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LOWER DEVIATIONS FOR SUPERCRITICAL GWP

ABSTRACT. There is a well-known sequence of constants ¢, describ-
ing the growth of supercritical Galton-Watson processes 7, . With
“lower derivation probabilities” we refer to P(Z, = k) with
kn = o(cy,) as n increases. We give a detailed picture of the
asymptotic behavior of such lower deviation probabilities. This
complements and corrects results known from the literature con-
cerning special cases. Knowledge on lower deviation probabilities is
needed to describe large deviations of the ratio Z,41/Zr . The lat-
ter are important in statistical inference to estimate the offspring
mean. For our proofs, we adapt the well-known Cramér method
for proving large deviations of sums of independent variables to
our needs.
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2 FLEISCHMANN AND WACHTEL

1. INTRODUCTION AND STATEMENT OF RESULTS

1.1. On the growth of supercritical processes. Let 7 = (Zn)nzo denote a
Galton-Watson process with offspring generating function

fs) = > ps?,  0<s<1, (1)
i>0
which is required to be non-degenerate, that is, p; < 1, j > 0. Suppose that 7
is supercritical, i.e. f'(1) =t m € (1,00). For simplicity, the initial state Zy >
1 is always assumed to be deterministic, and, if not noted otherwise (as by an
application of the Markov property), we set Zg = 1.
It is well-known (see, e.g., Asmussen and Hering (1983) [1, §3.5]) that

there are ¢, > 0 such that a.s. cngn T) some non-degenerate W. (2)
nToo
In this sense, the sequence of constants ¢, describes the order of growth of Z. But,
P(W =0) = ¢, with ¢ € [0, 1) the smallest root of f(s) = s, that is, the extinction
probability of Z. On the other hand, W restricted to (0, 00) has a (strictly) positive
continuous density function denoted by w. Therefore the following global limit
theorem holds:

ntoo

lim P(Z, > 2¢c,) = / w(t) dt, z > 0. (3)

The normalizing sequence (Cn)nzo can be chosen to have the following additional
properties:

co=1 and ¢, < ¢py1 < mep, n>0, (4a)
¢n, = m"™ L(m™) with L slowly varying at infinity, (4b)
liTm L(x) exists; it is positive if and only if EZ;log 71 < oo. (4c)
TToo

Because of (4b,c), we may (and subsequently shall) take
cn = m"” i EZilogZ; < oco. (5)

1.2. Asymptotic local behavior of Z, purpose. A local limit theorem related
to (3) is due to Dubuc and Seneta (1976) [10], see also [1, §3.7]. To state it we need
the following definition.

Definition 1 (Type (d, p)). We say the offspring generating function f is of type
(d, p), if d > 1 is the greatest common divisor of the set {j —£: j # £, pjps > 0},
and p > 0 is the minimal j for which p; > 0. <o

Here is the announced local limit theorem. Suppose f is of type (d, ). Take
¢ > 0, and consider integers k, > 1 such that k,/c, — z as n 1 oco. Then, for
each 7 > 1,

1}}1‘210 (Cn P{Zn = kn |Z0 = ]} — dl{knsz“(modd)} w](x)) = 0, (6)
I
where wj; := >, (i) ¢t wrt,
£=1
In particular, in our standard case Zo = 1 and if additionally &, = p” (modd),

then
P(Zp =kn) ~ degt w(kn/cn) as ntoo (7)
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(with the usual meaning of the symbol ~ as the ratio converges to 1).

Statement (6) [and especially (7)] can be considered as describing the local be-
havior of supercritical Galton-Watson processes in the region of normal deviations
(from the growth of the ¢,; ‘deviations’ are meant here in a multiplicative sense,
related to the multiplicative nature of branching). But what about P(Z, = k)
when k,/c, — 0 or 0c0? In these cases we speak of lower and upper (local) devia-
tion probabilities, respectively.

Lower deviations of Z, are closely related to large deviations of Z,y1/Z, (see
Ney and Vidyashankar (2004) [15, Section 2.3]). The latter are important in sta-
tistical inference for supercritical Galton-Watson processes, since Z,11/Zn is the
well-known Lotka-Nagaev estimator of the offspring mean.

The main purpose of the present paper is to study lower deviation probabilities
in their own and to provide a detailed picture (see Theorems 4 and 5 below). As a
starting point we discuss a relevant claim in [15] concerning an important special
case (see Sections 1.4 and 1.5 below). Applications of our results for large deviations
of Z,4+1/Zrn and also to subcritical Galton-Watson processes are postponed to a
future paper.

Here is the program for the remaining introduction. After introducing a basic
dichotomy, we review in Sections 1.4 and 1.5 what is known on lower deviations
from the literature, before we state our results in Sections 1.6 and 1.7.

1.3. A dichotomy for supercritical processes. Recalling that f denotes the
offspring generating function, ¢ the extinction probability, and m the mean,

set v := f'(g), and define @ by v = m™°. (8)

Note that v €[0,1) and a € (0, 00]. We introduce the following notion, reflecting
a crucial dichotomy for supercritical Galton-Watson processes.

Definition 2 (Schréder and Boéttcher case). For our supercritical offspring
law we distinguish between the Schréder and the Boticher case, in dependence on
whether po+p1 >0 or = 0. <o

Obviously, f is of Schroder type if and only if v > 0, if and only if a < co.

Next we want to collect a few basic facts from the literature concerning that
dichotomy. Clearly, f can be considered as a function on D, where D denotes the
closed unit disc in the complex plane. As usual, denote by f, the nt! iterate of f.
We start with the Schréder case. Here it is well-known (see, e.g., [1, Lemma 3.7.2
and Corollary 3.7.3]) that

fn(z) —4q

Sn(z) == B nT—Q)Q some S(z) =: Zl/jzj, z€D. (9)
3=0

Moreover, the convergence is uniform on each compact subsets of the interior D° of
D. Furthermore, the function S restricted to the reals is the unique solution of the
so-called Schréder functional equation (see, e.g., Kuczma (1968) [13, Theorem 6.1,
p.137]),

S(f(s)) = v5S(s), 0<s<1, (10)
satisfying

S(g) =0 and limS'(s) =1. (11)

s—q
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As a consequence of (9),

liTm Y "P(Zn=k) = v, k>1. (12)

Consequently, in the Schroder case, these extreme (& is fixed) lower deviation prob-
abilities P(Z, = k) are positive and decay to 0 with order ™. On the other hand,
the characteristics a € (0,00) describes the behavior of the limiting quantities
w(z) and P(W < z) as # | 0. In fact, according to Biggins and Bingham (1993)
[5], there is a continuous, positive multiplicatively periodic function V' such that

2 %w(z) = V(z)4+o(l) as z 0. (13)

Dubuc (1971) [7] has shown that the function V' can be replaced by a constant
Vo > 0 if and only if

S(p(h)) = Koh™*, h >0, (14)
for some constant Ko > 0, where ¢ = ow denotes the Laplace function of W,
ow(h) = Ee "W, h>0. (15)

We mention that condition (14) is certainly fulfilled if Z is embeddable (see [1,
p.96]) into a continuous-time Galton-Watson process (as in the case of a geometric
offspring law, see Example 3 below).

Now we turn to the Béttcher case. Here p > 2 (recall Definition 1). Clearly,
opposed to (12), extreme lower deviation probabilities disappear, even P(Z, <
™) =0 for all n > 1. Evidently,

P(Zy=p") = P(Zp_1= ") pl}

n—l)‘

(16)

Hence,

n

—1
T o8Py - (17)

n—1
n 3 H
P(Zy=p") = [Pl = exp
7=0

Next, P(Zpn =p" +1) = P(Zpn_1 = p™ )" pusr pﬁn_l_l. Thus, from (16),
P(Zn=p"+1) = plpupa " ' P(Zn = p"). (18)

For simplification, consider for the moment the special case p,1; > 0, j > 0. Then,
as in the previous representation, for fixed £ > 0 and some positive constants Cy,

P(Z,=p"+k) ~ Coy™* P(Z, =p™) as ntoo. (19)

Consequently, in contrast to (12) in the Schroder case, here the lower positive

deviation probabilities P(Z, = u™ + k) do not have a uniform order of decay. But
by (19),

p " logP(Z, = p"™ + k) T) log pu, k>0. (20)

That is, on a logarithmic scale, we gain again a uniform order, namely —u™.
Turning back to the general Bottcher case,

lim (f()* ) = B(s), 0<s<1, (21)
exists, is continuous, positive, and satisfies the Béttcher functional equation
B(f(s)) = B¥(s) 0<s<1, (22)
with boundary conditions

B(0)=0 and B(1)=1 (23)
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see, e.g., Kuczma (1968) [13, Theorem 6.9, p.145]).
g
Recalling that p > 2, define 8 € (0,1) by

p=mP. (24)

According to [5, Theorem 3], there exists a positive and multiplicatively periodic
function V* such that

—logP(W <) = g~ PI(1=F) V=(z) + o(x_ﬁ/(l_ﬁ)) as z | 0. (25)

If additionally logw (h) ~ —khP as h 1 oo for some constant x > 0, then by
Bingham (1988) [6, formula (4)],

—logP(W <z) ~ 871 - ﬂ)(m,@)l/(l_ﬁ) 2 PI=B) a5 z ] 0. (26)

1.4. Lower deviation probabilities in the literature. What else is known in
the literature on lower deviation probabilities of Z? In the Schréder case (0 <
a < o00), Athreya and Ney (1970) [2] proved that in case of mash d = 1 and
EZ? < oo, for every e € (0,7), where

n = m*/Gte) 5 1 (27)
there exists a positive constant C, such that for all & > 1,
m P (Zy = k) — w(k/m™)| < C, k” 4t (g—e)™™ (28)
m n

The estimate (28) allows to get some information on lower deviation probabilities.
Indeed, in the general Schréder case, from (13),
w(z) < z°! as x )0 (29)
(meaning that there are positive constants C; and Cy such that C7 2%~ < w(z) <
Cyz*™ 1, 0 < z < 1). Together with (28) this implies
an (a—1)n
m m
P(Z,=k,) = m " wlk,/m"” 1—1—0( +
(Zn = k) (ko) | 140 (ot =
We want to show that in important special cases the O—expression is actually an
o(1). Recalling the definition (27) of n, one easily verifies that m*”/kZn™ — 0
(as n 1 oo) if and only if k,/m*(2+2)/(3+2) 5 oo Concerning the second O-
term, if additionally a < 1, then m("‘_1)’“”/161‘;‘_1 < 1 provided that k, < m™.
Hence, here m("‘_l)”/(k,‘jf_1 (n— 6)”) converges to zero if 7 —¢& > 1. On the other
hand, if a > 1 and k,/m"(2t®)/(3+a) o (which we needed for the first term),
then m("‘_l)”/(k,‘jf_1 (n— 6)”) — 0 provided that additionally ¢ < m®/(3+a) _
m(@—1)/(3+2) " Altogether, under the assumptions in [2],
P(Zp=kn) = m " w(k,/m") (1 + 0(1)) as n?t oo (31)
provided that both k, < m” and k,/m™2+2)/(3+a) o0,

In [2] it is also mentioned that according to an unpublished manuscript of S. Kar-
lin, in the Schroder case, for each embeddable processes Z of finite second moment,

)] as n 1 o0o. (30)

an
ntoo kn

P(Z, = kp) exists in (0,00), provided that k, = o(m™). (32)

In the present situation, as we remarked after (13), w(z) ~ Voz®~! as z | 0 with
Vo > 0. Hence, from (32), for some constant C > 0,

P(Z,=kn) ~ Cm ™" w(kn,/m™) as n1 oo, (33)
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which is compatible with (31).

Intuitively, the asymptotic behavior of lower deviation probabilities should be
more related to characteristics as @ and § than to the tail of the offspring distribu-
tion. Thus one can expect that it is possible to describe lower deviation probabilities
successfully without the second moment assumption used in [2]. Actually, in [15,
Theorem 1] one finds the following claim.

Suppose po = 0 and EZjlogZ; < oo. Then there exist positive constants
Cy < Cy such that for k, — oo with k, = O(m™) as n 1 oo,

P(Z, =k, . P(Z, =k,
C; < liminf g < limsup g < Cy, (34)
where
pr k2t ifa<,
A, = 0, p7 if @ =1, (35)
m™" if 1 <a<oo,
and 6, := [n + 1 —logky,/log m]. Furthermore, if &, = m” ¢ for natural num-

bers £, = O(n) as n 1 oo, then
lim A;l P(Z, = kn) =: Cum exists in (0, 00). (36)
ntoo
1.5. Contradictions. Let us test that claim by an example which allows explicit
calculations.

Example 3 (Geometric offspring law). Consider the offspring generating func-
tion

f(s) = m = ;m YA —m ™ hyi—ted, 0<s<1, (37)

(with mean m > 1). Obviously, here ¢ = 0, ¥ = m~1, hence a = 1. For the n*}
iterate one easily gets

F6) = Ty = o @)
7j=1
Thus,
P(Z,=k) = m™™(1-m ™k < m™ (39)

for all n,k > 1. On the other hand, since p; = m™!, by claim (34) there is a
constant C > 0 such that for the considered k&, ,

P(Zy = kn) > COpm™™ (40)

for n large enough. If, for example, k, = m”/? then 6, — oo, and (40) contradicts
(39). Consequently, the left-hand part of claim (34) cannot be true in the case
a=1. <o

Next we compare the claim with our discussion in the previous section on lower
deviation probabilities based on [2]. In fact, under the assumptions in [2], if ad-
ditionally k., = o(m™) but k,/m™(2+2)/(3+2) 5 o0 as n 1 oo, then by (31) and
(29),

kn a—1
P(Zy = kn) < m~" (—) . (41)

mn
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Thus, in the case 1 < @ < o0 we get P(Z, = k) = o(m™™) which contradicts the
positivity of Ciim in claim (36), hence of Cj in claim (34).
Here is one more consideration. According to claim (34), under 1 < a < oo,

P(Z,=k) > Cm™ (42)

for all k € [m®", m(1=9)"], ¢ ¢ (0,1/2), and all n large enough. Here and later,
C refers to a generic positive constant which might change its value from place to
place. Hence,

ml—e)m
EZ;' > Y k'P(Zy=k) (43)
k=msem
ml—e)m
> Cm™" Z El = C(1—-2)nm™ (1—1—0(1)) as n T oo.

k=msem
But by Ney and Vidyashankar (2003) [14, Theorem 1], EZ;! is asymptotically
equivalent to m™™ (in the case 1 < a < 00), getting one more contradiction.

Looking into details of the proof of [15, Theorem 1], the following formulas are
claimed to be true:

27 Clim = (44)
Zl/j w*j(l), a<l,
/ jm [5(6(w)) = S(¥(-w)] du, a=1,
lzzomt/;m {fl(¢(u)) + fl(¢(—u))} du + /_://”;¢(u) du, 1< a < oo,
/ﬂ/m ¥(u) du, a = oo,
—n/m

with S from (9) and where 1 = ¥w denotes the characteristic function of W,
Yw(u) = EeV, u € R. (45)

Recall that Cj, > 0 according to the claim. Now, if a < 1, the positiveness of
Clim is obvious from this formula, since the density function w is positive. But the
point is that the claim Ci, > 0 is not true in all other cases.

In fact, consider first the case 1 < a < oco. It is well-known that ¢ solves the
equation

P(mu) = f(¢(u)), u € R, (46)
(e.g. [1, formula (6.1)]). Tterating, we obtain
p(mtu) = fi(p(u)), weR, £>1. (47)
Thus,
[ [ + et au = mot [ w4 o] an o
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Therefore,

<[ ‘:n [ )]+ o(—u)] du (19)

which is finite, since in the Schroder case (see, for example, [3], p.83, Lemma 1),

[W(u)| < elul™®,  uweR. (50)
Hence,
T —7/m ]
)+ awen]ao= (74 [ Yo o
Yo [ )+ swea]ow = ([ 74 [ Juman 61
and, consequently, by (44),
Clim = L[~ d
lim = E/_oo P(u) du (52)
in the present « € (1, 00) case. Inverting (45) gives
/°° e~ (u)du = 2mw(z), z > 0. (53)

But by (13) there is a (positive) constant C such that w(z) < Cz*~1 0 <z < 1.
Hence, w(0) =0, and (52) implies Cijm = 0.

In the case @ = oo, the proof of Lemma 5 in [15] is incorrect. In fact, the
statement (82) there is wrong. But we can start from (79) there (setting n(r,s) =
1) to define

Ir(i)j(r, s) = / e_i“m_rﬁfj (¢s+r_j(u)) du, rs>1, 0<ji<r, (54)

/m

where in this section by an abuse of notation,
Py(u) = fo(e™/™) = B %™ 1>0, ueR. (55)

By the global limit theorem (3), for v € R and j > 0 we get lim, 400 Wstpr—j(u)
= 9¥(u) with ¢ = ¢Yw from (45), ylelding lim, ;o0 f; (¢s+r_j(u)) = f; (¢(u))

Thus, by dominated convergence, for j > 0,
. 2 7
Jm 10500 = [ g(o)du (56)

Using this and the bound (81) there, one can easily verify that

P

Jim S0P = domi [ ) (57)

j=0
This gives for Clim in the case o = oo the same formula as written in (44) for the
case 1 < a < oo. Now, instead of (50), in the Bottcher case we have
[w)| < e, uekR, (58)

for some constant C, see [8, Theorem 23]. Therefore we get again (49) and (52)
also in the Bottcher case. Finally, by our Remark 6 below, w(0) = 0 and again we
arrive at Cpym = 0.
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It remains to discuss the case @ = 1. Here in the last formula at p.1156 of [15]
there is a sign error: It must be read as f:/m[s (¢(u)) —|—S(¢(—u))] du, which equals
indeed the true value of Cl,. Now, at least if Z is embeddable into a continuous-
time Galton-Watson process then analogously to (14) we get the identity S(¢(U)) =
Ko (iu)~! for some constant Ko > 0, implying S(¢(U)) + S(¢(—u)) = 0. Then
Chlim = 0 for this class of processes.

Altogether, all these contradictions to the quoted claim from [15, “Theorem 1°]
(and its generalization [15, ‘Theorem 2’]) had been rather unexpected for us. Of
course, they gave us some more motivation to ask for the right and general picture
on lower deviation probabilities. Actually, it is wrong to distinguish between veloc-
ity cases as in (35). The only needed velocity case differentiation is the mentioned
dichotomy of Definition 2. This we will explain in the next two sections. In the end
of Section 1.7 we then discuss the influence of [15, ‘Theorem 1°] to other results in
[15].

1.6. Lower deviations in the Schroder case. We start by stating our results
on lower deviation probabilities in the Schroder case. Recall that here =0 or 1.

Theorem 4 (Schréder case). Let the offspring law be of the Schréder type and
of type (d, p). Then for all k, = p (modd) with k, — oo but k, = o(cy),
d kn,
P(Zy = ky) = w( )(1 +o(1)) (59)

mnr—an Ca, mnr—an Ca,

and
kr,
P0< Z, <k, = P(0<W< m) (1‘1‘0(1)) (60)

as n 1 oo, where for n > 1 fized we put an, :=min{l > 1: ¢; > k,}.

The appearing of the a,, in the theorem, depending on the ¢, and k, looks a bit
disturbing, so we have to discuss it. First assume additionally that EZ;log Z; < oo.
Since here we set ¢, = m™, from (59) we obtain the a,-free formula

P(Z, =kn) = dm " w(k,/m") (1 + 0(1)). (61)
Also, comparing this with (7), we see that under this Z;log Z;—moment condition
in the Schréder case, m™" w(k,/m™) describes not only normal deviation proba-
bilities but also lower ones.

On the other hand, without this additional moment condition, recalling property
(4b), ¢p = m™ L(m™) with L slowly varying at infinity. Hence, we have

1 1 L(m™) k. _ kn L(m")

m - cn L(mo»)’ thus Cq,m"~ % ¢p L(mon)’ (62)
Therefore, from (59),
cnP(Zn=kn)  L(m") w(knL(m™)/cnL(m®)) ,
dw(kafcs)  L(m®) @l ) (1+0(1)).  (63)
Using now (13), we find
enP(Zy=kn) ¢ L(m")\& V(knL(m™)/cnL(m®)) O
sy = (Tme)) Vi) (o) 69

Next we want to expel the disturbing a, from this formula.



10 FLEISCHMANN AND WACHTEL

It is well-known (Seneta (1976) [17, p.23]) that the regularly varying function
z — zL(x) asymptotically equals a (strictly) increasing, continuous, regularly vary-
ing function # — R(z) := xLi(z) with slowly varying Li. Hence, L(z) ~ Li(z)
as z T oo. Using now [17, Lemma 1.3], we conclude that the inverse function R* of
R equals & — zL*(z), where L* is again a slowly varying function.
Put %, := R*(k,). Then k, = ©,L1(2,) by the definition of R*. Recalling that
En, = kn L*(ky), we get the identity
L*(kp) Li(2n) = 1, n> 1. (65)
For n fixed, define b, := min{( >1: mtLi(mt) > kn} Combined with z, L1(z,)
= k, we get
mb™ Ly(mP™) > 2nLi(zn) > mP»~ Li(mb~1). (66)
But #+— xLi(z) is increasing, and the previous chain of inequalities immediately
gives
mi» > z, > mb>"1. (67)
By (4b),
L(mb»11)
Ll(mbn)
for all n sufficiently large. Here, in the last step we used m > 1, that the slowly

varying functions L and L; are asymptotically equivalent, and the definition of
by, . Now ¢p, 41 > ky, implies

Co+1 = mbnt1 L(mb“+1) =m mb= Ll(mb“) > ky, (68)

br + 12> an, (69)
by the definition of a,. On the other hand,
L an+1
mentl Ll(m““'l'l) =m M Ca, > kn (70)
L(me=)

for all n sufficiently large. Here, in the last step we used the definition of a, . This
gives

Gn +1>b,, (71)
by the definition of b, . Entering with (71) and (69) into (67), we get

man+1 Z T, > man—2

Therefore, recalling (65),

for all n sufficiently large. (72)

L(m®*) ~ L(zy) ~ Li(zy) ~ T (o) as n 1 oo. (73)
Entering this into (64) gives
enP(Zn = k) o L a V(kn L(m™) L*(ky)/cn) .
dw(kn/cn) - [L( )L (kn)] V(kn/cn) (1+ (1))7 (74)

which contains L* instead of the a, .

Note also that such reformulation of (59) reminds the classical Cramér theo-
rem (see, for example, Petrov (1975) [16, §VIIL.2]) on large deviations for sums
of independent random variables. There the ratio of a tail probability of a sum
of independent variables and the corresponding normal law expression is consid-
ered. The crucial role in Cramér’s theorem is played by the so-called Cramér series
A(s) = Y22, Mes®, where the coefficients Ay depend on the cumulants of the
summands. For the lower deviation probabilities of supercritical Galton-Watson
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processes we have a more complex situation: It is not at all clear, how to find the
input data L, L*, V [entering into (74)] based only on the knowledge of the offspring
generating function f.

It was already noted after (13) that if Z is embeddable into a continuous-time
Galton-Watson process then V(z) = V. Consequently, for embeddable processes,
(74) takes the slightly simpler form

Cn, P(Zn = kn) _
dw(kp/e,)

On the other hand, if V is not constant, the influence of this function on the
asymptotic behavior of the ratio ¢, P(Z, = kn)/w(kn/cy) is relatively small. In-
deed, from continuity and multiplicatively periodicity of V' (z) we see that 0 < V3 <
V(z) < Va < 00, & > 0, for some constants Vi, Va. Therefore, from (74),

% [L(m™) L™ (kn)]® (1 +0(1)) < %

V; a
< 2 L(m™) L7 (k)] * (14 0(1)).
Vi
Note also that for many offspring distributions the bounds Vi and V; may be

chosen close to each other. This "near-constancy” phenomenon was studied by
Dubuc (1982) [9] and by Biggins and Bingham (1991, 1993) [4, 5].

[L(m™) L* (kn)]" (1 + o(1)). (75)

(76)

1.7. Lower deviations in the Bottcher case. Recall that y > 2 in the Béttcher
case.

Theorem 5 (Boéttcher case). Let the offspring law be of the Béttcher type and
of type (d,p). Then there ezist positive constants By and Bz such that for all
kn = p™ (modd) with k, > p™ but k, = o(cn),

-B; < lin% inf b " log[cn P(Z, = kn)] (77a)
< limsup,ub"_”log[cnP(Zn = kn)] < —Bs, (77b)
ntoo
where by, := min{f : ¢, u"~* > 2k, }. The inequalities remain true if one replaces

enP(Zn = kn) by P(Z, < ky).
Let us add at this place the following remark.

Remark 6 (Behavior of w at 0). In analogy with (29), in the Bottcher case one

has

logw(z) < —z PP a5 210 (78)
with 8 from (24). This can be shown using techniques from the proof of Theorem 5;
see Remark 16 below. <

Our results in the Béttcher case are much weaker than the results in the Schroder
case: We got only logarithmic bounds. But this is not unexpected, recall our
discussion around (20).

Repeating arguments as we used to obtain (74), from Theorem 5 we get

log[cn P(Z, = kn)]
(kn /cn)~PI=B)

= _[L*(kn/mﬁn)le/(l—ﬁ)(mn) ? s ntoo, (79
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where L* is such that Ry(z) := z(!=P)L(z) and R(z) := z/=F)[*(z) are asymp-
totic inverses, i.e. Ri(Ra(z)) ~ & and Ry(Ri(x)) ~ 2 as z 1 oo.
Taking into account (78), we conclude that
log[cn P(Z, = kn)]
log w(kn/cn)

= [L*(kn/mﬁ”)le/(l—m(mn) * asntoo.  (80)

Let us continue our discussion of the paper [15]. The main reason to study there
lower deviation probabilities is the application to large deviation probabilities for
the ratio Z,11/7,, stated as Theorems 3 and 4 there. Using our Theorem 4
(instead of ‘Theorem 1’ there) in the proof of [15, Theorem 3] concerning large
deviation probabilities in the Schroder case, one can easily verify that one needs
only to change the quantity B in [15, Theorem 3] to be — log p; for all o € (0, 00), in
order to get the right picture. On the other hand, [15, Theorem 4] concerning large
deviation probabilities in the Bottcher case is true as it is stated, since ‘Theorem 1’
was used only to show that

. 1 Tl
lim —log[m” P(Z, = kn)] =0 if — — 0, (81)
ntoo Ky n ntoo
see [15, p.1163]. Recalling that ¢, = m™ and L(z) = L*(z) = 1 under EZ;log Z; <
00, using our (79), one obtains

mPm\1/(1-6)
_( k., )
But mf = p by definition (24) of 3, and (81) follows indeed.

ki log[m” P(Z, = kn)] = as n 1 oco. (82)

2. CRAMER TRANSFORMS APPLIED TO GALTON-WATSON PROCESSES

Our way to prove Theorems 4 and 5 is based on the well-known Cramér method
(see, e.g., [16, Chapter 8]), which was developed to study large deviations for sums
of independent random variables. A key in this method is the so-called Cramér
transform defined as follows. A random variable X (k) is called a Cramér transform
(with parameter h € R) of the random real variable X if

(h+it) X
= EeET teR. (83)
Of course, this transformation is well-defined if Ee?¥* < oo.

In what follows, we will always assume that our offspring law additionally sat-
isfies po = 0. This condition is not crucial but allows a bit simplified exposition of
auxiliary results formulated in Lemma 11 below and of the proof of Theorem 4 in
Section 3.1 (see also Remark 15 below).

EeitX(h)

2.1. Basic estimates. Fix an offspring law of type (d, p). Let n > 1. Since Z, >
0, the Cramér transforms Z,(—h/cy) exist for all h > 0. Clearly, EetZ~(-h/cn) =
fn(e=P/ontit) /£ (e=P/en). We want to derive upper bounds of f,(e~?/¢»ti) on
{t ER: clnd 1 <t < wd_l} . For this purpose, it is convenient to decompose

the latter set into |J

- J; where
7=1%7

Jj = {t: glrd™t < |t < ¢jlymd ), j>1. (84)

To prepare for this, we start with the following generalization of [10, Lemma 2].
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Lemma 7 (Preparation). Fiz ¢ € (0,1). There exzists 0 = 0(¢) € (0, 1) such that
|fe(e7Meetitleny <0, £>0, k>0, t€J, :={t: end™* < [t| < md™'}.
Proof. Put gp:(z) :=e "+ h x>0, ¢ € R. Evidently,
|gh,t($) _ gh7t(y)| _ |e—hm (€5%° — €it¥) 4 ¢it¥(e=he _ e—hy)| (85)
< [é — ] e o] < (bt i) fo— g,

It means that for H > 1 and T > nd~" fixed, G:={gns; 0<h< H, [{|<T} is
a family of uniformly bounded and equi-continuous functions on Ry . Therefore,
by (2), .
fe(eMeetitleny = By, (Zi/e)) — Egn:(W) as £1 oo, (86)
uniformly on G (see, e.g., Feller (1971) [11, Corollary in Chapter VIII, §1, p.252]).
Since W > 0 has an absolutely continuous distribution, and ¢ € J; implies [t| < T,
sup |Ee_hW+itW| <1 (87)
0<h<H, teJ.
From (86) and (87) it follows that there exist d; € (0,1) and £y such that
sup |fl(e—h/cz+it/cz)| < 44, 2> 4. (88)
0<h<H, teJ.
On the other hand, Uﬁ"zo {e_h/c“”t/c‘; h>0,1t€e JE} is a subset of a compact
subset K of the unit disc D, where K does not contain the d*f roots of unity.
Thus for some d; € (0, 1),
sup |fl(e_h/c‘+it/c‘)| < 4, £< 4. (89)
0<h<H, teJ.

In fact, from Definition 1,

flz) = Y P(Zy =t +jd) 4 £>0, zeD, (90)
7=0
implying
1) < [SDP( = w4 jd) 59| (91)
7=0

But the latter sum equals 1 if and only if 2z is a d* root of unity, that is, if it is of
the form e27%/¢,
Combining (88) and (89) gives the claim in the lemma under the addition that

h < H. Consider now any h > H. In this case

|fale=Plectitleny| < fy(e=3er), (92)
By (2) we have
fi(e™Mee) = BemhZe/ee 5 Be™™W € (0,1] as £1 oo, (93)
uniformly in h from compact subsets of R . In particular,
up fele™Me) < 1. (94)
This completes the proof. |

The following lemma generalizes [10, Lemma 3].
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Lemma 8 (Estimates on Jq,...J,). There are constants A > 0 and 6 € (0,1)
such that for h> 0, t€ J;, and 1 <j<n,

{ Ap?_j-l'1 in the Schroder case,

[Fuleen )] . (95)

olu

in all cases.

Proof. By (4a), we have e := infy>1¢-1/ce € (0,1). If £ € J;, j > 1, then
evidently,

md™t > ej_q|t] > cj_lcj_lﬂ'd_l > emd™?, (96)
hence c;_1t € J.. Thus, by Lemma 7,

U = U{fj_l(e—h“*); h>0, ter} C 0D with 0<0<1.  (97)

7j=1

From the representation (90), fi(z) < |z|(”4) for all £ > 0 and |z] < 1. Hence,
for all z € U C 6D we have the bound |fl(z)| < ok, Thus, for h > 0, t €

Ji, and 1< j<n,
ale™ 40| < famjin ([fimale™™et)]) < o7, (98)

which is the second claim in (95).

If additionally p; > 0, then by (9) (and our assumption po = 0) we have that
pl_lfl(z) converges as £ 1 oo, uniformly on each compact K C D°. Therefore,
there exists a constant C = C(K) such that

|fe(2)] < Cpf, £>0, z€eK. (99)

Consequently, iterating as in (98),
|fale™Mert8) < CppI*, h>0, ted;, 1<j<n, (100)
finishing the proof. |

2.2. On concentration functions. Fix for the moment A > 0 and n > 1. Denote
by {Xj(h, n)}j>1 a sequence of independent random variables which equal in law

the Cramér transform Z,(—h/cy), that is

e—kh/cn
P(Xi(h =k) = —— P(Z, = k), k>1. 101
( 1( 7”) ) fn(e_h/cn) ( ) = ( )
Put
£
Se(h,n) = > Xj(h,m),  £>1. (102)
7j=1
Note that
EeitS;(h,n) — (fn(e_h/C"-I—it)/fn(6_h/cn))l, (103)

Recall notation a € (0, co] from (8).

Lemma 9 (A concentration function estimate). For every h > 0, there is a
constant A(h) such that

A(h)
up cn P(Si(h,n)=k) < ,
ns,kglc (Selh,n) = k) < £1/2

0>l =1+ [1/al. (104)
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Proof. Tt is known (see, for example, [16, Lemma IIL.3, p.38]) that for arbitrary
(real-valued) random variables X and every A, T > 0,

96 2 T
X:)) ;= supP X A ) max(\, T d
Qi) = swpP< X <y+d) < () mas(h 1) [ (o] de 105)

(with ¢x the characteristic function of X). Applying this inequality to X =
Sto(h,n) and with T'= 7d=! and XA = 1/2, using (103) we have

rd~t —h/eatity|fo
sup P (S, (h,n) = k) < C/ |fn(j )|

E>1 —wd—1 fnD (e—h/cn)
for some constant C independent of h,n. By (93), for h fixed, fn(e %) is
bounded away from zero, and consequently, there is a positive constant C(k) such
that

di (106)

wd !
ngP(Szo(h, n)=k) < C(h)/ | fa(e™ e+ L, (107)
>1 —md—1

Fist assume that & < oo (Schréder case). Using the first inequality in (95), we get
for 1 <j<mn,

/ |[fale et di < ate pPmI TV | < omd = atep{m I (108)
J;

On the other hand,

wd~ cn "y
/ |fale P40 dt < 27d™/cn. (109)
—wd=1/cy
From (108) and (109), for some constant C,
wd =t ki .
Cn/ |fn(e—h/cn+zt)|lu di < C(1+2p(1n—1+1)lucn cj—_ll)‘ (110)
—md=1t 7j=1
But by (4a), '
en < m I e g 1<j<n. (111)

Also, by the definition of 4 in (104) and « in (8), pllf’m = piﬂl/a]_l/a < 1. Hence
the right hand side of (110) is bounded in n. Thus, from (107) it follows that
sup ¢ P (S, (h,n) = k) < C(h). (112)
n,k>1
This estimate actually holds also in the Bottcher case, where 49 = 1. Indeed,
proceeding in the same way but using the second inequality in (95) instead, the
sum expression in (110) has to be replaced by

n n n

Zg(u“‘j+1)cn it < Zg(u“‘”l) mn—itl — Zg(uj) m, (113)
7j=1 7j=1 i=1

which again is bounded in n.

Note that (112) is (104) restricted to £ = £5. Hence, from now on we may restrict
our attention to £ > fy. Let Y1,...,Y; be independent identically distributed
random variables. Then by Kesten’s inequality (see, e.g., [16, p.57], there is a
constant C such that for 0 < A < 2\ the concentration function inequality

A QNI - QT (11

Q(Yl + "'+Yj;/\) < /\/jl/z
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holds. We specialize to Y1 = Sy, (h,n) and X = XA = 1/2. Note that Q(¥1;1/2) =
supys1 P(Se,(h,n) = k) < 1 in this case, since the random variable Xi(h,n) is
non-degenerate. But also as n 1 oo this quantity is bounded away from 1, which
follows from (112). Consequently, infp>1[1 — Q(Y1;1/2)] > 0. Thus, using again
(112), we infer
Cy(h) Ca(h) )
P(S;e,(h =k) < = >1 115
:}:gl ( Jlu( 7n) ) = jl/z (j(o)l/z’ Jz1 ( )
for some positive constants C1(h) and Cz(k). If X and Y are independent random
variables, then, Q(X + Y;A) < Q(X;A) (s. [16, Lemma II1.1]). Thus for every
£ > fy we have the inequality

sup cn P(Sl(h, n) = k) < sup ¢, P(S[l/lu]lu(h7 n) = k) (116)
n,k>1 n,k>1
Combining this bound once more with (115), the proof is finished. |

Remark 10 (Special case h = 0). Note that S;(0,n) equals in law to Z,
conditioned to Zg = £. Therefore, by Lemma 9,

A(0)
upP(Z, =k|Zo=14) < ,
2>II ( | Zo )_ 2y,

n>1, £>4. (117)

In particular, if & > 1, implying %o = 1, in (117) all initial states Zo are possible.
Especially, if Zo = 1, then inequality (117) generalizes the upper estimate in [15,
(10)] to processes without Z;logZ;1-moment condition. O

Lemma 9 can also be used to get very useful bounds for P(Z, = k| Zy =)
which are not uniform in k. This will be achieved in the next lemma by specializing
Lemma 9 to h = 1.

Lemma 11 (Non-uniform bounds). There exist two positive constants A and §
such that

enP(Zy=k|Zo=14) < AeFleng=1/2¢5¢ nk>1, £>4, (118)
[with £y defined in (104)].
Proof. By the branching property and the definition (102) of Sy(h, n),
P(Zn=k|Zo=18) = **on[f (e P(Sy(h,n) = k). (119)
Putting here A = 1 and multiplying both sides by ¢,, we have
enP(Zn=k|Zo=10) < ke [fn(e—l/%)]‘ﬂ%cn P(Sy(1,n) = k).  (120)
Using Lemma 9 gives
enP(Zn =k|Zo=08) < AQ) L2 eHon[f (e em)] (121)

From (94) the existence of a § > 0 follows such that f,(e=/¢») < =% foralln > 1.
Entering this into (121) finishes the proof. O



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 17

2.3. On the limiting density function w. Recall from Section 1.1 that w de-
notes the density function of W, and ¢ = ¥y its characteristic function.

Lemma 12 (Bounds for the limiting density). There is a constant A > 0
such that

z -1
w(z) < A(/ w(t)dt) . 2>0, £>/4. (122)
0

Proof. Suppose a < 0o, the case @ = oo can be treated similarly. By the inversion
formula,
1 [ee]

w*o(z) = e~ pto(t)dt, x>0, (123)

27 J_
Hence,
*4 1 00 Lo
A = supw™(z) < — |¢(t)| di. (124)
z>0 271' — o0
We want to convince ourselves that A < oco. For j > 0,
it

/j () dt = m? /1m|¢(tmi)|‘° dt = m /1m|fj(¢(t))|‘° di,  (125)

where we used (47). Since W > 0 has an absolute continuous law, |¢(t)| <C«<1
for ¢t € [1,m]. Moreover, by (99), |f](z)| < Cp) for z in a compact subset of D°.
Therefore,

mItt

[ pwlea < omiit = cmt-e (126)
by definition (8) of a. Consequently,
/ o) dt < €Y miG-) < oo, (127)
1 7=0

since 1 — afy < 0. Analogously,

-1
/ w1 dt < oo. (128)
Hence, A in (124) is finite. But w*¢+1)(z) = fom w*(z — y) w(y)dy, =z > 0, and
the claim follows by induction. |

2.4. A local central limit theorem. Recall notation (102) of S¢(h,n), h > 0,

£,n > 1. By an abuse of notation, denote by v, = ¢f’n the characteristic function
of the random variable

Y2571 (h, n) (S¢(h,n) — ESy(h, n)), (129)

where o(h,n) := \/E (Xl(h, n) — EX;(h, n))2 Note that by (103),

(130)

—hfen+ite =201 () \ ¢
n —itt= 26" (hn 1(hyn) Jnl€
¢f’ (t) = (e te (h,m)EX1(h, )f ( ))

fn (e—h/cn)

Lemma 13 (An Esseen type Inequality). If 0 < h; < hy < oo, then there
exist positive constants C = C(hy, hy) and € = e(hy, hp) < 1 such that

sup el —e R < CeVR PR i < e > 1. (131)
he[h1,hz], n>1
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Proof. Put X;(h,n) := X;(h,n) — EX;(h,n). Using the global limit theorem from

(3) one easily verifies that for some positive constants Cy, ..., Cs,
h
C; < M < Cy uniformly in h € [h1,h2] and n > 1 (132)
Cn
and

. E|X1(h,n)[*

3 < C4 uniformly in h € [h1, ho] and n > 1. (133)

Consequently, the Lyapunov ratio E|X1(h, n)|3/0'3(h, n) is bounded away from
zero and infinity. Applying now Lemma V.1 from [16] to the random variables
Xi1(h,n), ..., X¢(h,n) we get the desired result. O

The next lemma is a key step in our development concerning the Bottcher case.
Recall notations Sg := S;(h,n) and o :=oc(h,n) defined in (102) and after (129),
respectively.

Lemma 14 (Local central limit theorem). Suppose the offspring law is of type
(dyp). If 0< hy < hy < oo, then

1/2 d —z2 ,(hn)/2
sup sup 4 o(h,n) P(Sl(h, n) = k) — —— e Trel™ — 0,

he[h1,hz] k:k=Lum™(mod d) V2 Lfo0
n>1

where i g := g e(h,n) = =12 5=1(h,n) (k —LEX;(h, n))

Note that a local limit theorem, which would correspond to our case A = 0 but
concerning an offspring law with finite variance and with initial state tending to
oo, was derived by Hopfner [12, Theorem 1]. The following proof of our lemma is
a bit simpler, since for A > 0 the random variables X (h, n) have finite moments of
all orders (also if the underlying Z does not have finite variance).

Proof of Lemma 14. By (103) and the inversion formula,

1 T fn(e—h/cn+it) l
P(S;=Fk) = — itk {7} dt. 134
( I4 ) By _ﬂe Fn(e=Plen) (134)
Decomposing the unit circle,
. d_l . .
{e”: —7T<t§7r} = U {97 et —7Td_1<t§7rd_1}, (135)
7=0
where g:=e?™/¢  the latter integral equals
d—1 pd—! i —h/cntity-g
_jk_—itk [ [n(de )
o~ 7*e [_—} dt. 136
;/d Fule 7] 139

It is known (see, for instance, [1, p.105]) that for an offspring law of type (d, 1) we
have

fa(@2) = ¥ fa(2),  mi>1, zeD. (137)
Therefore the latter sum equals
nd~? —hfcatity g 971
—ak[fnle ) —j(k—Lp™)
/_M_l ¢ [ Ay } dt S e . (138)

7=0
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But ¢~7(=4+") = 1 for k = £u" (mod d). Altogether, for (134) we get

-1 .
Y P P Gl
e EAC R
fn(e_h/C")
Using the substitution ¢ — ¢/£Y/2¢ and (130), we arrive at

P(SL = k) = dt, k=4p™ (modd). (139)

271' —xd—1

d nd~1e 2o .
P(S;=k) = —— TR L), (1) dt k= tu" dd). (140
(50=0) = gogirag | i) ™ (mod d).(140)
Fix 0 < hy < hy < 00. Recall from (132) that
h h
C; < inf M < sup o(h,n) < Cy (141)
helh1,ha],n21l  Cp helh1,hz],n>1  Cn

for some 0 < C7 < Cy (depending on hy, hz). Choose a positive
g = E(hl,hz) < Clﬂ'd_l (142)

as in Lemma 13. Take any A = A(h1, h2) > £ (to be specified later). Then the
identity ffooo e~ite=t*/24y — /27 ¢=®°/2 and representation (140) imply that

d
V2T

sup M2 eP(S, = k) - el < d(I + L+ s+ Iy), (143)

k:k=Lp™ (modd)

where
Ell/Z

I ::/ |¢l(t)—e_t2/2|dt, I ::/ e /2 4y, (144)
—e£1/2 [t|>eLr/2

I ::/ |¢e(t)| dt, 1 ::/ |1e(2)] dt.
ef1/2 < |t| < ALL/2 AL/2|t|<nd— 1L/ 20

[Of course, I disappears if A(h1,hs) > nd=to(h,n).]
Trivially, I — 0 as £ 1 co. Further, due to Lemma 13, there is a C = C(hy, ha)

such that
g4/?

L < ce—l/z/ Bt Bdt < e Y2 — 0. (145)
0 £1o0
Thus, it remains to show that the integrals I3 and I4 converge to zero as £ 1 oo,
uniformly in the considered h and n.

First of all, using again (130) and substituting ¢ — /20 /c,, by (141) we
obtain the following estimates

—h/Cn+it/cn ]
fas 02(1/2/ ‘fﬂ(e—h) dt, (146a)
e/Cs <|t|<A/C, fnle™ /Cn)
_h/Cn+it/cn) ¢

Iale
‘—fn(e_h/%) di

I, < Cyet? / (146b)

A[Ca<[t|<md " en
First we fix our attention to Is. By (86),
fn(e_h/c’”“t/c’”) — Ee "W a9 n 1 oo, (147)
uniformly in h € [0, h2] and ¢ € [0, A/Cq] [recall (142)]. Also, by (93),
fale ™) 5 Ee ™™  as n 1 oo, uniformly in h € [0, hy). (148)
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It follows that
fn(e—h/cn+it/cn) Ee—hW+itW

s = ReitW(-R) 149
(e ) nte BehW . (149)

uniformly in h € [0, hy] and ¢t € [0, A/Cq] (with W(—h) the Cramér transform of
W). Since the W(—h) have absolutely continuous laws, we have |Ee*W(-")| <1
for all A > 0 and |t| > 0. This inequality and continuity of (h,t) > Ee#W (=)
imply that

|Ee—hW+itW | (150)

sup i S 150
0<h<hs, e/Ca<lti<ajc;  Be MW
Using (149) and (150) we infer the existence of a positive constant n = n(hq, hg) < 1
and an ny = ny(h1, hg) > 1 such that for n > nq,
fn(e—h/cn+it/cn)

“ub e | S0 151
0<h<ha, e/C2<|t|<A/Cy fn(e—h/cn) ( )

Applying (151) to the bound of Iz in (146a), we conclude that
Is < CAY*t 5 0 as £71 oo, (152)

uniformly in h € [h1, k2] and n > ny. (The remaining n will be considered below.)

Next, we prepare for the estimation of I. Since f,(e"?/¢n) > f,(e~2/%) for
0 < h< hy, and fr(e~??/e") = Ee=" > 0 as n 1 oo [recall (148)], there is a
positive constant C' = C(hz) such that

fn (e—h/cn+it)
fn (e—h/cn)

forallt e R, 0 < h <hg, and n > 1.

At this point we have to distinguish between Schréder and Bottcher cases. Ac-
tually, we proceed with the Bottcher case @@ = oo, which is the only case we need
later, and leave the other case for the reader. Applying the second case of (95) to
(153), we obtain the estimate

< C|fale ™oty (153)

—hfcntit
‘M < Cexp[ pt It og 6™ ] (154)

(e=7en)

0<h<hy, teJ;, and 1 < j < n. Since y > 2, there exists an ny = na(h2)
such that
‘fn(e—h/cn+it)

n—j -1
(=) < exp[—,u 7log 6 ], (155)

if 0<h<hy, teJd;, and 1 <j<n—ny. But |Jj SZc]-__llﬂ'd_l, hence

f —h/cn+zt
/ ‘ fn € h/C"

Summing over the considered j gives

dt < 2¢; L omd~ exp[—(,u”_jlogﬂ_l]. (156)

fr(e P/ entity NS n—j ~1
/C,_Linfd‘lfltlfﬂd‘l Fn(ePlen) -1 di < 27d Jz:; cj_lexp[—é,u logd~ '],



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 21

0 < h < hy and n > ny. Substituting ¢ — ¢/¢, and using (111), we arrive at

/ fn(e—h/cn+it/cn)
rd—tmn2<|t|<md~=lecy, fn(e_h/C")
n—nsy

< 27d? Z mnIt1 exp[—(,u”_j log@‘l]
7j=1

£
dt (157)

1

< 27Td_12mj+1exp[—fuj log@‘l] < Ce ¢

with constants C,C’, uniformly in h € [hy, ha] and n > ny. Choosing now A so
large that md='m™2 < A/C3, we conclude from (146b) that

Iy < CeY? e %t 50 as £ 1 oo, (158)
uniformly in h € [h1, h2] and n > ngy.
Finally, we consider all n < n* := nj V ny. By definition, as in (90),
fn(e—h/cn+it/cn)
fn (e_h/cn)

Hence, since the set {e~%/¢ : ¢ € [¢/Ca, m7d " c,]} does not contain the df* roots
of unity,

= Y P(Xi(h,n) = p" + jd) (/)" +id), (159)
7=0

—hfen+tit/cn
sup ‘fn( ) = Ou(h) < 1. (160)
]

€
tele/Ca,md~ ey fn(e_h/Cn)

From the continuity (h,t) = fn(e~P/entit/en) it follows that the function 6, is
continuous, too. Therefore,

sup  Op(h) = 0, < 1. (161)
he[hy,h2]
Combining (160) and (161),

fn (e—h/cn+it/cn)

S T O R e
t€[e/C2,md ™ e
for some @ < 1. Substituting this into (146) gives
Is+ 1, < CEY%08 5 0 as £1 oo, (163)
and the proof is finished. |

3. PROOF OF THE MAIN RESULTS

3.1. Schroder case (proof of Theorem 4). Let f, k,, and a,, be as in Theorem 4.
Fix ng such that ¢, > k, > 1 and n > a, > 1 for all n > ng, and consider only
such n. Recall that po = 0 by our convention. By the Markov property,

P(Zn=kn) = 3 P(Zna, =) P(Za, = kn| Zo =1). (164)

=1

and -
P(Zp <kn) = > P(Zna, =) P(Za, < kn|Zo=1). (165)

=1
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Step 1° (Proof of (59)). Using Lemma 11 we get for N > £g the estimate

o ekn/can _
Can O P(Zn—g, =O)P(Zs, =kn|Zo=1) < C iz Freale 5y (166)
{=N
for some constant § > 0. By (4a), and since ¢4, —1 < kn < ¢4, by the definition of
a'n k)
fan—1 < k_”

m~! < < < 1. (167)
Ca,, Ca,,
On the other hand, by (99),
Fr—a,(e7%) < Cpyo. (168)
Thus, from (166),
N c
Py "Can O P(Zn—a, =O)P(Zy, = kn|Zo=1) < N7 (169)
L=N
By [10, Lemma 9],
1 7d ey, . .
o [ e e = ) (170)
uniformly in z € [m~1,1]. This together with
o, P(Zo, = kn|Z0=1) (171)
d [ e L ity —ithn/c
= o, () et Can dt £ =k, (mod d),

2w —md—lc,

(see [1, p.105]) and (167) gives

lim (canP(Zan = ke | Zo = £) — dw*‘(kn/can)) — 0, £=ky (modd). (172)
Since k, = 1 (mod d), the previous statement holds for all £ = 1 (mod d). For
other £, the probabilities P(Z,_,, = £) disappear. Thus, by (172),

Nz_:l P(Zp—q, =) P(Zs, = kn|Zo=1) (173)
=1
- dc;j[ = P(Z . =) w*‘(kn/can)] (1+ on(1))

=1

with onx(1) = 0 as n 1 oo, for each fixed N. Further, using Lemma 12, one can
easily verify that there exist two constants C and n € (0, 1) such that w*¢(ky/c,,) <
Cnt for all £>1 and n. Thus,

S P(Zn_a, =) w(knfca,) < CY P(Zna, =01 (174)
{=N {=N
But for every 01 € (n,1),

iij(Zn_%:e) < () el < (2 07)
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where in the last step we used (99). Inequalities (174) and (175) imply
Y P(Zp_a, =) w(knfca,) < Cpyme N (176)

for all n, N and some constant § > 0. Combining (164), (173), (169) and (176),
we have

P(Zn = kn) = de;} [ P(Zna, = w(ka/ea,)| (L +on(1)  (177)
=1

+ O(C;nl pq.—anN—l/2) ,
where the O-term applies to both n, N 1 co. By (47),

m™9 w(z/m?) ZP w(z), j>1, z>0. (178)

Putting here j =n —a,, # = kn/cq,, , and substituting into (177), we arrive at
P(Z,=ky) = dc;n1 m®* " w(k,m® " /cgy,) (1 +on(1 )) + O( ~1 pr "N~ 1/2)
By (29), (167), and the definition (8) of «,

deg ! m* " wkam®™ " /e,,) > Ceglm®®»™™) = Celpi™, for all n.
(179)
Therefore,

P(Zp =ky) = deg' m®» " w(knm®"/cq,) (1 +on (1) + O(N‘l/"’)), (180)

where the O-term now applies to N 1 oo, uniformly in n. Letting first n 1t oo and
then N 1 oo, we see that (59) is true.

Step 2° (Proof of (60)). Trivially, for independent and identically distributed non-
negative random variables Xi,..., X, we have

PXi+...4 X, <2) < PmaxX; <z) = P*"(X; < z), z>0. (181)
J

Hence,
P(Zs, < kn|Zo=10) < PYZ,, <ky). (182)
Further, from (167) and (3),
1
P(Z,, <kp) < P(c;:Zan <1 T) / w(z) de. (183)
nToo 0

Therefore, since w > 0 on all of (0, o), there exists an n € (0, 1) such that P(Z,, <
k) <n for all n large enough. Thus,

> P(Zpo, =OP(Za, <hnlZo=1) < > P(Zp_a,=4)n" (184)
for all N sufficiently large. Taking into account (175), we conclude that

> P(Zno,=O)P(Za, <hn|Zo=1t) < Cpyome N (185)
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for N sufficiently large and some & > 0. By the same arguments,
> P(Znoa, =) FH{knfea,) < Cpo e, (186)
where F(z) :=P(W < ), > 0.

On the other hand, the continuity of F and (3) yield that P(Z,, < ¢q, 2| Zo =
£) — F**(z) uniformly in z > 0. Therefore,

lim sup ‘P(Zan <k|Zo=6) — F*(k/ca,)| = 0. (187)
nteo g>1
Combining (165), (185), (186), and (187), we arrive at
P(Z, <ky) (188)

{ZP nean = &) F*(kn /can)} (1+ox(1)) + O~ e

with the same meaning of oy and the O-term as in the previous step of proof.
Since P(Zp_q, = 1) = p7 % and F(kn/cq,) > F(m™!) > 0 by (167), we obtain

pr e < “WZP n—an = £) F*(kn/ca,). (189)
Combining this inequality with (188) gives
P(Z, [ZP e, = ) (ke /can)] (1+ox(1) + O(e=*M)). (190)

Integrating both parts of (178), one has

F(y/m*) ZP =0 F*y), k>1, y>o. (191)
Thus,
P(Z, < kn) = F( Fn ) (14 on(1) + O(e™*N)). (192)
- Cq, MNT9n
Letting again first n 1 oo and then N 1 oo finishes the proof. |

Remark 15 (Proof in the case po > 0). We indicate now how to proceed with
the proof of Theorem 4 in the remaining case po > 0. Here in the representation
(164) one has additionally to take into account that

P(Z,, =kn|Zo=14) (193)

Z() ) (1~ fa, (0 P{ZZ(Z)_k ‘Z(Z)>0 1<l<]}

where the Z(1), Z(2) .. are independent copies of Z. Then instead of Lemma 11
we need

j
cnP{ZZgi):kn‘ng} >0, 1§i§j} Ry TN

=1
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But this is valid by
S(z) —S(0)

(1) fn(2) = fn(0)
P{:%" |70 >0} = , 194
20 >0 L= fn(0) mteo  1-—¢ 154)
uniformly in z from compact subsets of D°. This indeed follows from (9). <o
3.2. Béttcher case (proof of Theorem 5). From the Markov property,
P(Zn=kn) = >, P(Zns,=0P(%, =k|Zo=1). (195)
L=pm—bn
Using (119) and Lemma 9, we obtain the following estimate
o, P(Zo, = kn | Zo = £) < A(h) 472 [ePhnltoon [, (o= P/oom)]", (196)
From the definition of b, it immediately follows that
U < o I = cp_u et (L) < 2, 2. (197)
HCp,—1 M
Hence,
P B (198)
(cbn 2

for £ > p"~ . Therefore,
€60, P(Zo, = kn| Zo =€) < A(R)L2[M2fy (e7Mem)]E (199)

It is known (see, for example, [1], Corollary IT1.5.7), that EW = 1if EZ;log 71 < o0
and EW = oo otherwise. It means, that for the Laplace function ¢ = ow of W
we have eh/zgo(h) < 1 for all small enough h. Thus, due to the global limit theorem
(3), there exist § < 1 and ho > 0 such that e?/2f, (e~?e/¢») < e=¢ for all large
enough n. Hence,

o, P(Zy, =kn|Zo=14) < A2, (200)
Inserting (200) into (195), we obtain
o P(Zn = kn) < Ap~ 07021 (e79), (201)

consequently,

c_n) n log fn(e_‘s) ‘

b log[cn P(Z, = kn)] < pbhO 4 pbem log(
ch

== (202)

Since ¢ /ey, < M0 and pn~tn = mP(=bn) ybn=nlog(c, fep, ) — 0 as n 1 oo.
Thus,
10g fn—b,(e%)

n—by

lim sup p®»—" log[cn P(Z, = kn)] < limsup (203)

ntoo ntoo 4
Using (21), we arrive at the desired upper bound.
We show now that (77b) holds for log P(Z, < k,). First of all we note that for

arbitrary non-negative random variable X and all z, h > 0
P(X <z) < " Ee "X, (204)

Applying this bound to the process Z starting from £ individuals and taking into
account (198), we have

L L

< [eH2f ()"

P(Zs, <kn|Zo=1£) < [eMenltornfy (e P/ )] (205)
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As we argued in the derivation of (200), this gives

P(Zy, < kn|Zo=1£) < e7%. (206)
Consequently, by the Markov property,

P(Zn < kn) < fra_s,(e79). (207)

Taking logarithm and using (21), we obtain (77b).
Let us verify the lower bounds in Theorem 5. By (195),

P(Zn= k) > P(Znoon = W) P(Zo, = hn| Zo= y"*).  (208)
From (119),
ne —h/ey \1n
P(Zs, = kn | Zo = p"7%") > [fo. (e M) P(Sp, (b, bn) = kn),  (209)
where £, = u™ b=,

Consider the equation

fé (e_h/cbn ) e—hlcon

—1 o
Cy, EXi(h,b,) = oo Fo (o) = . (210)
Evidently,
/ —h/co,\ ,—h/Cbn
fo (e ) em = mbn (211)
fo, (e=P/ o) h=0
and
fi (7o) e P/ o (212)
fo, (e con) hmoo P

From these identities and monotonicity of fén(e_h/c”n ye P en [ fy (e~ %) it fol-
lows that (210) has a unique solution A, () for ,ub"cb_nl <zr< mb"cb_nl. Analogously
one shows that the equation ¢'(h)/p(h) = —z has also a unique solution h(z). By
the integral limit theorem (3), the right-hand side in (210) converges to —¢'(h)/@(h)
and consequently, h, (z) = h(z) as n 1 oco. Further, by (197),

I kn 1
— < z, = < —. 213
2m v o bn — 2 (213)
Thus,
h(p/2m) < lin% infh, < lin% infh, < h(1/2), (214)

where hy, := hp (). It means that there exist k. and h* such that h, < h, < h*
1.

for all n > From the definition of h, and (210) immediately follows that
ES;, (hn,by) = k. Thus, applying Lemma 14, we get
d
lim |62 6 (hp, bp) P(Se. (hn, bn) = kn) — ——| = 0. 215
ntoo | ™ ( ) ( ln( ) ) m ( )
Recall that by (132) we have o(hn,bn) > Ccp, . Hence,
1in%infe}1/2cbnP(sln(hn,bn) =k,) >C > 0. (216)

Moreover, since f, (e"P»/%n) > f, (e7?"/%=) and fj(e_h*/cj) — Ee "W >0,
there exists a 8 > 0 such that

fo, (e M) > 0 (217)
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for all n. Applying these bounds to the right-hand side in (209), we find that
lin% inf u®»~"log [cn P(Zy, = kn|Zo = ,u”_b“)] > —C. (218)

Using this inequality and (21) to bound the right-hand side in (208), we conclude
that

lim inf pb»—" log[cn P(Z, = kn)] > —C, (219)

ntoo

i.e. (7T7a) is proved.
Next we want to extend this result to P(Z, < k). Obviously,

P(Zn <kpn) > P(Zpnov, =) P(Zp, <knl|Zo=1). (220)
Then, using (119) with A = h,, , we have
P(Z < kn) > P(Zn_s, = L) [fale /)] P(Sy, (hyba) < k). (221)

By the central limit theorem,

1
liTm P(Se, (h,bn) < k) = 3 (222)

From this statement and (217) it follows that

n

lin% infu®= =" log P(Zp, < kn) > lin% inf p®» =" log P(Zn_p, = p™~0) +logh. (223)

Recalling (17), the proof of Theorem 5 is complete.

Remark 16 (To the proof of Remark 6). To prove (78) one can use the methods
from the proof of Theorem 5. But some changes are needed, since in Remark 6 we
deal with absolutely continuous distributions.
Instead of (195) we shall use (178). Putting there & = ym* and k = k, =
max{j > 1: m? < u?/2y} we obtain
w(y) = m* Y P(Z, = £) w(ym*). (224)

L:p,ky

For every h > 0 we may define the density function
wr(z) = —= w(z), (225)

corresponding to the Cramér transform of W. By Lemma 12, Cy, := sup, s w(z) <
oo in the present Bottcher case. Hence, supgsqwn(z) < Cy/p(h). By induction
(analogously to Lemma 9),

C

*4 w
supw; () < , £>1. 226
mzpo h( ) o So(h’) - ( )

It is easy to see that

! et
wy(z) = ——— w*(z), £>1. 227
o) = S ute), 2 (227)

From this identity and (226) it follows that
w*(z) < Cy p*~1(h) =, (228)
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Therefore, for all £ > p*,

C ky R

*4 k w hym®Y [u®y
w*(ym”v) < e w(h)| . 229
i) < (h) (229)

Further, by the definition of &,
k
Iy m’y 1

— < — < =, (230)

2my ey 2y

and consequently,

w(ymhv) < [ 2 (h)]". (231)

~ o(h)
Before (200) we showed that e?°/2¢(ho) < e~%. As a result we have the bound

C
Y oot

wtmi) < G (232)
Entering this into (224) gives
wly) < Cmb fi, (). (233)
Taking logarithm and using (21), we see that
limsup p=*vlogw(y) < logB(e_‘s). (234)

y—0
Now we deal with a corresponding lower bound of logw(y). By (224) and (227),
w(y) > m*v P(Z, = k) Wk (ym*v)
> P(Zk, = ") " (W) w*™ (ymFv),  h >0, (235)

Recalling that A(z) is the unique solution of the equation ¢'(h)/p(h) = —z and us-
ing (230), one gets the inequality h(ym®s/u*v) < h(u/2m). Thus, by monotonicity
of ¢,

o (h(ym*s [u4)) > o™ (h(u/2m)) = exp[~Cp*s]. (236)

If in (225) we set h = h(ym*v/u*v), then w;;”ky (ym*v) is the value of the density
function of the sum Z;‘:Jl W;(—h) at the point EZ;:; W;(—h). Thus, by the
central limit theorem for densities ([16, Theorem VII.7]),

*pky 1
lim wh”’c (ym*v) = — (237)

y—0 V2T '

Putting h = h(ym*v/u*v) in (235) and using (17), (236), and (237), we obtain
ligl_)iglf p v logw(y) > —C. (238)
Combining (234) and (238) we get
logw(y) = —u*. (239)

Then the relation p*v < y=#/(1=F) finishes the proof. <o
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