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Abstract

We propose a valuation method for callable structures in a multi-factor Libor
model which are path-dependent in the sense that, after calling, one receives a se-
quence of cash-flows in the future, instead of a well specified cash-flow at the calling
date. The method is based on a Monte Carlo procedure for standard Bermudans re-
cently developed in Kolodko and Schoenmakers [8], and is applied to the cancelable
snowball interest rate swap. The proposed procedure is quite generic, straightforward
to implement, and can be easily adapted to other related path-dependent products.

1 Introduction

The pricing of callable instruments with respect to a high dimensional underlying system
is considered a thorny issue. In the literature different approaches are proposed to treat
this problem. Many of these methods, such as the stochastic mesh method of Broadie
and Glasserman [4] and the regression method of Longstaff and Schwartz [9], are Monte
Carlo procedures based on the so called backward dynamic program. Other popular meth-
ods, such as Andersen [1], optimize a suitable parametric family of exercise boundaries.
Generally, all of these have their own shortcomings and merits. However, their applica-
tion becomes increasingly problematic when the cash-flow at a calling date is not directly
known but merely virtually known as the (conditional) expectation of a system of cash-
flows in the future. In this article we show that a new iterative Monte Carlo procedure
for pricing callable structures, recently developed in Kolodko and Schoenmakers [8] and
further extended in Bender and Schoenmakers [3], can be easily adapted to a large class of
callable products where the cash-flows by calling have to be considered as present values of
future cash-flows. As a main example we consider the (cancelable) snowball, an exotic in-
terest rate product with growing popularity, in a full-blown Libor market model. From the
treatment of this example it will be clear how to design Monte Carlo valuation algorithms
for related callable path-dependent products. The proposed approach is quite generic,
as in principle it only requires a Monte Carlo simulation mechanism for an underlying
Markovian system, for instance a Markovian system of SDEs. Moreover, by incorporating
information obtained from another suboptimal method, for example Andersen’s approach
(see [1]), we may improve upon this method to obtain our target results more efficiently.

The paper is organized as follows. In Section 2 we introduce the Libor market model,
the iterative procedure for Bermudan callables from [8], and formulate our target class of
callable and cancelable products (as we will see a cancelable product can be translated to a
callable one and vice versa). Then in Section 3 we tailor the iterative procedure presented
in Section 2 to the cancelable snowball and give surprising numerical results.



2 Iterative valuation of callable and cancelable Libor prod-
ucts

2.1 Recap of the Libor market model

The Libor market model is a popular and advanced tool for modelling interest rates and
pricing of interest rate products. Let us first recall the Libor Market Model with respect
to a tenor structure 0 = To < T1 < ...< T, in the spot Libor measure P*. The dynamics
of the forward Libors L;(t), defined in the interval [0,T;] for 1 < 7 < n, are governed by
the following system of SDE’s (e.g., see Jamshidian [7]),
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AL, = 9l Vi V5 gy 4 Loy - AW 1
Z%t) 1146,0, S e (1)
j=x

where 6; = T;+1 — T; are day count fractions, ¢ — v;(¢t) = (7i1(t),...,7%:,4(t)) are deter-
ministic volatility vector functions defined in [0, T;] (called factor loadings), and k(¢) :=
min{m : T, > t} denotes the next reset date at time ¢. In (1), (W*(¢) | 0 < t < Tp_4)
is a standard d-dimensional Wiener process under the spot Libor measure P* with d,
1 < d < n, being the number of driving factors. This measure is induced by the numeraire

B (t n(t) 1
B.(t) : (1+ 6;Li( £>0, B.(0):=1,
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with []{_; := 1, and where B;(t) is the value of a zero coupon bond with face value

$1 at time ¢ < T;. For further use we here also introduce the filtration (Fy);>o (history
information process) connected with the Libor process.

2.2 Path dependent callable and cancelable products

Consider a subset of tenor dates 77 < --- < T, hence T := {T1,...,Te} C {To,...,Tn},
and adapted cash-flows C; defined at 7; for 1 = 1,..., k. Let us consider a path depen-
dent contract which involves the right to call a sequence of (possibly negative) cash-flows
Cry1,...,Ck, at a date 7 to be decided by the option holder. Obviously, the discounted
time 7-value of the contracted cash-flows is equal to Z, := E7 Ek r41 Z5 (with Zg = 0),
where discounted cash-flows are denoted by Z; := C;/B.(T;). Thus Z, can be considered
as a virtual (discounted) cash-flow and so by general arguments (see Duffie [5]) it follows
that the value of this product at time zero is given by

vell .= sup E°Z,= sup E° Z Zj , (2)
Te{1,....k} Te{1,....k} j=r+1
where the supremum is taken over all stopping indices with values in the set {1,...,k}.

Similarly, we may consider a path dependent cancelable contract which generates cash-
flows (possibly negative) Ci,...,Cy, up to cancellation date o. The cash-flows of this
contract are equivalent to an aggregated cash-flow B.(7,)U, = B.(75) > 7_; Z; at the
cancellation date. Indeed, it is equivalent to replace each cash-flow C; by an amount



C;/B.(T;) = Z; of the numeraire B,, which in turn is worth B,(7,)Z; at the cancellation
date. So, the value of this cancelable product at time zero is given by

Vocancel . sup EOZ/{ — sup E ZZ (3)
ac{l,....k} ae{l,...k

Note that ¢ = k£ may be interpreted as “not cancelled” in fact. Obviously, we have

Ocall — EO Z Z + sup EO Z

Te{l,...k

hence the path dependent callable product can be seen as the sum of a non callable and
a cancelable one, and vice versa.

2.3 Iterative pricing procedure

Both the path dependent cancallable and path dependent callable product introduced in
Section 2.2 can be seen as a standard Bermudan product with respect to virtual cash-
flows U; and Z;, respectively. Therefore they can be evaluated by the iterative method
developed in Kolodko and Schoenmakers [8], which is studied further concerning numerical
stability and extended to multiple stopping in Bender and Schoenmakers [3]. Although
in [8] cash-flows are assumed to be non-negative, it is not hard to see that the iterative
construction in this article goes through for negative cash-flows as well.

Let us recall briefly the procedure in [8] and show how to evaluate callable and cancelable
Libor products by plain Monte Carlo simulation using this method. Suppose we are given
some (generally suboptimal) exercise policy 7;, ¢ = 1,...,k for a standard Bermudan
product with cash-flow process Z; 7; is the stopping rule according to which the cash-flow
should be called, provided the option has not been called before 7;. We assume that the
exercise policy 7 has the following properties,

iSTiSk; Tk:ka
T > 1= Ty = Titl, 0<i<k, (4)

This policy provides a sequence of lower bounds Y; for the discounted Bermudan prices
Y*, also called Snell envelope,

Y > Y :=E'Z,, i=1,...,k,

where E* denotes conditional expectation with respect to F7;. For a fixed “window pa-
rameter” 3¢, 1 < 3 < k (in applications we usually take sz = k), we next construct a new
exercise policy

T, = inflj>1:2Z;> max E'Z, 5
Uzizzi> p:§<p<min(j+.k) 2 (5)
= inf{j>i:2;> max E'Z.}, i=1,...,k, (6)

p:j<p<min(j+3¢,k)
which clearly satisfies (4) also, and consider the new lower bound process

Y, :=E'Z, i=1,...k, (7)



which is generally an improvement of Y,
KS}/}ZS}/;*i Il’:]-::k

We note that expression (6) is identical with (5) (which is taken as definition of 7 in [8])
due to consistency property (4), but (6) is somewhat more convenient for stability studies
(see [3]).

Naturally, we may iterate the above procedure, i.e. improve 7 in the same way and so
forth. It is shown that after iterating this procedure & — 1 times, the Snell envelope is
attained. The iteration may be started with the canonical starting policy T,L-(O) = 1, but one
also can start with any other policy which satisfies (4), for example a policy obtained by
the Andersen [1] method. More explicitly, we construct via (5)-(7) iteratively a sequence
of pairs

((Ti(Tn))Ogigk; (Y}(m))ogigk) Cois

starting with an initial stopping family (Ti(o))ogigk satisfying (4), with

1

Y™ = B2, i=1,...,k
and for m > 0,
M =inf{i<j<k,  max  EZ <2} i=1,..k
p: j<p<min(j+3¢,k) i

We thus have the monotonicity result
(0) (m) (m+1)
YO <y <yt <y m> 1

It is intuitively clear that for the choice 3¢ = k£ the most information of the input stopping
family is carried over to the next improvement. Taking 3 = k is also optimal from a
theoretical point of view but sometimes, for particular problems, it may be nevertheless
computationally more efficient to take s¢ smaller. For notational convenience we henceforth
take 3 = k.

Finally, based on the above constructed sequence of lower bound processes we may con-
struct by the dual approach of Rogers [11], Haugh and Kogan [6] a sequence of upper
bound processes converging to the Snell envelope as well,

J J
(m),u L i (m) I—1+-(m) .
Y, P — E gj@éc(zj — I_EH YU+ I_EH EY, ) 0<1< k.

Monte Carlo implementation

In most cases the cash-flows Z; are functions of an underlying Markovian process, for
instance a Libor process. In such a situation the conditional expectations involved in the
iterative procedure can be estimated by Monte Carlo simulation, which thus leads to a
Monte Carlo algorithm in a natural way. We refer to [8] for a detailed description of the
general algorithm and to [12], Section 5.4.3, for a linear implementation of a one step
improvement. The numerical stability of these procedures is proved in [3]. By Remark 1
below the efficiency of the iterative Monte Carlo procedure can be improved. Moreover,
in [2] we investigate how computation time can be reduced further when additional infor-
mation (for example closed form lower approximations of Europeans) is available.
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Remark 1 (variance reduced Monte Carlo simulation of Y (™) ) We can reduce the number
of Monte Carlo simulations for ¥ (™) by using the following variance reduced representa-
tion,

Y;(m) = EZZTi(m) = EZZTi(m_l) + EZ(ZTi(m) — Zri(m_l))'
One can expect that Z_(m-1) and Z_(m) are strongly correlated and thus the variance
of (ZTgm) - ZTgm_l)) will be less than the variance of Z_(m). So, the computation of
Ei(ZTgm) - ZTgm_l)) for a given accuracy, can usually be done with less Monte Carlo

simulations than needed for direct simulation of EiZTgm).

2.4 Iterating path dependent callable and cancelables

For the callable product (2) the policy iteration (5) (with now s = k) can be written as

7, = inf{j>i:2;> p:rjrl?)}ékEJZ%}
k k
= inf{j>i: B > Z,> max E'E™ > 7} (8)
g=i+1 PPk g=Tp+1
PP j .
= inf{j>7:0> p:jﬂz};SkE q:zj;_l Zy}, 1=1,...,k. (9)

Interestingly, although the cash-flows Z; in (2) are virtual in the sense that they generally
have to be evaluated by computing or estimating conditional expectations, the complexity
of the iterative method is not affected by this complication since the inner conditional
expectations in (8) drop by the well-known tower property, and thus (9) follows.

For the cancelable product (3) we obtain from (5) for an input cancellation policy o, the
improved policy

G; := inf{j>i:U; > max EU
’ = 77 p<p<k Gp}
7 ) Tp
= inf{j >1i: Z, > max E7 Z
G2tz 3
Tp

= inf{j>i:0> E7 Z, =1,...,k. 10
inf{j 2:0> max 2;1 o i=1,, (10)
q=7

An important issue of course is the choice of the input stopping family 7 and o in (9)
and (10). Due to the similarity of (9) and (10) let us only consider (10). By choosing the
trivial family o; = ¢ we are faced with the evaluation of the conditional expectations Equ
for ¢ > 7 in (10). When these are available in closed form we may compute (estimate)
Y; := E'Us, via (standard) Monte Carlo simulation. After improving @ in turn via (10)
again, we obtain a next improved stopping family & via Monte Carlo simula/‘Eion along each

simulated Libor trajectory. We so arrive at a next improved estimation }/}1 via a nested
Monte Carlo simulation.



Not in all situations closed form solutions (or close approximations) for the Europeans
E’Z4, q > j, are known. For such cases it is usually better not to start (10) with the
trivial stopping family above. As an alternative one could take

o;:==inf{j >1:0> Z,}, (11)

hoping that the family & obtained via (10) gives a good exercise policy in the sense that
Y;, which now requires nested Monte Carlo simulation, is close enough to Y*. The starting
policy (11) may be refined to

o;:=inf{j >i: H; > Z,}, (12)

where the deterministic sequence H is pre-computed via a standard optimization procedure
as studied in Andersen [1] for Bermudan swaptions (see also [12]).

Remark 2 In case where the cash-flow Z,,; is already known at T} from the contract
(like in the example in Section 3) we replace Z; by Z;4; in (11) and (12).

3 Example: Iterating cancelable Snowballs

3.1 Product specification and valuation

Let us consider a snowball swap contract on a 1$ nominal loan. According to this contract
one has to pay, instead of floating Libor, so called Snowball coupons which follow the
following term sheet. One pays on a semi-annual base a constant rate I over the first
year and in the forthcoming years (Previous Coupon+A-Libor)", where A increases as
specified in the contract. A cancelable snowball swap is a snowball swap which may be
cancelled after first year. We here consider this cancelable snowball product in a (semi-
annual) Libor model (1). The snowball coupons K;, settled at T;1; (1 =0,...,n—1), are
thus specified by

K, = I, i=0,1,
K, = (Ki_l—I—Ai—Li(Ti))-l_ 1=2,...,n— 1.

We consider a contract where A increases on an annual base according to A, := S5, , 4;41

= A; if iis even, and A;1; = A; 4+ s if 7 is odd, where S and s are given in the contract.

The value V of the cancelable snowball swap at ¢ = Ty = 0 is given by (3) with
Lq—l(Tq—1)5q—1 — Kq—l‘sq—l

Ly = =1,...,n.
q B*(Tq) b q b 7n

Note that Zi, .., Zp is an adapted (even predictable) sequence of cash-flows.

We now present different methods for computing Vy based on Section 2.4. To this end
we consider the Markov process (B, (T};), L;(T;), K;) and evaluate V; using a Monte Carlo
algorithm, see Section 2.3. Unfortunately, we don’t have closed form expressions for

P P
: : Ly 1(Ty1)bq-1 — Kq 1851
B Y Z,=F ) Zoed g 1
~ 1 : B.(T,) (13)
q=3+1 g=3+1



so at first glance it is not efficient to apply (10) to the trivial initial stopping family o, := 3.
However, due to the standard relationship

we may modify (13) into

P P
EJ Z Zq — 1- BP(TJ) _ E] Z Kq_l(sq_l
g=j+1 B.(T;) g=j+1 +(To)
P
and then approximate E’ Z Zq by
g=j+1
i zp: 5 . 1= Bp(Ty)  Kj§ zp: Ky-185-1 (14)
2T TR By 2, BT

with N
Kq1 = (Kj+ Ag1 — Lg-1(Ty-1)) ™, J+2<q¢<p.

The last term in (14) may be rewritten as

p 7> p
: K _15 -1 1 (K + A -1 — L _1(T _1))+5 -1
EJ Z q 9 — Z B*(TJ)EJ J q q q 9
2, BT BT 2, B.(T,)
1 .
- By(Tj)E% (Kj+ Ag_1 — Lq-1(Ty-1)) 641,
B*(TJ) q_zj—:l_z a\~7 By 7 q q q q

where Ep, denotes the T,-forward measure, and can thus be evaluated in closed form
by Black’s 76 formula in a Libor market model. Instead of the via (10) improved trivial
stopping family we may so consider the policy

p

G;:=inf{j >4:0> max E’ Z Zy}, (15)

~ pyt1<p<n gt
yielding }7; = Eil/{&i and then take this policy as input family for (10) again, thus yielding
Y= E'U;_. As a refinement of (15) we can also consider

q

Gg.:=inf{j >4 : H; > max E’ Z 16
H, {7> ] p:zj;_l o} (16)

where the sequence H is pre-computed via an optimization procedure as for (12). The
corresponding approximation for the Snell envelope is denoted by Y ; := E*Us,, ; and its

improvement by ?H,i = E'U;

OH,i'
For the example in Section 3.2 below we further investigate the families (11) and (12),
taking into account Remark 2. The corresponding approximations of the Snell envelope

and their improvements are denoted by Y, ?H,i, Y,, and ?H,i, respectively.
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3.2 Numerical results

In this section we carry out simulation experiments, where we consider a 6yr Snowball
with §; = 0.5yr and take

I=0.079, S§=0.01, s=0.005,

with the exercise possibilities at T3, ..., T11.

In the Libor model (1) we take the following volatility structure,
Yi(t) = c;g(T; — t)e;, where g(5) = goo + (1 — goo + as)e™®* (17)

is a parametric volatility function proposed by Rebonato [10], and e; are d-dimensional
unit vectors, decomposing some input correlation matrix of rank d. For generating Libor
models with different numbers of factors d, we take as basis an endogenously full-rank
correlation structure of the form

|J_;|1npoo, 1<i,j<n—1. (18)

pij = €Xp | =—
with n > 2 (at least two Libors). For more general correlation structures we refer to
Schoenmakers and Coffey [13]. For a particular choice of d we then deduce from p in (18)
a rank-d correlation matrix p¢ with decomposition pfj =e;-ej, 1 <1i,5 < mn, by principal
component analysis.

We consider a Libor market model with typical model parameters which are obtained
from a calibration to at-the-money (ATM) caps and swaptions volatilities. See for ex-
ample Schoenmakers [12], Chapters 1-3, for details on calibration of a parametric Libor
market model. For the correlation structure (18) we have po, = 0.663, the parameters of
the volatility function (17) are given in Table 1 and Table 2, and the initial Libor curve is
given in Table 3.

Table 1. Vector ¢;.
| i[d=1]d=3]d=5]d=11]

1T [[0.127 [ 0.143 [ 0.147 | 0.153 o
9l 0118 | 0.134 | 0.137 | 0.143 Table 3. Initial Libor curve.
3| 0.119 | 0.132 | 0.135 | 0.140 | Tenors | Lo |
41/ 0.121 | 0.133 | 0.136 | 0.140 0.0 0.023
51 0.123 | 0.134 | 0.136 | 0.139 0.5 0.025
6 || 0.124 | 0.134 | 0.135 | 0.138 1.0 0.027
71 0.125 | 0.134 | 0.135 | 0.137 15 0.027
8 || 0.125 | 0.133 | 0.134 | 0.136 2.0 0.031
9 || 0.125 | 0.132 | 0.133 | 0.135 2.5 0.031
10 || 0.125 | 0.132 | 0.132 | 0.134 3.0 0.033
11 ]/ 0.124 | 0.130 | 0.130 | 0.132 3.5 0.034
Table 2. Parameters a, b and go. ig gggg
L d]] a | b | g | 5.0 | 0.038
1 ][ 2.958 | 2.000 | 1.500 55 | 0.039

3 || 1.698 | 2.000 | 1.487
5 || 1.382 | 2.000 | 1.500
11 || 0.976 | 2.000 | 1.500




For comparison we state the prices of the Europeans on the snowball with the different
maturities in Table 4. They are calculated via standard Monte-Carlo using 107 simulated
paths. Noteworthy all Europeans have negative value while we will see from Tables 5-8
below that the Bermudan has positive value.

Table 4. Values of European options on the Snowball contract for different maturities

and number of factors (in base points).

| Maturity || d=1 d=3 d=5 d=11
0.5yr || -540.646(0.007) | -540.656(0.007) | -540.644(0.007) | -540.639(0.007)
LOyr || -713.665(0.023) | -713.692(0.023) | -713.657(0.023) | -714.641(0.023)
L5yr || -802.502(0.051) | -802.562(0.051) | -802.501(0.051) | -802.466(0.051)
2.0yr || -802.090(0.088) | -802.318(0.088) | -802.261(0.088) | -802.137(0.051)
2.5yr || -750.240(0.125) | -750.704(0.126) | -750.694(0.126) | -750.396(0.125)
3.0yr || -671.058(0.163) | -671.645(0.164) | -671.591(0.164) | -671.109(0.163)
3.5yr || -579.752(0.202) | -580.263(0.201) | -580.044(0.201) | -579.326(0.200)
4.0yr || -483.586(0.243) | -483.707(0.241) | -483.200(0.241) | -482.224(0.240)
4.5yr || -388.742(0.286) | -388.006(0.283) | -387.237(0.283) | -385.962(0.282)
5.0yr || -299.562(0.335) | -297.540(0.330) | -296.532(0.329) | -294.928(0.328)
5.5yr || -219.654(0.389) | -215.979(0.380) | -214.592(0.379) | -212.613(0.378)

We now investigate the stopping family (15) and its refinement (16). In Tables 5 and

6 we present the lower bounds }70 and ?H,o, their improvements }70 and ?H,o and their
dual upper bounds Y, and Y7 (all the values are in base points). We construct 107

trajectories for ¥y and Yg . Next, we construct Y and Y g using variance reduction (see

Remark 1). Here we estimate }70 — }70 and ?H,o — ?H,o using 3 - 10° and 10° trajectories,
respectively, in order to keep the standard deviation within 0.5% relative to the value.
For each trajectory we used 500 inner simulations. }70 and
?Huﬁ) — ?H,o using 3.5 - 10* and 10* outer trajectories, respectively, in order to keep the
standard deviation within 0.5% relative again, and 500 inner trajectories. The vector H in
(12) is computed using 5-10° pre-simulations. We see, that the refined exercise policy (16)
provides a higher lower bound (7.5%-9% relatively), than (15). However, the improved
lower bounds are almost the same and coincide with Y H.0 within one standard deviation.

Table 5

Further, we simulate }70“” —

La] %oy | Fosp) || Frsp) |
1 |[ 62.575(0.233) | 68.293(0.357) || 68. 932(0 323)
3 || 58.226(0.230) | 64.312(0.345) || 65.231(0.338)
5 || 58.799(0.229) | 65.187(0.345) || 65.795(0.338)
11 || 59.742(0.229) | 64.815(0.341) || 66.710(0.335)

Table 6.

L d|| Vuosp) | Yuesp) | v smy |
1 || 68.089(0.236) | 67.957(0.303) || 68.491(0.240)
3 || 62.691(0.232) | 64.222(0.350) || 64.343(0.259)
5 || 63.134(0.232) | 64.432(0.358) || 64.964(0.265)
11 || 64.164(0.231) | 65.621(0.348) || 65.600(0.263)




We also consider (a naive) stopping family (11) and its refinement (12), see Tables 7
and 8 (all the values are in base points). Here we use 107 traJectorles for Yo and YHo
and 3.5 - 10° trajectories (with 500 nested s1mu1at10ns) for Yo¥ — Y, and YHo Yo

Then, we construct the 1mproved lower bounds Yo and YHo using variance reduction (see

Remark 1), where we estimate Yo — Yo and YH,o — YH,o by 5 - 10° trajectories (with 500
nested simulations). The vector H in (12) is constructed using 5 - 10° pre-simulations.
We see, that the exercise policy (11) provides a rather crude lower bound Y, and a
rather crude dual upper bound. This is due to the fact that for most trajectories the
exercise policy (11) exercises too early. Interestingly, the iteration procedure provides an
substantial improvement of (11), which still differs from the Bermudan price about 5%-—
15% relatively, however. Finally we note, that the refinement (12) provides much better
lower bounds (and corresponding dual upper bounds). The difference of the refined lower
bound Y g o with the Bermudan price is approximately 20% relatively, and its improvement
coincides with the Bermudan price within one standard deviation.

Table 7
L d| vosp) | Yosp) | vFsp) |
1 ][ -526.155(0.059) | 63.572(1.011) || 119.460(3.344)
3 || -526.835(0.056) | 56.347(0.995) || 120.259(3.339)
5 || -526.735(0.056) | 58.484(0.991) || 119.756(3.347)
11 || -526.778(0.056) | 62.441(0.986) | 114.240(3.333)
Table 8.
d| Vuo(sp) | Vao(sn) | ¥, (sD) |
1 ][ 66.389(0.237) | 67.673(0.261) || 68.281(0.242)
3 || 53.254(0.235) | 64.142(0.321) || 65.488(0.316)
5 || 53.301(0.235) | 64.883(0.322) || 66.570(0.327)
11 || 53.373(0.235) | 65.295(0.325) || 68.026(0.339)
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