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LOWER DEVIATIONS FOR SUPERCRITICAL GWP 1Abstract. There is a well-known sequence of constants cn describ-ing the growth of supercritical Galton-Watson processes Zn : With\lower derivation probabilities" we refer to P(Zn = kn) withkn = o(cn) as n increases. We give a detailed picture of theasymptotic behavior of such lower deviation probabilities. Thiscomplements and corrects results known from the literature con-cerning special cases. Knowledge on lower deviation probabilities isneeded to describe large deviations of the ratio Zn+1=Zn : The lat-ter are important in statistical inference to estimate the o�springmean. For our proofs, we adapt the well-known Cram�er methodfor proving large deviations of sums of independent variables toour needs. Contents1. Introduction and statement of results 21.1. On the growth of supercritical processes 21.2. Asymptotic local behavior of Z; purpose 21.3. A dichotomy for supercritical processes 31.4. Lower deviation probabilities in the literature 51.5. Contradictions 61.6. Lower deviations in the Schr�oder case 91.7. Lower deviations in the B�ottcher case 112. Cram�er transforms applied to Galton-Watson processes 122.1. Basic estimates 122.2. On concentration functions 142.3. On the limiting density function w 172.4. A local central limit theorem 173. Proof of the main results 213.1. Schr�oder case (proof of Theorem 4) 213.2. B�ottcher case (proof of Theorem 5) 25References 29



2 FLEISCHMANN AND WACHTEL1. Introduction and statement of results1.1. On the growth of supercritical processes. Let Z = (Zn)n�0 denote aGalton-Watson process with o�spring generating functionf(s) = Xj�0 pjsj ; 0 � s � 1; (1)which is required to be non-degenerate, that is, pj < 1; j � 0: Suppose that Zis supercritical, i.e. f 0(1) =: m 2 (1;1): For simplicity, the initial state Z0 �1 is always assumed to be deterministic, and, if not noted otherwise (as by anapplication of the Markov property), we set Z0 = 1:It is well-known (see, e.g., Asmussen and Hering (1983) [1, x 3.5]) thatthere are cn > 0 such that a.s. c�1n Zn �!n"1 some non-degenerate W: (2)In this sense, the sequence of constants cn describes the order of growth of Z: But,P(W = 0) = q; with q 2 [0; 1) the smallest root of f(s) = s; that is, the extinctionprobability of Z. On the other hand,W restricted to (0;1) has a (strictly) positivecontinuous density function denoted by w: Therefore the following global limittheorem holds: limn"1P(Zn � xcn) = Z 1x w(t) dt; x > 0: (3)The normalizing sequence (cn)n�0 can be chosen to have the following additionalproperties:c0 = 1 and cn < cn+1 � mcn ; n � 0; (4a)cn = mn L(mn) with L slowly varying at in�nity, (4b)limx"1L(x) exists; it is positive if and only if EZ1 logZ1 <1: (4c)Because of (4b,c), we may (and subsequently shall) takecn := mn if EZ1 logZ1 <1: (5)1.2. Asymptotic local behavior of Z; purpose. A local limit theorem relatedto (3) is due to Dubuc and Seneta (1976) [10], see also [1, x3.7]. To state it we needthe following de�nition.De�nition 1 (Type (d; �)). We say the o�spring generating function f is of type(d; �), if d � 1 is the greatest common divisor of the set fj � ` : j 6= `; pjp` > 0g;and � � 0 is the minimal j for which pj > 0. 3Here is the announced local limit theorem. Suppose f is of type (d; �). Takex > 0; and consider integers kn � 1 such that kn=cn ! x as n " 1: Then, foreach j � 1;limn"1�cnP�Zn = kn ��Z0 = j	 � d 1fkn�j�n(modd)g wj(x)� = 0; (6)where wj := jP̀=1 � j̀ � qj�`w�`:In particular, in our standard case Z0 = 1 and if additionally kn � �n (modd);then P(Zn = kn) � d c�1n w(kn=cn) as n " 1 (7)



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 3(with the usual meaning of the symbol � as the ratio converges to 1):Statement (6) [and especially (7)] can be considered as describing the local be-havior of supercritical Galton-Watson processes in the region of normal deviations(from the growth of the cn ; `deviations' are meant here in a multiplicative sense,related to the multiplicative nature of branching). But what about P(Zn = kn)when kn=cn ! 0 or 1 ? In these cases we speak of lower and upper (local) devia-tion probabilities, respectively.Lower deviations of Zn are closely related to large deviations of Zn+1=Zn (seeNey and Vidyashankar (2004) [15, Section 2.3]). The latter are important in sta-tistical inference for supercritical Galton-Watson processes, since Zn+1=Zn is thewell-known Lotka-Nagaev estimator of the o�spring mean.The main purpose of the present paper is to study lower deviation probabilitiesin their own and to provide a detailed picture (see Theorems 4 and 5 below). As astarting point we discuss a relevant claim in [15] concerning an important specialcase (see Sections 1.4 and 1.5 below). Applications of our results for large deviationsof Zn+1=Zn and also to subcritical Galton-Watson processes are postponed to afuture paper.Here is the program for the remaining introduction. After introducing a basicdichotomy, we review in Sections 1.4 and 1.5 what is known on lower deviationsfrom the literature, before we state our results in Sections 1.6 and 1.7.1.3. A dichotomy for supercritical processes. Recalling that f denotes theo�spring generating function, q the extinction probability, and m the mean,set  := f 0(q); and de�ne � by  = m��: (8)Note that  2 [0; 1) and � 2 (0;1]: We introduce the following notion, reectinga crucial dichotomy for supercritical Galton-Watson processes.De�nition 2 (Schr�oder and B�ottcher case). For our supercritical o�springlaw we distinguish between the Schr�oder and the B�ottcher case, in dependence onwhether p0 + p1 > 0 or = 0: 3Obviously, f is of Schr�oder type if and only if  > 0; if and only if � <1:Next we want to collect a few basic facts from the literature concerning thatdichotomy. Clearly, f can be considered as a function on D; where D denotes theclosed unit disc in the complex plane. As usual, denote by fn the nth iterate of f:We start with the Schr�oder case. Here it is well-known (see, e.g., [1, Lemma 3.7.2and Corollary 3.7.3]) thatSn(z) := fn(z) � qn �!n"1 some S(z) =: 1Xj=0 �jzj ; z 2 D: (9)Moreover, the convergence is uniform on each compact subsets of the interior DÆ ofD: Furthermore, the function S restricted to the reals is the unique solution of theso-called Schr�oder functional equation (see, e.g., Kuczma (1968) [13, Theorem 6.1,p.137]), S�f(s)� =  S(s); 0 � s � 1; (10)satisfying S(q) = 0 and lims!q S0(s) = 1: (11)



4 FLEISCHMANN AND WACHTELAs a consequence of (9),limn"1�n P(Zn = k) = �k ; k � 1: (12)Consequently, in the Schr�oder case, these extreme (k is �xed) lower deviation prob-abilities P(Zn = k) are positive and decay to 0 with order n: On the other hand,the characteristics � 2 (0;1) describes the behavior of the limiting quantitiesw(x) and P(W � x) as x # 0. In fact, according to Biggins and Bingham (1993)[5], there is a continuous, positive multiplicatively periodic function V such thatx1��w(x) = V (x) + o(1) as x # 0: (13)Dubuc (1971) [7] has shown that the function V can be replaced by a constantV0 > 0 if and only if S�'(h)� = K0 h��; h � 0; (14)for some constant K0 > 0; where ' = 'W denotes the Laplace function of W;'W (h) := Ee�hW ; h � 0: (15)We mention that condition (14) is certainly ful�lled if Z is embeddable (see [1,p.96]) into a continuous-time Galton-Watson process (as in the case of a geometrico�spring law, see Example 3 below).Now we turn to the B�ottcher case. Here � � 2 (recall De�nition 1). Clearly,opposed to (12), extreme lower deviation probabilities disappear, even P(Zn <�n) = 0 for all n � 1. Evidently,P(Zn = �n) = P(Zn�1 = �n�1) p(�n�1)� : (16)Hence, P(Zn = �n) = n�1Yj=0 p(�j )� = exph�n � 1�� 1 logp�i: (17)Next, P(Zn = �n + 1) = P(Zn�1 = �n�1)�n�1 p�+1 p�n�1�1� . Thus, from (16),P(Zn = �n + 1) = p�1� p�+1 �n�1P(Zn = �n): (18)For simpli�cation, consider for the moment the special case p�+j > 0; j � 0: Then,as in the previous representation, for �xed k � 0 and some positive constants Ck ;P(Zn = �n + k) � Ck �nkP(Zn = �n) as n " 1: (19)Consequently, in contrast to (12) in the Schr�oder case, here the lower positivedeviation probabilities P(Zn = �n+ k) do not have a uniform order of decay. Butby (19), ��n logP(Zn = �n + k) �!n"1 log p�; k � 0: (20)That is, on a logarithmic scale, we gain again a uniform order, namely ��n:Turning back to the general B�ottcher case,limn"1 �fn(s)�(��n) =: B(s); 0 � s � 1; (21)exists, is continuous, positive, and satis�es the B�ottcher functional equationB�f(s)� = B�(s) 0 � s � 1; (22)with boundary conditions B(0) = 0 and B(1) = 1 (23)



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 5(see, e.g., Kuczma (1968) [13, Theorem 6.9, p.145]).Recalling that � � 2; de�ne � 2 (0; 1) by� = m� : (24)According to [5, Theorem 3], there exists a positive and multiplicatively periodicfunction V � such that� logP(W � x) = x��=(1��) V �(x) + o(x��=(1��)) as x # 0: (25)If additionally log'W (h) � ��h� as h " 1 for some constant � > 0; then byBingham (1988) [6, formula (4)],� logP(W � x) � ��1(1� �)(��)1=(1��) x��=(1��) as x # 0: (26)1.4. Lower deviation probabilities in the literature. What else is known inthe literature on lower deviation probabilities of Z ? In the Schr�oder case ( 0 <� < 1); Athreya and Ney (1970) [2] proved that in case of mash d = 1 andEZ21 <1; for every " 2 (0; �); where� := m�=(3+�) > 1; (27)there exists a positive constant C" such that for all k � 1;���mnP(Zn = k) �w(k=mn)��� � C" ��nkm�n + (� � ")�n: (28)The estimate (28) allows to get some information on lower deviation probabilities.Indeed, in the general Schr�oder case, from (13),w(x) � x��1 as x # 0 (29)(meaning that there are positive constants C1 and C2 such that C1 x��1 � w(x) �C2 x��1; 0 < x � 1): Together with (28) this impliesP(Zn = kn) = m�nw(kn=mn)�1+O�m�nk�n�n + m(��1)nk��1n (� � ")n�� as n " 1: (30)We want to show that in important special cases the O{expression is actually ano(1): Recalling the de�nition (27) of �; one easily veri�es that m�n=k�n�n ! 0(as n " 1) if and only if kn=mn(2+�)=(3+�) ! 1: Concerning the second O-term, if additionally � � 1; then m(��1)n=k��1n � 1 provided that kn � mn:Hence, here m(��1)n=�k��1n (� � ")n� converges to zero if �� " > 1. On the otherhand, if � > 1 and kn=mn(2+�)=(3+�) !1 (which we needed for the �rst term),then m(��1)n=�k��1n (� � ")n� ! 0 provided that additionally " � m�=(3+�) �m(��1)=(3+�): Altogether, under the assumptions in [2],P(Zn = kn) = m�n w(kn=mn) �1 + o(1)� as n " 1 (31)provided that both kn � mn and kn=mn(2+�)=(3+�) !1.In [2] it is also mentioned that according to an unpublished manuscript of S. Kar-lin, in the Schr�oder case, for each embeddable processes Z of �nite second moment,limn"1 m�nk��1n P(Zn = kn) exists in (0;1); provided that kn = o(mn): (32)In the present situation, as we remarked after (13), w(x) � V0 x��1 as x # 0 withV0 > 0: Hence, from (32), for some constant C > 0;P(Zn = kn) � C m�n w(kn=mn) as n " 1; (33)



6 FLEISCHMANN AND WACHTELwhich is compatible with (31).Intuitively, the asymptotic behavior of lower deviation probabilities should bemore related to characteristics as � and � than to the tail of the o�spring distribu-tion. Thus one can expect that it is possible to describe lower deviation probabilitiessuccessfully without the second moment assumption used in [2]. Actually, in [15,Theorem 1] one �nds the following claim.Suppose p0 = 0 and EZ1 logZ1 < 1. Then there exist positive constantsC1 < C2 such that for kn !1 with kn = O(mn) as n " 1;C1 � lim infn"1 P(Zn = kn)An � lim supn"1 P(Zn = kn)An � C2; (34)where An := 8><>: pn1 k��1n if � < 1;�n pn1 if � = 1;m�n if 1 < � � 1; (35)and �n := �n+ 1� log kn= logm�: Furthermore, if kn = mn�`n for natural num-bers `n = O(n) as n " 1; thenlimn"1 A�1n P(Zn = kn) =: Clim exists in (0;1): (36)1.5. Contradictions. Let us test that claim by an example which allows explicitcalculations.Example 3 (Geometric o�spring law). Consider the o�spring generating func-tion f(s) = sm � (m � 1)s = 1Xj=1m�1 (1�m�1)j�1 sj ; 0 � s � 1; (37)(with mean m > 1). Obviously, here q = 0;  = m�1; hence � = 1: For the nthiterate one easily getsfn(s) = smn � (mn � 1)s = 1Xj=1m�n (1�m�n)j�1 sj : (38)Thus, P(Zn = k) = m�n (1�m�n)k�1 � m�n; (39)for all n; k � 1. On the other hand, since p1 = m�1; by claim (34) there is aconstant C > 0 such that for the considered kn ,P(Zn = kn) � C �nm�n (40)for n large enough. If, for example, kn = mn=2 then �n !1; and (40) contradicts(39). Consequently, the left-hand part of claim (34) cannot be true in the case� = 1: 3Next we compare the claim with our discussion in the previous section on lowerdeviation probabilities based on [2]. In fact, under the assumptions in [2], if ad-ditionally kn = o(mn) but kn=mn(2+�)=(3+�) ! 1 as n " 1; then by (31) and(29), P(Zn = kn) � m�n � knmn���1: (41)



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 7Thus, in the case 1 < � <1 we get P(Zn = kn) = o(m�n) which contradicts thepositivity of Clim in claim (36), hence of C1 in claim (34).Here is one more consideration. According to claim (34), under 1 < � �1;P(Zn = k) � C m�n (42)for all k 2 [m"n;m(1�")n]; " 2 (0; 1=2); and all n large enough. Here and later,C refers to a generic positive constant which might change its value from place toplace. Hence,EZ�1n � m(1�")nXk=m"n k�1P(Zn = k) (43)� C m�n m(1�")nXk=m"n k�1 = C (1 � 2")nm�n �1 + o(1)� as n " 1:But by Ney and Vidyashankar (2003) [14, Theorem 1], EZ�1n is asymptoticallyequivalent to m�n (in the case 1 < � � 1); getting one more contradiction.Looking into details of the proof of [15, Theorem 1], the following formulas areclaimed to be true:2�Clim = (44)8>>>>>>>>>>>>><>>>>>>>>>>>>>: Xj�1�j w�j(1); � < 1;Z ��=m hS� (u)� � S� (�u)�i du; � = 1;X̀�0m`Z ��=m hf`� (u)� + f`� (�u)�idu+ Z �=m��=m (u) du; 1 < � <1;Z �=m��=m (u) du; � =1;with S from (9) and where  =  W denotes the characteristic function of W; W (u) := EeiuW ; u 2 R: (45)Recall that Clim > 0 according to the claim. Now, if � < 1; the positiveness ofClim is obvious from this formula, since the density function w is positive. But thepoint is that the claim Clim > 0 is not true in all other cases.In fact, consider �rst the case 1 < � < 1. It is well-known that  solves theequation  (mu) = f� (u)�; u 2 R; (46)(e.g. [1, formula (6.1)]). Iterating, we obtain (m`u) = f`� (u)� ; u 2 R; ` � 1: (47)Thus,Z ��=m hf`� (u)� + f`� (�u)�idu = m�` Z �m`�m`�1 � (u) +  (�u)� du: (48)



8 FLEISCHMANN AND WACHTELTherefore, ���� X̀�0m` Z ��=m hf`� (u)� + f`� (�u)�i du����� Z 1�=m h �� (u)��+ �� (�u)��i du; (49)which is �nite, since in the Schr�oder case (see, for example, [3], p.83, Lemma 1),�� (u)�� � c juj��; u 2 R: (50)Hence,X̀�0m` Z ��=m hf`� (u)� + f`� (�u)�idu = �Z ��=m�1 + Z 1�=m� (u) du; (51)and, consequently, by (44), Clim = 12� Z 1�1  (u) du (52)in the present � 2 (1;1) case. Inverting (45) givesZ 1�1 e�iux (u) du = 2�w(x); x > 0: (53)But by (13) there is a (positive) constant C such that w(x) � C x��1; 0 < x � 1:Hence, w(0) = 0; and (52) implies Clim = 0.In the case � = 1; the proof of Lemma 5 in [15] is incorrect. In fact, thestatement (82) there is wrong. But we can start from (79) there (setting �(r; s) �1) to de�neI(2)r�j(r; s) := Z ��=m e�ium�r+j fj� s+r�j(u)� du; r; s � 1; 0 � j � r; (54)where in this section by an abuse of notation, `(u) := f`(eiu=m` ) = EeiuZ`=m` ; ` � 0; u 2 R: (55)By the global limit theorem (3), for u 2 R and j � 0 we get limr;s!1  s+r�j(u)=  (u) with  =  W from (45), yielding limr;s!1 fj� s+r�j(u)� = fj� (u)�:Thus, by dominated convergence, for j � 0;limr;s!1 I(2)r�j(r; s) = Z ��=m fj� (u)�du: (56)Using this and the bound (81) there, one can easily verify thatlimr;s!1 rXj=0 I(2)r�j(r; s) = 1Xj=0mj Z ��=m fj� (u)� du: (57)This gives for Clim in the case � =1 the same formula as written in (44) for thecase 1 < � <1: Now, instead of (50), in the B�ottcher case we have�� (u)�� � e�Cu� ; u 2 R; (58)for some constant C; see [8, Theorem 23]. Therefore we get again (49) and (52)also in the B�ottcher case. Finally, by our Remark 6 below, w(0) = 0 and again wearrive at Clim = 0:



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 9It remains to discuss the case � = 1. Here in the last formula at p.1156 of [15]there is a sign error: It must be read as R ��=m[S� (u)�+S� (�u)�] du; which equalsindeed the true value of Clim : Now, at least if Z is embeddable into a continuous-timeGalton-Watson process then analogously to (14) we get the identity S� (u)� =K0 (iu)�1 for some constant K0 > 0; implying S� (u)� + S� (�u)� � 0: ThenClim = 0 for this class of processes.Altogether, all these contradictions to the quoted claim from [15, `Theorem 1'](and its generalization [15, `Theorem 2']) had been rather unexpected for us. Ofcourse, they gave us some more motivation to ask for the right and general pictureon lower deviation probabilities. Actually, it is wrong to distinguish between veloc-ity cases as in (35). The only needed velocity case di�erentiation is the mentioneddichotomy of De�nition 2. This we will explain in the next two sections. In the endof Section 1.7 we then discuss the inuence of [15, `Theorem 1'] to other results in[15].1.6. Lower deviations in the Schr�oder case. We start by stating our resultson lower deviation probabilities in the Schr�oder case. Recall that here � = 0 or 1:Theorem 4 (Schr�oder case). Let the o�spring law be of the Schr�oder type andof type (d; �). Then for all kn � � (modd) with kn !1 but kn = o(cn);P(Zn = kn) = dmn�an can w� knmn�an can ��1 + o(1)� (59)and P(0 < Zn � kn) = P�0 < W < knmn�an can ��1 + o(1)� (60)as n " 1; where for n � 1 �xed we put an := minf` � 1 : c` � kng.The appearing of the an in the theorem, depending on the cn and kn looks a bitdisturbing, so we have to discuss it. First assume additionally that EZ1logZ1 <1:Since here we set cn = mn, from (59) we obtain the an-free formulaP(Zn = kn) = dm�nw(kn=mn) �1 + o(1)�: (61)Also, comparing this with (7), we see that under this Z1logZ1{moment conditionin the Schr�oder case, m�nw(kn=mn) describes not only normal deviation proba-bilities but also lower ones.On the other hand, without this additional moment condition, recalling property(4b), cn = mn L(mn) with L slowly varying at in�nity. Hence, we have1mn�an can = 1cn L(mn)L(man ) ; thus kncanmn�an = kncn L(mn)L(man ) : (62)Therefore, from (59),cnP(Zn = kn)dw(kn=cn) = L(mn)L(man ) w�knL(mn)=cnL(man )�w(kn=cn) �1 + o(1)�: (63)Using now (13), we �ndcnP(Zn = kn)dw(kn=cn) = � L(mn)L(man )�� V �knL(mn)=cnL(man )�V (kn=cn) �1 + o(1)�: (64)Next we want to expel the disturbing an from this formula.



10 FLEISCHMANN AND WACHTELIt is well-known (Seneta (1976) [17, p.23]) that the regularly varying functionx 7! xL(x) asymptotically equals a (strictly) increasing, continuous, regularly vary-ing function x 7! R(x) := xL1(x) with slowly varying L1 : Hence, L(x) � L1(x)as x " 1. Using now [17, Lemma 1.3], we conclude that the inverse function R� ofR equals x 7! xL�(x), where L� is again a slowly varying function.Put xn := R�(kn): Then kn = xnL1(xn) by the de�nition of R�: Recalling thatxn = knL�(kn), we get the identityL�(kn)L1(xn) = 1; n � 1: (65)For n �xed, de�ne bn := min�` � 1 : m`L1(m`) � kn	: Combined with xnL1(xn)= kn we get mbn L1(mbn ) � xnL1(xn) > mbn�1 L1(mbn�1): (66)But x 7! xL1(x) is increasing, and the previous chain of inequalities immediatelygives mbn � xn > mbn�1: (67)By (4b), cbn+1 = mbn+1 L(mbn+1) = m L(mbn+1)L1(mbn ) mbn L1(mbn ) � kn (68)for all n suÆciently large. Here, in the last step we used m > 1; that the slowlyvarying functions L and L1 are asymptotically equivalent, and the de�nition ofbn : Now cbn+1 � kn implies bn + 1 � an ; (69)by the de�nition of an : On the other hand,man+1 L1(man+1) = m L1(man+1)L(man ) can � kn (70)for all n suÆciently large. Here, in the last step we used the de�nition of an : Thisgives an + 1 � bn ; (71)by the de�nition of bn : Entering with (71) and (69) into (67), we getman+1 � xn > man�2 for all n suÆciently large. (72)Therefore, recalling (65),L(man ) � L(xn) � L1(xn) � 1L�(kn) as n " 1: (73)Entering this into (64) givescnP(Zn = kn)dw(kn=cn) = �L(mn)L�(kn)�� V �knL(mn)L�(kn)=cn�V (kn=cn) �1 + o(1)�; (74)which contains L� instead of the an :Note also that such reformulation of (59) reminds the classical Cram�er theo-rem (see, for example, Petrov (1975) [16, xVIII.2]) on large deviations for sumsof independent random variables. There the ratio of a tail probability of a sumof independent variables and the corresponding normal law expression is consid-ered. The crucial role in Cram�er's theorem is played by the so-called Cram�er series�(s) := P1k=0 �ksk; where the coeÆcients �k depend on the cumulants of thesummands. For the lower deviation probabilities of supercritical Galton-Watson



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 11processes we have a more complex situation: It is not at all clear, how to �nd theinput data L;L�; V [entering into (74)] based only on the knowledge of the o�springgenerating function f .It was already noted after (13) that if Z is embeddable into a continuous-timeGalton-Watson process then V (x) � V0 : Consequently, for embeddable processes,(74) takes the slightly simpler formcnP(Zn = kn)dw(kn=cn) = �L(mn)L�(kn)�� �1 + o(1)�: (75)On the other hand, if V is not constant, the inuence of this function on theasymptotic behavior of the ratio cnP(Zn = kn)=w(kn=cn) is relatively small. In-deed, from continuity and multiplicatively periodicity of V (x) we see that 0 < V1 �V (x) � V2 <1, x > 0; for some constants V1; V2 : Therefore, from (74),V1V2 �L(mn)L�(kn)�� �1 + o(1)� � cnP(Zn = kn)dw(kn=cn) (76)� V2V1 �L(mn)L�(kn)�� �1 + o(1)�:Note also that for many o�spring distributions the bounds V1 and V2 may bechosen close to each other. This "near-constancy" phenomenon was studied byDubuc (1982) [9] and by Biggins and Bingham (1991, 1993) [4, 5].1.7. Lower deviations in the B�ottcher case. Recall that � � 2 in the B�ottchercase.Theorem 5 (B�ottcher case). Let the o�spring law be of the B�ottcher type andof type (d; �). Then there exist positive constants B1 and B2 such that for allkn � �n (modd) with kn � �n but kn = o(cn);�B1 � lim infn"1 �bn�n log�cnP(Zn = kn)� (77a)� lim supn"1 �bn�n log�cnP(Zn = kn)� � �B2; (77b)where bn := minf` : c` �n�` � 2kng. The inequalities remain true if one replacescnP(Zn = kn) by P(Zn � kn).Let us add at this place the following remark.Remark 6 (Behavior of w at 0). In analogy with (29), in the B�ottcher case onehas logw(x) � �x��=(1��) as x # 0 (78)with � from (24). This can be shown using techniques from the proof of Theorem 5;see Remark 16 below. 3Our results in the B�ottcher case are much weaker than the results in the Schr�odercase: We got only logarithmic bounds. But this is not unexpected, recall ourdiscussion around (20).Repeating arguments as we used to obtain (74), from Theorem 5 we getlog�cnP(Zn = kn)�(kn=cn)��=(1��) � �hL�(kn=m�n)L1=(1��)(mn)i� as n " 1; (79)



12 FLEISCHMANN AND WACHTELwhere L� is such that R1(x) := x(1��)L(x) and R2(x) := x1=(1��)L�(x) are asymp-totic inverses, i.e. R1(R2(x)) � x and R2(R1(x)) � x as x " 1.Taking into account (78), we conclude thatlog�cnP(Zn = kn)�logw(kn=cn) � hL�(kn=m�n)L1=(1��)(mn)i� as n " 1: (80)Let us continue our discussion of the paper [15]. The main reason to study therelower deviation probabilities is the application to large deviation probabilities forthe ratio Zn+1=Zn ; stated as Theorems 3 and 4 there. Using our Theorem 4(instead of `Theorem 1' there) in the proof of [15, Theorem 3] concerning largedeviation probabilities in the Schr�oder case, one can easily verify that one needsonly to change the quantityB in [15, Theorem 3] to be � log p1 for all � 2 (0;1); inorder to get the right picture. On the other hand, [15, Theorem 4] concerning largedeviation probabilities in the B�ottcher case is true as it is stated, since `Theorem 1'was used only to show thatlimn"1 1kn log�mnP(Zn = kn)� = 0 if �nkn �!n"1 0; (81)see [15, p.1163]. Recalling that cn = mn and L(x) � L�(x) � 1 under EZ1 logZ1 <1; using our (79), one obtains1kn log�mnP(Zn = kn)� � ��m�nkn �1=(1��) as n " 1: (82)But m� = � by de�nition (24) of �; and (81) follows indeed.2. Cram�er transforms applied to Galton-Watson processesOur way to prove Theorems 4 and 5 is based on the well-known Cram�er method(see, e.g., [16, Chapter 8]), which was developed to study large deviations for sumsof independent random variables. A key in this method is the so-called Cram�ertransform de�ned as follows. A random variableX(h) is called a Cram�er transform(with parameter h 2 R) of the random real variable X ifEeitX(h) = Ee(h+it)XEehX ; t 2 R: (83)Of course, this transformation is well-de�ned if EehX <1:In what follows, we will always assume that our o�spring law additionally sat-is�es p0 = 0: This condition is not crucial but allows a bit simpli�ed exposition ofauxiliary results formulated in Lemma 11 below and of the proof of Theorem 4 inSection 3.1 (see also Remark 15 below).2.1. Basic estimates. Fix an o�spring law of type (d; �): Let n � 1: Since Zn >0; the Cram�er transforms Zn(�h=cn) exist for all h � 0: Clearly, EeitZn(�h=cn) =fn(e�h=cn+it)=fn(e�h=cn ): We want to derive upper bounds of fn(e�h=cn+it) on�t 2 R : c�1n �d�1 � jtj � �d�1	 : For this purpose, it is convenient to decomposethe latter set into Snj=1 Jj whereJj := �t : c�1j �d�1 � jtj � c�1j�1�d�1	; j � 1: (84)To prepare for this, we start with the following generalization of [10, Lemma 2].



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 13Lemma 7 (Preparation). Fix " 2 (0; 1): There exists � = �(") 2 (0; 1) such that��f`(e�h=c`+it=c`)�� � �; ` � 0; h � 0; t 2 J" := �t : "�d�1 � jtj � �d�1	:Proof. Put gh;t(x) := e�hx+itx; h; x � 0; t 2 R: Evidently,��gh;t(x)� gh;t(y)�� = ��e�hx(eitx � eity) + eity(e�hx � e�hy)�� (85)� jeitx � eityj+ je�hx � e�hy j � �h+ jtj� jx� yj:It means that for H � 1 and T � �d�1 �xed, G := fgh;t; 0 � h � H; jtj � Tg isa family of uniformly bounded and equi-continuous functions on R+ : Therefore,by (2), f`(e�h=c`+it=c`) = Egh;t(Z`=c`) ! Egh;t(W ) as ` " 1; (86)uniformly on G (see, e.g., Feller (1971) [11, Corollary in Chapter VIII, x1, p.252]).Since W > 0 has an absolutely continuous distribution, and t 2 J" implies jtj � T;sup0�h�H; t2J" ��Ee�hW+itW �� < 1: (87)From (86) and (87) it follows that there exist Æ1 2 (0; 1) and `0 such thatsup0�h�H; t2J"��f`(e�h=c`+it=c` )�� � Æ1 ; ` > `0 : (88)On the other hand, S`0`=0 �e�h=c`+it=c` ; h � 0; t 2 J"	 is a subset of a compactsubset K of the unit disc D; where K does not contain the dth roots of unity.Thus for some Æ2 2 (0; 1);sup0�h�H; t2J"��f`(e�h=c`+it=c` )�� � Æ2 ; ` � `0 : (89)In fact, from De�nition 1,f`(z) = 1Xj=0P(Z` = �` + jd) z�`+jd; ` � 0; z 2 D; (90)implying ��f`(z)�� � ��� 1Xj=0P(Z` = �` + jd) zjd���: (91)But the latter sum equals 1 if and only if z is a dth root of unity, that is, if it is ofthe form e2�i=d:Combining (88) and (89) gives the claim in the lemma under the addition thath � H: Consider now any h > H. In this case��f`(e�h=c`+it=c`)�� � f`(e�1=c` ): (92)By (2) we havef`(e�h=c` ) = Ee�hZ`=c` ! Ee�hW 2 (0; 1] as ` " 1; (93)uniformly in h from compact subsets of R+ : In particular,sup`�1 f`(e�1=c`) < 1: (94)This completes the proof. �The following lemma generalizes [10, Lemma 3].



14 FLEISCHMANN AND WACHTELLemma 8 (Estimates on J1; : : :Jn). There are constants A > 0 and � 2 (0; 1)such that for h � 0; t 2 Jj ; and 1 � j � n;��fn(e�h=cn+it)�� � ( Apn�j+11 in the Schr�oder case,�(�n�j+1 ) in all cases. (95)Proof. By (4a), we have " := inf`�1 c`�1=c` 2 (0; 1): If t 2 Jj ; j � 1; thenevidently, �d�1 � cj�1 jtj � cj�1 c�1j �d�1 � "�d�1; (96)hence cj�1t 2 J" : Thus, by Lemma 7,U := 1[j=1nfj�1(e�h+it); h � 0; t 2 Jjo � �D with 0 < � < 1: (97)From the representation (90), f`(z) � jzj(�`) for all ` � 0 and jzj � 1: Hence,for all z 2 U � �D we have the bound ��f`(z)�� � �(�`): Thus, for h � 0; t 2Jj ; and 1 � j � n;��fn(e�h=cn+it)�� � fn�j+1 ���fj�1(e�h=cn+it)��� � �(�n�j+1 ); (98)which is the second claim in (95).If additionally p1 > 0; then by (9) (and our assumption p0 = 0) we have thatp�`1 f`(z) converges as ` " 1; uniformly on each compact K � DÆ: Therefore,there exists a constant C = C(K) such that��f`(z)�� � C p1̀ ; ` � 0; z 2 K: (99)Consequently, iterating as in (98),��fn(e�h=cn+it)�� � C pn�j+11 ; h � 0; t 2 Jj ; 1 � j � n; (100)�nishing the proof. �2.2. On concentration functions. Fix for the moment h � 0 and n � 1: Denoteby �Xj(h; n)	j�1 a sequence of independent random variables which equal in lawthe Cram�er transform Zn(�h=cn); that isP�X1(h; n) = k� = e�kh=cnfn(e�h=cn ) P(Zn = k); k � 1: (101)Put S`(h; n) := X̀j=1Xj(h; n); ` � 1: (102)Note that EeitS`(h;n) = �fn(e�h=cn+it)=fn(e�h=cn )�`: (103)Recall notation � 2 (0;1] from (8).Lemma 9 (A concentration function estimate). For every h � 0; there is aconstant A(h) such thatsupn;k�1cnP�S`(h; n) = k� � A(h)`1=2 ; ` � `0 := 1 + [1=�]: (104)



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 15Proof. It is known (see, for example, [16, Lemma III.3, p.38]) that for arbitrary(real-valued) random variables X and every �; T > 0;Q(X;�) := supy P(y � X � y + �) � �9695�2max(�; T�1) Z T�T �� X (t)�� dt (105)(with  X the characteristic function of X). Applying this inequality to X =S`0(h; n) and with T = �d�1 and � = 1=2; using (103) we havesupk�1P�S`0(h; n) = k� � C Z �d�1��d�1 ��fn(e�h=cn+it)��`0f`0n (e�h=cn ) dt (106)for some constant C independent of h; n: By (93), for h �xed, fn(e�h=cn ) isbounded away from zero, and consequently, there is a positive constant C(h) suchthat supk�1P�S`0 (h; n) = k� � C(h) Z �d�1��d�1 ��fn(e�h=cn+it)��`0dt: (107)Fist assume that � <1 (Schr�oder case). Using the �rst inequality in (95), we getfor 1 � j � n;ZJj ��fn(e�h=cn+it)��`0 dt � A`0 p(n�j+1)`01 jJjj � 2�d�1A`0p(n�j+1)`01 c�1j�1: (108)On the other hand,Z �d�1=cn��d�1=cn ��fn(e�h=cn+it)��`0 dt � 2�d�1=cn : (109)From (108) and (109), for some constant C;cn Z �d�1��d�1 ��fn(e�h=cn+it)��`0 dt � C�1 + nXj=1 p(n�j+1)`01 cn c�1j�1�: (110)But by (4a), cn � mn�j+1cj�1 ; 1 � j � n: (111)Also, by the de�nition of `0 in (104) and � in (8), p`01 m = p1+[1=�]�1=�1 < 1. Hencethe right hand side of (110) is bounded in n. Thus, from (107) it follows thatsupn;k�1cnP�S`0 (h; n) = k� � C(h): (112)This estimate actually holds also in the B�ottcher case, where `0 = 1: Indeed,proceeding in the same way but using the second inequality in (95) instead, thesum expression in (110) has to be replaced bynXj=1 �(�n�j+1 )cn c�1j�1 � nXj=1 �(�n�j+1 )mn�j+1 = nXj=1 �(�j )mj ; (113)which again is bounded in n:Note that (112) is (104) restricted to ` = `0 : Hence, from now on we may restrictour attention to ` > `0 : Let Y1; : : : ; Yj be independent identically distributedrandom variables. Then by Kesten's inequality (see, e.g., [16, p.57], there is aconstant C such that for 0 < �0 < 2� the concentration function inequalityQ(Y1 + : : :+ Yj ;�) � C��0j1=2 Q(Y1;�)�1�Q(Y1;�0)��1=2 (114)



16 FLEISCHMANN AND WACHTELholds. We specialize to Y1 = S`0(h; n) and �0 = � = 1=2: Note that Q(Y1; 1=2) =supk�1P�S`0 (h; n) = k� < 1 in this case, since the random variable X1(h; n) isnon-degenerate. But also as n " 1 this quantity is bounded away from 1, whichfollows from (112). Consequently, infn�1[1�Q(Y1; 1=2)] > 0: Thus, using again(112), we infersupn;k�1P�Sj`0(h; n) = k� � C1(h)j1=2 = C2(h)(j`0)1=2 ; j � 1; (115)for some positive constants C1(h) and C2(h): If X and Y are independent randomvariables, then, Q(X + Y ;�) � Q(X;�) (s. [16, Lemma III.1]). Thus for every` > `0 we have the inequalitysupn;k�1cnP�S`(h; n) = k� � supn;k�1cnP�S[`=`0]`0 (h; n) = k�: (116)Combining this bound once more with (115), the proof is �nished. �Remark 10 (Special case h = 0). Note that S`(0; n) equals in law to Znconditioned to Z0 = `: Therefore, by Lemma 9,supk�1P(Zn = k jZ0 = `) � A(0)`1=2 cn ; n � 1; ` � `0 : (117)In particular, if � > 1; implying `0 = 1; in (117) all initial states Z0 are possible.Especially, if Z0 = 1; then inequality (117) generalizes the upper estimate in [15,(10)] to processes without Z1logZ1-moment condition. 3Lemma 9 can also be used to get very useful bounds for P(Zn = k jZ0 = `)which are not uniform in k: This will be achieved in the next lemma by specializingLemma 9 to h = 1:Lemma 11 (Non-uniform bounds). There exist two positive constants A and Æsuch thatcnP(Zn = k jZ0 = `) � Aek=cn`�1=2 e�Æ`; n; k � 1; ` � `0 ; (118)[with `0 de�ned in (104)].Proof. By the branching property and the de�nition (102) of S`(h; n),P(Zn = k jZ0 = `) = ekh=cn�fn(e�h=cn )�`P�S`(h; n) = k�: (119)Putting here h = 1 and multiplying both sides by cn ; we havecnP(Zn = k jZ0 = `) � ek=cn�fn(e�1=cn)�` maxn;k�1cnP�S`(1; n) = k�: (120)Using Lemma 9 givescnP(Zn = k jZ0 = `) � A(1) `�1=2 ek=cn�fn(e�1=cn)�`: (121)From (94) the existence of a Æ > 0 follows such that fn(e�1=cn) � e�Æ for all n � 1.Entering this into (121) �nishes the proof. �



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 172.3. On the limiting density function w. Recall from Section 1.1 that w de-notes the density function of W; and  =  W its characteristic function.Lemma 12 (Bounds for the limiting density). There is a constant A > 0such that w�`(x) � A�Z x0 w(t) dt�`�`0 ; x > 0; ` � `0 : (122)Proof. Suppose � <1, the case � =1 can be treated similarly. By the inversionformula, w�`0(x) = 12� Z 1�1 e�itx `0 (t) dt; x > 0: (123)Hence, A := supx>0w�`0(x) � 12� Z 1�1 �� (t)��`0 dt: (124)We want to convince ourselves that A <1: For j � 0;Z mj+1mj �� (t)��`0 dt = mj Z m1 �� (tmj )��`0 dt = mj Z m1 ��fj� (t)���`0 dt; (125)where we used (47). Since W > 0 has an absolute continuous law, �� (t)�� � C < 1for t 2 [1;m]: Moreover, by (99), ��fj(z)�� � C pj1 for z in a compact subset of DÆ:Therefore, Z mj+1mj �� (t)��`0 dt � C mjpj`01 = C mj(1��`0) (126)by de�nition (8) of �: Consequently,Z 11 �� (t)��`0 dt � C 1Xj=0mj(1��`0) < 1; (127)since 1� �`0 < 0. Analogously,Z �1�1 �� (t)��`0 dt < 1: (128)Hence, A in (124) is �nite. But w�(`+1)(x) = R x0 w�`(x � y)w(y) dy; x > 0; andthe claim follows by induction. �2.4. A local central limit theorem. Recall notation (102) of S`(h; n); h � 0;`; n � 1: By an abuse of notation, denote by  ` =  h;n` the characteristic functionof the random variablè�1=2 ��1(h; n) �S`(h; n)�ES`(h; n)�; (129)where �(h; n) :=qE �X1(h; n)�EX1(h; n)�2: Note that by (103), h;n` (t) = �e�it`�1=2��1(h;n)EX1(h;n) fn(e�h=cn+it`�1=2��1(h;n))fn(e�h=cn ) �̀ : (130)Lemma 13 (An Esseen type Inequality). If 0 < h1 � h2 < 1, then thereexist positive constants C = C(h1; h2) and " = "(h1; h2) < 1 such thatsuph2[h1 ;h2]; n�1 �� h;n` (t)� e�t2=2�� � C `�1=2 jtj3 e�t2=3; jtj < " `1=2; ` � 1: (131)



18 FLEISCHMANN AND WACHTELProof. Put �Xj(h; n) := Xj(h; n)�EXj(h; n). Using the global limit theorem from(3) one easily veri�es that for some positive constants C1; : : : ; C4 ;C1 � �(h; n)cn � C2 uniformly in h 2 [h1; h2] and n � 1 (132)and C3 � E�� �X1(h; n)��3c3n � C4 uniformly in h 2 [h1; h2] and n � 1: (133)Consequently, the Lyapunov ratio E�� �X1(h; n)��3 =�3(h; n) is bounded away fromzero and in�nity. Applying now Lemma V.1 from [16] to the random variables�X1(h; n); : : : ; �X`(h; n) we get the desired result. �The next lemma is a key step in our development concerning the B�ottcher case.Recall notations S` := S`(h; n) and � := �(h; n) de�ned in (102) and after (129),respectively.Lemma 14 (Local central limit theorem). Suppose the o�spring law is of type(d; �): If 0 < h1 � h2 <1, thensuph2[h1 ;h2 ]n�1 supk:k�`�n(modd) ����`1=2 �(h; n)P�S`(h; n) = k�� dp2� e�x2k;`(h;n)=2���� �!`"1 0;where xk;` := xk;`(h; n) := `�1=2 ��1(h; n) �k � `EX1(h; n)�:Note that a local limit theorem, which would correspond to our case h = 0 butconcerning an o�spring law with �nite variance and with initial state tending to1; was derived by H�opfner [12, Theorem 1]. The following proof of our lemma isa bit simpler, since for h > 0 the random variables X1(h; n) have �nite moments ofall orders (also if the underlying Z does not have �nite variance).Proof of Lemma 14. By (103) and the inversion formula,P�S` = k� = 12� Z ��� e�itkhfn(e�h=cn+it)fn(e�h=cn ) i`dt: (134)Decomposing the unit circle,�eit : �� < t � �	 = d�1[j=0 �%j eit : ��d�1 < t � �d�1	 ; (135)where % := e2�i=d; the latter integral equalsd�1Xj=0 Z �d�1��d�1 %�jke�itkhfn(%je�h=cn+it)fn(e�h=cn ) i`dt: (136)It is known (see, for instance, [1, p.105]) that for an o�spring law of type (d; �) wehave fn(%jz) = %j�nfn(z); n; j � 1; z 2 D: (137)Therefore the latter sum equalsZ �d�1��d�1 e�itkhfn(e�h=cn+it)fn(e�h=cn ) i`dt d�1Xj=0 %�j(k�`�n): (138)



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 19But %�j(k�`�n) � 1 for k � `�n (mod d): Altogether, for (134) we getP�S` = k� = d2� Z �d�1��d�1 e�itkhfn(e�h=cn+it)fn(e�h=cn ) i`dt; k � `�n (mod d): (139)Using the substitution t! t=`1=2� and (130), we arrive atP�S` = k� = d2�`1=2� Z �d�1`1=2���d�1`1=2� e�itxk;` `(t) dt; k � `�n (mod d): (140)Fix 0 < h1 � h2 <1: Recall from (132) thatC1 � infh2[h1 ;h2 ]; n�1 �(h; n)cn � suph2[h1 ;h2 ]; n�1 �(h; n)cn � C2 (141)for some 0 < C1 < C2 (depending on h1; h2): Choose a positive" = "(h1; h2) < C1�d�1 (142)as in Lemma 13. Take any A = A(h1; h2) > " (to be speci�ed later). Then theidentity R1�1 e�itx�t2=2 dt = p2� e�x2=2 and representation (140) imply thatsupk: k�`�n (modd) ����`1=2 �P�S` = k�� dp2� e�x2k;`=2���� � d (I1 + I2 + I3 + I4); (143)where I1 := Z "`1=2�"`1=2�� `(t)� e�t2=2�� dt; I2 := Zjtj>"`1=2 e�t2=2 dt; (144)I3 := Z"`1=2<jtj<A`1=2 �� `(t)�� dt; I4 := ZA`1=2<jtj<�d�1`1=2��� `(t)�� dt:[Of course, I4 disappears if A(h1; h2) > �d�1�(h; n): ]Trivially, I2 ! 0 as ` " 1. Further, due to Lemma 13, there is a C = C(h1; h2)such that I1 � C `�1=2 Z "`1=20 t3 e�t2=3 dt � C `�1=2 �!`"1 0: (145)Thus, it remains to show that the integrals I3 and I4 converge to zero as ` " 1;uniformly in the considered h and n:First of all, using again (130) and substituting t ! t`1=2�=cn ; by (141) weobtain the following estimatesI3 � C2 `1=2 Z"=C2<jtj<A=C1 ���fn(e�h=cn+it=cn)fn(e�h=cn ) ���`dt; (146a)I4 � C2 `1=2 ZA=C2<jtj<�d�1cn ���fn(e�h=cn+it=cn)fn(e�h=cn ) ���`dt: (146b)First we �x our attention to I3 : By (86),fn(e�h=cn+it=cn) ! Ee�hW+itW as n " 1; (147)uniformly in h 2 [0; h2] and t 2 [0; A=C1] [recall (142)]. Also, by (93),fn(e�h=cn ) ! Ee�hW as n " 1; uniformly in h 2 [0; h2]: (148)



20 FLEISCHMANN AND WACHTELIt follows that fn(e�h=cn+it=cn)fn(e�h=cn ) �!n"1 Ee�hW+itWEe�hW = EeitW (�h); (149)uniformly in h 2 [0; h2] and t 2 [0; A=C1] (with W (�h) the Cram�er transform ofW ): Since the W (�h) have absolutely continuous laws, we have jEeitW (�h)j < 1for all h � 0 and jtj > 0. This inequality and continuity of (h; t) 7! EeitW (�h)imply that sup0�h�h2 ; "=C2�jtj�A=C1 jEe�hW+itW jEe�hW < 1: (150)Using (149) and (150) we infer the existence of a positive constant � = �(h1; h2) < 1and an n1 = n1(h1; h2) � 1 such that for n � n1 ;sup0�h�h2 ; "=C2�jtj�A=C1 ���fn(e�h=cn+it=cn)fn(e�h=cn ) ��� � �: (151)Applying (151) to the bound of I3 in (146a), we conclude thatI3 � CA`1=2�` ! 0 as ` " 1; (152)uniformly in h 2 [h1; h2] and n � n1 : (The remaining n will be considered below.)Next, we prepare for the estimation of I4 : Since fn(e�h=cn ) � fn(e�h2=cn) for0 � h � h2 ; and fn(e�h2=cn) ! Ee�h2W > 0 as n " 1 [recall (148)], there is apositive constant C = C(h2) such that���fn(e�h=cn+it)fn(e�h=cn ) ��� � C ��fn(e�h=cn+it)�� (153)for all t 2 R; 0 � h � h2 ; and n � 1:At this point we have to distinguish between Schr�oder and B�ottcher cases. Ac-tually, we proceed with the B�ottcher case � = 1; which is the only case we needlater, and leave the other case for the reader. Applying the second case of (95) to(153), we obtain the estimate���fn(e�h=cn+it)fn(e�h=cn ) ��� � C exp���n�j+1 log ��1�; (154)0 � h � h2 ; t 2 Jj ; and 1 � j � n: Since � � 2; there exists an n2 = n2(h2)such that ���fn(e�h=cn+it)fn(e�h=cn ) ��� � exp���n�j log ��1�; (155)if 0 � h � h2 ; t 2 Jj ; and 1 � j � n� n2 : But jJjj � 2c�1j�1�d�1; henceZJj ���fn(e�h=cn+it)fn(e�h=cn ) ���` dt � 2c�1j�1�d�1 exp��` �n�j log ��1�: (156)Summing over the considered j givesZc�1n�n2�d�1�jtj��d�1 ���fn(e�h=cn+it)fn(e�h=cn ) ���` dt � 2�d�1 n�n2Xj=1 c�1j�1 exp��` �n�j log ��1�;



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 210 � h � h2 and n � n2 : Substituting t! t=cn and using (111), we arrive atZ�d�1mn2�jtj��d�1cn ���fn(e�h=cn+it=cn)fn(e�h=cn ) ���`dt (157)� 2�d�1 n�n2Xj=1 mn�j+1 exp��` �n�j log ��1�� 2�d�1 1Xj=1mj+1 exp��` �j log ��1� � C e�C0`with constants C;C 0; uniformly in h 2 [h1; h2] and n � n2 : Choosing now A solarge that �d�1mn2 � A=C2 ; we conclude from (146b) thatI4 � C `1=2 e�C0` ! 0 as ` " 1; (158)uniformly in h 2 [h1; h2] and n � n2 :Finally, we consider all n � n� := n1 _ n2 : By de�nition, as in (90),fn(e�h=cn+it=cn)fn(e�h=cn ) = 1Xj=0P�X1(h; n) = �n + jd� e(it=cn)(�n+jd): (159)Hence, since the set �e�it=cn : t 2 ["=C2; �d�1cn]	 does not contain the dth rootsof unity, supt2["=C2; �d�1cn] ���fn(e�h=cn+it=cn)fn(e�h=cn ) ��� =: �n(h) < 1: (160)From the continuity (h; t) ! fn(e�h=cn+it=cn) it follows that the function �n iscontinuous, too. Therefore, suph2[h1 ;h2] �n(h) =: ��n < 1: (161)Combining (160) and (161),maxn�n� suph2[h1 ;h2 ]t2["=C2; �d�1cn] ���fn(e�h=cn+it=cn)fn(e�h=cn ) ��� � �� (162)for some �� < 1: Substituting this into (146) givesI3 + I4 � C `1=2 ��` ! 0 as ` " 1; (163)and the proof is �nished. �3. Proof of the main results3.1. Schr�oder case (proof of Theorem 4). Let f; kn; and an be as in Theorem 4.Fix n0 such that cn > kn � 1 and n > an � 1 for all n � n0 ; and consider onlysuch n: Recall that p0 = 0 by our convention. By the Markov property,P(Zn = kn) = 1X̀=1P(Zn�an = `)P(Zan = kn jZ0 = `): (164)and P(Zn � kn) = 1X̀=1P(Zn�an = `)P(Zan � kn jZ0 = `): (165)



22 FLEISCHMANN AND WACHTELStep 1Æ (Proof of (59)). Using Lemma 11 we get for N � `0 the estimatecan 1X̀=N P(Zn�an = `)P(Zan = kn jZ0 = `) � C ekn=canN1=2 fn�an(e�Æ) (166)for some constant Æ > 0: By (4a), and since can�1 < kn � can by the de�nition ofan ; m�1 � can�1can � kncan � 1: (167)On the other hand, by (99), fn�an (e�Æ) � C pn�an1 : (168)Thus, from (166),pan�n1 can 1X̀=N P(Zn�an = `)P(Zan = kn jZ0 = `) � CN1=2 : (169)By [10, Lemma 9],limn"1 12� Z �d�1cn��d�1cn fǹ(eit=cn) e�itx dt = w�`(x) (170)uniformly in x 2 [m�1; 1]. This together withcanP(Zan = kn jZ0 = `) (171)= d2� Z �d�1cn��d�1cn fàn (eit=cn) e�itkn=can dt; ` � kn (mod d);(see [1, p.105]) and (167) giveslimn"1�canP(Zan = kn jZ0 = `) � dw�`(kn=can)� = 0; ` � kn (mod d): (172)Since kn � 1 (mod d), the previous statement holds for all ` � 1 (mod d). Forother `; the probabilities P(Zn�an = `) disappear. Thus, by (172),N�1X̀=1 P(Zn�an = `)P(Zan = kn jZ0 = `) (173)= d c�1an hN�1X̀=1 P(Zn�an = `)w�`(kn=can)i �1 + oN (1)�with oN (1) ! 0 as n " 1; for each �xed N: Further, using Lemma 12, one caneasily verify that there exist two constants C and � 2 (0; 1) such that w�`(kn=can) �C �` for all ` � 1 and n: Thus,1X̀=N P(Zn�an = `)w�`(kn=can) � C 1X`=N P(Zn�an = `) �`: (174)But for every �1 2 (�; 1);1X̀=N P(Zn�an = `) �` � � ��1�N fn�an(�1) � C � ��1�Npn�an1 ; (175)



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 23where in the last step we used (99). Inequalities (174) and (175) imply1X̀=N P(Zn�an = `)w�`(kn=can) � C pn�an1 e�ÆN (176)for all n;N and some constant Æ > 0: Combining (164), (173), (169) and (176),we haveP(Zn = kn) = d c�1an h 1X̀=1P(Zn�an = `)w�`(kn=can )i �1 + oN (1)� (177)+ O�c�1an pn�an1 N�1=2� ;where the O-term applies to both n;N " 1: By (47),m�j w(x=mj) = 1X̀=1P(Zj = `)w�`(x); j � 1; x > 0: (178)Putting here j = n � an ; x = kn=can ; and substituting into (177), we arrive atP(Zn = kn) = d c�1an man�nw(knman�n=can ) �1 + oN (1)�+O�c�1an pn�an1 N�1=2�:By (29), (167), and the de�nition (8) of �;d c�1an man�n w(knman�n=can) � C c�1an m�(an�n) = C c�1an pn�an1 ; for all n:(179)Therefore,P(Zn = kn) = d c�1an man�n w(knman�n=can )�1 + oN (1) + O(N�1=2)�; (180)where the O-term now applies to N " 1; uniformly in n: Letting �rst n " 1 andthen N " 1; we see that (59) is true.Step 2Æ (Proof of (60)). Trivially, for independent and identically distributed non-negative random variables X1; : : : ; Xn we haveP(X1 + : : :+Xn < x) � P(maxj Xj < x) = Pn(X1 < x); x � 0: (181)Hence, P(Zan � kn jZ0 = `) � P`(Zan � kn): (182)Further, from (167) and (3),P(Zan � kn) � P(c�1anZan � 1) �!n"1 Z 10 w(x) dx: (183)Therefore, since w > 0 on all of (0;1); there exists an � 2 (0; 1) such that P(Zan �kn) � � for all n large enough. Thus,1X̀=N P(Zn�an = `)P(Zan � kn jZ0 = `) � 1X`=N P(Zn�an = `) �` (184)for all N suÆciently large. Taking into account (175), we conclude that1X̀=N P(Zn�an = `)P(Zan � kn jZ0 = `) � C pn�an1 e�ÆN (185)



24 FLEISCHMANN AND WACHTELfor N suÆciently large and some Æ > 0: By the same arguments,1X̀=N P(Zn�an = `)F �`(kn=can) � C pn�an1 e�ÆN ; (186)where F (x) := P(W < x); x � 0:On the other hand, the continuity of F and (3) yield that P(Zan � canx jZ0 =`)! F �`(x) uniformly in x � 0: Therefore,limn"1 supk�1 ���P(Zan � k jZ0 = `) � F �`(k=can)��� = 0: (187)Combining (165), (185), (186), and (187), we arrive atP(Zn � kn) (188)= h 1X̀=1P(Zn�an = `)F �`(kn=can)i �1 + oN (1)� + O(pn�an1 e�ÆN )with the same meaning of oN and the O-term as in the previous step of proof.Since P(Zn�an = 1) = pn�an1 and F (kn=can) � F (m�1) > 0 by (167), we obtainpn�an1 e�ÆN � C e�ÆN 1X̀=1P(Zn�an = `)F �`(kn=can): (189)Combining this inequality with (188) givesP(Zn � kn) = h 1X̀=1P(Zn�an = `)F �`(kn=can)i �1 + oN (1) + O(e�ÆN )�: (190)Integrating both parts of (178), one hasF (y=mk) = 1X̀=1P(Zk = `)F �`(y); k � 1; y > 0: (191)Thus, P(Zn � kn) = F� kncan mn�an � �1 + oN (1) + O(e�ÆN )�: (192)Letting again �rst n " 1 and then N " 1 �nishes the proof. �Remark 15 (Proof in the case p0 > 0). We indicate now how to proceed withthe proof of Theorem 4 in the remaining case p0 > 0: Here in the representation(164) one has additionally to take into account thatP(Zan = kn jZ0 = `) (193)= X̀j=1� j̀� f`�jan (0) �1� fan (0)�j Pn jXi=1 Z(i)an = kn ��� Z(i)an > 0; 1 � i � jo;where the Z(1); Z(2); : : : are independent copies of Z: Then instead of Lemma 11we needcnPn jXi=1 Z(i)an = kn ��� Z(i)an > 0; 1 � i � jo � Aek=cnj�1=2 e�Æ`; n; k � 1; j � `0 :



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 25But this is valid byP�zZ(1)n ��Z(1)n > 0	 = fn(z) � fn(0)1� fn(0) �!n"1 S(z) � S(0)1� q ; (194)uniformly in z from compact subsets of DÆ: This indeed follows from (9). 33.2. B�ottcher case (proof of Theorem 5). From the Markov property,P(Zn = kn) = 1X`=�n�bn P(Zn�bn = `)P(Zbn = k jZ0 = `): (195)Using (119) and Lemma 9, we obtain the following estimatecbnP(Zbn = kn jZ0 = `) � A(h) `�1=2�ehkn=`cbn fbn (e�h=cbn )�`: (196)From the de�nition of bn it immediately follows that2kn � cbn�n�bn = cbn�1�n�bn+1� cbn�cbn�1� � 2knm� : (197)Hence, hkn`cbn � h2 (198)for ` � �n�bn. Therefore,cbnP(Zbn = kn jZ0 = `) � A(h) `�1=2�eh=2fbn(e�h=cbn )�`: (199)It is known (see, for example, [1], Corollary III.5.7), that EW = 1 ifEZ1 logZ1 <1and EW = 1 otherwise. It means, that for the Laplace function ' = 'W of Wwe have eh=2'(h) < 1 for all small enough h. Thus, due to the global limit theorem(3), there exist Æ < 1 and h0 > 0 such that eh0=2fn(e�h0=cn) � e�Æ for all largeenough n. Hence, cbnP(Zbn = kn jZ0 = `) � A`�1=2 e�Æ`: (200)Inserting (200) into (195), we obtaincbnP(Zn = kn) � A��(n�bn)=2fn�bn(e�Æ); (201)consequently,�bn�n log�cnP(Zn = kn)� � �bn�nC + �bn�n log� cncbn �+ log fn(e�Æ)�n�bn : (202)Since cn=cbn � mn�bn and �n�bn = m�(n�bn), �bn�n log(cn=cbn) ! 0 as n " 1.Thus, lim supn"1 �bn�n log�cnP(Zn = kn)� � lim supn"1 logfn�bn(e�Æ)�n�bn : (203)Using (21), we arrive at the desired upper bound.We show now that (77b) holds for logP(Zn � kn): First of all we note that forarbitrary non-negative random variable X and all x; h � 0P(X � x) � ehxEe�hX : (204)Applying this bound to the process Z starting from ` individuals and taking intoaccount (198), we haveP(Zbn � kn jZ0 = `) � �ehkn=`cbnfbn(e�h=cbn )�` � �eh=2fbn(e�h=cbn )�`: (205)



26 FLEISCHMANN AND WACHTELAs we argued in the derivation of (200), this givesP(Zbn � kn jZ0 = `) � e�Æ`: (206)Consequently, by the Markov property,P(Zn � kn) � fn�bn(e�Æ): (207)Taking logarithm and using (21), we obtain (77b).Let us verify the lower bounds in Theorem 5. By (195),P(Zn = kn) � P(Zn�bn = �n�bn)P(Zbn = kn jZ0 = �n�bn): (208)From (119),P(Zbn = kn jZ0 = �n�bn) > �fbn(e�h=cbn )�`n P�S`n(h; bn) = kn�; (209)where `n = �n�bn .Consider the equationc�1bn EX1(h; bn) = f 0bn(e�h=cbn ) e�h=cbncbnfbn(e�h=cbn ) = x: (210)Evidently, f 0bn(e�h=cbn ) e�h=cbnfbn(e�h=cbn ) ���h=0 = mbn (211)and f 0bn(e�h=cbn ) e�h=cbnfbn (e�h=cbn ) ���h=1 = �bn : (212)From these identities and monotonicity of f 0bn(e�h=cbn ) e�h=cbn =fbn(e�h=cbn ) it fol-lows that (210) has a unique solution hn(x) for �bnc�1bn < x < mbnc�1bn . Analogouslyone shows that the equation '0(h)='(h) = �x has also a unique solution h(x). Bythe integral limit theorem (3), the right-hand side in (210) converges to �'0(h)='(h)and consequently, hn(x)! h(x) as n " 1. Further, by (197),�2m � xn := kncbn`n � 12 : (213)Thus, h(�=2m) � lim infn"1 hn � lim infn"1 hn � h(1=2); (214)where hn := hn(xn). It means that there exist h� and h� such that h� � hn � h�for all n � 1. From the de�nition of hn and (210) immediately follows thatES`n (hn; bn) = kn : Thus, applying Lemma 14, we getlimn"1 ����`1=2n �(hn; bn)P�S`n (hn; bn) = kn� � dp2� ���� = 0: (215)Recall that by (132) we have �(hn; bn) � C cbn : Hence,lim infn"1 `1=2n cbn P�S`n (hn; bn) = kn� � C > 0: (216)Moreover, since fbn (e�hn=cbn ) � fbn(e�h�=cbn ) and fj(e�h�=cj ) ! Ee�h�W > 0;there exists a � > 0 such that fbn (e�h=cbn ) � � (217)



LOWER DEVIATIONS FOR SUPERCRITICAL GWP 27for all n: Applying these bounds to the right-hand side in (209), we �nd thatlim infn"1 �bn�n log �cn P(Zbn = kn jZ0 = �n�bn)� � �C: (218)Using this inequality and (21) to bound the right-hand side in (208), we concludethat lim infn"1 �bn�n log�cnP(Zn = kn)� � �C; (219)i.e. (77a) is proved.Next we want to extend this result to P(Zn � kn): Obviously,P(Zn � kn) � P(Zn�bn = `n)P(Zbn � kn jZ0 = `n): (220)Then, using (119) with h = hn ; we haveP(Zn � kn) � P(Zn�bn = `n) �fn(e�hn=cbn )�`n P�S`n (h; bn) � kn�: (221)By the central limit theorem,limn"1P�S`n(h; bn) � kn� = 12 : (222)From this statement and (217) it follows thatlim infn"1 �bn�n logP(Zn � kn) � lim infn"1 �bn�n logP(Zn�bn = �n�bn)+log �: (223)Recalling (17), the proof of Theorem 5 is complete.Remark 16 (To the proof of Remark 6). To prove (78) one can use the methodsfrom the proof of Theorem 5. But some changes are needed, since in Remark 6 wedeal with absolutely continuous distributions.Instead of (195) we shall use (178). Putting there x = ymk and k = ky =maxfj � 1 : mj � �j=2yg we obtainw(y) = mky 1X`=�ky P(Zky = `)w�`(ymky ): (224)For every h � 0 we may de�ne the density functionwh(x) := e�hx'(h) w(x); (225)corresponding to the Cram�er transform of W . By Lemma12, Cw := supx�0 w(x) <1 in the present B�ottcher case. Hence, supx�0wh(x) � Cw='(h): By induction(analogously to Lemma 9),supx�0w�`h (x) � Cw'(h) ; ` � 1: (226)It is easy to see that w�lh (x) = e�hx'`(h) w�`(x); ` � 1: (227)From this identity and (226) it follows thatw�`(x) � Cw '`�1(h) ehx: (228)



28 FLEISCHMANN AND WACHTELTherefore, for all ` � �ky ;w�`(ymky ) � Cw'(h) hehymky =�ky'(h)i`: (229)Further, by the de�nition of ky ,�2my � mky�ky � 12y ; (230)and consequently, w�`(ymky ) � Cw'(h) �eh=2'(h)�`: (231)Before (200) we showed that eh0=2'(h0) � e�Æ : As a result we have the boundw�`(ymky ) � Cw'(h0) e�Æ`: (232)Entering this into (224) givesw(y) � C mky fky (e�Æ): (233)Taking logarithm and using (21), we see thatlim supy!0 ��ky logw(y) � logB(e�Æ ): (234)Now we deal with a corresponding lower bound of logw(y). By (224) and (227),w(y) > mky P(Zky = �ky)w��ky (ymky )> P(Zky = �ky)'�ky (h)w��kyh (ymky ); h > 0: (235)Recalling that h(x) is the unique solution of the equation '0(h)='(h) = �x and us-ing (230), one gets the inequality h(ymky=�ky) � h(�=2m): Thus, by monotonicityof ', '�ky �h(ymky =�ky)� > '�ky �h(�=2m)� = exp[�C�ky ]: (236)If in (225) we set h = h(ymky=�ky); then w��kyh (ymky ) is the value of the densityfunction of the sum P�kyj=1Wj(�h) at the point EP�kyj=1Wj(�h): Thus, by thecentral limit theorem for densities ([16, Theorem VII.7]),limy!0w��kyh (ymky ) = 1p2� : (237)Putting h = h(ymky=�ky) in (235) and using (17), (236), and (237), we obtainlim infy!0 ��ky logw(y) � �C: (238)Combining (234) and (238) we getlogw(y) � ��ky : (239)Then the relation �ky � y��=(1��) �nishes the proof. 3
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