. Both kind of theorems have attracted
much attention and some endeavor has recently been made to extend them to higher dimen-
sions, e.g. Bernstein–Walsh type theorems for holomorphic functions in C

N ([Sic62], [Zah76],
[Sic81], [Blo89]), squared modulus holomorphic functions in R

2 ([Kra07]), harmonic functions in
R

N ([And93], [BL91], [SZ01]), pluriharmonic functions in C
N ([Sic96]) and solutions of elliptic

equations in R
N ([BL93], [BL94]).

The main intention of this paper is to extend the existing theory of maximal convergence to real
analytic functions in R

N . In particular, we investigate the polynomial approximation behavior for
functions of holomorphic–antiholomorphic type, i. e.

F (x1, . . . , xN , y1, . . . , yN ) = g(x1 + iy1, . . . , xN + iyN )h(x1 + iy1, . . . , xN + iyN ),

where g and h are holomorphic. In this context we define a real maximal convergence number and
connect this number to the corresponding maximal convergence number for holomorphic functions
in several complex variables.
To state Bernstein–Walsh type theorems we first need to define some approximation measure. As
usual, we choose the n–th polynomial approximation error as follows:

(i) Let K ⊂ R
N , N ∈ N, be compact and let F : K → R be a continuous function. Then we

define

En(K,F ) := inf{||F− Pn||K : Pn : R
N → R, Pn a polynomial of degree ≤ n},



where n ∈ N and || · ||K denotes the supremum norm on K.

(ii) Let K ⊂ R
N , N ∈ N, be compact and let F : K → C be a continuous function. Then we

define

Ec
n(K,F ) := inf{||F− Pn||K : Pn : R

N → C, Pn a polynomial of degree ≤ n},

where n ∈ N and || · ||K denotes the supremum norm on K.

(iii) Let K ⊂ C
N , N ∈ N, be compact and let f : K → C be a continuous function. Then we

define

en(K, f) := inf{||f− pn||K : pn : C
N → C, pn a polynomial of degree ≤ n},

where n ∈ N and || · ||K denotes the supremum norm on K.

Now let ρ ∈ (1,∞] and f : K → C be a continuous function on the compact set K ⊂ C
N , N ∈ N,

such that
lim sup

n→∞
n
√
en(K, f) =

1
ρ
. (1.1)

Then we say a sequence {pn}n∈N of polynomials pn of degree ≤ n converges maximally to f , if for
every R ∈ (1, ρ) the estimate

||f − pn||K ≤ M

Rn
, n ∈ N,

holds, where M > 0 is some constant independent of n.
Theorems which describe the connection between ρ and f as in equation (1.1) are called maximal
convergence theorems. Analogously, we use this terminology for functions defined on compact
sets in R

N . Since we consider functions f defined on sets in C
N and functions F defined on sets

in R
N simultaneously, we will distinguish them for more clarity by small and capital letters.

A famous result that marks the beginning of a series of studies on maximal convergence is the
Bernstein theorem:

Theorem 1.1 ([Ber52], 1912)
Let F : [−1, 1] → R be continuous and let ρ > 1. Then

lim sup
n→∞

n
√
En([−1, 1], F ) ≤ 1

ρ

if and only if F has a holomorphic extension to the set

{z ∈ C : |h(z)| < ρ},

where h : C → C\{z ∈ C : |z| < 1} is defined by h(z) = z +
√
z2 − 11.

In the year 1934 Walsh (and Russell) discovered an outstanding extension of Theorem 1.1. The
interval [−1, 1] in Theorem 1.1 can be replaced by compact sets K ⊂ C whose complement is
connected and regular in the sense that for Ĉ\K, Ĉ := C ∪ {∞}, Green’s function gK with pole
at infinity exists2.
We recall, Green’s function gK is the uniquely determined function which has a logarithmic sin-
gularity at infinity, is continuous in C, harmonic in C\K and identically zero on K.

1 The branch of the square root is chosen such that h(x) > 1 for x > 1.
2The generalization of Theorem 1.1 is due to Walsh [Wal26] in the case that Ĉ\K is simply connected in Ĉ

and due to Walsh and Russell [WR34] in the case that Ĉ\K is connected and regular. However in the literature
Theorem 1.1 and Theorem 1.2 are just called the Bernstein-Walsh theorems.
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Theorem 1.2 ([Wal35], 1934)
Let K be a compact subset of C such that Ĉ\K is connected and regular. Furthermore, let
f : K → C be continuous and let ρ > 1. Then

lim sup
n→∞

n
√
en(K, f) ≤ 1

ρ

if and only if f ≡ f̃ |K , where f̃ is a holomorphic function in

Lρ = {z ∈ C : egK(z) < ρ}.

A first step to an extension of the Bernstein–Walsh theorems to higher dimensions was taken by
Sapagov in 1956. He stated the following analogous result to the Bernstein theorem.

Theorem 1.3 ([Sap56], 1956)
Let F : K ⊂ R

N → R be a continuous function, where K := K1 ×K2 × · · · ×KN , Kj = [−1, 1],
1 ≤ j ≤ N , and let ρ > 1. Then

lim sup
n→∞

n
√
En(K,F ) ≤ 1

ρ

if and only if F has a holomorphic extension to

Lρ1 × Lρ2 × · · · × LρN
,

where Lρj =
{
z ∈ C :

∣∣h(z)| < ρ
}
, 1 ≤ j ≤ N , and h is defined as in Theorem 1.1.

The proof of Theorem 1.3 uses concepts of the proof of Bernstein’s theorem. The function F is
considered on the intervals Kj, j = 1, 2, . . . , N , separately. In a similar way Theorem 1.2 can be
generalized if the compact set K ⊂ C

N is the Cartesian product of compact subsets in the complex
plane. However, for an arbitrary (sufficiently nice) compact set K ⊂ C

N the situation is much
more involved. Siciak [Sic62] was the first who managed to extend Theorem 1.2 to appropriate
compact sets K ⊂ C

N , see Theorem 1.4. His key to this result was the introduction of an extremal
function Φ for compact sets K in C

N , which behaves in many ways like the (generalized) Green’s
function for Ĉ\K with pole at infinity. Later Zaharjuta found a different approach to Theorem
1.4, using the technique of Hilbert scales, compare [Zah76]. A refinement of Siciak’s proof of
Theorem 1.4 can be found in [Sic81]. We also refer to Bloom [Blo89] for an ingenious modification
of Siciak’s latter proof.

Theorem 1.4 ([Sic62], 1962)
Let K ⊂ C

N be a compact set such that the extremal function Φ(z,K) is continuous in C
N .

Further, let f : K → C be continuous and ρ > 1. Then

lim sup
n→∞

n
√
en(K, f) ≤ 1

ρ

if and only if f has a holomorphic extension to

LN,ρ = {z ∈ C
N : Φ(z,K) < ρ}.
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1.2 Results for real analytic functions in RN

In this work we prove maximal convergence theorems for real analytic functions3 in R
N, especially

for functions of holomorphic–antiholomorphic type.
Let us start with an approximation question raised by Braess which encounters in the numerical
treatment of elliptic differential equations. In [Bra01] it was conjectured that functions F : B2 →
R, B2 = {(x, y) ∈ R

2 : x2 + y2 ≤ 1}, defined by

F (x, y) =
1(

(x− x0)2 + (y − y0)2
)s , (1.2)

where s ∈ (0,∞) and (x0, y0) ∈ R
2 such that ρ0 :=

√
x2

0 + y2
0 > 1, satisfy the relation

lim sup
n→∞

n

√
En(B2, F ) =

1
ρ0
. (1.3)

Clearly, the function F in (1.2) can be expressed as the squared modulus of a holomorphic function
in some neighborhood of the closed unit disk D := {z ∈ C : |z| ≤ 1}. If we set g(z) := 1/(z− z0)s,
where z0 = x0 + iy0, then F can be written as

F (x, y) =
1(

(x− x0)2 + (y − y0)2
)s = g(z)g(z).

Further, g is holomorphic in Dρ0 := {z ∈ C : |z| < ρ0} but in no neighborhood containing Dρ0 ,
cf. Theorem 1.2. These facts indicate that the approximation behavior for functions of squared
holomorphic type on the closed unit disk in R

2 is determined by the approximation behavior of
the corresponding holomorphic function on the closed unit disk in C. Indeed, it was shown in
[Kra07]:
Let F : B2 → R be given by

F (x, y) = |g(x+ iy)|2,
where g ∈ H(D). Further, let ρ > 1. Then

lim sup
n→∞

n

√
En(B2, F ) ≤ 1

ρ

if and only if g has a holomorphic extension to Dρ

On the other hand the function F of (1.2) can be continued analytically to some open neighborhood
of B2 in C

2. Therefore Theorem 1.4 gives rise to ask if there exists a similar result for real–valued
continuous functions defined on compact sets K ⊂ R

N . For that reason we shed some light on
Siciak’s machinery which he used to prove Theorem 1.4, especially on Siciak’s extremal function.
We will show that Theorem 1.4 can be carried over to R

N . In particular, there exists non–empty
compact sets K in R

N such that Siciak’s extremal function Φ is continuous.

Theorem 1.5
Let K ⊂ R

N be a compact set such that the extremal function Φ(z,K) is continuous in C
N .

Furthermore, let F : K → R be continuous and ρ > 1. Then

lim sup
n→∞

n
√
En(K,F ) ≤ 1

ρ

if and only if F has a holomorphic extension to

LN,ρ =
{
z ∈ C

N : Φ(z,K) < ρ
}
.

3A function F defined on an open set U ⊂ R
N with range R or C is said to be real analytic in U , if for each

x ∈ U the function F may be represented by a convergent power series in some non–empty neighborhood of x in U .
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Now, from some “theoretical” point of view the maximal convergence problem in R
N is solved. We

obtain analogous to the complex case a real maximal convergence number. However, bearing for
example Braess’s problem in mind, we also would like to calculate the real maximal convergence
number ρ for a given function F defined on a compact set K ⊂ R

N . Consequently, we need the
explicit formula of Φ, which requires even for simple compact sets, e.g. that of a closed unit ball
in R

N, much effort. An explicit representation of Φ for compact, convex and symmetric sets S in
R

N with non–empty interior IntS is due to Lundin [Lun85]4:
Let S be a compact, convex and symmetric (with respect to 0) subset of R

N with IntS 
= ∅ in R
N .

Then

Φ(z, S) = max
y∈∂BN

∣∣h(a(y)〈 z, y 〉)∣∣ for z ∈ C
N , (1.4)

where h : C → C\{z ∈ C : |z| < 1}, h(z) = z +
√
z2 − 1 and a(y) := 1/maxx∈S 〈x, y 〉 for

y ∈ ∂BN :=
{
x = (x1, x2, . . . , xN ) ∈ R

N :
(∑N

j=1 |xj |2
)1/2 = 1

}
. The symbol 〈 · , · 〉 means the

standard scalar product in R
N and C

N respectively.

Formula (1.4) was obtained by a representation of Φ in terms of plurisubharmonic functions. It
took more than twenty years to verify the identity

log Φ(z,K) = sup{u(z) : u ∈ L, u|K ≤ 0}, z ∈ C
N , (1.5)

for compact sets K ⊂ C
N , where L denotes the set of all plurisubharmonic functions v in C

N

which satisfy the growth condition supz∈CN |v(z) − log(1 + |z|)| <∞.
Zaharjuta [Zah76] showed this identity under the assumption that Φ is continuous. He studied
various properties of Hilbert spaces of analytic functions in this context. For the general case Siciak
provides two different proofs, see [Sic81] and [Sic82]. His first proof is based on an approximation
theorem by means of spectral theory and the latter proof was obtained by deep classical results
of several complex variables.

It turns out that in general the real maximal convergence number ρ can’t be determined explicitly
even if the explicit formula of Φ is known, see Paragraph §2.7. Regarded from this point of view
it is even more desirable to establish a link between the real maximal convergence number for
functions of squared–modulus holomorphic type in R

N and the corresponding complex maximal
convergence number, since then ρ can often be easily calculated for that kind of functions.
Before we state some results of this type let us introduce some notations.
BN,r and B2N,r stand for the closed balls with center r in C

N and R
2N with respect to the

Euclidean norm whereas DN,r and D2N,r denote the closed polydiscs with center r in C
N and

R
2N equipped with the maximum norm.

Theorem 1.6
(i) Let g ∈ H(BN,r) and F : B2N,r → R be given by

F (x, y) = |g(x + iy)|2, (x, y) ∈ B2N,r, x, y ∈ R
N .

Further, let ρ > 1. Then

lim sup
n→∞

n

√
En(B2N,r, F ) ≤ 1

ρ

4For a different approach to this formula see [BT86]. A generalization of Lundin’s formula for some special
classes of compact, convex and symmetric subsets of C

N was discovered by Baran [Bar88]. It was achieved by
considering various properties of a function of Joukowski type and making use of equation (1.5).
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if and only if g has a holomorphic extension to BN,rρ =
{
z ∈ C

N :
(∑N

j=1 |zj |2
)1/2

< rρ
}
. (ii) Let

g ∈ H(DN,r) and F : D2N,r → R be given by

F (x, y) = |g(x + iy)|2, (x, y) ∈ D2N,r, x, y ∈ R
N .

Further, let ρ > 1. Then

lim sup
n→∞

n

√
En(D2N,r, F ) ≤ 1

ρ

if and only if g has a holomorphic extension to DN,rρ =
{
z ∈ C

N : maxj=1,...,N |zj | < rρ
}
.

The proof of the above theorem requires a lengthy preparation with several rather technical aux-
iliary results. To this end we fall back on Lundin’s formula and the representation of Siciak’s
extremal function in terms of plurisubharmonic functions. In this context an additional change of
variables is of crucial importance.

Further we prove that for functions of holomorphic–antiholomorphic type the real maximal conver-
gence number can be also derived from the corresponding complex maximal convergence numbers.

Theorem 1.7
(i) Let F : B2N,r → R be given by

F (x, y) = g(x+ iy)h(x+ iy), (x, y) ∈ B2N,r, x, y ∈ R
N ,

where g, h ∈ H(BN,r) and g 
≡ 0, h 
≡ 0. Further, let ρ > 1. Then

lim sup
n→∞

n

√
Ec

n(B2N,r, F ) ≤ 1
ρ

if and only if g and h have holomorphic extensions to BN,rρ.
(ii) Let F : D2N,r → R be given by

F (x, y) = g(x+ iy)h(x+ iy), (x, y) ∈ D2N,r, x, y ∈ R
N ,

where g, h ∈ H(DN,r) and g 
≡ 0, h 
≡ 0. Further, let ρ > 1. Then

lim sup
n→∞

n

√
Ec

n(D2N,r, F ) ≤ 1
ρ

if and only if g and h have holomorphic extensions to DN,rρ.

The maximal convergence number ρ for F in Theorem 1.7 was determined by the largest Euclidean
ball and polydisc in C

N to which g and h have holomorphic extensions. A different approach is
described in Theorem 1.8. Here, the maximal convergence number is received by the holomorphic
extension of F itself and its singularities.

Theorem 1.8
(i) Assume F ∈ H(B2N,r) has the representation

F (x, y) = g(x+ iy)h(x+ iy), (x, y) ∈ B2N,r, x, y ∈ R
N ,

where g, h ∈ H(BN,r) and g 
≡ 0, h 
≡ 0. Then the following conditions are equivalent:

(a) lim sup
n→∞

n

√
Ec

n(B2N,r, F ) ≤ 1
ρ
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(b) F has a holomorphic extension to

{
z = (z1, . . . , z2N ) ∈ C

2N :
2N∑
j=1

∣∣∣zj
r

∣∣∣2 +
∣∣∣∣

2N∑
j=1

(zj
r

)2
− 1
∣∣∣∣ < 1

2

(
ρ2 +

1
ρ2

)}
.

(c) F has a holomorphic extension to

{
z=(z1, ..., z2N ) ∈ C

2N:
( N∑

j=1

|z2j−1+ iz2j |2
) 1

2

< rρ ∧
( N∑

j=1

|z2j−1− iz2j |2
) 1

2

< rρ

}
.

(d) F has no singular points on{
z = (z1, ..., z2N ) ∈ C

2N: z2j−1 =
rRj

2R

(
Reitj +

1
Reitj

)
, z2j = ±rRj

2iR

(
Reitj − 1

Reitj

)
,

N∑
j=1

R2
j = R2, R ∈ (1, ρ), Rj ∈ [0, R], tj ∈ [0, 2π], j = 1, ..., N

}
.

(ii) Let F ∈ H(D2N,r) be of the form

F (x, y) = g(x+ iy)h(x+ iy), (x, y) ∈ D2N,r, x, y ∈ R
N ,

where g, h ∈ H(DN,r) and g 
≡ 0, h 
≡ 0. Then the following conditions are equivalent:

(a) lim sup
n→∞

n

√
Ec

n(D2N,r, F ) ≤ 1
ρ

(b) F has a holomorphic extension to{
z = (z1, z2, . . . , z2N ) ∈ C

2N : max
1≤j≤N

(∣∣∣z2j−1

r

∣∣∣2 +
∣∣∣z2j

r

∣∣∣2 +
∣∣∣(z2j−1

r

)2
+
(z2j

r

)2
− 1
∣∣∣) <

1
2

(
ρ2 +

1
ρ2

)}
.

(c) F has a holomorphic extension to

{
z = (z1, z2, . . . , z2N ) ∈ C

2N : max
1≤j≤N

|z2j−1 + iz2j | < rρ ∧ max
1≤j≤N

|z2j−1− iz2j | < rρ
}
.

(d) F has a no singular points on

{
z = (z1, ..., z2N ) ∈C

2N: z2j−1 =
rRj

2R

(
Reitj +

1
Reitj

)
, z2j = ±rRj

2iR

(
Reitj − 1

Reitj

)
,

max
1≤j≤N

Rj = R, R ∈ (1, ρ), Rj ∈ [0, R], tj ∈ [0, 2π], j = 1, ..., N
}
.

In the next theorem it is shown that the real maximal convergence number is always greater or
equal than the corresponding complex maximal convergence numbers.
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Theorem 1.9
Let K ⊂ C

N be a compact set such that Siciak’s extremal function Φ is continuous in C
N and

define L = {(Re z, Im z) : z ∈ K}. Moreover, let F : L→ R have the representation

F (x, y) = g(x+ iy)h(x+ iy),

where g, h are holomorphic functions in an open connected neighborhood of K. Then

lim sup
n→∞

n
√
Ec

n(L,F ) ≤ 1
ρ

if g and h have holomorphic extensions to
{
z ∈ C

N : Φ(z,K) < ρ
}
.

The example below illustrates that the opposite direction of Theorem 1.9 is not true in general,
cf. [Kra07]. In particular, it is not sufficient to assume that the set K is regular in the sense of
pluripotential theory.

Example 1.10
Consider

F (x, y) =
1(

(x− ρ0)2 + y2
)s = g(z)g(z),

where g(z) =
1

(z − ρ0)s
, s ∈ (0,∞) and ρ0 ∈ (1,∞). Then

lim sup
n→∞

n
√
En([−1, 1] × [−1, 1], F ) =

1
ρ0

but

lim sup
n→∞

n
√
en(K, g) =

1
|ψ(ρ0)|

>
1
ρ0
.

Here, ψ maps Ĉ\K univalently onto Ĉ\{z ∈ C : |z| ≤ 1} such that ψ(∞) = ∞5.

The paper is organized as follows. Section 2 starts with a discussion of maximal convergence
theory in C

N and R
N . We give a short comparison about maximal convergence concepts in C

and C
N and introduce Siciak’s extremal function Φ. In Paragraph §2.4 we focus on necessary and

sufficient conditions for the continuity of Φ which are essential for Theorem 1.5. Then we prove
Theorem 1.5 and discuss how the maximal convergence number ρ can be computed. Here, some
ingredients of plurisubharmonicity are required which are provided in Paragraph §2.6. In Section
3 we set the stage for the main results. We construct some transformations of Joukowski type and
prove several upper and lower bounds for the real maximal convergence number. The estimates are
based on the characterization of possible singularities of functions of squared modulus holomorphic
and holomorphic–antiholomorphic type. Finally, we establish Theorems 1.6, 1.7, 1.8 and 1.9. The
proofs are rather technical and quite lengthy.

2 Maximal convergence in CN and RN

2.1 Notations

At first let us become acquainted with some notations and definitions in R
N and C

N which we
need throughout our work.

5The conformal mapping ψ is up to a rotation uniquely determined.
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An element of R
N is denoted by x = (x1, x2, . . . , xN ) and an element of C

N by z = (z1, z2, . . . , zN ).
We equip the space C

N with the Euclidean norm

||z|| :=
√
z1z1 + z2z2 + · · · + zNzN

and the maximum norm
|z| := max{|z1|, . . . , |zN |},

where we regard R
N as a subset of C

N . The open polydisc in C
N with center a ∈ C

N and radius
r > 0 is abbreviated by

DN (a, r) :=
{
z ∈ C

N : |z − a| < r
}
.

In particular, we denote for simplification

DN,r := DN (0, r) and DN := DN (0, 1).

The closed polydisc in C
N with center a ∈ C

N and radius r > 0 is defined by

DN (a, r) :=
{
z ∈ C

N : |z − a| ≤ r
}
.

Similar as before, we put

DN,r := DN (0, r) and DN := DN (0, 1).

The symbols D2N (a, r) and D2N (a, r) are used for the sets

D2N (a, r) =
{
x = (x1, . . . , x2N ) ∈ R

2N : max
1≤j≤N

|x2
2j−1 + x2

2j − a| < r
}

and
D2N (a, r) =

{
x = (x1, . . . , x2N ) ∈ R

2N : max
1≤j≤N

|x2
2j−1 + x2

2j − a| ≤ r
}
,

where a ∈ R
2N and r > 0.

Polydiscs are balls with respect to the maximum norm. Open and closed balls in C
N with respect

to the Euclidean norm are abbreviated by BN(a, r) and BN (a, r), whereas BN (a, r) and BN (a, r)
stand for the open and closed balls in R

N .

2.2 Comparison of maximal convergence in C and CN

As a preparation for our further considerations we give in this paragraph a rough outline of the
ideas behind the proofs of Theorem 1.2 and Theorem 1.4.

The “only if”–part of Theorem 1.2 is based on the so–called Bernstein-Walsh property:

Let K be a compact subset of C such that Ĉ\K is connected and possesses a Green’s function gK

with pole at infinity6. Then gK has the representation

gK(z) = max
{

0, sup
{ 1

deg p
log |p(z)|

}}
, z ∈ C, deg p : degree of p, (2.1)

where the supremum is taken over all non-constant polynomials p satisfying ||p||K ≤ 1.
Furthermore, if

Lρ := {z ∈ C : egK(z) < ρ},
where ρ > 1, then

|p(z)| ≤ ||p||K ρdeg p for z ∈ Lρ.

6Let G be a domain in Ĉ. Then there exists a unique Green’s function for G if and only if ∂G is non–polar.
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As we will see in Paragraph §2.3 there exists an extension of the Bernstein–Walsh property to
several complex variables. Using this generalization the “only if”–part of Theorem 1.4 can be
proved quite similar to the one dimensional case.
In the complex plane one shows that there exists a sequence of polynomials pn : C → C, n ∈ N,
such that the series p0 +

∑∞
n=1(pn − pn−1) converges uniformly on compact subsets of Lρ to a

holomorphic function f̃ which agrees with f on K.

The “if”–part of Walsh’s theorem can be established by using series expansions for holomorphic
functions f in the region Lρ, which can be approximated by lemniscates. To be more precisely,
one can construct a sequence of lemniscates

Ωn := {z ∈ C : |pn(z)| < rn}, n ∈ N,

where pn is a polynomial of degree ≤ n and rn is a positive number, such that Ωn increases up to
Lρ and contains K for n sufficiently large. Within the lemniscates Ωn, n ∈ N, the function f can
be expanded into a Jacobi–series of the form

f(z) =
∞∑

j=0

qj(z)[pn(z)]j ,

where qj is a polynomial of degree ≤ n − 1. The Jacobi–series of f converges uniformly on
Ω′

n := {z ∈ C : |pn(z)| ≤ r′n}, 0 < r′n < rn. Truncating the series appropriately we get a suitable
polynomial approximant to f . For details see Section III and Section IV of [Wal35].

In several complex variables the lemniscates can be replaced by a sequence of polynomial polyhedra
which contains K and increases up to LN,ρ. A polynomial polyhedra is defined as follows:

Ωn :=
{
z = (z1, z2, . . . , zN ) ∈ C

N : |zi| < rn, |pj(z)| < rn, i = 1, . . . , N, j = 1, . . . , k
}
,

where rn > 0, pj are complex–valued polynomials of degree ≤ n and n, k ∈ N.

Now, a holomorphic function f in C
N can be expanded into a series of polynomials analogously to

the one dimensional case. To this end one has to fall back on a deep theorem in several complex
variables, namely the Oka–Weil extension theorem, see [Hoe66].

Sequences of polynomials which converge maximally to the corresponding holomorphic function
can also be constructed by interpolation. A proper choice of interpolation points are for instance
the extremal points of a compact set K ⊂ C

N introduced in [Sic62]. These points coincide with
the well–known Fekete points if K ⊂ C, see e.g. [Gai80].

Note, Green’s function which plays the central role in approximating and interpolating holomor-
phic functions by polynomials in the complex plane is replaced by log Φ, where Φ is Siciak’s
extremal function introduced in [Sic62].

2.3 The extremal function Φ

Let K ⊂ C
N be compact and define for every n ∈ N the function Φn : C

N → R ∪ {∞} by

Φn(z,K) := sup
{
|p(z)| : p ∈ Pc

n, |p(z)| ≤ 1 for z ∈ K
}
, (2.2)

where Pc
n = {p : C

N → C : p a polynomial of degree ≤ n}. Then the extremal function Φ may be
introduced by means of Φn.
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Definition 2.1
The function Φ : C

N → R ∪ {∞} defined by

Φ(z,K) = sup
n∈N

n
√

Φn(z,K) (2.3)

is called the extremal function for the compact set K ⊂ C
N .

A wide variety of polynomial estimates can be derived from the extremal function Φ. The cause
depends upon the different ways to express Φ, cf. [Sic62]. In Paragraph §2.6 we will be acquainted
with an important representation of Φ in terms of plurisubharmonic functions.

We also would like to point out that the extremal function Φ may be written in an analogous form
to equation (2.1). In fact,

log Φ(z,K) = max
{

0, sup
{ 1

deg p
log |p(z)|

}}
, z ∈ C

N ,

where the supremum is taken over all non-constant polynomials p : C
N → C satisfying ||p||K ≤ 1.

To generalize the Bernstein-Walsh inequality in higher dimensions the compact set K ⊂ C
N has

to satisfy an additional property, i.e. K has to be unisolvent:

A set S ⊂ C
N is called unisolvent, if every polynomial p : C

N → C that vanishes on S is identical
zero on C

N .

A first glimpse about unisolvent sets gives the following examples.

(i) Let Kj ⊂ C, j = 1, . . . , N , be an arbitrary set consisting of at least n + 1 different points.
Then K := K1 × · · · ×KN is unisolvent of order n.

(ii) A compact set K ⊂ R
N with non–empty interior in R

N is unisolvent.

(iii) If K ⊂ C
N is unisolvent, then K̃ ⊃ K is also unisolvent.

Now let us state the Bernstein–Walsh inequality in higher dimensions.

If K ⊂ C
N is a unisolvent compact set and pn ∈ Pc

n then

|pn(z)| ≤ ||pn||K [Φ(z,K)]n for z ∈ C
N . (2.4)

A useful tool for our further work is the preceeding theorem due to Siciak [Sic62], which describes
the extremal function Φ for Cartesian products of compact sets. Observe, Theorem 1.3 is then
just an application of Theorem 2.2. Moreover, we see that Cartesian products of compact intervals
with non–empty interior have a continuous extremal function Φ.

Theorem 2.2 ([Sic62])
Let K1 ⊂ C

N1 and K2 ⊂ C
N2 be compact sets, N1, N2 ∈ N. Then the extremal function Φ for

K1 ×K2 is given by

Φ((z,w),K1 ×K2) = max{Φ(z,K1),Φ(w,K2)}, (z,w) ∈ C
N1+N2 .

We refer the reader to [Kli91] for a nice proof of Theorem 2.2.
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2.4 Necessary and sufficient conditions for the continuity of Φ

Theorem 1.5 is based on the assumption “Φ is continuous in C
N”. For that reason we like to

discuss some necessary and sufficient conditions for this prerequisite.
At first we show that the extremal function Φ(z,K) can only be continuous in C

N ifK is unisolvent.

Lemma 2.3
If K ⊂ C

N is a compact set such that Φ(z,K) is bounded in some closed proper neighborhood U
of K, then K is unisolvent.
In particular, if Φ(z,K) is continuous in C

N then K is unisolvent.

Proof:
We assume K is not unisolvent. Then there exists a polynomial p̂n ∈ Pc

n for some n ∈ N, such
that

||p̂n||K = 0 but ||p̂n||U = t, t > 0.

Now, since Φ(z,K) is bounded in U , there exists some constant M > 0 such that

|Φ(z,K)| < M, z ∈ U.

As (Mn · p̂n)/t ∈ Pc
n(K) we obtain due to the definition of Φ the inequality∣∣∣∣Mn

t
p̂n(z)

∣∣∣∣ ≤ [Φ(z)]n, z ∈ C
N .

In particular, ∣∣∣∣Mn

t
p̂n(z)

∣∣∣∣ < Mn for z ∈ U.

The latter is clearly impossible, since we have |p̂(ẑ)| = t for some ẑ ∈ U . Hence K is unisolvent.
�

In the sequel sufficient conditions for the continuity of Φ are described.

Remark 2.4 ([Sic82])
Let K be a compact subset of C

N . Then the following conditions are equivalent:

(i) Φ is continuous at every point z ∈ K, that is lim
zk→z∈K,
zk∈CN

Φ(zk,K) = Φ(z,K).

(ii) Φ is continuous in C
N .

(iii) To each real number R > 1 there exist an open neighborhood U of K and a constant M > 0
such that

||p||U ≤M ||p||KRn

for every p ∈ Pc
n, n ∈ N.

Remark 2.5
Baouendi and Goulaouic [BG74] as well as Siciak and Nguyen Thanh Van [SN74] provided an
additional equivalent condition in Remark 2.4 in the case that the compact set K is not too
“small”. The requirement “K should not be too small” means that any holomorphic function
defined on a connected open neighborhood of K with f |K ≡ 0 is identical zero.
Now, let K be such a set. Then (i), (ii) and (iii) of Remark 2.4 are equivalent to the statement:
If f is continuous and lim supn→∞ n

√
en(f,K) < 1, then f extends to a uniquely determined

holomorphic function in a neighborhood of K.
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In view of Theorem 1.6 and Theorem 1.7 we prove that closed balls in R
N are not too ”small”

compact sets.

Lemma 2.6
Let F : BN → R be continuous. If F : BN → R has a holomorphic extension F̃ to some

neighborhood of BN in C
N , then F̃ is uniquely determined.

Proof:
Suppose this were not true. Then there exist two different holomorphic extensions F̃1 : G1 → C

and F̃2 : G2 → C, where G1 and G2 are appropriate chosen neighborhoods of BN in C
N . In

particular, these extensions are holomorphic in DN (0, ε) =
{
z ∈ C

N : |z| < ε
}
⊂ G := G1 ∩ G2

for ε > 0 sufficiently small. There we may expand F̃1 and F̃2 into their power series

F̃1(z) =
∑

α∈NN
0

aαz
α and F̃2(z) =

∑
α∈NN

0

bαz
α, z ∈ DN (0, ε),

where α = (α1, α2, . . . , αN ) and N0 = N ∪ {0}. As we have

∑
α∈NN

0

aαz
α =

∑
α∈NN

0

bαz
α

for z ∈ DN (0, ε) =
{
x ∈ R

N : |x| < ε
}
, we get by the identity principle of power series

aα = bα, α ∈ N
N
0 ,

and therefore
F̃1(z) = F̃2(z) for z ∈ DN (0, ε).

Since DN (0, ε) is a non-empty open set of G we can apply the identity principle of holomorphic
functions and obtain

F̃1|G ≡ F̃2|G.

�

A useful geometric criterion to check the continuity of Φ(z,K) in C
N goes back to Plesniak [Ple84].

We also refer the reader [Sic97].

Theorem 2.7 ([Ple84])
Let Ω be a bounded open subset of C

N with C1–boundary. Then the extremal function Φ for Ω
is continuous in C

N .

2.5 Maximal convergence in RN

Now we are well prepared to prove Theorem 1.5.

Proof of Theorem 1.5:

“⇐”: Let us associate to each complex–valued polynomial pn : C
N → C of degree ≤ n,

pn(z) =
∑

α∈NN
0 , |α|≤n

aαz
α,

13



the real–valued polynomial Pn : R
N → R,

Pn(x) =
∑

α∈NN
0 , |α|≤n

Re(aα)xα .

Notice, Pn(x) = Re pn(x) for x ∈ R
N . Therefore we obtain the inequality

||F − Pn||K = ||F − Re pn||K ≤ ||F − pn||K

and in view of Theorem 1.4 we achieve

lim sup
n→∞

n
√
En(K,F ) ≤ lim sup

n→∞
n
√
en(K,F ) ≤ 1

ρ
.

“⇒”: For an arbitrary real polynomial P̂n : R
n → R of degree ≤ n we define

p̂n(z) := P̂n(z), z ∈ C
N .

Since p̂n ∈ P c
n we derive the estimate

lim sup
n→∞

n
√
en(K,F ) ≤ lim sup

n→∞
n
√
En(K,F ) ≤ 1

ρ
.

Theorem 1.4 now implies that F has a holomorphic extension to

Lρ :=
{
z ∈ C

N : Φ(z,K) < ρ
}
.

�

2.6 On some representations of Φ

Explicit representations of Φ are mainly based on the identity (1.5). For that reason we take for
the convenience of the reader a short “pluricomplex interlude”. We refer [Hoe66], [Kli91] and
[Kra01] for a comprehensive discussion about this topic.

2.6.1 Plurisubharmonicity

Let us first recall the definitions of subharmonic and plurisubharmonic functions.

Definition 2.8
Let Ω ⊂ C be an open set. A function u : Ω → R ∪ {−∞} is called subharmonic, if

(i) u is upper semicontinuous;
(ii) the local submean inequality holds, i.e. for every z0 ∈ Ω there exists an ρ > 0 such that

u(z0) ≤
1
2π

∫ 2π

0
u(z0 + reit)dt

for any r ∈ (0, ρ).

Definition 2.9
Let Ω ⊂ C

N be an open set. A function u : Ω → R ∪ {−∞} is called plurisubharmonic, if

(i) u is upper semicontinuous;
(ii) to each z ∈ Ω and w ∈ C

N correspond a neighborhood U of 0 in C such that the
function

τ �→ u(z + τw)

is subharmonic in U .
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The set of all plurisubharmonic functions defined on an open set Ω ⊂ C
N is denoted by PSH(Ω).

Typical examples of plurisubharmonic functions are log |f | and |f |α for α > 0, if f is holomorphic.
A function u ∈ PSH(CN ) is said to be of minimal growth at infinity if

u(z) − log(1 + |z|) ≤ O(1) as |z| → ∞.

The family of all such functions will be denoted by

L :=
{
u ∈ PSH(CN ) : u(z) ≤ β + log(1 + |z|) for z ∈ C

N
}
, (2.5)

where β ∈ R may depend on u.
An attractive feature of plurisubharmonic functions with minimal growth at infinity is the full
description by polynomials, see [Sic82].

Further, we put for any set S ⊂ C
N

L(S) := {u ∈ L : u(z) ≤ 0 for z ∈ S},

and define for every z ∈ C
N the function

V (z, S) := sup{u(z) : u ∈ L(S)}.

The function V is called the pluricomplex Green’s function to emphasize the analogy to the one-
dimensional case.
Now, if S is compact, then the pluricomplex Green’s function coincides with Siciak’s extremal
function Φ.

Theorem 2.10 (cf. [Sic82])
Let K ⊂ C

N be compact. Then

V (z,K) = log Φ(z,K) for z ∈ C
N .

2.6.2 An explicit representation of Φ for compact, convex and symmetric sets in R
N

Theorem 2.10 is the gist of Lundin’s formula for the extremal function Φ for compact, convex and
symmetric (with respect to 0) subsets S of R

N whose interior IntS is not empty. These sets have
the nice property that they can be described by a continuous function with range in [−1, 1]. More
precisely:
If S ⊂ R

N is a compact, convex and symmetric (with respect to 0) subset of R
N and IntS 
= ∅ in

R
N , then S can be described by

S =
{
x ∈ R

N : a(y)〈 x, y 〉 ∈ [−1, 1] for every y ∈ ∂BN

}
,

where a(y) := 1/maxx∈S 〈x, y 〉 is a continuous function defined on ∂BN and 〈 · , · 〉 means the
standard scalar product in R

N and C
N respectively.

Lundin’s formula:
Let S be a compact, convex and symmetric (with respect to 0) subset of R

N with IntS 
= ∅ in R
N .

Then

Φ(z, S) = max
y∈∂BN

∣∣h(a(y)〈 z, y 〉)∣∣ for z ∈ C
N ,

where h : C → C\D is defined by h(η) = η +
√
η2 − 1 and a(y) := 1/maxx∈S 〈x, y 〉 for y ∈ ∂BN .

Now, if S is the closed unit ball in R
N then the formula for Φ can even be refined, cf. [Bar88].
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Corollary 2.11
Let h : C → C\D be defined by h(η) = η +

√
η2 − 1. Then

Φ(z,BN ) =
√
h(||z||2 + |〈 z, z 〉 − 1|) for z ∈ C

N .

2.7 Computation of ρ

In this paragraph we like to show how Theorem 1.5 and Lundin’s formula can be utilized to get
some information on the real maximal convergence number ρ for a given continuous function. For
that purpose we first combine Theorem 1.5 and Corollary 2.11 to the following

Lemma 2.12
(i) Let F : BN → R be a continuous function and let ρ > 1. Then

lim sup
n→∞

n

√
En(BN , F ) =

1
ρ

if and only if F has a holomorphic extension F̃ to

LN,ρ :=
{
z = (z1, . . . , zN ) ∈ C

N : ||z||2 +
∣∣∣∣

N∑
j=1

z2
j − 1

∣∣∣∣ < 1
2

(
ρ2 +

1
ρ2

)}

but to no larger domain containing LN,ρ.
(ii) Let F : D2N → C be a continuous function and let ρ > 1. Then

lim sup
n→∞

n

√
En(D2N , F ) =

1
ρ

if and only if F has a holomorphic extension F̃ to

L2N,ρ :=
{
z = (z1, . . . , z2N ) ∈ C

2N : max
1≤j≤N

(
|z2j−1|2 + |z2j |2 +

∣∣z2
2j−1 + z2

2j − 1
∣∣}

but to no larger domain containing L2N,ρ.

Thus in view of Lemma 2.12 the number ρ is the largest root of the equation

γ = inf
z∈P

{
||z||2 +

∣∣∣∣
N∑

j=1

z2
j − 1

∣∣∣∣
}

=
1
2

(
ρ2 +

1
ρ2

)
(2.6)

and

γ = inf
z∈P

{
max

1≤j≤N

(
|z2j−1|2 + |z2j |2 +

∣∣z2
2j−1 + z2

2j − 1
∣∣} =

1
2

(
ρ2 +

1
ρ2

)
(2.7)

respectively, where P denotes the set of all non–removable singularities7 of F̃ .

Let us apply this lemma to a class of functions whose approximation behavior is also of special
interest in the numerical treatment of elliptic differential equations, cf. [Sau], [Bra01] and [Kra06].

Let F̂ : B2N → R be given by

F (x, y) =
1(∑N

j=1

(
(xj − x0,j)2 + (yj − y0,j)2

))s , (2.8)

7A point z̃ ∈ C
N is called a non–removable singularity of F if the function F̃ has no analytic continuation to a

non–empty open neighborhood of z̃.
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where s ∈ (0,∞) and (x0, y0) ∈ R
2N with ρ0 :=

√∑N
j=1 x

2
0,j + y2

0,j > 1.
Then

F̃ (z1, z2, . . . , z2N ) =
1(∑N

j=1(z2j−1 − x0,j)2 + (z2j − y0,j)2
)s

is the uniquely determined holomorphic extension of F̂ to C
2N\P , where P = {(z1, z2, . . . , z2N )

∈ C
2N : z2j−1 = x0,j±i(z2j−y0,j), j = 1, 2, . . . , N}, see Remark 2.6 for the argument of uniqueness.

Thus γ of equation (2.6) takes on the form

γ = inf
z∈P

{ N∑
j=1

(
|z2j |2 + |x0,j± i(z2j −y0,j)|2

)
+
∣∣∣∣

N∑
j=1

(
x2

0,j −y2
0,j±2ix0,j(y0,j −z2j)+2y0,jz2j

)
−1
∣∣∣∣
}
.

Obviously, the exact value for γ can’t be given straight away and consequently the same holds
for ρ. So the way we proposed to determine ρ by means of the maximal convergence number for
the corresponding holomorphic function has the advantage that it can be done explicitly, i.e. we
have ρ = ρ0. Here, in contrast, we have the possibility to find easily some upper bounds for ρ
by evaluating ||ẑ||2 +

∣∣∑2N
j=1 ẑ

2
j − 1

∣∣ for a given non-removable singularity ẑ of F . We can also
calculate ρ numerically. However, we have to bear in mind that the computation of γ gets more
involved if N increases.
The following example illustrates how a sharp lower bound for the approximation error of F̂ in
(2.8) can be derived by a suitable chosen non–removable singularity.

Example 2.13
The function F̂ in (2.8) has a non–removable singularity at

(z1, z2, . . . , z2N−1, z2N ) =(
1

2ρ0

(
(x0,1 + iy0,1)2 + 1

)
,

1
2iρ0

(
(x0,1 + iy0,1)2 − 1

)
, . . . ,

1
2ρ0

(
(x0,N + iy0,N )2 + 1

)
,

1
2iρ0

(
(x0,N + iy0,N )2 − 1

))
.

After a lengthy but straight forward computation we receive

inf
z∈P

{
||z|| +

∣∣∣∣
2N∑
j=1

z2
j − 1

∣∣∣∣
}

≤

N∑
j=1

|x0,j + iy0,j|2
2ρ2

0

(
|x0,j + iy0,j|2 +

∣∣∣ 1
x0,j + iy0,j

∣∣∣2)+
∣∣∣∣

N∑
j=1

|x0,j + iy0,j|2
ρ2

0

− 1
∣∣∣∣

=
1
2

(
ρ2

0 +
1
ρ2

0

)
,

where P is the set of all non–removable singularities of F̃ . This implies

lim sup
n→∞

n

√
En(B2N , F̂ ) ≥ 1

ρ0
.

3 Proofs of Theorems 1.6, 1.7, 1.8 and 1.9

The proof of Theorem 1.6 in one complex variable is based on some special factorizations of
holomorphic functions g like g = g̃B, where B is a Blaschke product, see [Kra07]. As inner

17



functions of that form lack in several complex variables we have to choose a different approach in
order to establish Theorem 1.6. Here, a useful tool is Lemma 2.12. We will see that

F ∈ H(L2N,ρ) if and only if g ∈ H(BN,ρ).

In this context an additional change of variables is of crucial importance.
Now, let us set off on proving Theorem 1.6 and Theorem 1.7.

3.1 Auxiliary results

In the preceeding lemma we construct a transformation of Joukowski type for the domains
C

2\{(z1, z2) ∈ C
2 : z1 = 0 ∨ z2 = 0} and C

2\{(z1, z2) ∈ C
2 : z1 = ±iz2}.

Lemma 3.1
Consider the map h : C

2\{(ξ, η) ∈ C
2 : ξ = 0 ∨ η = 0} → C

2\{(z1, z2) ∈ C
2 : z1 = ±iz2},

(ξ, η) �→
(
ξ
1
2

(
η +

1
η

)
, ξ

1
2i

(
η − 1

η

))
.

Then h is surjective.
In particular, any point (z1, z2) ∈ C

2\{(z1, z2) ∈ C
2 : z1 = ±iz2} can be expressed as

(z1, z2) =
(
ξ
1
2

(
η +

1
η

)
, ξ

1
2i

(
η − 1

η

))
,

if ξ, η ∈ C\{0} are chosen appropriately.

Proof:
Observe, h maps C

2\{(ξ, η) ∈ C
2 : ξ = 0 ∨ η = 0} in C

2\{(z1, z2) ∈ C
2 : z1 = ±iz2}.

Now let (z1, z2) ∈ C
2\{(z1, z2) ∈ C

2 : z1 = ±iz2} be an arbitrary point. Then

(ξ, η) =

(√
z2
1 + z2

2 ,
z1 + iz2√
z2
1 + z2

2

)

is an element of C
2\{(ξ, η) ∈ C

2 : ξ = 0 ∨ η = 0} and we calculate

h(ξ, η) =
(
ξ
1
2

(η2 + 1
η

)
, ξ

1
2i

(η2 − 1
η

))

=

(
ξ
1
2

(z1 + iz2)2 + z2
1 + z2

2

(z1 + iz2)
√
z2
1 + z2

2

, ξ
1
2i

(z1 + iz2)2 − z2
1 − z2

2

(z1 + iz2)
√
z2
1 + z2

2

)

=

(
ξ
1
2

2z2
1 + 2iz1z2

(z1 + iz2)
√
z2
1 + z2

2

, ξ
1
2i

2iz1z2 − 2z2
2

(z1 + iz2)
√
z2
1 + z2

2

)

=
(
z1,−

−z1z2 − iz2
2

z1 + iz2

)
= (z1, z2).

�

The next two lemmata may be regarded as the nub for determining non–removable singularities
of functions F of squared modulus holomorphic and holomorphic–antiholomorphic type.
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Lemma 3.2
Let ρj ∈ (0,∞), j = 1, 2, . . . , N, be arbitrary real numbers such that ρ :=

√
N∑

j=1
ρ2

j > 1.

Then the function h : C
N → R defined by

h(w) =
N∑

j=1

|wj |4
2ρ2

j

+
∣∣∣∣

N∑
j=1

w2
j − 1

∣∣∣∣, w = (w1, w2, . . . , wN ) ∈ C
N ,

attains its minimum at the points ŵ = (±ρ1/ρ,±ρ2/ρ, . . . ,±ρN/ρ). In particular,

h(w) >
1

2ρ2
for w ∈ C

N\{ŵ}.

Proof:
Note, we may consider h as a function of 2N real variables. For that reason we define the function
ĥ : R

2N → R by ĥ(x, y) = h(x+ iy), where x, y ∈ R
N . Then the function ĥ can be written as

ĥ(x, y) =
N∑

j=1

(x2
j + y2

j )
2

2ρ2
j

+
∣∣∣∣

N∑
j=1

(xj + iyj)2 − 1
∣∣∣∣

=
N∑

j=1

(x2
j + y2

j )
2

2ρ2
j

+

√√√√( N∑
j=1

(x2
j − y2

j ) − 1
)2

+
(

2
N∑

j=1

xjyj

)2

.

Observe, for x̂ = (±ρ1/ρ,±ρ2/ρ, . . . ,±ρN/ρ) and ŷ = (0, 0, . . . , 0) the function ĥ takes the value

ĥ(x̂, ŷ) =
N∑

j=1

ρ2
j

2ρ4
+
∣∣∣∣

N∑
j=1

ρ2
j

ρ2
− 1
∣∣∣∣ =

1
2ρ2

.

Since our intention is to show that ĥ assumes its minimum at the points (x̂, ŷ), we compute the
first partial derivatives of ĥ which necessarily vanish at critical points:

∂ĥ(x, y)
∂xj

=
2(x2

j + y2
j )2xj

2ρ2
j

+

2
( N∑

j=1
(x2

j − y2
j ) − 1

)
2xj + 2

(
2

N∑
j=1

xjyj

)
2yj

2

√( N∑
j=1

(x2
j − y2

j ) − 1
)2

+
(
2

N∑
j=1

xjyj

)2
= 0 (3.1)

∂ĥ(x, y)
∂yj

=
2(x2

j + y2
j )2yj

2ρ2
j

+

2
( N∑

j=1
(x2

j − y2
j ) − 1

)
(−2yj) + 2

(
2

N∑
j=1

xjyj

)
2xj

2

√( N∑
j=1

(x2
j − y2

j ) − 1
)2

+
(
2

N∑
j=1

xjyj

)2
= 0 (3.2)

for j = 1, 2, . . . , N . Now (3.1)yj − (3.2)xj gives

8
( N∑

j=1
(x2

j − y2
j ) − 1

)
xjyj + 4

( N∑
j=1

2xjyj

)
(y2

j − x2
j )

2

√( N∑
j=1

(x2
j − y2

j ) − 1
)2

+
(
2

N∑
j=1

xjyj

)2
= 0
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for j = 1, 2, . . . , N .

For simplification we set A :=
N∑

j=1
(x2

j − y2
j ) − 1 and B :=

N∑
j=1

2xjyj. Hence the last equation

assumes the form
8Axjyj + 4B(y2

j − x2
j )

2
√
A2 +B2

= 0

for j = 1, 2, . . . , N .
Note, the assumption A 
= 0 implies B = 0 and A = 0 entails B = 0 since

2xjyjA = B(x2
j − y2

j ), j = 1, 2, . . . , N, (3.3)

and therefore

AB = A

( N∑
j=1

2xjyj

)
= B

( N∑
j=1

x2
j − y2

j

)
= B(A+ 1).

Thus, we only have to distinguish the two cases:
(i) A 
= 0 and B = 0
(ii) A = 0 and B = 0

Case (i): By equation (3.3) we obtain

xj = 0 or yj = 0 for j = 1, 2, . . . , N.

If xj = yj = 0 for j = 1, 2, . . . , N, we have ĥ(0, 0) = 1. Hence ĥ can’t have an absolute minimum
at (0, 0). Therefore we may assume that there exists at least one xk or yk, k ∈ {1, 2, . . . , N},
which is not zero. Thus equations (3.1) and (3.2) simplify to

x3
k

ρ2
k

+
xkA

|A| = 0 (3.4)

if xk 
= 0, and
y3

k

ρ2
j

− ykA

|A| = 0 (3.5)

if yk 
= 0. Equation (3.4) implies A < 0 and (3.5) shows A > 0. Thus either xj = 0 for all
j = 1, 2, . . . , N, or yj = 0 for all j = 1, 2, . . . , N . Since ĥ(0, y) ≥ 1 for y = (y1, y2, . . . , yN ) ∈ R

N ,
we only have to study the case yj = 0 for all j = 1, 2, . . . , N. Because of (3.4) we get

xj = 0 or or xj = ±ρj, j = 1, 2, . . . , N.

Without loss of generality we may assume

xj = ±ρj for j = 1, 2, . . . ,m, m ≤ N,

and

xj = 0 for j = m+ 1,m+ 2, . . . , N.

Then we obtain for such a point the estimate

ĥ(±ρ1, . . . ,±ρm, 0, . . . , 0) =
1
2

m∑
j=1

ρ2
j +

∣∣∣∣
m∑

j=1

ρ2
j − 1

∣∣∣∣ ≥ 1
2
>

1
2ρ2
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as

1
2

m∑
j=1

ρ2
j +

∣∣∣∣
m∑

j=1

ρ2
j − 1

∣∣∣∣ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2

m∑
j=1

ρ2
j +

m∑
j=1

ρ2
j − 1 for

m∑
j=1

ρ2
j ≥ 1

1
2

m∑
j=1

ρ2
j + 1 −

m∑
j=1

ρ2
j for

m∑
j=1

ρ2
j < 1

≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 for

m∑
j=1

ρ2
j ≥ 1

1 − 1
2

m∑
j=1

ρ2
j >

1
2 for

m∑
j=1

ρ2
j < 1.

Consequently, ĥ has a chance to take on an absolute minimum only if A = 0. This fact leads us
indispensably to the second case:
Case (ii): Here, our minimum problem consists in the following extremum problem with side
conditions:
Find the minimum of

ĥ(x, y) =
N∑

j=1

(x2
j + y2

j )
2

2ρ2
j

under the conditions

g1(x, y) =
N∑

j=1

(x2
j − y2

j ) − 1 = 0 and g2(x, y) =
N∑

j=1

xjyj = 0.

We shall solve this problem by the Lagrange multiplication formalism as the hypotheses for this
machinery are fulfilled.
Consequently, we have to determine the minimum of the function

h̃(x, y, λ1, λ2) =
N∑

j=1

(x2
j + y2

j )
2

2ρ2
j

+ λ1

( N∑
j=1

(x2
j − y2

j ) − 1
)

+ λ2

N∑
j=1

xjyj

for x, y ∈ R
N and λ1, λ2 ∈ R.

Thus the following conditions must be fulfilled:

∂h̃(x, y, λ1, λ2)
∂xj

=
2xj(x2

j + y2
j )

ρ2
j

+ λ12xj + λ2yj = 0, j = 1, 2, . . . , N, (3.6)

∂h̃(x, y, λ1, λ2)
∂yj

=
2yj(x2

j + y2
j )

ρ2
j

+ λ12(−yj) + λ2xj = 0, j = 1, 2, . . . , N, (3.7)

∂h̃(x, y, λ1, λ2)
∂λ1

=
N∑

j=1

(x2
j − y2

j ) − 1 = 0, (3.8)

∂h̃(x, y, λ1, λ2)
∂λ2

=
N∑

j=1

xjyj = 0. (3.9)

In order to determine λ1 and λ2, we consider the equations

(3.6)xj − (3.7)yj =
2(x2

j − y2
j )(x

2
j + y2

j )
ρ2

j

+ λ12(x2
j + y2

j ) = 0, j = 1, 2, . . . , N, (3.10)
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and

(3.6)yj + (3.7)xj =
4xjyj(x2

j + y2
j )

ρ2
j

+ λ2(x2
j + y2

j ) = 0, j = 1, 2, . . . , N. (3.11)

Now, equations (3.10) and (3.11) imply for j = 1, 2, . . . , N ,

(x2
j − y2

j ) = −λ1ρ
2
j or xj = yj = 0 (3.12)

and

4xjyj = −λ2ρ
2
j or xj = yj = 0. (3.13)

Without loss of generality we may assume xj 
= 0 or yj 
= 0 for j = 1, 2, . . . ,m, m ≤ N , and
xj = yj = 0 for j = m+ 1, . . . , N .
As the case xj = yj = 0 for j = 1, 2, . . . , N, does not meet the side conditions we can exclude it.
Therefore we obtain by (3.12)

N∑
j=1

(x2
j − y2

j ) − 1 =
m∑

j=1

(−λ1ρ
2
j) − 1 = 0

and by (3.13)
N∑

j=1

xjyj = −1
4
λ2

m∑
j=1

ρ2
j = 0.

Thus it follows
λ1 = − 1

m∑
j=1

ρ2
j

and λ2 = 0.

Further, we receive from equations (3.6) and (3.7)

xj = ±
√
−λ1ρj and yj = 0 for j = 1, 2, . . . ,m.

Inserting xj and yj, j = 1, 2, . . . , N, into ĥ gives

ĥ(x, y) =
1

2
( m∑

j=1
ρ2

j

)2

m∑
j=1

ρ2
j =

1

2
m∑

j=1
ρ2

j

.

Since
m∑

j=1

ρ2
j <

N∑
j=1

ρ2
j

we conclude that ĥ assumes its minimum if and only if

xj = ± ρj√
N∑

j=1
ρ2

j

and yj = 0 for j = 1, 2, . . . , N,

and we are done. �
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Lemma 3.3
Let ρ > 1 be arbitrary.
(i) Consider the sets

L2N,ρ :=
{
z = (z1, . . . , z2N ) ∈ C

2N :
2N∑
j=1

|zj |2 +
∣∣∣∣

2N∑
j=1

z2
j − 1

∣∣∣∣ < 1
2

(
ρ2 +

1
ρ2

)}

and

T2N,ρ :=
{
z=(z1, ..., z2N ) ∈ C

2N:
( N∑

j=1

|z2j−1+ iz2j |2
) 1

2

< ρ ∧
( N∑

j=1

|z2j−1− iz2j |2
) 1

2

< ρ

}
.

Then
L2N,ρ ⊂ T2N,ρ.

(ii) Analogously, the sets

L2N,ρ :=
{
z = (z1, z2, . . . , z2N ) ∈ C

2N : max
1≤j≤N

(
|z2j−1|2 + |z2j |2 + |z2

2j−1 + z2
2j − 1|

)
<

1
2

(
ρ2 +

1
ρ2

)}

and

T2N,ρ :=
{
z = (z1, z2, . . . , z2N ) ∈ C

2N : max
1≤j≤N

|z2j−1 + iz2j | < ρ ∧ max
1≤j≤N

|z2j−1− iz2j | < ρ
}

satisfy the inclusion
L2N,ρ ⊂ T2N,ρ.

Proof:
To (i): To prove this inclusion let an arbitrary point z = (z1, . . . , z2N ) ∈ C

2N\T2N,ρ be given.
Without loss of generality we may assume that

z2j−1 = ± iz2j for j = 1, . . . ,m, m ∈ N0,
and

z2j−1 
= ± iz2j for j = m+ 1, . . . , N.

Now, for j = m+ 1, . . . , N we choose the representation of Lemma 3.1

z2j−1 = ξj
1
2

(
ηj +

1
ηj

)
and z2j = ξj

1
2i

(
ηj −

1
ηj

)
, ξj, ηj ∈ C\{0}.

In addition, we set

ρ̃j := |ξjηj| as well as ρ̂j :=
∣∣∣∣ξj 1
ηj

∣∣∣∣, j = m+ 1, . . . , N.

Thus we obtain
2N∑
j=1

|zj |2 +
∣∣∣∣

2N∑
j=1

z2
j − 1

∣∣∣∣ =
m∑

j=1

2|z2j |2 +
N∑

j=m+1

(∣∣∣∣ξj2
(
ηj +

1
ηj

)∣∣∣∣
2

+
∣∣∣∣ξj2i
(
ηj −

1
ηj

)∣∣∣∣
2)

+

∣∣∣∣
N∑

j=m+1

((
ξj
2

(
ηj +

1
ηj

))2

+
(
ξj
2i

(
ηj −

1
ηj

))2)
− 1
∣∣∣∣

=
m∑

j=1

2|z2j |2 +
N∑

j=m+1

|ξj|2
1
2

(
|ηj |2 +

1
|ηj |2

)
+
∣∣∣∣

N∑
j=m+1

ξ2j − 1
∣∣∣∣

23



=∣∣ 1
ηj

∣∣= |ξj |
ρ̃j

m∑
j=1

2|z2j |2 +
1
2

N∑
j=m+1

ρ̃2
j +

1
2

N∑
j=m+1

|ξj|4
ρ̃2

j

+
∣∣∣∣

N∑
j=m+1

ξ2j − 1
∣∣∣∣

=
m∑

j=1

2|z2j |2 +
1
2
ρ̃2 +

1
2

N∑
j=m+1

|ξj |4
ρ̃2

j

+
∣∣∣∣

N∑
j=m+1

ξ2j − 1
∣∣∣∣

as well as

2N∑
j=1

|zj |2 +
∣∣∣∣

2N∑
j=1

z2
j − 1

∣∣∣∣ =
m∑

j=1

2|z2j |2 +
N∑

j=m+1

|ξj|2
1
2

(
|ηj |2 +

1
|ηj |2

)
+
∣∣∣∣

N∑
j=m+1

ξ2j − 1
∣∣∣∣

=
|ηj |= |ξj |

ρ̂j

m∑
j=1

2|z2j |2 +
1
2

N∑
j=m+1

ρ̂2
j +

1
2

N∑
j=m+1

|ξj|4
ρ̂2

j

+
∣∣∣∣

N∑
j=m+1

ξ2j − 1
∣∣∣∣

=
m∑

j=1

2|z2j |2 +
1
2
ρ̂2 +

1
2

N∑
j=m+1

|ξj |4
ρ̂2

j

+
∣∣∣∣

N∑
j=m+1

ξ2j − 1
∣∣∣∣,

where ρ̃ =
(∑N

j=m+1 ρ̃
2
j

) 1
2 and ρ̂ =

(∑N
j=m+1 ρ̂

2
j

) 1
2
.

By the definition of T2N,ρ we have for the chosen element z = (z1, . . . , z2N ) either the estimate

N∑
j=1

|z2j−1 + iz2j |2 =
m∑

j=1

|z2j−1 + iz2j |2 + ρ̃2 ≥ ρ2

or the estimate
N∑

j=1

|z2j−1 − iz2j |2 =
m∑

j=1

|z2j−1 − iz2j |2 + ρ̂2 ≥ ρ2.

Therefore we conclude

m∑
j=1

2|z2j |2 ≥

⎧⎨
⎩

max{1
2

(
ρ2 − ρ̃2

)
, 0} if

∑m
j=1 |z2j−1 + iz2j |2 + ρ̃2 ≥ ρ2.

max{1
2

(
ρ2 − ρ̂2

)
, 0} if

∑m
j=1 |z2j−1 − iz2j |2 + ρ̂2 ≥ ρ2.

Lemma 3.2 implies now

2N∑
j=1

|zj |2 +
∣∣∣∣

2N∑
j=1

z2
j − 1

∣∣∣∣

≥

⎧⎨
⎩

max{1
2

(
ρ2 − ρ̃2

)
, 0} + 1

2

(
ρ̃2 + 1

ρ̃2

)
if
∑m

j=1 |z2j−1 + iz2j |2 + ρ̃2 ≥ ρ2.

max{1
2

(
ρ2 − ρ̂2

)
, 0} + 1

2

(
ρ̂2 + 1

ρ̂2

)
if
∑m

j=1 |z2j−1 − iz2j |2 + ρ̂2 ≥ ρ2.

This guarantees

2N∑
j=1

|zj |2 +
∣∣∣∣

2N∑
j=1

z2
j − 1

∣∣∣∣ ≥ 1
2

(
ρ2 +

1
ρ2

)
.

Since z = (z1, . . . , z2N ) ∈ C
2N\T2N,ρ was arbitrary we derive

L2N,ρ ⊂ T2N,ρ
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as required.

To (ii): Let z = (z1, . . . , z2N ) ∈ C
2N\T2N,ρ be an arbitrary point. We may assume that

z2j−1 = ± iz2j for j = 1, . . . ,m, m ∈ N0,
and

z2j−1 
= ± iz2j for j = m+ 1, . . . , N.

If j = m+ 1, . . . , N , then we take the representation of Lemma 3.1

z2j−1 = ξj
1
2

(
ηj +

1
ηj

)
and z2j = ξj

1
2i

(
ηj −

1
ηj

)
, ξj, ηj ∈ C\{0}

and set

r̃j := |ξjηj| as well as r̂j :=
∣∣∣∣ξj 1
ηj

∣∣∣∣, j = m+ 1, . . . , N.

Hence we obtain either the estimate

max
1≤j≤m

(
|z2j−1|2 + |z2j |2 + |z2

2j−1 + z2
2j − 1|

)
≥ max

1≤j≤m

(1
2
|z2j−1 ± iz2j |2 + 1

)
≥

≥ 1
2
ρ2 + 1 >

1
2

(
ρ2 +

1
ρ2

)
if max

1≤j≤m
{|z2j−1 + iz2j |, |z2j−1 − iz2j |} ≥ ρ

or

max
m+1≤j≤N

(
|z2j−1|2 + |z2j |2 + |z2

2j−1 + z2
2j − 1|

)
= max

m+1≤j≤N

(
|ξj|2

1
2

(
|ηj |2 +

1
|ηj |2

)
+
∣∣∣ξ2j − 1

∣∣∣)

≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
m+1≤j≤N

(
1
2 r̃

2
j + |ξj |4

2r̃2
j

+
∣∣∣ξ2j − 1

∣∣∣) ≥ 1
2

(
ρ2 + 1

ρ2

)
if max

m+1≤j≤N
|z2j−1 + iz2j | ≥ ρ.

max
m+1≤j≤N

(
1
2 r̂

2
j + |ξj |4

2r̂2
j

+
∣∣∣ξ2j − 1

∣∣∣) ≥ 1
2

(
ρ2 + 1

ρ2

)
if max

m+1≤j≤N
|z2j−1 − iz2j | ≥ ρ.

Putting all things together gives

max
1≤j≤N

(
|z2j−1|2 + |z2j |2 + |z2

2j−1+z
2
2j − 1|

)
≥ 1

2

(
ρ2 +

1
ρ2

)
but this means that

L2N,ρ ⊂ T2N,ρ.

�

To make the proof of Theorem 1.6 for the reader more convenient we state an additional lemma
and definition.

Lemma 3.4
Let ρ ∈ (1,∞) and ρ̂j ∈ (0,∞), j = 1, 2, . . . , N, be arbitrary numbers such that ρ̂ :=

√∑N
j=1 ρ̂

2
j ∈

(1, ρ). Furthermore, let ε > 0 be any real number satisfying

ε < min

{
ρ2 + 1

ρ2 − ρ̂2 − 1
ρ̂2

28N
, min
j=1,2,...,N

ρ̂j

ρ̂

}
.

Then

1
2
ρ̂2 +

1
2

N∑
j=1

|ξj |4
ρ̂2

j

+
∣∣∣∣

N∑
j=1

ξ2j − 1
∣∣∣∣ < 1

2

(
ρ2 +

1
ρ2

)

for ξ = (ξ1, . . . , ξN ) ∈ UN,ε :=
{
z = (z1, . . . , zN ) ∈ C

N : max
1≤j≤N

∣∣∣zj − ρ̂j

ρ̂

∣∣∣ < ε
}

.
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Proof:
We first determine an upper bound for the expression∣∣∣∣

N∑
j=1

ξ2j − 1
∣∣∣∣
2

=
( N∑

j=1

(
(Re ξj)2 − (Im ξj)2

)
− 1
)2

+ 4
( N∑

j=1

Re ξj Im ξj

)2

.

If ξ = (ξ1, ξ2, . . . , ξN ) ∈ UN,ε we may estimate∣∣∣∣
N∑

j=1

ξ2j − 1
∣∣∣∣
2

≤
(∣∣∣ N∑

j=1

(Re ξj)2 − 1
∣∣∣+ N∑

j=1

(Im ξj)2
)2

+ 4
( N∑

j=1

(Re ξj)2
)( N∑

j=1

(Im ξj)2
)

<

(
max

{ N∑
j=1

( ρ̂j

ρ̂
+ ε
)2

− 1, 1 −
N∑

j=1

( ρ̂j

ρ̂
− ε
)2
}

+Nε2
)2

+ 4
N∑

j=1

( ρ̂j

ρ̂
+ ε
)2
Nε2

<

(
2ε
ρ̂

N∑
j=1

ρ̂j + 2Nε2
)2

+ 16N2ε2 < (2εN + 2Nε2)2 + 16N2ε2 ≤ 32N2ε2.

Thus for ξ = (ξ1, ξ2, . . . , ξN ) ∈ UN,ε we obtain

1
2
ρ̂2+

1
2

N∑
j=1

|ξj|4
ρ̂2

j

+
∣∣∣ N∑

j=1

ξ2j − 1
∣∣∣ < 1

2
ρ̂2 +

1
2

N∑
j=1

(
ρ̂j

ρ̂ + ε
)4

ρ̂2
j

+ 6Nε

=
1
2
ρ̂2 +

1
2

N∑
j=1

(ρ̂j + ερ̂)4

ρ̂4ρ̂2
j

+ 6Nε =
1
2
ρ̂2 +

1
2

N∑
j=1

(ρ̂2
j + 2ερ̂ρ̂j + ε2ρ̂2)2

ρ̂4ρ̂2
j

+ 6Nε

<
1
2
ρ̂2 +

1
2

N∑
j=1

(ρ̂2
j + 3ερ̂ρ̂j)2

ρ̂4ρ̂2
j

+ 6Nε =
1
2
ρ̂2 +

1
2

N∑
j=1

ρ̂4
j + 6ερ̂ρ̂3

j + 9ε2ρ̂2ρ̂2
j

ρ̂4ρ̂2
j

+ 6Nε

<
1
2
ρ̂2 +

1
2ρ̂2

+
15
2
ε

N∑
j=1

ρ̂j

ρ̂3
+ 6Nε <

1
2
ρ̂2 +

1
2ρ̂2

+ 14Nε

<
1
2
ρ̂2 +

1
2ρ̂2

+
1
2

(
ρ2 +

1
ρ2

− ρ̂2 − 1
ρ̂2

)
=

1
2

(
ρ2 +

1
ρ2

)
.

�

Definition 3.5
Let Ω ⊂ C

N be a Reinhardt domain, where a Reinhardt domain is characterized by the prop-

erty that (z1, . . . , zN ) ∈ Ω implies (eiθ1z1, . . . , e
iθN zN ) ∈ Ω for all θj ∈ [0, 2π], j = 1, . . . , N .

Furthermore, let 0 ∈ Ω and a function f ∈ H(Ω) with its homogeneous expansion

f(z) =
∞∑

k=0

∑
|α|=k

aαz
α, z ∈ Ω, α ∈ Z

N
+ ,

be given8. Then we define the function

f (z) =
∞∑

k=0

∑
|α|=k

aαz
α, z ∈ Ω.

8The following result in several complex variables is well-known: Let Ω ⊂ C
N be a Reinhardt domain with

0 ∈ Ω. If f is a holomorphic function in Ω, then f can be expanded into a series of homogeneous polynomials
converging locally uniformly on Ω.
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Clearly, we have f ∈ H(Ω).

3.2 Proof of Theorem 1.6 and Theorem 1.7

After this lengthy preparation all basic tools are now available to prove the main results.

Proof of Theorem 1.6:

Without loss of generality we may assume that r = 1. Otherwise consider the scaled function
F̂ (x, y) = F (rx, ry) = |g(r(x+ iy))|2 for (x, y) ∈ R

2N .
Proof of (i):
Let us begin with some notes which we need for the verification of both directions. We define for
ρ ∈ (1,∞) the sets

S2N,ρ =
{
z = (z1, z2, . . . , z2N ) ∈ C

2N : z2j−1 = ξj
1
2

(
ηj +

1
ηj

)
, z2j = ξj

1
2i

(
ηj −

1
ηj

)
,

ξj, ηj ∈ C\{0}, j = 1, . . . , N,
( N∑

j=1

|ξjηj |2
)1

2

< ρ ∧
( N∑

j=1

∣∣∣∣ξj 1
ηj

∣∣∣∣
2) 1

2

< ρ

}

and

T2N,ρ =
{
z=(z1, ..., z2N ) ∈ C

2N:
( N∑

j=1

|z2j−1+ iz2j |2
) 1

2

< ρ ∧
( N∑

j=1

|z2j−1− iz2j |2
) 1

2

< ρ

}
.

Then S2N,ρ ⊂ T2N,ρ. To see this inclusion, let us choose for any element z = (z1, z2, . . . , z2N ) of
S2N,ρ the representation

(z1, z2, z3, . . . , z2N ) =
(
ξ1

1
2

(
η1 +

1
η1

)
, ξ1

1
2i

(
η1 −

1
η1

)
, ξ2

1
2

(
η2 +

1
η2

)
, . . . , ξN

1
2i

(
ηN − 1

ηN

))
.

We receive

N∑
j=1

|z2j−1 + iz2j |2 =
N∑

j=1

|ξjηj |2 < ρ2

and
N∑

j=1

|z2j−1 − iz2j |2 =
N∑

j=1

∣∣∣ξj 1
ηj

∣∣∣2 < ρ2.

Consequently, S2N,ρ ⊂ T2N,ρ.
“⇐”: By hypothesis we have g ∈ H(BN,ρ). We now show that F has a holomorphic extension to
L2N,ρ, where L2N,ρ is defined as in Lemma 2.12, because then

lim sup
n→∞

n

√
En(B2N , F ) ≤ 1

ρ

follows from Lemma 2.12. Therefore we define the function f1 : T2N,ρ → C by

f1(z1, z2, ..., z2N−1, z2N ) = g(z1 + iz2, ..., z2N−1 + iz2N )g (z1 − iz2, ..., z2N−1 − iz2N ), (3.14)

where g is specified in Definition 3.5. Since g is holomorphic in BN,ρ we deduce from the definition
of T2N,ρ that f1 is holomorphic in T2N,ρ. Moreover, f1 is a holomorphic extension of F to T2N,ρ
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as f1 = F |B2N
and B2N ⊂ T2N,ρ. Since L2N,ρ ⊂ T2N,ρ by Lemma 3.3 we are done.

“⇒”: This direction is proved by contradiction. We suppose

lim sup
n→∞

n

√
En(B2N , F ) ≤ 1

ρ

but g has no holomorphic extension to BN,ρ.
Then there exists a number ρ̃ ∈ (1, ρ) such that g ∈ H(BN,ρ̃)\H(BN,ρ̃). Hence we can find to an
arbitrary ε0 > 0 a non–removable singularity ẑ = (ẑ1, ẑ2, . . . , ẑN ) of g with

ρ̂ := ||ẑ|| ∈ [ρ̃, ρ) ∩ [ρ̃, ρ̃+ ε0). (3.15)

Further, let us set ρ̂j := |ẑj |, j = 1, 2, . . . , N .
Now, for more clarity we divide the proof of this direction into two steps. Step 1: ẑj 
= 0 for
j = 1, 2, . . . , N and Step 2: ẑk = 0 for at least one k ∈ {1, . . . , N}.
Step 1: We define the function f1 : T2N,ρ̃ → C as in the “if”–direction. Then f1 can be expressed
by

f1(z1, z2, z3, . . . , z2N ) = f1

(
ξ1
2

(
η1 +

1
η1

)
,
ξ1
2i

(
η1 −

1
η1

)
,
ξ2
2

(
η2 +

1
η2

)
, . . . ,

ξN
2i

(
ηN − 1

ηN

))

= g
(
ξ1η1, . . . , ξNηN

)
g
(
ξ1

1
η1
, . . . , ξN

1
ηN

)
,

if (z1, z2, . . . , z2N ) ∈ S2N,ρ̃, z2j−1 = ξj
1
2

(
ηj + 1

ηj

)
, z2j = ξj

1
2i

(
ηj − 1

ηj

)
, ξj, ηj ∈ C\{0}, j =

1, 2, . . . , N . From the “if”–direction we know that f1 is holomorphic in T2N,ρ̃ and f1 = F |B2N
.

In addition, we infer from Lemma 2.12 that F has a holomorphic extension F̃ to L2N,ρ. Thus,
in view of Remark 2.6 and by the identity principle we obtain that f1 has a unique holomorphic
extension to L2N,ρ and that f1|L2N,ρ

≡ F̃ |L2N,ρ
.

Let us now define the set

UN,ε̃ :=
{
z = (z1, z2, . . . , zN ) ∈ C

N : max
1≤j≤N

∣∣∣∣zj − |ẑj |
ρ̂

∣∣∣∣ < ε̃

}
,

where ε̃ = min
{

(ρ2 + 1/ρ2 − ρ̂2 − 1/ρ̂2)/(28N), min
1≤j≤N

(|ẑj |/ρ̂), (
√
ρ̂− 1) min

1≤j≤N
(|ẑj |/ρ̂)

}
.

Then for ηj = ẑj/ξj , j = 1, 2, . . . , N, and ξ = (ξ1, . . . , ξN ) ∈ UN,ε̃ we may express the non–
removable singularity ẑ in the form

ẑ = (ẑ1, . . . , ẑN ) = (ξ1η1, . . . , ξNηN )

and obtain

(
ξ1

1
2

(
η1 +

1
η1

)
, ξ1

1
2i

(
η1 −

1
η1

)
, ξ2

1
2

(
η2 +

1
η2

)
, . . . , ξN

1
2i

(
ηN − 1

ηN

))
∈ L2N,ρ,
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since for ξ ∈ UN,ε̃ the inequality

N∑
j=1

|ξj |2
(∣∣∣1

2

(
ηj +

1
ηj

)∣∣∣2 +
∣∣∣ 1
2i

(
ηj −

1
ηj

)∣∣∣2)+

∣∣∣∣∣∣
N∑

j=1

ξ2j

((1
2

(
ηj +

1
ηj

))2
+
( 1

2i

(
ηj −

1
ηj

))2
)
− 1

∣∣∣∣∣∣ =

=
N∑

j=1

|ξj|2
1
2

(
|ηj |2 +

1
|ηj|2

)
+
∣∣∣ N∑

j=1

ξ2j − 1
∣∣∣

=
1
2
ρ̂2 +

1
2

N∑
j=1

|ξj|4
ρ̂2

j

+
∣∣∣ N∑

j=1

ξ2j − 1
∣∣∣ < 1

2

(
ρ2 +

1
ρ2

)
(3.16)

is valid, where the upper bound follows from Lemma 3.4.
In addition, if ηj = ẑj/ξj , j = 1, 2, . . . , N, and ξ = (ξ1, . . . , ξN ) ∈ UN,ε̃, we derive from the
estimate

N∑
j=1

∣∣∣ξj 1
ηj

∣∣∣2 =
N∑

j=1

∣∣∣ξ2j 1
ẑj

∣∣∣2 < N∑
j=1

( |ẑj |
ρ̂ + ε̃

)4

|ẑj |2
≤

N∑
j=1

|ẑj |4
ρ̂4

(1 +
√
ρ̂− 1)4

|ẑj |2
= 1, (3.17)

that (
ξ1

1
η1
, ξ2

1
η2
, . . . , ξN

1
ηN

)
∈ BN .

We now claim

g
(
ξ21

1
ẑ1
, ξ22

1
ẑ2
, . . . , ξ2N

1
ẑN

)
= 0 for ξ = (ξ1, ξ2, . . . , ξN ) ∈ UN,ε̃.

Proof of the claim: This is done by contradiction. Therefore we assume there exists some ξ̂ =
(ξ̂1, . . . , ξ̂N ) ∈ UN,ε̃ such that

g

(
ξ̂21

1
ẑ1
, ξ̂22

1
ẑ2
, . . . , ξ̂2N

1
ẑN

)

= 0.

Then we also have

g

(
ξ̂21

1
ẑ1

+ w1, ξ̂
2
2

1
ẑ2

+ w2, . . . , ξ̂
2
N

1
ẑN

+ wN

)

= 0

for w = (w1, w2, . . . , wN ) ∈ DN (0, ε) if ε > 0 is sufficiently small. Further, in view of the
inequalities (3.16) and (3.17) we may suppose that for w = (w1, w2, . . . , wN ) ∈ DN (0, ε)(

ξ̂1
2

(
ẑ1

ξ̂1
+
ξ̂1
ẑ1

)
+ w1,

ξ̂1
2i

(
ẑ1

ξ̂1
− ξ̂1
ẑ1

)
,
ξ̂2
2

(
ẑ2

ξ̂2
+
ξ̂2
ẑ2

)
+ w2, . . . ,

ξ̂N
2i

(
ẑN

ξ̂N
− ξ̂N
ẑN

))
∈ L2N,ρ

and (
ξ̂21

1
ẑ1

+ w1, ξ̂
2
2

1
ẑ2

+ w2, . . . , ξ̂
2
N

1
ẑN

+ wN

)
∈ BN .

Next, we consider the functions

h(w1, w2, . . . , wN ) :=

f1

(
ξ̂1
2

(
ẑ1

ξ̂1
+
ξ̂1
ẑ1

)
+w1,

ξ̂1
2i

(
ẑ1

ξ̂1
− ξ̂1
ẑ1

)
,
ξ̂2
2

(
ẑ2

ξ̂2
+
ξ̂2
ẑ2

)
+w2, ...,

ξ̂N
2i

(
ẑN

ξ̂N
− ξ̂N
ẑN

))
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and

ĝ (w1, w2, . . . , wN ) := g
(
ξ̂21

1
ẑ1

+ w1, ξ̂
2
2

1
ẑ2

+ w2, . . . , ξ̂
2
N

1
ẑN

+ wN

)
for w = (w1, w2, . . . , wN ) ∈ DN (0, ε). Then h and ĝ are holomorphic in DN (0, ε). Furthermore,
ĝ (w1, w2, . . . , wN ) 
= 0 for w = (w1, w2, . . . , wN ) ∈ DN (0, ε). Thus the function

l(w1, w2, . . . , wN ) :=
h(w1, w2, . . . , wN )
ĝ (w1, w2, . . . , wN )

is holomorphic for w = (w1, . . . , wN ) ∈ DN (0, ε). Since for ε0 > 0 sufficiently small DN (0, ε)∩
{
w =

(w1, . . . , wN ) ∈ C
N :

(∑N
j=1 |ẑj + wj|2

)1/2
< ρ̃

}
is certainly a non–empty open set in C

N (see
(3.15)), we obtain that g has a holomorphic extension g̃ to some non–empty neighborhood of ẑ.
To be more precisely,

g̃(ẑ1 + w1, ẑ2 + w2, . . . , ẑN + wN ) = l(w1, w2, . . . , wN )

for w = (w1, w2, . . . , wN ) ∈ DN (0, ε) which contradicts the hypothesis that g has a non–removable
singularity at ẑ. These aspects show

g
(
ξ21

1
ẑ1
, ξ22

1
ẑ2
, . . . , ξ2N

1
ẑN

)
= 0 for ξ = (ξ1, ξ2, . . . , ξN ) ∈ UN,ε̃

and the claim is proved.

By the identity principle we conclude

g (z) = 0 for z ∈ BN,ρ̃

and therefore
g(z) = 0 for z ∈ BN,ρ̃,

which is clearly a contradiction to the assumption that g has no holomorphic extension to some
neighborhood of BN,ρ̃.

Step 2: Now let ẑk = 0 for some k ∈ {1, 2, . . . , N}. Without loss of generality we may assume
that

ẑj 
= 0 for j = 1, 2, . . . ,m, m < N,

and
ẑm+l = 0 for l = 1, 2, . . . , N −m.

Next, we consider instead of S2N,ρ̃ the set

S̃2N,ρ̃ :=
{
z=(z1,..., z2m, w1,..., w2N−2m) ∈ C

2N: z2j−1 =
ξj
2

(
ηj +

1
ηj

)
, z2j =

ξj
2i

(
ηj−

1
ηj

)
,

ξj, ηj ∈ C\{0}, j = 1,...,m,
( m∑

j=1

|ξjηj |2 +
N−m∑
j=1

|w2j−1+ iw2j |
) 1

2

< ρ̃ ∧

( m∑
j=1

∣∣∣∣ξj 1
ηj

∣∣∣∣
2

+
N−m∑
j=1

|w2j−1− iw2j |
) 1

2

< ρ̃

}
.
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Now let us define the function f̃1 : T2N,ρ̃ → C, like in equation (3.14). Then f̃1 takes the form

f̃1(z1,z2, . . . , z2m, w1, w2, . . . , w2N−2m)

= f̃1

(
ξ1
2

(
η1 +

1
η1

)
,
ξ1
2i

(
η1 −

1
η1

)
, . . . ,

ξm
2i

(
ηm − 1

ηm

)
, w1, w2, . . . , w2N−2m

)

= g
(
ξ1η1, . . . , ξmηm, w1 + iw2, w3 + iw4, . . . , w2N−2m−1 + iw2N−2m

)
g
(
ξ1

1
η1
, . . . , ξm

1
ηm

, w1 − iw2, w3 − iw4, . . . , w2N−2m−1 − iw2N−2m

)
,

if z = (z1, z2, . . . , z2m, w1, w2, . . . , w2N−2m) ∈ S̃2N,ρ̃.
As f̃1 ≡ F |B2N

Lemma 2.12 and Remark 2.6 ensure that f̃1 can be continued analytically to L2N,ρ.
Hence we may proceed quite similar to the case ẑj 
= 0 for j = 1, 2, . . . , N .
We define for ε1 > 0 the set

UN,ε1 :=
{
(z,w) = (z1, z2, . . . , zm, w2, w4, . . . , w2N−2m) ∈ C

N : zj 
= 0, j = 1, . . . ,m,

max
1≤j≤m

∣∣∣zj − |ẑj |
ρ̂

∣∣∣ < ε1 ∧ max
1≤j≤N−m

|w2j | < ε1

}
.

If now ηj = ẑj/ξj for j = 1, 2, . . . ,m and w2l−1 = −iw2l for l = 1, . . . , N−m, where (ξ1, ξ2, . . . , ξm,
w2, w4, . . . , w2N−2m) ∈ UN,ε1, we will see that for ε1 > 0 sufficiently small

ẑ = (ẑ1, . . . , ẑm, 0, . . . , 0) = (ξ1η1, . . . , ξmηm, w1 + iw2, . . . , w2N−2m−1 + iw2N−2m)

is a non–removable singularity of g such that the following conditions are fulfilled:

(a)
(
ξ1

1
2

(
η1 +

1
η1

)
, ξ1

1
2i

(
η1 −

1
η1

)
, . . . , ξm

1
2i

(
ηm − 1

ηm

)
, w1, w2, . . . , w2N−2m

)
∈ L2N,ρ

(b)
(
ξ1

1
η1
, ξ2

1
η2
, . . . , ξm

1
ηm

, w1 − iw2, w3 − iw4, . . . , w2N−2m−1 − iw2N−2m

)
∈ BN,ρ̃

To (a): By Lemma 3.4 we obtain for (ξ1, ξ2, . . . , ξm, w2, . . . , w2N−2m) ∈ UN,ε1

m∑
j=1

|ξj|2
(∣∣∣1

2

(
ηj +

1
ηj

)∣∣∣2 +
∣∣∣ 1
2i

(
ηj −

1
ηj

)∣∣∣2)+
2N−2m∑

j=1

|wj |2 +

∣∣∣∣∣∣
m∑

j=1

ξ2j

((1
2

(
ηj +

1
ηj

))2
+
( 1

2i

(
ηj −

1
ηj

))2
)

+
2N−2m∑

j=1

w2
j − 1

∣∣∣∣∣∣ ≤
m∑

j=1

|ξj |2
(∣∣∣1

2

(
ηj +

1
ηj

)∣∣∣2 +
∣∣∣ 1
2i

(
ηj −

1
ηj

)∣∣∣2)+ 2
2N−2m∑

j=1

|wj |2 +

∣∣∣∣∣∣
m∑

j=1

ξ2j

((1
2

(
ηj +

1
ηj

))2
+
( 1

2i

(
ηj −

1
ηj

))2
)
− 1

∣∣∣∣∣∣ ≤
1
2
ρ̂2 +

1
2

m∑
j=1

|ξj|4
ρ̂2

j

+
∣∣∣ m∑

j=1

ξ2j − 1
∣∣∣+ 4(N −m)ε21 <

1
2

(
ρ2 +

1
ρ2

)
,
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if ε1 > 0 is sufficiently small.
To (b): For (ξ1, ξ2, . . . , ξm, w2, . . . , w2N−2m) ∈ UN,ε1 and ε1 > 0 sufficiently small we estimate as
in equation (3.17)

m∑
j=1

∣∣∣ξj 1
ηj

∣∣∣2 +
N−m∑
j=1

|w2j−1 − iw2j |2 < 1 + 4(N −m)ε21 < ρ̃2.

Now, item (a) and (b) combined with the proof of the claim in case (i), yield

g
(
ξ21

1
ẑ1
, ξ22

1
ẑ2
, . . . , ξ2m

1
ẑm

,−i2w2,−i2w4, . . . ,−i2w2N−2m

)
= 0

for (ξ1, ξ2, . . . , ξm, w2, . . . , w2N−2m) ∈ UN,ε1 if ε1 > 0 sufficiently small. However this would imply

g(z) = 0 for z ∈ BN,ρ̃,

which is clearly impossible.
Proof of (ii):
Observe, Lemma 2.12 and Theorem 2.2 ensure

lim sup
n→∞

n

√
En(D2N , F ) ≤ 1

ρ

if and only if F has an analytic continuation to

L2N,ρ =
{
z = (z1, z2, . . . , z2N ) ∈ C

2N : max
1≤j≤N

(
|z2j−1|2 + |z2j |2 + |z2

2j−1 + z2
2j − 1|

)
<

1
2

(
ρ2 +

1
ρ2

)}
.

Next, we define the set

T2N,ρ̃ =
{
z = (z1, z2, . . . , z2N ) ∈ C

2N : max
1≤j≤N

|z2j−1 + iz2j | < ρ̃ ∧ max
1≤j≤N

|z2j−1− iz2j | < ρ̃
}
,

where ρ̃ ∈ (1,∞) is so chosen that g ∈ H(DN,ρ̃)\H(DN,ρ̃). If g is holomorphic in C
N we set ρ̃ = ∞

and consider T2N,∞ = C
2N .

Then the function f1 : T2N,ρ̃ → C defined by

f1(z1, z2, . . . , z2N ) := g(z1 + iz2,z3 + iz4, . . . , z2N−1 + iz2N )
g (z1 − iz2, z3 − iz4, . . . , z2N−1 − iz2N )

is holomorphic in T2N,ρ̃ and

f1(x1, y1, x2, y2, . . . , xN , yN ) = F (x1, x2, . . . , xN , y1, y2, . . . , yN )

for (x1, y1, x2, y2, . . . , xN , yN ) ∈ D2N .
“⇐”: By hypothesis we have g ∈ H(DN,ρ). Consequently, ρ ≤ ρ̃ and f1 is holomorphic in T2N,ρ.
Since L2N,ρ ⊂ T2N,ρ by Lemma 1.8, we see that f1 is a holomorphic extension of F to L2N,ρ which
implies

lim sup
n→∞

n

√
En(D2N , F ) ≤ 1

ρ
.

“⇒”: This direction is proved by contradiction. We suppose

lim sup
n→∞

n

√
En(D2N , F ) ≤ 1

ρ
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but g has no holomorphic extension to DN,ρ. Then f1 has a uniquely determined holomorphic
extension to L2N,ρ and ρ̃ is a number of the interval (1, ρ). Hence there exists a non–removable
singularity ẑ of g such that ρ̂ := |ẑ| ∈ [ρ̃, ρ) ∩ [ρ̃, ρ̃ + ε0), where ε0 > 0 is an arbitrary number.
Without loss of generality we may assume

ẑj 
= 0 for j = 1, 2, . . . ,m, m ≤ N,
and

ẑj = 0 for j = m+ 1,m+ 2, . . . , N.

Now, we write the non–removable singularity ẑ of g in the form

ẑ =
(
ξ1
ẑ1
ξ1
, ξ2

ẑ2
ξ2
, . . . , ξm

ẑm
ξm
, w1 + iw2, . . . , w2N−2m−1 + iw2N−2m

)
,

where ξj ∈ C\{0}, j = 1, 2, . . . ,m, and w2j−1 = −iw2j , wj ∈ C, j = 1, . . . , N −m.
Next we define for ε̃ > 0 the set

UN,ε̃ =
{
z = (z1, z2, . . . , zN ) ∈ C

N : max
1≤j≤m

|zj − |ẑj |/ρ̂| < ε̃, max
m+1≤j≤N

|zj | < ε̃
}
.

Further, let for the rest of the proof

(ξ1,..., ξm, w2, w4,..., w2N−2m) ∈ UN,ε̃ , ηj = ẑj/ξj , ξj 
= 0, j = 1, 2, . . . ,m,

and
w2j−1 = −iw2j , j = 1, . . . , N −m.

Then we deduce from Lemma 3.2 that for ε̃ > 0 sufficiently small(
ξ1

1
2

(
η1 +

1
η1

)
, ξ1

1
2i

(
η1 −

1
η1

)
, ξ2

1
2

(
η2 +

1
η2

)
, ξ2

1
2i

(
η2 −

1
η2

)
, . . . ,

ξm
1
2

(
ηm +

1
ηm

)
, ξm

1
2i

(
ηm − 1

ηm

)
, w1, w2, . . . , w2N−2m

)
∈ L2N,ρ.

Moreover, we have for ε̃ > 0 sufficiently small

max
{

max
1≤j≤m

∣∣∣ξj 1
ηj

∣∣∣, max
1≤l≤N−m

|w2l−1 − iw2l|
}

≤ max
{

max
1≤j≤m

∣∣∣ξ2j 1
ẑj

∣∣∣, max
1≤l≤N−m

2|w2l|
∣∣∣} < ρ̃.

Observe, f1 takes the form

f1(z1,z2, . . . , z2m, w1, w2, . . . , w2N−2m)

= f1

(
ξ1
2

(
η1 +

1
η1

)
,
ξ1
2i

(
η1 −

1
η1

)
, . . . ,

ξm
2i

(
ηm − 1

ηm

)
, w1, w2, . . . , w2N−m

)

= g
(
ξ1η1, . . . , ξmηm, w1 + iw2, w3 + iw4, . . . , w2N−2m−1 + iw2N−2m

)
g
(
ξ1

1
η1
, . . . , ξm

1
ηm

, w1 − iw2, w3 − iw4, . . . , w2N−2m−1 − iw2N−2m

)

if z2j−1 = ξj

2

(
ηj + 1

ηj

)
, z2j = ξj

2i

(
ηj − 1

ηj

)
, ξj, ηj 
= 0, j = 1, 2, . . . ,m. Thus, by similar arguments

as in the proof of Theorem 1.6, we conclude

g(z) = 0 for z ∈ DN,ρ̃,

which is in contrast to our assumption that g has no analytic continuation to DN,ρ̃. �

The methods we used to prove Theorems 1.6 can also be applied to prove Theorem 1.7.
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Proof of Theorem 1.7:

Since the proof of this theorem can be established by slight modifications of the proof of Theorem
1.6 we only give a rough sketch.
(i): The “if”–part follows immediately from the proof of the “⇐”–direction of Theorem 1.6 if we
replace g by h , where h is specified as in Definition 3.5. Thus let us concentrate on the “if and
only if”–part. We suppose

lim sup
n→∞

n

√
Ec

n(B2N , F ) ≤ 1
ρ

but g or h has no holomorphic extension to BN,ρ.

We first consider the case that g ∈ H(BN,ρ̃)\H(BN,ρ̃) and h ∈ H(BN,ρ̃), where ρ̃ ∈ (1, ρ). Then,
we may proceed as in the proof of the “⇒”–direction of Theorem 1.6, if we choose h instead of
g . Hence we obtain that h ≡ 0 on BN which is a contradiction to the hypothesis.

Now, let h ∈ H(BN,ρ̂)\H(BN,ρ̂) and g ∈ H(BN,ρ̂), where ρ̂ ∈ (1, ρ). Then we define

G(x1, y1, x2, ..., yN ) := h(x1 + iy1, x2 + iy2, ..., xN + iyN )g(x1 + iy1, x2 + iy2, ..., xN + iyN ).

As
lim sup

n→∞
n

√
Ec

n(B2N , G) = lim sup
n→∞

n

√
Ec

n(B2N , F )

we may argue as above (take G instead of F and h for g). Thus we derive that g ≡ 0 on BN in
contrast to our assumption and we are done.
(ii) This statement can be verified by similar arguments as in item (i). �

Observe, the proofs of the “if”–directions of Theorem 1.6 and Theorem 1.7 are based on Lemma
3.2 and Lemma 3.3. A different approach shows the proof of Theorem 1.9.

Lemma 3.2 and 3.3 play the key role for Theorem 1.8.

Proof of Theorem 1.8:

Without loss of generality we may assume that r = 1. Otherwise we can take the scaled function
F̂ (x, y) = F (rx, ry) = |g(r(x+ iy))|2 for (x, y) ∈ R

2N .
(i): Ad (a)⇔(b): This equivalence follows immediately from the Theorems 1.7 and Lemma 2.12.
Ad (b)⇔(c)⇔(d): Firstly, we assume that F has no holomorphic extension to C

2N . Therefore
we can choose ρ ∈ (1,∞) such that F ∈ H(T2N,ρ)\H(T 2N,ρ), see Lemma 3.3 for the definition of
T2N,ρ. Lemma 2.12 and the proof of the “if”–part of Theorem 1.6 combined, shows

F ∈ H(T2N,ρ)\H(T 2N,ρ) if and only if F ∈ H(L2N,ρ)\H(L2N,ρ).

Hence, since T2N,ρ ⊃ L2N,ρ by Lemma 3.3, there exists a singular point ẑ of F satisfying

ẑ ∈ ∂T2N,ρ if and only if ẑ ∈ ∂L2N,ρ.

Consequently, we obtain that F has a holomorphic extension to T2N,ρ if F has no singular points
on M2N,ρ (and vice versa), where

M2N,ρ :=
{
z = (z1, . . . , z2N ) ∈ C

2N :

(
||z||2 +

∣∣∣∣
2N∑
j=1

z2
j − 1

∣∣∣∣ =
1
2

(
R2 +

1
R2

)
∧

N∑
j=1

|z2j−1+ iz2j |2 = R2

)
∨

(
||z||2 +

∣∣∣∣
2N∑
j=1

z2
j − 1

∣∣∣∣ =
1
2

(
R2 +

1
R2

)
∧

N∑
j=1

|z2j−1− iz2j |2 = R2

)
, R ∈ (1, ρ)

}
.
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Now, from the proof of Lemma 3.3 we conclude z = (z1, . . . , z2N ) ∈ M2N,ρ if and only if z =
(z1, . . . , z2N ) has the form

z2j−1 =
Rj

R

1
2

(
Reitj +

1
Reitj

)
, z2j = ±Rj

R

1
2i

(
Reitj − 1

Reitj

)
, j = 1, . . . , N,

where
N∑

j=1
R2

j = R2, Rj ∈ [0, R], tj ∈ [0, 2π], j = 1, . . . , N , and R ∈ (1, ρ).

If F has a holomorphic extension to C
2N then the statement is quite obvious, if we regard it as

the limiting case “ρ = ∞”. This finishes item (i).
(ii): We skip the proof of this result as it can be obtained quite similar to (i). �

3.3 Proof of Theorem 1.9

Theorem 1.9 demonstrates that the “if”–direction of Theorem 1.7 can be extended to a much
larger class of domains than closed balls in R

2N , whereas the “if and only if”–direction fails to be
true in general.

Proof of Theorem 1.9:

Due to Theorem 1.4 we can choose two sequences {p1,n}n∈N and {p2,n}n∈N of polynomials p1,n, p2,n

of degree ≤ n such that for an arbitrary R ∈ (1, ρ) and all n ∈ N the estimate

max
{
||g − p1,n||L, ||h− p2,n||L

}
≤ M

Rn
(3.18)

holds, where M > 0 is some constant independent of n. Consequently, we have

||gh − p1,np2,n||L ≤ ||gh− p1,nh||L + ||p1,nh− p1,np2,n||L

≤ ||h||L||g − p1,n||L + ||p1,n||L||h− p2,n||L

≤ M1

Rn
, M1 := 3M max{||g||L, ||h||L}.

Next we put

q1,0(z) := p1,0(z), q1,k(z) := p1,k(z) − p1,k−1(z), k ∈ N, z ∈ C
N ,

and
q2,0(z) := p2,0(z), q2,k(z) := p2,k(z) − p2,k−1(z), k ∈ N, z ∈ C

N ,

Further, let us define the polynomials

Qn(x, y) :=
n∑

k, l=0
k+l≤n

q1,k(z)q2,l(z), z = x+ iy, x, y ∈ R
N , n ∈ N,

as well as
P2n(x, y) :=

n∑
k, l=0

q1,k(z) q2,l(z) = p1,n(z)p2,n(z), z = x+ iy, x, y ∈ R
N , n ∈ N.

Then we get

P2n(x, y) −Qn(x, y) =
n∑

k, l=0
k+l>n

q1,k(z)q2,l(z) =
n∑

k=1

q1,k(z)
(
p2,n(z) − p2,n−k(z)

)
.
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In view of equation (3.18) we obtain

|p2,l(z) − p2,k(z)| ≤ |h(z) − p2,l(z)| + |h(z) − p2,k(z)| ≤
2M
Rk

for k < l, z ∈ K.

From the definition of q1,k and the last estimate we conclude

|q1,k(z)
(
p2,n(z) − p2,n−k(z)

)
| ≤ 2M

Rk−1

2M
Rn−k

=
4M2

Rn−1
for z ∈ K.

This gives

|P2n(x, y) −Qn(x, y)| ≤ 4nM2

Rn−1
for (x, y) ∈ L

and in consequence,

|F (x, y) −Qn(x, y)| ≤ |F (x, y) − P2n(x, y)| + |P2n(x, y) −Qn(x, y)|

≤ M1

Rn
+

4nM2

Rn−1
for (x, y) ∈ L.

Thus the result
lim sup

n→∞
n
√
Ec

n(L,F ) ≤ 1
ρ

follows as R < ρ was arbitrary. �
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