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On the complexity of approximating Wasserstein barycenter
Alexey Kroshnin, Darina Dvinskikh, Pavel Dvurechensky, Alexander Gasnikov, Nazarii Tupitsa, César

A. Uribe

Abstract

We study the complexity of approximating Wassertein barycenter of discrete measures, or
histograms by contrasting two alternative approaches, both using entropic regularization. We pro-
vide a novel analysis for our approach based on the Iterative Bregman Projections (IBP) algorithm
to approximate the original non-regularized barycenter. We also get the complexity bound for al-
ternative accelerated-gradient-descent-based approach and compare it with the bound obtained
for IBP. As a byproduct, we show that the regularization parameter in both approaches has to
be proportional to ε, which causes instability of both algorithms when the desired accuracy is
high. To overcome this issue, we propose a novel proximal-IBP algorithm, which can be seen as
a proximal gradient method, which uses IBP on each iteration to make a proximal step. We also
consider the question of scalability of these algorithms using approaches from distributed opti-
mization and show that the first algorithm can be implemented in a centralized distributed setting
(master/slave), while the second one is amenable to a more general decentralized distributed
setting with an arbitrary network topology.

Introduction

Optimal transport (OT) Monge [1781], Kantorovich [1942] is currently generating an increasing at-
traction in statistics, machine learning and optimization communities. Statistical procedures based on
optimal transport are available Bigot et al. [2012], Del Barrio et al. [2015], Ebert et al. [2017], Le Gouic
and Loubes [2017] as well as many applications in different areas of machine learning including unsu-
pervised learning Arjovsky et al. [2017], Bigot et al. [2017], semi-supervised learning Solomon et al.
[2014], clustering Ho et al. [2017], text classification Kusner et al. [2015]. Optimal transport distances
lead to the concept of Wasserstein barycenter, which allows to define a mean of a set of complex
objects, e.g. images, preserving their geometric structure Cuturi and Doucet [2014]. In this paper
we focus on the computational aspects of optimal transport, namely on approximating Wasserstein
barycenter of a set of histograms.

Starting with Altschuler et al. [2017], several groups of authors addressed the question of Wasser-
stein distance approximation complexity Chakrabarty and Khanna [2018], Dvurechensky et al. [2018b],
Blanchet et al. [2018], Lin et al. [2019]. Implementable schemes are based on Sinkhorn’s algorithm,
which was first applied to OT in Cuturi [2013], and accelerated gradient descent proposed as an al-
ternative in Dvurechensky et al. [2018b]. Much less is known about the complexity of approximating
Wasserstein barycenter. The works Staib et al. [2017], Uribe et al. [2018], Dvurechensky et al. [2018a],
are in some sense close, but do not provide an explicit answer. Following Genevay et al. [2016], Staib
et al. [2017] use stochastic gradient descent and estimate the convergence rate of their algorithm.
From their rate, one can obtain the iteration complexity κR2

ε2
to achieve accuracy ε in approximation

of the barycenter, where κ is some constant depending on the problem data, i.e. transportation cost
matrices, R is some distance characterizing the solution of the dual problem. Dvurechensky et al.
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[2018a] consider regularized barycenter, but do not show, how to choose the regularization parameter
to achieve ε-accuracy.

Following Dvurechensky et al. [2018b], we study two alternative approaches for approximating Wasser-
stein barycenter based on entropic regularization Cuturi [2013]. The first approach is based on Itera-
tive Bregman Projection (IBP) algorithm Benamou et al. [2015], which can be considered as a general
alternating projections algorithm and also as a generalization of the Sinkhorn’s algorithm Sinkhorn
[1974]. The second approach is based on constructing a dual problem and solving it by primal-dual
accelerated gradient descent. For both approaches, we show, how the regularization parameter should
be chosen in order to approximate the original, non-regularized barycenter.

We also address the question of scalability of computations in the Big Data regime, i.e. the size of
histograms n and the number of histograms m are large. In this case the dataset of n histograms can
be distributedly produced or stored in a network of agents/sensors/computers with the network struc-
ture given by an arbitrary connected graph. In a special case of centralized architecture, i.e. if there
is a central "master"node surrounded by ßlave"nodes, parallel algorithms such as Staib et al. [2017]
can be applied. In a more general setup of arbitrary networks it makes sense to use decentralized
distributed algorithms in the spirit of distributed optimization algorithms Nedić et al. [2017], Scaman
et al. [2017].

Related Work

It is very hard to cover all the increasing stream of works on OT and we mention these books Villani
[2008], Santambrogio [2015], Peyré and Cuturi [2018] as a starting point and the references therein.
Approximation of Wasserstein barycenter was considered in Cuturi and Doucet [2014], Bonneel et al.
[2015], Benamou et al. [2015], Staib et al. [2017], Puccetti et al. [2018], Claici et al. [2018], Uribe et al.
[2018], Dvurechensky et al. [2018a] using different techniques as Sinkhorn-type algorithm, first-order
methods, Newton-type methods. Considering the primal-dual approach based on accelerated gradient
descent, our paper shares some similarities with Cuturi and Peyré [2016] with the main difference that
we are focused on complexity and scalability of computations and explicitly analyze the algorithm
applied to the dual problem.

There is a vast amount of literature on accelerated gradient descent with the canonical reference
being Nesterov [1983]. Primal-dual extensions can be found in Lan et al. [2011], Tran-Dinh et al.
[2018], Yurtsever et al. [2015], Chernov et al. [2016], Dvurechensky et al. [2016, 2017], Anikin et al.
[2017], Nesterov et al. [2018], Lin et al. [2019]. We are focused on the extensions amenable to the
decentralized distributed optimization, so that these algorithms can be scaled for large problems.

Distributed optimization algorithms were considered by many authors with the classical reference be-
ing Bertsekas and Tsitsiklis [1989]. Initial algorithms, such as Distributed Gradient Descent Nedic and
Ozdaglar [2009], were relatively slow compared with their centralized counterparts. However, recent
work has made significant advances towards a better understanding of the optimal rates of such al-
gorithms and their explicit dependencies to the function and network parameters Lan et al. [2017],
Scaman et al. [2017], Uribe et al. [2018]. These approaches has been extended to other scenarios
such as time-varying graphs Rogozin et al. [2018], Maros and Jaldén [2018], Wu and Lu [2017]. The
distributed setup is particularly interesting for machine learning applications on the big data regime,
where the number of data points and the dimensionality is large, due to its flexibility to handle intrin-
sically distributed storage and limited communication, as well as privacy constraints He et al. [2018],
Wai et al. [2018].
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Our contributions

� We consider γ-regularized Wasserstein barycenter problem and obtain complexity bounds for
finding an approximation to the regularized barycenter by two algorithms. The first one is It-
erative Bregman Projections algorithm Benamou et al. [2015], for which we prove complexity
proportional to 1

γε
to achieve accuracy ε. The second one is based on accelerated gradient

descent (AGD) and has complexity proportional to
√

n
γε

. The benefit of the second algorithm

is that it is better scalable and can be implemented in the decentralized distributed optimization
setting over an arbitrary network.

� We show, how to choose the regularization parameter in order to find an ε-approximation for
the non-regularized Wasserstein barycenter and find the resulting complexity for IBP to be pro-
portional to mn2

ε2
and for AGD to be proportional to mn2.5

ε
.

� As we can see from the complexity bounds for IBP and AGD, they depend on the regularization
parameter γ quite badly regarding that this parameter has to be small. To overcome this draw-
back we propose a proximal-IBP method, which can be considered as a proximal method using
IBP on each iteration to find the next iterate.

1 Problem Statement and Preliminaries

1.1 Notation

We define the probability simplex as Sn(1) = {q ∈ Rn
+ |

∑n
i=1 qi = 1}. Given two discrete

measures p and q from Sn(1) we introduce the set of their coupling measures as

Π(p, q) = {π ∈ Rn×n
+ : π1 = p, πT1 = q}.

For coupling measure π ∈ Rn×n
+ we denote the negative entropy (up to an additive constant) as

H(π) :=
n∑

i,j=1

πij (ln πij − 1) = 〈π, lnπ − 11
T 〉.

Here and further by ln(A) (exp(A)) we denote the element-wise logarithm (exponent) of matrix or
vector A, and 〈A,B〉 :=

∑n
i,j=1AijBij for any A,B ∈ Rn×n. For two matrices A B we also define

element-wise multiplication and element-wise division as A�B and A
B

respectively. Kullback-Leibler
divergence for measures π, π′ ∈ Rn×n

+ is defined as the Bregman divergence associated with H(·):

KL(π|π′) :=
n∑

i,j=1

(
πij ln

(
πij
π′ij

)
− πij + π′ij

)
= 〈π, ln π − lnπ′〉+ 〈π′ − π,11T 〉.

We also define a symmetric cost matrix C ∈ Rn×n
+ , which element cij corresponds to the cost of

moving bin i to bin j. ‖C‖∞ denotes the maximal element of this matrix.

We refer to λmax(W ) as the maximum eigenvalue of a symmetric matrix W , and λ+
min(W ) as the

minimal non-zero eigenvalue, and define the condition number of matrixW as χ(W ). We use symbol
1 as a column of ones.
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1.2 Wasserstein barycenters and entropic regularization

Given two probability measures p, q ∈ Sn(1) and a cost matrix C ∈ Rn×n we define optimal trans-
portation distance between them as

W(p, q) := min
π∈Π(p,q)

〈π,C〉. (1)

For a given set of probability measures {p1, . . . , pm} and cost matrices C1, . . . , Cm ∈ Rn×n
+ we

define their weighted barycenter with weights w ∈ Sn(1) as a solution of the following convex opti-
mization problem:

min
q∈Sn(1)

m∑
l=1

wlW(pl, q), (2)

where wl ≥ 0, l = 1, ...,m and

m∑
l=1

wl = 1.

We use c to denote maxl=1,...,m ‖Cl‖∞. Using entropic regularization proposed in Cuturi [2013] we
define regularized OT-distance for γ ≥ 0:

Wγ(p, q) := min
π∈Π(p,q)

{〈π,C〉+ γH(π)} . (3)

Respectively, one can consider regularized barycenter that is a solution of the following problem:

min
q∈Sn(1)

m∑
l=1

wlWγ(pl, q). (4)

2 Complexity of WB by Iterative Bregman Projections

In this section we provide theoretical analysis of the Iterative Bregman Projections algorithm Benamou

et al. [2015] for regularized Wasserstein barycenter and obtain iteration complexity O
(
c
γε

)
with c :=

maxl=1,...,m ‖Cl‖∞. Then we estimate the bias itroduced by regularization and estimate the value of γ
to obtain an ε-approximation for the non-regularized barycenter. Combining this result with the iteration

complexity of IBP, we obtain complexity Õ
(
c2mn2

ε2

)
for approximating non-regularized barycenter by

the IBP algorithm. This algorithm can be implemented in a centralized distributed manner such that

each node performs Õ
(
c2n2

ε2

)
arithmetic operations and the number of communication rounds is

Õ
(
c2

ε2

)
.
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2.1 Convergence of IBP for regularized barycenter

In this subsection we analyze Iterative Bregman Projection Algorithm [Benamou et al., 2015, Section
3.2] and analyze its complexity for solving problem (4). We slightly reformulate this problem as

min
q∈Sn(1)

m∑
l=1

wlWγ(pl, q) = min
q∈Sn(1),
πl∈Π(pl,q),
l=1,...,m

m∑
l=1

wl
{
〈πl, Cl〉+ γH(πl)

}

= min
πl∈Rn×n+

πl1=pl, π
T
l 1=πTl+11,

l=1,...,m

m∑
l=1

wl
{
〈πl, Cl〉+ γH(πl)

}
(5)

and construct its dual (see the details below). To solve the dual problem we reformulate the IBP algo-
rithm as Algorithm 11. Notably, our reformulation of the IBP algorithm allows to solve simultaneously
the primal and dual problem and has an adaptive stopping criterion (see line 7), which does not require
to calculate any objective values.

Algorithm 1 Dual Iterative Bregman Projection

Input: C1, . . . , Cm, p1, . . . , pm, γ > 0, ε′ > 0

1: u0
l := 0, v0

l := 0, Kl := exp
(
−Cl

γ

)
, l = 1, . . . ,m

2: repeat
3: vt+1

l :=
∑m

k=1wk lnKT
k e

utk − lnKT
l e

utl , ut+1 := ut

4: t := t+ 1
5: ut+1

l := ln pl − lnKle
vtl , vt+1 := vt

6: t := t+ 1
7: until

∑m
l=1 wl

∥∥BT
l (utl , v

t
l )1− q̄t

∥∥
1
≤ ε′, where Bl(ul, vl) = diag (eul)Kl diag (evl), q̄t :=∑m

l=1wlB
T
l (utl , v

t
l )1

Output: B1(ut1, v
t
1), . . . , Bm(utm, v

t
m)

Before we move to the analysis of the algorithm let us discuss the scalability of this algorithm by
using centralized distributed computations framework. This framework includes a master and slave
nodes. Each l-th slave node stores data pl, Cl, Kl and variables utl , v

t
l . On each iteration t, it

calculates KT
l e

utl and sends it to the master node, which aggregates these products to the sum∑m
k=1wk lnKT

k e
utk and sends this sum back to the slave nodes. Based on this information, slave

nodes update vtl and utl . So, the main computational cost of multiplying a matrix by a vector, can
be distributed on m slave nodes and the total working time will be smaller. It is not clear, how this
algorithm can be implemented on a general network, for example when the data is produced by a
distributed network of sensors without one master node. In contrast, as we illustrate in Section 3, the
alternative accelerated-gradient-based approach can be implemented on an arbitrary network.

1In the original paper Benamou et al. [2015] there were misprints in description of IBP. Correct author’s variant can be
found in https://github.com/gpeyre/2014-SISC-BregmanOT. In Algorithm 1 we use different denota-
tions. First of all, our u corresponds to ln v from Benamou et al. [2015] and our v corresponds to lnu from Benamou et al.
[2015]. Secondly, our transport plan matrix equals to transpose transport plan matrix from Benamou et al. [2015]. Thirdly,
we build a little bit different dual problem, by introducing additional constraint

∑m
l=1 wlvl = 0, see Lemma 1. This allows

us to simplify calculations in line 3 of Algorithm 1.
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Theorem 1. For given ε′ Algorithm 1 stops in number of iterations N satisfying

N ≤ 4 +
44Rv

ε′
= O

(
maxl ‖Cl‖∞

γε′

)
.

It returns B1, . . . , Bm s.t.

m∑
l=1

wl ‖Bl1− q̄‖1 ≤ ε′, q̄ =
m∑
l=1

wlBl1,

and
m∑
l=1

wl (〈Cl, Bl〉+ γH(Bl))−
m∑
l=1

wl
(〈
Cl, π

∗
γ,l

〉
+ γH(π∗γ,l)

)
≤ max

l
‖Cl‖∞ ε

′, (6)

where π∗γ = [π∗γ,1, . . . , π
∗
γ,m] is a solution of problem (5).

Our first step is to recall the IBP algorithm from Benamou et al. [2015], formulate the dual problem for
(5) and show that our Algorithm 1 solves this dual problem and is equivalent to the IBP algorithm.

Following the approach from Benamou et al. [2015] we present the problem (5) in a Kullback–Leibler
projection form.

min
π∈C1∩C2

m∑
l=1

wlKL (πl|θl) , (7)

for θl = exp
(
−Cl

γ

)
and the following affine convex sets C1 and C2

C1 = {π = [π1, . . . , πm] : ∀l πl1 = pl} ,
C2 =

{
π = [π1, . . . , πm] : ∃q ∈ Sn(1) ∀l πTl 1 = q

}
. (8)

Algorithm 2 introduced in Benamou et al. [2015] consists in alternating projections to sets C1 and
C2 w.r.t. Kullback–Leibler divergence, and is a generalization of Sinkhorn’s algorithm and a particular
case of Dykstra’s projection algorithm.

Algorithm 2 Iterative Bregman Projections, see Benamou et al. [2015]

Input: Cost matrices C1, . . . , Cm, probability measures p1, . . . , pm, γ > 0, starting transport plans

{π0
l }ml=1 : π0

l := exp
(
−Cl

γ

)
, l = 1, . . . ,m

1: repeat
2: if t mod 2 = 0 then
3: πt+1 := argmin

π∈C1

∑m
l=1wlKL (πl|πtl )

4: else
5: πt+1 := argmin

π∈C2

∑m
l=1wlKL (πl|πtl )

6: end if
7: t := t+ 1
8: until Converge

Output: πt

As we will show below, this algorithm is equivalent to alternating minimization in dual problem of (5)
presented in the next lemma.
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Lemma 1. The dual problem of (5) is (up to a multiplicative constant)

min
u,v∑

l wlvl=0

f(u, v) where f(u, v) :=
m∑
l=1

wl
{
〈1, Bl(ul, vl)1〉 − 〈ul, pl〉

}
, (9)

u = [u1, . . . , um], v = [v1, . . . , vm], ul, vl ∈ Rn, and

Bl(ul, vl) := diag (eul)Kl diag (evl) , Kl := exp

(
−Cl
γ

)
. (10)

Moreover, solution π∗γ to (5) is given by the formula

[π∗γ]l = Bl(u
∗
l , v
∗
l ), (11)

where (u∗, v∗) is a solution to the problem (9).

Proof. The Lagrangian for (5) is equal to

L(π;λ,µ) =
m∑
l=1

wl
{
〈πl, Cl〉+ γH(πl)

}
+

m∑
l=1

〈λl, πl1− pl〉+
m∑
l=1

〈µl, πTl+11− πTl 1〉

=
m∑
l=1

[
wl
{
〈πl, Cl〉+ γ〈πl, ln πl − 11

T 〉
}

+ 〈λl, πl1− pl〉+ 〈µl−1 − µl, πTl 1〉
]
,

where λ = [λ1, . . . , λm], µ = [µ1, . . . , µm], λl, µl ∈ Rn with convention µ0 ≡ µm ≡ 0. Using the
change of variables ul := −λl/(wlγ) and vl := (µl − µl−1)/(wlγ) we obtain

L(π; u, v) = γ
m∑
l=1

wl

{〈
πl,

Cl
γ

+ ln πl − 11
T − ul1T − 1vTl

〉
+ 〈ul, pl〉

}
. (12)

Notice that
∑m

l=1 wlvl = 0 and this condition allows uniquely reconstruct µ1, . . . , µm. Then by min-
max theorem

min
π:πl∈Rn×n+

πl1=pl, π
T
l 1=πTl+11

m∑
l=1

wl
{
〈πl, Cl〉+ γH(πl)

}
= min

π:πl∈Rn×n+

max
u,v∑

l wlvl=0

L(π; u, v) = max
u,v∑

l wlvl=0

min
π:πl∈Rn×n+

L(π; u, v)

= max
u,v∑

l wlvl=0

γ
m∑
l=1

wl

{
min

πl∈Rn×n+

〈
πl,

Cl
γ

+ ln πl − 11
T − ul1T − 1vTl

〉
+ 〈ul, pl〉

}
.

By straightforward computations and the definition (10) of Bl(ul, vl) we obtain

min
πl∈Rn×n+

〈
πl,

Cl
γ

+ ln πl − 11
T − ul1T − 1vTl

〉
= −

〈
1, exp

(
ul1

T − Cl
γ

+ 1vTl

)
1

〉
= −〈1, Bl(ul, vl)1〉 ,

DOI 10.20347/WIAS.PREPRINT.2665 Berlin 2019
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and the minimum is attained at point πl = Bl(ul, vl). Thus we have

min
π:πl∈Rn×n+

πl1=pl, π
T
l 1=πTl+11

m∑
l=1

wl
{
〈πl, Cl〉+ γH(πl)

}

= max
u,v∑

l wlvl=0

γ

m∑
l=1

wl {−〈1, Bl(ul, vl)1〉+ 〈ul, pl〉+ 1}

= −γ min
u,v∑

l wlvl=0

m∑
l=1

wl {〈1, Bl(ul, vl)1〉 − 〈ul, pl〉} .

Consequently, the dual problem to (5) is equivalent to (9), and solution to (5) has the form [π∗γ]l =
Bl(u

∗
l , v
∗
l ).

The following lemma shows that Algorithms 2 is equivalent to alternating minimization in dual prob-
lem (9) (what is a general fact for Dykstra’s algorithm).

Lemma 2. Sequence {πt}t≥0 generated by Algorithm 2 has a form πtl = Bl(u
t
l , v

t
l ), where Bl(·, ·)

is defined in (10) and

u0 = v0 = 0,

ut+1 := argmin
u

f(u, vt), vt+1 := vt t mod 2 = 0, (13)

vt+1 := argmin
v:
∑m
l=1 wlvl=0

f(ut, v), ut+1 := ut t mod 2 = 1. (14)

Proof. Let us prove it by induction. For t = 0 it is obviously true. Assume it holds for some t ≥ 0.
Then

KL
(
πl|πtl

)
= H(πl)−〈πl, ln πtl 〉+〈πtl ,11T 〉 = H(πl)+

〈
πl,

Cl
γ
− utl1t − 1(vtl )

T

〉
+〈πtl ,11T 〉.

Therefore,

m∑
l=1

wlKL
(
πl|πtl

)
→ min

π∈C

⇐⇒
m∑
l=1

wl
(
〈Cl, πl〉 − γ〈πl1− pl, utl〉 − γ〈πTl 1, vtl 〉

)
= L(π; ut, vt)→ min

π∈C
,

where L comes from (12).

Thus for even t
πt+1 = argmin

π∈C1
L(π; ut, vt),

Lagrangian for this problem has form L(π, u, vt), hence the dual problem is

γf(u, vt)→ min
v
.

and as ut+1 = argminu f(u, vt),
πt+1
l = Bl(u

t+1
l , vtl ).

DOI 10.20347/WIAS.PREPRINT.2665 Berlin 2019
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Similarly, for odd t
πt+1 = argmin

π∈C2
L(π; ut, vt),

with Lagrangian L(π, ut, v) and dual problem

γf(ut, v)→ min
v:
∑m
l=1 wlvl=0

.

Consequently,
πt+1
l = Bl(u

t+1
l , vtl ).

The next lemma gives us explicit recurrent expressions for ut and vt defined in the previous lemma.
Equation (15) immediately follows from [Benamou et al., 2015, Proposition 1], and equation (16) is a
reformulation of [Benamou et al., 2015, Proposition 2].

Lemma 3. Equation (13) for even t is equivalent to

ut+1
l = utl + ln pl − ln

(
Bl

(
ut, vt

)
1
)

= ln pl − lnKle
vtl , (15)

and equation (14) for odd t is equivalent to

vt+1
l = vtl + ln qt+1 − ln qtl =

m∑
k=1

wk lnKT
k e

utk − lnKT
l e

utl , (16)

where qtl := BT
l (utl , v

t
l )1, qt+1 := exp (

∑m
l=1 wl ln q

t
l ).

Now we turn to the proof of Theorem 1. Next lemmas are preliminaries to the proof of correctness and
complexity bound for Algorithm 1.

Lemma 4. For any t ≥ 0, l = 1,m it holds

max
j

[vtl ]j −min
j

[vtl ]j ≤ Rv, max
j

[v∗l ]j −min
j

[v∗l ]j ≤ Rv,

where

Rv := max
l

‖Cl‖∞
γ

+
m∑
k=1

wk
‖Ck‖∞
γ

. (17)

Proof. Bound can be derived in almost the same way as in Dvurechensky et al. [2018b]. For t = 0 it
obviously holds. Let us denote by νl the minimal entry of Kl:

νl := min
i,j

[Kl]ij = e−‖Cl‖∞/γ.

As [Kl]ij ≤ 1, we obtain for all j = 1, n

ln νl + ln〈1, eul〉 ≤ [lnKT
l e

ul ]j ≤ ln〈1, eul〉,

therefore

max
j

[lnKT
l e

ul ]j −min
j

[lnKT
l e

ul ]j ≤ − ln νl =
‖Cl‖∞
γ

.

DOI 10.20347/WIAS.PREPRINT.2665 Berlin 2019



A. Kroshnin, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, N. Tupitsa, C. A. Uribe 10

Hence at any update of vt it holds

max
j

[vtl ]j −min
j

[vtl ]j ≤
‖Cl‖∞
γ

+
m∑
k=1

wk
‖Ck‖∞
γ

≤ Rv.

For solution to the problem (u∗, v∗) condition (16) also holds, and consequently the solution also
meets derived bounds.

Let us define an excess function

f̃(u, v) := f(u, v)− f(u∗, v∗)

for further complexity analysis of Algorithm 1.

Lemma 5. Let {ut, vt}t≥0 be generated by Algorithm 1. Then for any even t ≥ 2 we have

f̃(ut, vt) ≤ Rv

m∑
l=1

wl
∥∥qtl − q̄t∥∥1

. (18)

Proof. Gradient inequality of any convex function g at point x∗ reads as

g(x∗) ≥ g(x) + 〈∇g(x), x∗ − x〉, ∀x ∈ dom(g).

Applying the latter inequality to function f at point (u∗, v∗) we obtain

f̃(ut, vt) = f(ut, vt)− f(u∗, v∗) ≤
m∑
l=1

wl〈utl − u∗l , Bl(u
t
l , v

t
l )1− pl〉+

m∑
l=1

wl〈vtl − v∗l , qtl 〉.

If t ≥ 2 is even, then the first term in r.h.s. vanishes. Notice that 〈qtl ,1〉 = 〈1, Bl(u
t
l , v

t
l )1〉 =

〈1, pl〉 = 1, thus

f̃(ut, vt) =
m∑
l=1

wl〈vtl − v∗l , qtl 〉 =
m∑
l=1

wl〈vtl − v∗l , qtl − q̄t〉

=
m∑
l=1

wl〈(vtl − btl1)− (v∗l − b∗l 1), qtl − q̄t〉

≤
m∑
l=1

wl
(∥∥vtl − btl1∥∥∞ + ‖v∗l − b∗l 1‖∞

) ∥∥qtl − q̄t∥∥1
,

where

btl :=
mini[v

t
l ]i + maxi[v

t
l ]i

2
, b∗l :=

mini[v
∗
l ]i + maxi[v

∗
l ]i

2
.

By Lemma 4 ‖vtl − btl1‖∞ ≤ Rv/2 and ‖v∗l − b∗l 1‖∞ ≤ Rv/2, therefore

f̃(ut, vt) ≤ Rv

m∑
l=1

wl
∥∥qtl − q̄t∥∥1

.
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Lemma 6. For any odd t ≥ 1 the following bound on the change of objective function f(·, ·) holds:

f(ut, vt)− f(ut+1, vt+1) ≥ 1

11

m∑
l=1

wl
∥∥qtl − q̄t∥∥2

1
,

where q̄t :=
∑m

l=1wlq
t
l .

Proof. If t is odd, then vt+1 satisfies (16) and ut = ut+1. Therefore,

f(ut, vt)− f(ut+1, vt+1) =
m∑
l=1

wl
{
〈qtl ,1〉 − 〈qt+1

l ,1〉
}

=
〈
q̄t − qt+1,1

〉
=

〈
q̄t − exp

(
m∑
l=1

wlq
t
l

)
,1

〉
≥ 4

11

n∑
j=1

1

[q̄t]j

m∑
l=1

wl
(
[qtl − q̄t]−j

)2

=
4

11

m∑
l=1

wl

n∑
j=1

(
[qtl − q̄t]−j

)2

[q̄t]j
≥ 4

11

m∑
l=1

wl

(∑
j[q

t
l − q̄t]−j

)2∑n
j=1[q̄t]j

=
1

11

m∑
l=1

wl
∥∥qtl − q̄t∥∥2

1
.

Here we used equations 〈qtl ,1〉 = 〈1, pl〉 = 1, i.e. qtl ∈ Sn(1) and thus q̄t ∈ Sn(1), and the
following fact: if x ∈ Rm

+ , x̄ :=
∑m

l=1 wlxl, then

x̄−
m∏
l=1

xwll ≥
4

11

m∑
l=1

wl

[
(xl − x̄)−

]2
x̄

.

Indeed, let ∆l := xl − x̄, then

x̄−
m∏
l=1

xwll = x̄− exp

{
m∑
l=1

wl ln(x̄+ ∆l)

}
= x̄

(
1− exp

{
m∑
l=1

wl ln

(
1 +

∆l

x̄

)})
,

m∑
l=1

wl ln

(
1 +

∆l

x̄

)
≤

m∑
l=1

wl

(
∆l

x̄
− (∆−l )2

2x̄2

)
= −

m∑
l=1

wl
(∆−l )2

2x̄2
.

Notice that ∆−l := max{−∆l, 0} = max{x̄− xl, 0} ≤ x̄, thus
∑m

l=1wl
(∆−l )2

x̄2
≤ 1 and

exp

{
−1

2

m∑
l=1

wl
(∆−l )2

x̄2

}
≤ 1−

(
1− e−1/2

) m∑
l=1

wl
(∆−l )2

x̄2
≤ 1− 4

11

m∑
l=1

wl
(∆−l )2

x̄2
.

Consequently,

x̄−
m∏
l=1

xwll ≥
4

11

m∑
l=1

wl
(∆−l )2

x̄
.

Proof of Theorem 1. First, notice that

H
(
Bl(ul, vl)

)
= 〈ul, Bl(ul, vl)1〉+ 〈vl, BT

l (ul, vl)1〉 − 〈1, Bl(ul, vl)1〉 −
1

γ
〈Cl, Bl(ul, vl)〉.
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Since N is even, Bl1 = pl and therefore it holds

m∑
l=1

wl (〈Cl, Bl〉+ γH(Bl)) = γ
m∑
l=1

wl
(
〈uNl , Bl1〉+ 〈vNl , BT

l 1〉 − 〈1, Bl1〉
)

= −γ
m∑
l=1

wl
(
〈1, Bl1〉 − 〈uNl , pl〉

)
+ γ

m∑
l=1

wl〈vNl , qNl 〉

= −γf(uN , vN) + γ
m∑
l=1

wl〈vNl , qNl − q̄N〉.

Now Lemmas 1, 4, 5, and stopping criterion yield

m∑
l=1

wl (〈Cl, Bl〉+ γH(Bl))−
m∑
l=1

wl
(
〈Cl, π∗l 〉+ γH(π∗γ,l)

)
= γ

(
f(u∗, v∗)− f(uN , vN)

)
+ γ

m∑
l=1

wl〈vNl , qNl − q̄N〉

≤ γ
m∑
l=1

wl
Rv

2

∥∥qNl − q̄N∥∥1
≤ γRv

2
ε′ ≤ max

l
‖Cl‖∞ ε

′.

Now let us prove the complexity bound. We will do it in two steps.

1. If t ≥ 2 is even, then by Lemma 5

f̃(ut, vt) ≤ Rv

m∑
l=1

wl
∥∥qtl − q̄t∥∥1

and since stopping criterion is not fulfilled,

m∑
l=1

wl
∥∥qtl − q̄t∥∥1

> ε′.

Inequality
∑m

l=1wl ‖qtl − q̄t‖
2
1 ≥ (

∑m
l=1wl ‖qtl − q̄t‖1)

2 together with Lemma 6 give us the following
bound:

f̃(ut, vt)− f̃(ut+1, vt+1) = f(ut, vt)− f(ut+1, vt+1)

≥ 1

11
max

(ε′)2,

(
f̃(ut, vt)

Rv

)2
 = max

{
(ε′)2

11
,

1

11R2
v

f̃ 2(ut, vt)

}
.

If t is odd then we have at least f̃(ut+1, vt+1) ≤ f̃(ut, vt). To simplify derivation we define

δt := f̃(ut, vt). (19)

Now we have two possibilities to estimate number of iteration. The first one is based on inequalities

1

δt+1

≥

{
1
δt

+ 1
11R2

v

δt
δt+1
≥ 1

δt
+ 1

11R2
v
, t mod 2 = 0,

1
δt
, t mod 2 = 1.
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Summation of these inequalities gives

1

δt
≥ 1

δ1

+
t− 2

22R2
v

and hence

t ≤ 2 + 22R2
v

(
1

δt
− 1

δ1

)
. (20)

The second estimate can be obtain from

δt+1 ≤

{
δt − (ε′)2

11
, t mod 2 = 0,

δt, t mod 2 = 1.

Similarly, summation of these inequalities gives

δt ≥ δt − δt+k ≥
k − 1

22
(ε′)2, (21)

k ≤ 1 +
22δt
(ε′)2

. (22)

2. To combine the two estimates (20) and (21), we consider a switching strategy parametrized by
number s ∈ (0, δ1). First t iterations we use (20), resulting in δt becomes below some s. Then, we
use s as a starting point and estimate the remaining number of iteration by (21). The quantity s can
be found from the minimization

N = t+ k ≤ 4 +
2s

(ε′)2
+ 22R2

v

(
1

s
− 1

δ1

)
.

Minimizing the r.h.s. of the latter inequality in s leads to

N ≤ min
0≤s≤δ1

{
4 +

22s

(ε′)2
+ 22R2

v

(
1

s
− 1

δ1

)}
≤ 4 +

44Rv

ε′
. (23)

The last inequality is obtained by the substitution s = Rvε
′ that is the solution to the minimization

problem. Of course, the switching strategy is impossible if δ1 < s. But in this case (21) gives

N ≤ 2 +
22δ1

(ε′)2
< 4 +

44Rv

ε′
. (24)

In both cases (23) and (24) we have

N ≤ 4 +
44Rv

ε′
= O

(
maxl ‖Cl‖∞

γε′

)
.

2.2 Approximating Non-regularized WB by IBP

To find an approximate solution to the initial problem (2) we apply Algorithm 1 with a suitable choice of
γ and ε′ and average marginals q1, . . . , qm with weights wl, what leads to Algorithm 3.
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Algorithm 3 Finding Wasserstein barycenter by IBP

Input: Accuracy ε; cost matrices C1, . . . , Cm; marginals p1, . . . , pm
1: Set γ := 1

4
ε

lnn
, ε′ := 1

4
ε

maxl‖Cl‖∞
2: Find B1 := B1(ut1, v

t
1), . . . , Bm := Bm(utm, v

t
m) by Algorithm 1 with accuracy ε′

3: q := 1∑m
l=1 wl〈1,Bl1〉

∑m
l=1wlB

T
l 1

Output: q

To present our final complexity bound for Algorithm 3, which calculates approximated non-regularized
Wasserstein barycenter, we formulate the following auxiliary Algorithm 4 finding a projection to the
feasible set. It is based on Algorithm 2 from Altschuler et al. [2017]. Notice that the bound (25) follows
immediately from the proof of [Altschuler et al., 2017, Theorem 4], although it was not stated explicitly.

Algorithm 4 Round to feasible solution

Input: B1, . . . , Bm ∈ Rn×n
+ , p1, . . . , pm ∈ Sn(1)

1: q := 1∑m
l=1 wl〈1,Bl1〉

∑m
l=1wlB

T
l 1

2: Calculate B̌1, . . . , B̌m by Algorithm 2 from Altschuler et al. [2017] s.t.

B̌l ∈ Π(pl, q),
∥∥B̌l −Bl

∥∥
1
≤ 2

(∑
i

[Bl1− pl]+i +
∑
j

[BT
l 1− q]+j

)
(25)

Output: B̌1, . . . , B̌m

Next theorem presents complexity bound for Algorithm 3.

Theorem 2. For given ε Algorithm 3 returns q ∈ Sn(1) s.t.

m∑
l=1

wlW(pl, q)−
m∑
l=1

wlW(pl, q
∗) ≤ ε,

where q∗ is a solution to non-regularized problem (2). It requires

O

((
maxl ‖Cl‖∞

ε

)2

Mm,n lnn+mn

)

arithmetic operations, where Mm,n is a time complexity of one iteration of Algorithm 1.

Remark 1. As each iteration of Algorithm 1 requiresmmatrix-vector multiplications, the general bound
is Mm,n = O(mn2). However, for some specific form of matrices Cl it’s possible to achieve better
complexity, e.g. Mm,n = O(mn log n) via FFT Peyré and Cuturi [2018].

Proof. Let π∗γ = [π∗γ,1, . . . , π
∗
γ,m] be a solution to (5) and π∗ = [π∗1, . . . , π

∗
m] be a solution to

the non-regularized problem. Consider B̌1, . . . , B̌m obtained from B1(ut1, v
t
1), . . . , Bm(utm, v

t
m) via

Algorithm 4, where t is the number of IBP iterations. Then we obtain

m∑
l=1

wl〈Cl, B̌l〉 ≤
m∑
l=1

wl
(
〈Cl, Bl(u

t
l , v

t
l )〉+ ‖Cl‖∞

∥∥Bl(u
t
l , v

t
l )− B̌l

∥∥
1

)
.
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By Theorem 1 one obtains

m∑
l=1

wl〈Cl, Bl(u
t
l , v

t
l )〉 ≤

m∑
l=1

wl
(
〈Cl, π∗γ,l〉+ γH(π∗γ,l)− γH(Bl(u

t
l , v

t
l ))
)

+ max
l
‖Cl‖∞ ε

′

≤
m∑
l=1

wl
(
〈Cl, π∗l 〉+ γH(π∗l )− γH(Bl(u

t
l , v

t
l ))
)

+ max
l
‖Cl‖∞ ε

′

≤
m∑
l=1

wlW(pl, q
∗) + 2γ lnn+ max

l
‖Cl‖∞ ε

′.

Here we used inequalities−2 lnn ≤ H(π) + 1 ≤ 0 holding on Sn×n(1). As stopping time t is even,
Bl(u

t
l , v

t
l )1 = pl and 〈qtl ,1〉 = 1, therefore∥∥Bl(u

t
l , v

t
l )− B̌l

∥∥
1
≤ 2

∑
j

[qtl − q̄t]+j =
∥∥qtl − q̄t∥∥1

,

and hence
m∑
l=1

wl
∥∥Bl(u

t
l , v

t
l )− B̌l

∥∥
1
≤ ε′.

Notice that B̌l ∈ Π(pl, q) for all 1 ≤ l ≤ m, consequently

m∑
l=1

wlW(pl, q) ≤
m∑
l=1

wl〈Cl, B̌l〉

≤
m∑
l=1

wl〈Cl, Bl(u
t
l , v

t
l )〉+ max

l
‖Cl‖∞

m∑
l=1

wl
∥∥Bl(u

t
l , v

t
l )− B̌l

∥∥
1

≤
m∑
l=1

wlW(pl, q
∗) + 2γ lnn+ 2 max

l
‖Cl‖∞ ε

′ ≤
m∑
l=1

wlW(pl, q
∗) + ε.

Complexity bound for the algorithm is a simple corollary of Theorem 1.

Remark 2. Notice that according to the proof of the above theorem, one can also reconstruct approx-
imated optimal transportation plans B̌l between pl and approximated barycenter q using Algorithm 4.

2.3 Proximal IBP for Wasserstein barycenter problem

As we see from Theorems 1 and 2, to obtain an ε-approximation of the non-regularized barycenter,
the regularization parameter γ should be chosen proportional to small ε and the complexity of the IBP
is inversely proportional to γ, which leads to large working time and instability issues. To overcome
this obstacle we propose a novel proximal-IBP algorithm. It is inspired by proximal point algorithm
with general Bregman divergence V (x, y) Chen and Teboulle [1993]. The idea of this algorithm for
minimization of a function f(x) is to perform steps xk+1 = prox(xk) = arg minx∈Q{f(x) +
γV (x, xk)}. We use the KL-divergence as the Bregman divergence since in this case the proximal
step leads to a similar problem to the entropic-regularized WB (4). Given the sets C1, C2 defined in (8),
we define proximal operator prox : C1 ∩ C2 → C1 ∩ C2 for function

∑m
l=1wlWγ(pl, ql) as follows
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prox(πk) = arg min
π∈C1∩C2

m∑
l=1

wl
{
〈Cl, πl〉+ γKL(π|πk)

}
= arg min

π∈C1∩C2

n∑
i,j=1

m∑
l=1

wl

{
[Cl]ij · [πl]ij + γ

(
[πl]ij ln

(
[πl]ij
[πkl ]ij

)
− [πl]ij + [πkl ]ij

)}

= arg min
π∈C1∩C2

m∑
l=1

wlKL

(
πl|πkl � exp

(
−Cl
γ

))
,

The proximal gradient method has the following form

πk+1 = prox(πk). (26)

Then we use Iterative Bregman Projection for finding the barycenter.

For convenience let’s determine after Dual_IBP(u0, v0, {Kl},M) the following objects uM , vM ;
{Bl(u

M
l , v

M
l )}; q̄M obtained after M iterations of Algorithm 1 applied with starting points u0, v0

and set of matrices {Kl}.

Algorithm 5 Finding Wasserstein barycenter by proximal IBP

Input: M , N — numbers of internal and external iterations respectively; u0,0 = 0 v0,0 = 0; starting

transport plans {π0
l }ml=1 : π0

l = exp
(
−Cl

γ

)
∀l = 1, . . . ,m

1: For each agent l ∈ V :
2: for k = 0, . . . , N − 1 do
3: Kk

l := πkl � exp(−Cl
γ

)

4: Run Algorithm 1 for M iterations with starting point u0,k, v0,k and kernels {Kk
l } instead of

{Kl}.
5: Set u0,k+1

l = uMl , v0,k+1
l = vMl , where the sequence of dual variables (utl , v

t
l ) is generated

by Algorithm 1.
6: Set πk+1

l = Bl(u
M
l , v

M
l ).

7: end for
Output: q̄M , generated on the last inner iteration of Algorithm 1 on the last outer iteration.

We underline that in this setting, there is no need to choose γ to be small as it prescribed by Theorem
3. Algorithm 5 has two loops: external loop of proximal gradient step and internal loop of computing
the next iterate πk by IBP and as a byproduct an approximation qk to the barycenter. The number of
external iterations is proportional to γ

ε
, see Chen and Teboulle [1993], and the complexity of internal

loop is proportional to min
{

const
γε̃

, exp
(

const
γ

)
ln
(

1
ε̃

)}
, where ε̃ = O(ε2/(mn3)) is a required pre-

cision for inner problem Stonyakin et al. [2019]. The first estimate directly follows from IBP complexity
(see Theorem 1) and the second estimate (analogous to Franklin and Lorenz [1989] for Sinkhorn’s al-
gorithm) can be obtained using strong convexity of f(u, v). Namely, one can show that (cf. Lemma 1
in Dvurechensky et al. [2018b])

max
i

[utl ]i −min
i

[utl ]i ≤ ln(max
i

[pl]i)− ln(min
i

[pl]i) +
‖Cl‖∞
γ

and thus for any l, t it holds

0 ≤ −[lnBl(u
t
l , v

t
l )]ij ≤ 4

maxl ‖Cl‖∞
γ

+ 2 lnn− ln min
i

[pl]i ∀i, j.
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Moreover, this bound holds on the convex hull of {(ut, vt)}t≥0. Therefore

λ+
min(∇2

(ul,vl)
f(ut, vt)) ≥ wl

mini[pl]i
n2

exp

(
−4

maxl ‖Cl‖∞
γ

)
.

This estimate implies linear convergence and thus the following complexity bound for IBP:

O

(
n2

minl,i[pl]i
exp

(
4 maxl ‖Cl‖∞

γ

)
ln

(
1

ε̃

))
= O

(
exp

(
const

γ

)
ln

(
1

ε̃

))
.

Note that since in practice const is not too big, then setting γ = Õ(const) one can typically improve
the complexity of IBP by KL-proximal envelope as is follows: 1/ε2 → 1/ε. The last bound (based on
the similar reasons as in Blanchet et al. [2018]) seems to be unimprovable for this problem (see also
item 3). In practice one should try to find const by restart procedure on γ on the first external loop
iteration. That is, we start with large enough γ and solve internal problem by IBP, then put γ := γ/2
and solve internal problem (with the same precision ε̃) once again. We stop this repeating procedure
at the moment when the complexity of internal problem growth significantly. This moment allows us to
detect the moment of γ = Õ(const). On the next external iterations one may use this γ.

Numerical experiments and more accurate theoretical analysis can be found in the follow-up paper
Stonyakin et al. [2019].

Algorithm 5 can be implemented in centralized distributed setting in the same way as Algorithm 1, see
Section 2.1.

3 Complexity by Primal-Dual Accelerated Gradient Descent

In this subsection we consider Primal-Dual Accelerated Gradient Descent for approximating Wasser-
stein barycenter. First, we consider regularized barycenter, construct a dual problem to (4) and apply
primal-dual accelerated gradient descent to solve it and approximate the regularized berycenter. Our
dual problem is constructed via a matrix W , which can be quite general. We explain how the choice
of this matrix is connected to distributed optimization and allows to implement the algorithm in the de-
centralized distributed setting. Then, we show, how the regularization parameter should be chosen in
order to obtain an ε-approximation for the non-regularized Wasserstein barycenter, and estimate the
complexity of the resulting algorithm. The proposed algorithms can be implemented in a decentralized
distributed manner such that each node fulfils Õ(n2.5/ε) arithmetic operations and the number of
communication rounds is Õ(

√
n/ε) .

3.1 Consensus view on Wasserstein barycenter problem

We rewrite the problem (4) in an equivalent way as

min
q1,...,qm∈Sn(1)
q1=···=qm

Wγ(p, q) :=
m∑
l=1

wlWγ(l)(pl, ql), (27)

where p = [p1, . . . , pm]T and q = [q1, . . . , qm]T , we also use different regularizer γl = γ(l) for l-th
Wasserstein distance. Next we write a dual problem by dualizing equality constraints q1 = · · · = qm.
This can be done in many different ways and we do it by introducing a matrix W̄ ∈ Rn×n which is a
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symmetric positive semi-definite matrix s.t. Ker(W̄) = span(1). Then, defining W = W̄ ⊗ In and
using the fact q1 = · · · = qm ⇐⇒

√
Wq = 0, we equivalently rewrite problem (27) as

max
q1,...,qm∈Sn(1),√

Wq=0

−
m∑
l=1

wlWγ(l)(pl, ql), (28)

Dualizing the linear constraint
√
Wq = 0, we obtain the dual problem

min
u∈Rmn

max
q∈Rnm

{
m∑
l=1

〈ul, [
√
Wq]l〉 −

m∑
l=1

wlWγ(l)(pl, ql)

}
= min

u∈Rmn

m∑
l=1

wlW∗γ(l),pl
([
√
Wu]l/wl)

(29)

whereW∗γ(l),pl
(·) is the Fenchel–Legendre transform ofWγ(l)(pl, ·), [

√
Wq]i and [

√
Wu]i represent

the i-th n-dimensional block of vectors
√
Wq and

√
Wu respectively. We apply distributed primal-dual

accelerated gradient descent Algorithm 6 to solve the constructed pair of primal and dual problems.

Before we move to the theoretical analysis of the algorithm, let us discuss the scalability of Algorithm 6.
Assume that we have an arbitrary network of agents given by connected undirected graphG = (V,E)
without self-loops with the set V of n vertices and the set of edges E = {(i, j) : i, j ∈ V }. Then
matrix W̄ can be chosen as the Laplacian matrix for this graph, which is such that a) [W̄ ]ij = −1 if
(i, j) ∈ E, b) [W̄ ]ij = deg(i) if i = j, c) [W̄ ]ij = 0 otherwise. Here deg(i) is the degree of the
node i, i.e., the number of neighbors of the node. We assume that an agent i can communicate with
an agent j if and only if the edge (i, j) ∈ E. In particular, the Laplacian matrix for star graph, which
corresponds to the centralized distributed computations discussed in Section 2 is

W̄ : {∀i = 1, . . . ,m− 1 W̄ii = 1, W̄im = W̄mi = −1, W̄mm = m− 1}. (30)

Algorithm 6 allows to perform calculations in an arbitrary connected undirected network of agents.
This is in contrast to the IBP algorithm as discussed in Section 2.

For simplicity and comparison with the complexity of the IBP algorithm, we analyze the complexity of
Algorithm 6 as if it is implemented on one machine, disregarding that it can be used for distributed
setup.

Theorem 3. Algorithm 6 after N = 1
ε

√
64χ(W̄ )mn lnn

∑m
l=1w

2
l ‖Cl‖2

∞ iterations generates an
ε-solution of problem (2), i.e. finds a vector qN = [qT1 , . . . , q

T
m]T s.t.

m∑
l=1

wlW(pl, q
N
l )−

m∑
l=1

wlW(pl, q
∗) ≤ ε, ‖

√
WqN‖2 ≤ ε/2R, (31)

where q∗ is an unregularized barycenter, i.e. is a solution to (2), and R is a bound on the solution to
the dual problem. Moreover, the number of arithmetic operations is O

(
N · n(mn+ nnz(W̄ ))/ε

)
.

The proof is based on the complexity theorem of primal-dual accelerated gradient descent for a partivu-
lar pair of primal-dual problems (27)–(29).

Theorem 4 (see [Dvurechensky et al., 2017, Theorem 2]). Let accelerated primal-dual gradient de-
scent be applied to the pair of problems (27)–(29). Then inequalities

m∑
l=1

wlWγ(l)(pl, q
N
l )−

m∑
l=1

Wγ(l)(pl, q
∗) ≤ ε/2, ‖

√
WqN‖2 ≤ ε/2R (32)

DOI 10.20347/WIAS.PREPRINT.2665 Berlin 2019



On the complexity of approximating Wasserstein barycenter 19

Algorithm 6 Accelerated Distributed Computation of Wasserstein barycenter

Input: Each agent l ∈ V is assigned its measure pl and an upper bound L for the Lipschitz constant
of the gradient of the dual objective.

1: Each agent finds p̃l ∈ Sn(1) s.t. ‖p̃l − pl‖1 ≤ ε/4 and mini[p̃l]i ≥ ε/(8n) and redefine

pl := p̃l. E.g., p̃l =
(
1− ε

8

) (
pl + ε

n(8−ε)1
)

.

2: All agents l ∈ V set γ(l) = ε
4mwl lnn

, η0
l = ζ0

l = λ0
l = q̂0

l = 0 ∈ Rn, A0 = α0 = 0 and N .
3: For each agent l ∈ V :
4: for k = 0, . . . , N − 1 do
5: Find αk+1 as the largest root of the equation Ak+1 := Ak + αk+1 = 2Lα2

k+1.

6: λk+1
l = (αk+1ζ

k
l + Akη

k
l )/Ak+1.

7: Calculate∇W∗γ(l),pl
(λk+1

l ):

[∇W∗γ(l),pl
(u)]i =

∑n
j=1[pl]j

exp(([u]i−[Cl]ij)/γ(l))∑n
r=1 exp(([u]r−[Cl]rj)/γ(l))

8: Share∇W∗γ(l),pl
(λk+1

l ) with {j | (i, j) ∈ E}.
9: ζk+1

l = ζkl − αk+1

∑m
j=1Wlj∇W∗γ(l),pj

(λk+1
j ).

10: ηk+1
l = (αk+1ζ

k+1
l + Akη

k+1
l )/Ak+1.

11: qk+1
l = 1

Ak+1

∑k+1
l=0 αiqi(λ

k+1
l ) = (αk+1qi([λk+1]l) + Akq

k
l )/Ak+1,

where ql(·) is defined as∇W∗γ(l),pl
(·).

12: end for
Output: qN = [qT1 , . . . , q

T
m]T .

hold no later than after N =
√

32LR2

ε
iterations, where L is the Lipschitz constant of the gradient of

the dual objective and R is such that ‖u∗‖2 ≤ R, u∗ being an optimal dual solution.

Our next steps are to find the bounds for L in the next Lemma and R in Lemma .

Lemma 7. Let in (27) γ(l) = γ/wl for some γ > 0, andW∗γ(u) denote the dual objective in (29).
Then its gradient is L = λmax(W )/γ-Lipschitz continuous w.r.t. 2-norm.

Proof. Making the change of variable [λ]l = [
√
Wu]l/wl, by the chain rule, the i-th n-dimensional

block of∇W∗γ(u) is

[
∇W∗γ(u)

]
i

=

[
∇

m∑
l=1

wlW∗γ(l),pl
([
√
Wu]l/wl)

]
i

=
m∑
l=1

√
W il∇W∗γ(l),pl

(λl), i = 1, . . . ,m.

(33)
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Thus,

‖∇W∗γ(u1)−∇W∗γ(u2)‖2
2

(33)
=

∥∥∥∥∥∥∥
√
W

 ∇W
∗
γ(1),p1

([λ1]1)

...

∇W∗γ(m),pm([λ1]m)

−√W
 ∇W

∗
γ(1),p1

([λ2]1)

...

∇W∗γ(m),pm([λ2]m)


∥∥∥∥∥∥∥

2

2

≤ (λmax(
√
W ))2

∥∥∥∥∥∥∥
∇W∗γ(1),p1

([λ1]1)−∇W∗γ(m),p1
([λ2]1)

...

∇W∗γ(1),pm([λ1]m)−∇W∗γ(m),pm([λ2]m)

∥∥∥∥∥∥∥
2

2

= (λmax(
√
W ))2

m∑
i=1

∥∥∇W∗γ(i),pi
([λ1]i)−∇W∗γ(i),pi

([λ2]l)
∥∥2

2

≤ (λmax(
√
W ))2

m∑
i=1

1

γ2(i)
‖[λ1]l − [λ2]l‖2

2

= (λmax(
√
W ))2

m∑
i=1

1

γ2(i)

∥∥∥[
√
W (u1 − u2)]i/wi

∥∥∥2

2
,

where we used notation [λ]i = [
√
Wu]i/wi, the definition of matrix

√
W , 1/γ(i)-Lipschitz continuity

of ∇W∗γ(i),pi
(·) for all i = 1, . . . ,m by [Cuturi and Peyré, 2016, Theorem 2.4]. Since γ(i) = γ/wi,

i = 1, . . . ,m, we obtain

‖∇W∗γ(u1)−∇W∗γ(u2)‖2
2 ≤

(λmax(
√
W ))2

γ2

∥∥∥√W (u1 − u2)
∥∥∥2

2
(34)

≤ (λmax(
√
W ))4

γ2
‖u1 − u2‖2

2 , (35)

Since (λmax(
√
W ))4 = (λmax(W ))2, we get the statement of Lemma.

The following Lemma is inspired by Lan et al. [2017].

Lemma 8. Let q∗γ be the optimal solution of problem (4) with minimal 2-norm, then there exists an
optimal dual solution λ∗ = [λ∗1, . . . , λ

∗
m] for problem (29) satisfying ‖λ∗‖2 ≤ R with

R2 =
2n
∑m

l=1w
2
l ‖Cl‖2

∞

λ+
min(W )

. (36)

Here λ+
min(W ) is the minimal positive eigenvalue of the matrix W .

Proof. Recall thatWγ(p, ·) denotes the objective value in the primal problem (27). Then

−Wγ(p, q
∗
γ) = 〈λ∗,

√
Wq∗γ〉 −Wγ(p, q

∗
γ)

=W∗γ,p(
√
Wλ∗) = max

ql∈Sn(1),
l=1,...,m

{〈λ∗l ,
√
Wql〉 −Wγ(p, q)}

≥ 〈λ∗, [
√
Wq]l〉 −Wγ(p, q) = 〈λ∗,

√
Wq−

√
Wq∗γ〉 −Wγ(p, q)

= 〈
√
Wλ∗, q∗γ − q〉 −Wγ,p(q),

DOI 10.20347/WIAS.PREPRINT.2665 Berlin 2019



On the complexity of approximating Wasserstein barycenter 21

where we used W T = W and q∗γ is the regularized barycenter.

From this inequality and using the convexity ofWγ(p, q) we have∇Wγ(p, q
∗) = −

√
Wλ∗.

Then we have

‖∇Wγ(p, q
∗)‖2

2 =
∥∥∥−√Wλ∗

∥∥∥2

2
= 〈
√
Wλ∗,

√
Wλ∗〉 = 〈λ∗,Wλ∗〉

≥ λ+
min(W ) ‖λ∗‖2

2 , (37)

where the last inequality holds due to λ∗ ∈
(

Ker(
√

W)
)⊥

Hence, we get

‖λ∗‖2
2 ≤ R2 =

∥∥∇Wγ(p, q
∗
γ)
∥∥2

2

λ+
min(W )

=

∑m
l=1w

2
l

∥∥∇Wγ(l)(pl, q
∗
γ)
∥∥2

2

λ+
min(W )

(38)

Let us now estimate
∥∥∇Wγ(l)(pl, q

∗
γ)
∥∥2

2
. From (3), we can construct the dual problem to the regular-

ized optimal transport problem

Wγ(l)(p, q) = min
π∈Π(p,q)

{〈π,C〉+ γ(l)H(π)}

= max
µ,ν

{
−〈µ, p〉 − 〈ν, q〉 − γ(l)

e
e−

µ
γ(l) e−

C
γ(l) e−

ν
γ(l)

}
= γmax

µ,ν

{
−〈µ, p〉 − 〈ν, q〉 − γ(l)

e
e−

µ
γ(l) e−

C
γ(l) e−

ν
γ(l)

}
(39)

By [Cuturi and Peyré, 2016, Proposition 2.3],∇qWγ(l)(p, q) = −ν∗, where ν∗ is the solution to the
dual problem satisfying 〈ν∗,1〉 = 0. Hence, mini=1,...,n ν

∗
i ≤ 0 ≤ maxi=1,...,n ν

∗
i . As it follows from

[Dvurechensky et al., 2018b, Lemma 1]

max
i=1,...,n

ν∗i − min
i=1,...,n

ν∗i ≤ ‖Cl‖∞ − γ(l) ln (mini[pl]i) = ‖Cl‖∞ + γ(l) ln

(
8n

ε

)
,

where we used the fact that the pl was redefined in Algorithm 6 in such a way that mini[pl]i ≥ ε
8n

and also that our variable ν∗ and their dual variable u∗ satisfy u∗ = − ν∗

γ(l)
− 1

2
. Making the same

arguments as in the proof [Lin et al., 2019, Lemma 3.2.], we obtain from the above two facts that

‖ν∗‖2 ≤ ‖ν∗‖∞
√
n ≤ ‖Cl‖∞

√
n+

γ

wl
ln

(
8n

ε

)
,

where we used that γ(l) = γ/wl. Thus,

m∑
l=1

w2
l

∥∥∇Wγ(l)(pl, q
∗
γ)
∥∥2

2
≤ 2n

m∑
l=1

w2
l ‖Cl‖2

∞ + 2γ2 ln2

(
8n

ε

)
.

Since γ is chosen proportional to ε which is small, we can neglect the second term in comparison with
the first one.

Proof of Theorem 3. By Theorem 4, we have

m∑
l=1

wlWγ(l)(pl, q
N
l )−

m∑
l=1

Wγ(l)(pl, q
∗) ≤ ε/2, ‖

√
WqN‖2 ≤ ε/2R (40)
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Since KL(π|θ) ≥ 0, we have

m∑
l=1

wlW(pl, q
N
l )−

m∑
l=1

wlW(pl, q
∗) ≤

m∑
l=1

wlWγ(l)(pl, q
N
l )−

m∑
l=1

wlW(pl, q
∗). (41)

By definition of the objectiveWγ(p, ·) in (27),

m∑
l=1

wlWγ(l)(pl, q
∗) = min

q1=···=qm
q1,...qm∈Sn(1)

m∑
l=1

wl min
π∈Π(pl,ql)

{
n∑

i,j=1

Cijπij + γKL(π|θ)

}

≤ min
q1=···=qm

q1,...qm∈S1(n)

m∑
l=1

{
min

π∈Π(pl,ql)
wl

n∑
i,j=1

Cijπij + wl max
π∈Π(pl,ql)

γKL(π|θ)

}

≤ min
q1=···=qm

q1,...qm∈Sn(1)

m∑
l=1

{
min

π∈Π(pl,ql)

n∑
i,j=1

Cijπij + 2
m∑
l=1

wlγ(l) lnn

}

≤ min
q1=···=qm

q1,...qm∈Sn(1)

m∑
l=1

W(pl, ql) + 2 lnn
m∑
l=1

wlγ(l)

=
m∑
l=1

W(pl, q
∗) + 2 lnn

m∑
l=1

wlγ(l), (42)

where we chose θij = 1/n2 for all i, j = 1, . . . n so KL(π|θ) ∈ [0, 2 lnn].

Substituting (42) in (41) we get

m∑
l=1

wlWγ(l)(pl, q
N
l )−

m∑
l=1

wlW(pl, q
∗) ≤

m∑
l=1

wlWγ(l)(pl, q
N
l )

−
m∑
l=1

wlWγ(l)(pl, q
∗) + 2 lnn

m∑
l=1

wlγ(l) (43)

Using this inequality and (40) we get

m∑
l=1

wlW(pl, q
N
l )−

m∑
l=1

wlW(pl, q
∗) ≤ ε/2 + 2 lnn

m∑
l=1

wlγl. (44)

Since γ(l) = γ/wl with γ = ε/(4m lnn), we obtain thath the inequality 40 hold. Combining the
values of γ, L from Lemma 7, R from Lemma 8 with the estimate for N in Theorem 4 and the fact
that χ(W ) = χ(W̄ ), we obtain an estimate for the number of iterations of the algorithm. Let us
estimate the complexity of the algorithm. For each l we need to calculate the gradient W∗γ(l),pl

(·),

which requires O(n2) arithmetic operations. To calculate
∑m

j=1Wlj∇W∗γ(l),pl)
(λk+1

j ) one needs

O(n · nnz(W̄l)) arithmetic operations, where nnz(W̄l) is the number of non-zero elements in matrix
W̄ in the l row. More precisely, the dimension of∇W∗γ(l),pl

(·) is n and the matrix Wlj is diagonal for
each l, j = 1, . . . ,m. Using definition of W we get that the complexity of calculating the gradient.
Other operations require O(n) operations. Hence, the complexity of one iteration is

O

(
mn2 +

m∑
l=1

n · nnz(W̄l)

)
= O

(
mn2 + n · nnz(W̄ )

)
(45)
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and the total complexity follows from multiplying this value by N .

Let us make a couple of remarks. As for the choice of W̄ one can show (by using graph sparsi-
ficators) that it can be chosen such that χ(W ) = χ(W̄ ) = O(Poly(ln(m))) and nnz(W̄ ) =
O(mPoly(ln(m))). For details on the graph sparsificators we refer to Vaidya [1990], Bern et al.
[2006], Spielman and Teng [2014]. In the simple case of equal weights wl = 1

m
, the complexity

of approximating non-reguarized barycenter by accelerated gradient descent can be estimated as
Õ(mn2.5/ε). In the distributed setting, each of m nodes makes Õ(n2.5/ε) arithmetic operations,
while the number of communications rounds is Õ(

√
n/ε). The case of general weights is interesting

with respect to bootstrap procedure allowing to construct confidence sets for barycenter Ebert et al.
[2017].

There is an interesting connection of our work with Cuturi and Peyré [2016]. Consider a particular case
of equal weights w1 = · · · = wm = 1 and matrix W̄ corresponding to the star graph topology. Then
the dual problem (27) has the form

min
λ1,...,λm∈Rn

{
m−1∑
l=1

W∗γ,pl

(
λl −

1

m
λm

)
+W∗γ,pm

(
m− 1

m
λm −

m−1∑
l=1

λl

)}
(46)

Changing the variable λ̂l = λl − 1
m
λm we come to the following formulation.

min
λ̂1,...,λ̂m−1∈Rn

m−1∑
l=1

W∗γ,pl(λ̂l) +W∗γ,pm

(
−

m−1∑
l=1

λ̂l

)
(47)

Hence, the approach presented in Cuturi and Peyré [2016], in Theorem 3.1 is the particular case for
the approach described above, corresponding to the the star graph.

Conclusion

In this paper we show that IBP algorithm from Benamou et al. [2015] for Wasserstein barycenter prob-
lem can be implemented in a centralized distributed manner such that each node fulfils Õ (n2/ε2)

arithmetic operations and the number of communication rounds is Õ (1/ε2). We note that proper
proximal envelope of this algorithm can sometimes accelerate this bounds in terms of the dependence
of ε. We also describe accelerated primal-dual gradient algorithm for the same problem. The pro-
posed algorithm can be implemented in a more general decentralized distributed setting such that, to
find an ε-approximation for the non-regularized barycenter, each node performs Õ(n2.5/ε) arithmetic
operations and the number of communication rounds is Õ(

√
n/ε).
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algorithms in distributed optimization over networks. arXiv preprint arXiv:1809.00710, 2018.

P Vaidya. Solving linear equations with diagonally dominant matrices by constructing good precondi-
tioners. Technical report, Technical report, Department of Computer Science, University of Illinois,
1990.

Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media,
2008.

Hoi-To Wai, Nikolaos M Freris, Angelia Nedic, and Anna Scaglione. Sucag: Stochastic unbiased
curvature-aided gradient method for distributed optimization. arXiv preprint arXiv:1803.08198,
2018.

DOI 10.20347/WIAS.PREPRINT.2665 Berlin 2019

http://proceedings.mlr.press/v70/scaman17a.html
http://proceedings.mlr.press/v70/scaman17a.html
http://papers.nips.cc/paper/6858-parallel-streaming-wasserstein-barycenters.pdf
http://papers.nips.cc/paper/6858-parallel-streaming-wasserstein-barycenters.pdf
https://doi.org/10.1137/16M1093094


A. Kroshnin, D. Dvinskikh, P. Dvurechensky, A. Gasnikov, N. Tupitsa, C. A. Uribe 28

Xuyang Wu and Jie Lu. Fenchel dual gradient methods for distributed convex optimization over time-
varying networks. In Decision and Control (CDC), 2017 IEEE 56th Annual Conference on, pages
2894–2899. IEEE, 2017.

Alp Yurtsever, Quoc Tran-Dinh, and Volkan Cevher. A universal primal-dual convex optimization frame-
work. In Proceedings of the 28th International Conference on Neural Information Processing Sys-
tems, NIPS’15, pages 3150–3158, Cambridge, MA, USA, 2015. MIT Press.

DOI 10.20347/WIAS.PREPRINT.2665 Berlin 2019


	Problem Statement and Preliminaries
	Notation
	Wasserstein barycenters and entropic regularization

	Complexity of WB by Iterative Bregman Projections
	Convergence of IBP for regularized barycenter
	Approximating Non-regularized WB by IBP
	Proximal IBP for Wasserstein barycenter problem

	Complexity by Primal-Dual Accelerated Gradient Descent
	Consensus view on Wasserstein barycenter problem


