
Weierstraß-Institut
für Angewandte Analysis und Stochastik

Leibniz-Institut im Forschungsverbund Berlin e. V.

Preprint ISSN 2198-5855

Millions of Perrin pseudoprimes including a few giants

Holger Stephan

submitted: December 16, 2019

Weierstrass Institute
Mohrenstr. 39
10117 Berlin
Germany
E-Mail: holger.stephan@wias-berlin.de

No. 2657

Berlin 2019

2010 Mathematics Subject Classification. 11B37, 11B39, 11B50.

Key words and phrases. Pseudoprimes, recurrence sequences, fast algorithm, large numbers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Publications Server of the Weierstrass Institute for Applied Analysis and Stochastics

https://core.ac.uk/display/289299847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Edited by
Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS)
Leibniz-Institut im Forschungsverbund Berlin e. V.
Mohrenstraße 39
10117 Berlin
Germany

Fax: +49 30 20372-303
E-Mail: preprint@wias-berlin.de
World Wide Web: http://www.wias-berlin.de/

preprint@wias-berlin.de
http://www.wias-berlin.de/

Millions of Perrin pseudoprimes including a few giants
Holger Stephan

Abstract

The calculation of many and large Perrin pseudoprimes is a challenge. This is mainly due to
their rarity. Perrin pseudoprimes are one of the rarest known pseudoprimes. In order to calculate
many such large numbers, one needs not only a fast algorithm but also an idea how most of them
are structured to minimize the amount of numbers one have to test.

We present a quick algorithm for testing Perrin pseudoprimes and develop some ideas on
how Perrin pseudoprimes might be structured. This leads to some conjectures that still need to
be proved.

We think that we have found well over 90% of all 20-digit Perrin pseudoprimes. Overall, we
have been able to calculate over 9 million Perrin pseudoprimes with our method, including some
very large ones. The largest number found has 1436 digits. This seems to be a breakthrough,
compared to the previously known just over 100,000 Perrin pseudoprimes, of which the largest
have 20 digits.

In addition, we propose two sequences that do not provide any pseudoprimes up to 109 at all.

Contents

1 Introduction 2

1.1 The Perrin sequence . 3

2 Pseudoprimes 4

2.1 Iff– and if–Theorems . 4

2.2 Fermat and Carmichael pseudoprimes . 5

2.2.1 Fermat2 pseudoprimes . 5

2.2.2 Carmichael numbers . 6

2.3 General pseudoprimes . 6

2.3.1 Sums of powers. Multinomial coefficients . 6

2.3.2 Polynomials and recurrence sequences . 7

2.3.3 Perrin’s sequence, given explicitely . 8

2.3.4 When is fn = (a+ b+ c)n − an − bn − cn an integer? 8

2.3.5 When does (p ∈ P =⇒ p|fp) hold? . 9

2.3.6 The recurrent calculation of the sequence 9

2.3.7 The main theorem . 10

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 2

3 Numerical algorithms 11

3.1 Matrix powers instead of additions . 11

3.2 Horner’s method instead of matrix powers . 12

3.3 A fast algorithm for the Perrin sequence . 12

3.4 All steps combined . 14

3.5 A mathematica-code for the algorithm . 15

4 How to reduce the number of candidates 16

4.1 The structure of most of the PPPs . 16

4.2 The remainders of p . 17

5 Numerical results 18

5.1 The state of the art . 18

5.2 Our results . 19

5.2.1 Almost all PPPs . 19

5.2.2 Huge PPPs . 20

5.2.3 Some more information . 21

5.2.4 Some conjectures . 21

6 Other promising polynomials for pseudoprimes 22

1 Introduction

To motivate that it makes sense to deal with primes, it is best to quote Gauss [3]:

The problem of distinguishing prime numbers from composite numbers, and of resolving the
latter into their prime factors is known to be one of the most important and useful in arithmetic.
It has engaged the industry and wisdom of ancient and modern geometers to such an extent
that it would be superfluous to discuss the problem at length. Nevertheless we must confess

that all methods that have been proposed thus far are either restricted to very special cases or
are so laborious and difficult that even for numbers that do not exceed the limits of tables

constructed by estimable men, they try the patience of even the practiced calculator. And these
methods do not apply at all to larger numbers.

Prime numbers are a very serious issue. We prefer dealing with pseudoprimes. Pseudoprimes are
numbers that behave similar to primes.

Sometimes it is a big challenge to compute all or at least many or some very large pseudoprimes of a
given type.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 3

In this paper, we introduce a quick algorithm for the calculation of Perrin pseudoprimes. This is nothing
special, there are already many fast algorithms. Similar to primes, also for pseudoprimes it is difficult
to guess their structure. Therefore, in order to calculate all of them there is nothing left but to test every
single number. This strongly limits the size of the numbers. It turns out, however, that the structure can
be guessed for most of the pseudoprimes. This very much limits the range of potential numbers to be
tested and makes it possible to calculate millions of them and even very large ones.

We do the following Notations:

� The set of all primes is denoted by P.

� a|b means a divides b or b is divisible by a.

� We state some classical facts from number theory as theorems, omitting the proofs.

1.1 The Perrin sequence

Let us define a sequence (called Perrin sequence) Pn recursively:

P0 = 3

P1 = 0

P2 = 2

Pn = Pn−2 + Pn−3, n ≥ 3

and calculate the first entries:

(Pn)
∞
n=0 = 3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, ...

We observe: If n is prime, we have n|Pn and that goes on for a long time.

Anyone seeing this sequence for the first time is certainly quite surprised, since it is believed that there
is no simple algorithm for calculating the primes.

The recursion law of this sequence was found in 1899 by Edouard Lucas. This sequence with the
initial values given above, was first used by Raoul Perrin [7, 8].

Probably many mathematicians and amateur mathematicians have tried to answer the question of
whether this sequence really only produces primes. Considering that already the number P811 has
100 digits, one can imagine how difficult that has been.

The answer was not found until 1982, when Jeffrey Shallit (according to [8]) calculated the first two non-
prime numbers – so-called Perrin pseudoprimes (PPP) – with a computer. Here they are: 271441 =
521· 521 and 904631 = 7 · 13 · 9941. P271441 has 33150 digits. Today it is known that there are
infinitely many Perrin pseudoprimes [1]. Nevertheless, they are very rare, which makes their finding
still difficult.

In this paper, we develop an effective algorithm for calculating Perrin pseudoprimes and present some
numerical results that constitute, to our knoledge, right now the world’s largest collection of Perrin
pseudoprimes including the largest PPP.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 4

2 Pseudoprimes

2.1 Iff– and if–Theorems

There are two kinds of theorems dealing with primes that can be used to test a given number on
whether it is a prime.

1) Theorems like: p ∈ P if and only if property A(p) holds.

2) Theorems like: p ∈ P, then property A(p) holds.

Theorems of the first kind are, for example

� Theorem: p ∈ P ⇐⇒ ∀k ∈ P, k ≤ √p : k 6 |p
� Theorem (Wilson): p ∈ P ⇐⇒ p|1 · 2 · 3 · · · (p− 1) + 1

� Theorem:

p ∈ P ⇐⇒ p|
(
p

k

)
∀k = 1, ..., p− 1 (1)

These theorems allow for deterministic tests. If for a given number p the property A(p) holds, then p
is prime.

Unfortunately, algorithms based on deterministic testing have high complexity, so far.

Theorems of the second kind state: If for a given number p the property A(p) holds, then p can be
prime or not. This is useful, if p is prime with very high “probability”. Testing A(p) one can be “very
sure” that p is prime. Typically such kind of probabilistic tests are much faster (have a lower complexity)
than deterministic ones. Thus, it is useful to create tests with a very small equivalence gap, the gap
between if and iff.

Numbers n that lie in this gap, i.e. A(n) holds, but n is composite, are called pseudoprimes with
respect to property A.

One example, following immediately from (1) is:

Theorem: p ∈ P =⇒ p

∣∣∣∣∣
p−1∑
k=1

ak

(
p

k

)
for some given integers ak.

It is clear that looking at a linear combination of binomial coefficients instead of all coefficients in
detail, we loose information. This is just the equivalence gap. Looking at a given linear combination of
binomial coefficients is faster than looking at every one in detail. The idea is to choose such coefficients
ak so that the equivalence gap is small.

Here, we define some kind of probability (better frequency) for a pseudoprime test. Let π(n) be the
number of primes less than n and P (n) the number of pseudoprimes less than n for a given pseudo-
prime test. By W (n) = P (n)/π(n) we define the frequency of numbers incorrectly tested and call it
error rate. Thus, the lower the error rate W (n), the better the test.

Of course, it would be best if a test provided only a finite number of pseudoprimes. These would be
calculated and stored in a database which allowed for a deterministic test, practically. Such a test is

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 5

not yet known. In contrast, until now, for many pseudoprime number type, it has been proved sooner
or later that there are infinitely many ones.

2.2 Fermat and Carmichael pseudoprimes

The simplest pseudoprimes are Fermat pseudoprimes. They are consequences of Fermat’s little

Theorem: Given an integer z ≥ 2. If p ∈ P then p|zp − z.

Conversely, if a number n for some z satisfies n|zn − z but n 6∈ P, n is called Fermatz pseudoprime.

Best known is the special case z = 2:

Theorem: If p ∈ P then p|2p − 2.

A number n 6∈ P with n|2n − 2 is called Fermat2 pseudoprime.

2.2.1 Fermat2 pseudoprimes

Fermat’s little Theorem for z = 2 is an easy consequence of Theorem 1.

Indeed, multiplying out (a+ b)n with integers a, b we get

(a+ b)n = an +

(
n

1

)
an−1b+

(
n

2

)
an−2b2 +

(
n

3

)
an−3b3 + · · ·+ bn

Therefore, defining

fn = (a+ b)n − an − bn =

(
n

1

)
an−1b+ . . .+

(
n

n− 1

)
abn−1

we obtain the

Theorem: If p ∈ P then p|fp.
The special case (a = b = 1) yields Fermat’s little Theorem to the base z = 2.

Let’s calculate the first ones:

n 2n − 2 n|2n − 2 ? n is prime?
2 2 yes! yes!
3 6 yes! yes!
4 14 no! no!
5 30 yes! yes!
6 62 no! no!
7 126 yes! yes!

341 4479... (103 digits) yes! no! 341 = 11 · 31
561 7547... (169 digits) yes! no! 561 = 3 · 11 · 17
645 1459... (195 digits) yes! no! 645 = 3 · 5 · 43

Up to 100000 we have 78 pseudoprimes and 9592 primes. Thus, we have W (105) = 0.00813178.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 6

2.2.2 Carmichael numbers

Instead of z = 2 we can consider Fermatz pseudoprimes with other bases. Maybe other bases
provides fewer pseudoprimes? It turns out that z = 2 is one of the best bases. Moreover, there are
non-primes n with n|zn − z for any base z, the so-called Carmichael numbers. 561 is the smallest
one. The next ones are

Carmichael number factors
561 3 · 11 · 17
1105 5 · 13 · 17
1729 7 · 13 · 19
2465 5 · 17 · 29
2821 7 · 13 · 31
6601 7 · 23 · 41
8911 7 · 19 · 67
10585 5 · 29 · 73

Carmichael number factors
15841 7 · 31 · 73
29341 13 · 37 · 61
41041 7 · 11 · 13 · 41
46657 13 · 37 · 97
52633 7 · 73 · 103
62745 3 · 5 · 47 · 89
63973 7 · 13 · 19 · 37
75361 11 · 13 · 17 · 31

There are 16 Carmichael numbers up to 100000. Moreover, we have the following

Theorem: There are infinitely many Carmichael numbers [1].

2.3 General pseudoprimes

2.3.1 Sums of powers. Multinomial coefficients

Similar to binomial coefficients, there is a theorem for multinomial coefficients:

Theorem: p ∈ P ⇐⇒ p| p!
i! j! k!

, ∀i, j, k with 0 < i+ j + k = p

From this, we conclude the following

Theorem: p ∈ P =⇒ p
∣∣∣∑0<i+j+k=p aijk

p!
i! j! k!

. for some integer coefficients aijk.

From this, multiplying out (a+ b+ c)n with integers a, b, c we conclude the

Theorem: Given a sequence

fn = (a+ b+ c)n − an − bn − cn =
∑

0<i+j+k=n

n!

i! j! k!
aibjck

Then, p ∈ P implies p|fp.

Similarly we get the

Theorem: Given integers a1, ..., ak. Build the sequence

fn = (a1 + a2 + ...+ ak)
n − (an1 + an2 + ...+ ank) (2)

Then, p ∈ P implies p|fp.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 7

The example ai = 1 yields fn = kn − k, Fermat’s little theorem in the general case.

Perrin’s sequence is given in a recurrent way. Here, we recall the important connection between poly-
nomials and recurrence sequences.

2.3.2 Polynomials and recurrence sequences

A linear recurrence sequence (or linear difference equation) of order k is a sequence (hn)
∞
n=0 defined

in the following way:

Given k numbers c1, ..., ck set

hn = c1hn−1 + c2hn−2 + ...+ ckhn−k . (3)

Together with k initial conditions h0, h1, ..., hk−1 such a sequence is uniquely determined.

Obviously, if c1, ..., ck and h0, h1, ..., hk−1, are integers, then hn is an integer for all n.

There is a remarkable connection between such sequences and polynomials of degree k. If we put
hn = xn and multiply by xk−n, we get an algebraic equation for the roots of a polynomial formed from
the coefficients of the sequence

Q(x) = −xk + c1x
k−1 + c2x

k−2 + ...+ ck−1x+ ck . (4)

This polynomial has k – in general complex – roots x1, ..., xk. For simplicity, we assume that the roots
are different.

Set

gn = b1x
n
1 + b2x

n
2 + ...+ bkx

n
k , (5)

with some coefficients b1, ..., bk. Solve the system of k linear equations hi = gi, i = 0, ..., k− 1 with
respect to the unknown bj . This is always uniquely solvable, because the corresponding matrix is the
Vandermonde matrix (xji). Its determinant does not vanish if the roots xi are different, as required.

Theorem: For any n ≥ 0 we have gn = hn.

This is easily proved, since we have Q(xi) = 0 for i = 1, ..., k.

The opposite is also true:

Theorem: Given k different complex numbers x1, ..., xk and k real numbers b1, ..., bk. Calculate the
first entries h0, ..., hk−1 of some sequence (hn) by the right-hand side of (5) and compile a polynomial
(4) from it’s roots x1, ..., xk

Q(x) = −(x− x1) · · · (x− xk) = −xk + (−1)k+1(x1 + ...+ xk)x
k−1 + ...

Then, the sequence (3), given in a recurrent way is exactly the sequence (5), given explicitely.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 8

Thus, we have a one-to-one correspondence between the linear recurrence sequence (3) and the sum
of powers (5).

This can be applied to Perrin’s sequence.

2.3.3 Perrin’s sequence, given explicitely

Starting with the sequence

P0 = 3

P1 = 0

P2 = 2

Pn = Pn−2 + Pn−3, n ≥ 3

at first, we compile the polynomial from the coefficients

Q(x) = −x3 + x+ 1

Its roots are

a = 1.32472...

b = −0.662359...+ 0.56228...i

c = −0.662359...− 0.56228...i

Set hn = an + bn + cn (since a+ b+ c = 0). The first entries are

h0 = a0 + b0 + c0 = 3

h1 = a1 + b1 + c1 = 0

h2 = a2 + b2 + c2 = (a+ b+ c)2 − 2(ab+ bc+ ca) = 0− 2(−1) = 2

Thus, the sequences Pn and hn coincide.

The theorem

p ∈ P =⇒ p|Pp = ap + bp + cp

does not follow from this, since a, b, c are not integers.

We have to answer two questions:

� When is fn = (a+ b+ c)n − an − bn − cn an integer sequence?

� When does (p ∈ P =⇒ p|fp) hold?

2.3.4 When is fn = (a+ b+ c)n − an − bn − cn an integer?

For any n, the expression (a+ b+ c)n − an − bn − cn is a symmetric polynomial in a, b and c.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 9

Theorem: Any symmetric polynomial can be expressed in terms of elementary symmetric polynomi-
als.

Here, these are

A1 = a+ b+ c, A2 = ab+ bc+ ca, A3 = abc

which are the coefficients of a polynomial with roots a, b, c.

Calculating, for example, the first entries, we get

(a+ b+ c)0 − a0 − b0 − c0 = −2
(a+ b+ c)1 − a1 − b1 − c1 = 0

(a+ b+ c)2 − a2 − b2 − c2 = 2A2

(a+ b+ c)3 − a3 − b3 − c3 = 3A1A2 − 3A3

(a+ b+ c)4 − a4 − b4 − c4 = 4A2
1A2 − 4A1A3 − 2A2

2

Hence, fn is integer if a, b, c are roots of a polynomial with integer coefficients.

2.3.5 When does (p ∈ P =⇒ p|fp) hold?

We have

fn = (a+ b+ c)n − (an + bn + cn) =
∑

0<i+j+k=n

n!

i! j! k!
aibjck

and p ∈ P =⇒ p| p!
i! j! k!

, ∀i, j, k with 0 < i+ j + k = n.

n!

i! j! k!
does not change by a permutation of i, j, k. It can be lifted out.

∑
0<i+j+k=n

n!

i! j! k!
aibjck =

∑
0<i≤j≤k

n!

i! j! k!

∑
π(i,j,k)

aibjck

∑
π(i,j,k) a

ibjck is again a symmetric polynomial and so it is an integer if a, b, c are roots of an poly-
nomial with integer coefficients.

Hence, if a, b, c are roots of a polynomial with integer coefficients, and fn = (a + b + c)n − (an +
bn + cn), then p ∈ P =⇒ p|fp.

2.3.6 The recurrent calculation of the sequence

From the polynomial Q(x) it is easy to compile the recurrent relation

gn = a1 fn−1 + a2 fn−2 + a3 fk−3 + . . .+ ak fn−k

corresponding to the explicit expression

gn = xn1 + . . .+ xnk .

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 10

From this explicit expression we have to calculate the initial values g0, ..., gk−1. Then, we have

fn = gn − an1 .

Actually, this is practicable if a1 = 0 (like in the Perrin case) or a1 = ±1. In other cases, an1 increases
rapidly and it is better to look on

fn = (xn1 + . . .+ xnk)− (x1 + . . .+ xk)
n

as on a sum of k+1 powers. This corresponds to a sequence of order k+1, having a corresponding
polynomial with the k + 1 roots x1, ..., xk, a1 = x1 + . . .+ xk. This polynomial is

G(x) = −(x− x1) · · · (x− x1)(x− x1 − . . .− xk) = Q(x)(x− a1) =

= −xk+1 + 2a1x
k +

k−1∑
i=1

(ai+1 − a1ai)xk−i − a1ak

2.3.7 The main theorem

Connecting the last facts together, we finally obtain the

Main Theorem: Given a polynomial of degree k

Q(x) = −xk + a1 x
k−1 + a2 x

k−2 + a3 x
k−3 + . . .+ ak−1 x+ ak

with integer coefficients ai ∈ Z and (maybe complex) roots x1, ..., xk. Then, the sequence

fn = (xn1 + . . .+ xnk)− (x1 + . . .+ xk)
n

is an integer sequence and it holds p ∈ P =⇒ p|fp.
The sequence fn can be calculated in a recurrent way from an order k-recurrent relation

gn = a1 fn−1 + a2 fn−2 + a3 fk−3 + . . .+ ak fn−k

by fn = gn − an1 or directly from an order (k + 1)-recurrent relation

fn = 2a1fn−1 +
k−1∑
i=1

(ai+1 − a1ai)fn−i−1 − a1akfn−k−1

We can conclude that any polynomial with integer coefficients is cantidate to generate pseudoprimes.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 11

3 Numerical algorithms

To calculate pseudoprimes, at first we have to calculate fn by a recurrent or explicit expression and
then we test whether n|fn.

The recurrence relation seems to be very fast, with some additions for every number. Unfortunately,
the entries fn grow very fast. For the Perrin sequence we have Pn ∼ 1.32472...n (the largest
root). Thus, P271441 has 33150 decimal digits, P99607901521441 – the 17-th Perrin pseudoprime has
12,164,524,642,561 decimal digits requiring ∼ 5 TByte to store it.

The same problem arises with the explicit expression. We have to calculate xnj considering a huge
number of digits to get an integer in the end. But this is necessary to check the remainder of fn when
divided by n.

The only useful method is to carry out all operations modulo n. This will save us from the usage of
the huge numbers fn. We can still use the recurrence relation but for every new number we have to
start at the very beginning of the sequence, since calculating fn mod n, we cannot use the result to
calculate fn+1 mod n+ 1.

Even doing so, this is still a problem if we want (and we want!) to deal with large numbers n having,
say, 100 digits. Note, this is the number of digits of the index, not of the sequence member!

Thus, if n = 10100 we need a fast algorithm for 10100 additions of numbers like 10100 (all done modulo
n).

Clearly, this has to be an algorithm with logarithmic complexity. This can be done in pursuing following
steps:

� We can calculate k entries of the sequence at once, using matrix powers.

� The n-th power of a matrix can be performed in logb n operations using the decomposition of
n with respect to a fixed basis and Horner’s method.

� In some special cases – and the Perrin sequence is such a case – the calculation can be further
simplified.

3.1 Matrix powers instead of additions

Given a recurrence sequence of order k

fn = ck−1fn−1 + ck−2fn−2 + ...+ c0fn−k (6)

with initial values

F0 := (f0, ..., fk−1) . (7)

The k-th entry

fk = ck−1fk−1 + ck−2fk−2 + ...+ c0f0

is a linear combination of the initial values and so are all entries, for example the k + 1-th entry

fk+1 = ck−1fk + ck−2fk−1 + ...+ c0f1 =

= ck−1(ck−1fk−1 + ck−2fk−2 + ...+ c0f0) + ck−2fk−1 + ck−3fk−2 + ...+ c0f1 =

= (c2k−1 + ck−2)fk−1 + (ck−1ck−2 + ck−3)fk−2 + ...+ (ck−1c1 + c0)f1 + ck−1c0f0

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 12

Writing all the entries F1 := (fk, ..., f2k−1) as linear combinations of F0 = (f0, ..., fk−1), we can
compile a matrix A and write F1 = AF0, i.e.,

fk
fk+1

...
f2k−1

 =

 c0 c1 · · · ck−1
ck−1c0 ck−1c1 + c0 · · · c2k−1 + ck−2

...
...

...
...




f0
f1
...

fk−1


This is an equivalent description of (6), (7).

In the special case k = 3 we have f3
f4
f5

 =

 c0 c1 c2
c0c2 c0 + c1c2 c22 + c1

c0c
2
2 + c0c1 c21 + c22c1 + c0c2 c32 + 2c1c2 + c0

 f0
f1
f2


It follows Fm = AmF0 for Fm = (fmk, fmk+1, ..., f(m+1)k−1). Thus, if we want to know fn, we have
to divide n by k with remainder, i.e., to write n = mk + i with i = 0, ..., k − 1 and calculate Am.
Instead of additions we have to calculate the power of a matrix. This can be done very effectively.

3.2 Horner’s method instead of matrix powers

We have to calculate Am for a given matrix A. Letm = a0b
j+ ...+aj−1b+aj be the decomposition

of m to base b with a0 > 0 and b > ai ≥ 0. Then, calculating the polynomial a0bj + ...+ aj−1b+ aj
with Horner’s method, iteratively

a0b
j + ...+ aj−1b+ aj = ((((a0b)b+ a1)b+ a2)b+ ...+ aj)

we conclude

Am = Aa0bj+...+aj−1b+aj = (((((IbAa0)bAa1)bAa2)b · · ·)Aaj)

The vector

(A0,A1, ...,Ab−1) = (A0,A1,A2, ...,Ab−1)

can be calculated and stored in advance. The calculation runs especially effectively if b itself is a power
of 2. For practicle purposes we used b = 2, 4, 8.

3.3 A fast algorithm for the Perrin sequence

The following algorithm was written in 1982 by Frank Bauernöppel and Uwe Kaufmann [2] in Berlin.

1st step: Given n. Set n = 3m+ i, i ∈ {0, 1, 2}. Since we have

P3 = P1 + P0

P4 = P2 + P1

P5 = P3 + P2 = P1 + P0 + P2

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 13

we can introduce a matrix

S =

 1 1 0
0 1 1
1 1 1


and have  P3m

P3m+1

P3m+2

 = Sm

 3
0
2

 =

 1 1 0
0 1 1
1 1 1

m

·

 3
0
2


2nd step: The power of S can be further simplified by using the square S2. Depending on whether m
is even or odd, one have

Sm = (S
m
2)2, 2|m or Sm = (S

m−1
2)2 · S, 2 6 |m

The total power Sm can now be calculated iteratively by using the binary representation of m. Let
m = (α0, α1, α2, ..., αk, ...),α0 = 1 be the dual number representation ofm. We calculate iteratively
matrices Sk in the following way:

S0 = I

Sk+1 =

{
S2
k if αk = 0

S2
k · S if αk = 1

Then, Sm = Sk0 for some k0 < m.

For example, we have

S22 = S101102 = ((((I2 · S)2 · S)2 · S)2)2 = S22

For every 0 (the even digits) one has to square (operation Q), for every 1 (the odd digits) one has to
square and then to multiply (operation QM).

3rd step: Observe that

Sm =

 1 1 0
0 1 1
1 1 1

m

=

 a c b
b a+ b c
c b+ c a+ b


Thus, one only has to remember the first column (a, b, c) and to know how this column changes when
multiplying M and squaring Q.

Operation multiplying M : a c b
b a+ b c
c b+ c a+ b

 1 1 0
0 1 1
1 1 1

 =

 a+ b a+ b+ c b+ c
b+ c a+ 2b+ c a+ b+ c

a+ b+ c a+ 2b+ 2c a+ 2b+ c


Thus, M : (a, b, c)−→ (a+ b, b+ c, a+ b+ c).

Operation squaring Q: a c b
b a+ b c
c b+ c a+ b

2

=

 a2+2bc b2+2ac+2bc 2ab+b2+c2

2ab+b2+c2 a2+2ab+b2+2bc+c2 b2+2ac+2bc
b2+2ac+2bc 2ab+2b2+2ac+2bc+c2 a2+2ab+b2+2bc+c2



DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 14

Thus, Q : (a, b, c)−→ (a2 + 2bc, b2 + c2 + 2ab, b2 + 2ac+ 2bc).

Furthermore, some numbers n can be excluded from the beginning, because we have

n ≡ 0 mod 4 =⇒ fn 6≡ 0 mod 4 =⇒ fn 6≡ 0 mod n .

The same happens for n = 9, 14, Moreover, we have

n ≡ 0 mod 3 , n 6≡ 0, 1, 3, 9 mod 13 =⇒ fn 6≡ 0 mod 3 =⇒ fn 6≡ 0 mod n

3.4 All steps combined

1 Decompose n = 3m+ i, i ∈ {0, 1, 2}

2 Compute the dual representation D of m.

3 In D, replace every zero with Q and every 1 with QM and get the word W .

4 Set (a, b, c) := (1, 0, 0) and, following the word W from left to right, perform the following
operations modulo n:

M : (a, b, c) := (a+ b, b+ c, a+ b+ c)

Q : (a, b, c) := (a2 + 2bc, b2 + c2 + 2ab, b2 + 2ac+ 2bc) .

5 Finally, calculate

Pn mod n =


3a+ 2b for i = 0
3b+ 2c for i = 1

2a+ 2b+ 3c for i = 2 .

For Example we test whether 19 divides P19?

1 19 = 3 · 6 + 1, m = 6, i = 1

2 Dual representation of 6: D = 110.

3 W = QMQMQ

4 (a, b, c) = (1, 0, 0)
Q

=⇒ (a, b, c) = (1, 0, 0)
M
=⇒ (a, b, c) = (1, 0, 1)
Q

=⇒ (a, b, c) = (1, 1, 2)
M
=⇒ (a, b, c) = (2, 3, 4)
Q

=⇒ (a, b, c) = (9, 18, 11)

5 (9, 18, 11)
i=1
=⇒ 3 · 18 + 2 · 11 = 76 ≡ 0 mod 19

Thus, we have 19|P19 and therefore 19 can be a Perrin pseudoprime or a prime.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 15

3.5 A mathematica-code for the algorithm

To deal with large integers we used mathematica. Of course, as an interpretive language it is slower
than a compiled code. But that saved us the development of an own long integer operation package.

The following mathematica-code was used to check a given number n on whether n|Pn. The code
outputs True if n is prime or a Perrin pseudoprime andFalse otherwise. We used mathematica11.3
at a Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz. To check the largest known 1436-
digit PPP (see page 20) takes 0.18 seconds. Checking the largest Mersenne prime known in 1982
286243−1 takes 4 minutes. Though, at that time the computers were slower. Today, testing 21398269−1,
the 35-th Mersenne prime, found in 1996, takes a day.

PPP[n_] := (i = Mod[n, 3];
k = Quotient[n, 3];
lk = IntegerDigits[k, 2];
b1 = 1; b2 = 0; b3 = 0;
Do[If[lk[[j]] == 0,

c1 = b1 * b1 + 2 * b2 * b3;
c2 = b2 * b2 + b3 * b3 + 2 * b1 * b2;
c3 = b2 * b2 + 2 * b1 * b3 + 2 * b2 * b3 ,
a1 = b1 * b1 + 2 * b2 * b3;
a2 = b2 * b2 + b3 * b3 + 2 * b1 * b2;
a3 = b2 * b2 + 2 * b1 * b3 + 2 * b2 * b3;
c1 = a1 + a2;
c2 = a2 + a3;
c3 = a1 + a2 + a3];

b1 = Mod[c1, n]; b2 = Mod[c2, n]; b3 = Mod[c3, n],
{j, 1, Length[lk]}];
Which[i == 0, b = 3 * b1 + 2 * b2,

i == 1, b = 3 * b2 + 2 * b3,
i == 2, b = 2 * b1 + 2 * b2 + 3 * b3];

Mod[b, n] == 0)

The Table on [6] can be tested with

ppp = << PPP-new-math;
Do[If[Not[PPP[ppp[[k1]]]] || PrimeQ[ppp[[k1]]],

Print[ppp[[k1]]," is not a PPP!"]], {k1, 1, Length[ppp]}]

Do not forget the semicolon, the list ppp is very large. It runs less than two hours.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 16

4 How to reduce the number of candidates

It takes many weeks to calculate the 1700 PPP up to 1014 even with high performance algorithms and
computers. One has to check every number (except a few ones like mentioned at page 14 that can be
sorted out in advance). Thus, there is no hope, that one could calculate all PPPs, say, up to 1020 in
the next years. Moreover, since they are very rare, if you take a random n, you will ”never” get a PPP.

So, to calculate more PPPs, one must try to limit the set of potential candidates.

Dana Jacobsen tested other pseudoprimes, hoping that, for example many of the Fermat2-PP are also
PPPs. And indeed, she found 101994 PPPs up to 18446724258335155361 < 1020 [5].

It turns out that 510 of the 1700 PPPs less than 1014 are Fermat2-PP, too.

4.1 The structure of most of the PPPs

Let’s have a look at the first PPPs and factorize them:

271441 = 521 · 521 = [1(521− 1) + 1] · 521
904631 = 7 · 13 · 9941

16532714 = 2 · 11 · 11 · 53 · 1289
24658561 = 19 · 271 · 4789
27422714 = 2 · 11 · 11 · 47 · 2411
27664033 = 3037 · 9109 = [3(3037− 1) + 1] · 3037
46672291 = 4831 · 9661 = [2(4831− 1) + 1] · 4831

102690901 = 5851 · 17551 = [3(5851− 1) + 1] · 5851
130944133 = 6607 · 19819 = [3(6607− 1) + 1] · 6607
196075949 = 5717 · 34297 = [6(5717− 1) + 1] · 5717
214038533 = 8447 · 25339 = [3(8447− 1) + 1] · 8447
517697641 = 6311 · 82031 = [13(6311− 1) + 1] · 6311
545670533 = 13487 · 40459 = [3(13487− 1) + 1] · 13487
801123451 = 8951 · 89501 = [10(8951− 1) + 1] · 8951
855073301 = 16883 · 50647 = [3(16883− 1) + 1] · 16883
903136901 = 17351 · 52051 = [3(17351− 1) + 1] · 17351
970355431 = 22027 · 44053 = [2(22027− 1) + 1] · 22027

We see that many of them have the structure P = [k(p − 1) + 1] · p, with some p ∈ P and
k = 1, 2, 3, ... is a small number. Clearly, such numbers are never prime. Moreover, to calculate
numbers P in the region of 1016, it is sufficient to consider factors ∼ 108. Thus, taking into account
that we have 5761455 primes up to 108, we get all pseudoprimes of this structure up to ∼ 1016 for a
given k in half an hour.

This was the starting point of a couple of ideas to reduce the amount of candidates to be tested. We
list them here in their logical order.

1 Consider numbers P = [k(p− 1) + 1]p, p ∈ P
It was amazing that already k = 3 and k = 2 gives more than 50% of the 1700 known PPPs
up to 1014.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 17

2 Next, we considered numbers like P = [k1(p−1)+1][k2(p−1)+1], p ∈ P; gcd(k1, k2) = 1.

3 We saw that some PPPs of this structure were overlooked, because p must not be prime. Thus,
we considered numbers like P = [k1(p− 1) + 1][k2(p− 1) + 1], p 6∈ P, p odd.

4 Clearly, the next step were numbers of the form
P = [k1(p− 1) + 1][k2(p− 1) + 1][k3(p− 1) + 1]

5 and generally P =
∏m

i=1 [ki(p− 1) + 1]. For m > 3 we get only a few new PPP’s.

With this method, we calculated all PPP’s with 2 factors for given ki < 100, with 3 factors for given
ki < 15, and with 4 factors for ki < 10 up to 1020. More than 95% of the 1700 known PPPs up to
1014 have such a structure. Extrapolating this result, we assume that we know now 95% of the PPPs
up to 1020.

It was not possible to find such a PPP with 5 factors for months.

The largest PPPs have about 40 digits.

To calculate larger PPPs we used two different methods:

� Starting from a PPP withm factors, guess a PPP withm+1 factors with the same p and some
km+1 resulting form the other k1, ..., km. For example, take km+1 as a multiple of the least
common multiple of the k1, ..., km. In this way we could find some very large PPPs.

� Do we have to test all odd p? It turns out that only a few remainders of p with respect to 23
occur. In this way we could find millions of new PPPs up to 1024.

4.2 The remainders of p

Since 23 is the discriminant of the corresponding polynomial of the Perrin sequence, we look at the
remainders of p with respect to 23 in more detail. It turns out that for a given pair (k1, k2) we have
only a few remainders instead of 23 possible ones.

For example:

� Take (k1, k2) = (3, 1), we have the remainders = (1, 2, 6, 9, 18)

� Take (k1, k2) = (2, 1), we have the remainders = (1, 2, 13, 16, 18)

The same holds for multiples of 23. Taking, for example, the number 23 ·2 ·3 ·5 ·7 ·11 ·13 = 690690.
We have

� For (k1, k2) = (3, 1) only 14853 remainders (a proportion of 0.0215046),

� For (k1, k2) = (2, 1) only 7425 remainders (a proportion of 0.0107501).

During our calculation we considered the remainders with respect to 23 · 2 · 3 = 138.

Here is a collection of the remainders with respect to 138 for all pairs (k1, k2) with k1 = 5 and k1 = 7:

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 18

k1 k2 possible remainders with respect to 138
5 1 1, 25, 31, 55, 73, 121
5 2 1, 7, 15, 21, 25, 43, 61, 67, 93, 99, 117, 135
5 3 1, 9, 25, 43, 55, 63, 75, 93, 109, 117, 121, 135
5 4 1, 7, 31, 43, 67, 73
7 1 1, 13, 25, 29, 31, 35, 47, 59, 71, 77, 121, 127
7 2 1, 13, 25, 67, 97
7 3 1, 5, 11, 19, 25, 29, 47, 65, 71, 97, 103, 121
7 4 1, 11, 13, 19, 31, 47, 59, 65, 67, 77, 103, 113
7 5 1, 25, 31, 67, 121
7 6 1, 5, 13, 29, 47, 59, 67, 79, 97, 113, 121, 125

These remainders were found experimentally. For a given pair (k1, k2) we calculated some PPPs
for any odd p, enough to be sure about the possible remainders. Having obtained these, we test the
following p only with these remainders. That resulted in a strong speed-up.

Unfortunately, we have no idea how the remainders can be calculated in advance. We think this is an
interesting problem for specialists, for example, in Carmichael numbers.

For PPPs with 3 factors we observed the following interesting experimental result:

Fix a pair (k1, k2) with gcd(k1, k2) = 1 and let beR(k1, k2) the set of remainders of p. Then, the set
of remainders R(k1, k2, k3) for a PPP with 3 factors is

R(k1, k2, k3) = R(k1, k2) ∩R(k1, k3) ∩R(k2, k3)

Thus, the number of possible remainders decreases with the number of factors.

A similar result holds for PPPs with more than 3 factors. Again, we do not know how to prove this.

The remainder 1 with respect to multilpes of 23 contains in any set of remainders for any (ki).

5 Numerical results

5.1 The state of the art

A current overview can be found in N.J.A. Sloanes famous OEIS (On-Line Encyclopedia of Integer
Sequences) [8].

By now, all PPPs – 1700 – up to 1014 are known. Since we have 3204941750802 primes up to 1014,
using the Perrin prime test, a PPP occurs with probability W (1014) = 5.3043110−10. Thus, to check
whether a given number less than 1014 is prime you can use the Perrin test and – if it is true – look at
the table whether it is one of the 1700 PPPs. If not, it is prime.

The following table shows the probability W (n) up to n = 1014. We used [10] for the numbers of
primes.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 19

n PPPs primes probability W (n)
108 7 5761455 1.21497 ∗ 10−6
109 17 50847534 3.34333 ∗ 10−7
1010 42 455052511 9.22970 ∗ 10−8
1011 116 4118054813 2.84115 ∗ 10−8
1012 285 37607912018 7.57819 ∗ 10−9
1013 649 346065536839 1.87537 ∗ 10−9
1014 1700 3204941750802 5.30431 ∗ 10−10

5.2 Our results

We calculated 9261931 (by December 2019) PPPs that an be found in the database [6]. (Note, that
the database is updated from time to time.)

We tried to find all PPPs up to 1020 and all with 2 factors and (k1, k2) = (3, 1) and (k1, k2) = (2, 1)
up to 1022. Of course there is a by-catch of many PPPs up to 1030.

Moreover, we tried to find some very large ones using two methods:

At first, we constructed PPPs with m+ 1 factors starting from a known ones with m factors.

Second, knowing that 1 is always a remainder with respect to multilpes of 23 for all p, we tested
numbers of the form n = p · (k(p− 1)+ 1). with k = 2, 3 and p = 23 · 2 · 3 · 5 · 7 · 11 · · · a multiple
of 23 and the first primes This yields very large PPPs, for example the one on page 20.

5.2.1 Almost all PPPs

Having a look at the table above, we see that
logW (n) behaves largely linearly. We extrapolate
this and expect the following numbers of PPPs.
The numbers up to 1020 are “almost all”, the num-
bers up to 1022 are “more than a half” of all PPPs.

10 15 20 25

-15

-10

-5

log10 n

log10W (n)

n expected PPPs founded PPPs
1015 4360 4409
1016 11236 11972
1017 29076 33045
1018 75520 93001
1019 196790 262236
1020 514287 742759
1021 1347560 1502883
1022 3539332 3615622
1023 9316050 7870747
1024 24569601 7874995
1025 64915566 7879187
1026 171799266 7885930
1027 455365341 7898184
1028 1208691635 7920907
1029 3212505576 7964655
1030 8548808804 8049285

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 20

5.2.2 Huge PPPs

Collected by factors: We found

� 1 PPP with 14 factors.

� 13 PPPs with 13 factors.

� 64 PPPs with 12 factors.

� 113 PPPs with 11 factors.

� 176 PPPs with 10 factors.

� 481 PPPs with 9 factors.

� 1054 PPPs with 8 factors.

� 2591 PPPs with 7 factors.

� 7159 PPPs with 6 factors.

� 29529 PPPs with 5 factors.

Collected by digits: We found

� ∼ 4000 PPPs with more than 80 decimal digits

� ∼ 1600 PPPs with more than 100 decimal digits

� 36 PPPs with more than 500 decimal digits

� 6 PPPs with more than 1000 decimal digits

� The largest PPP has 1436 digits. Here it is:

1803532146261191676111772223623208347275969964558283839932078030579933
1320503455414169754975085139912977737134345139244343056969038696305577
4311165528049557041198494650220534301000599064280829563696261663641603
1291872175692516792403580436486465732201802954904379230282856981332645
1482439505914560157592259575526442752675227195720765685825697401310780
9574559661619423944056021671501285297133896894324966949550607404821622
4179944068822711956911514978015465869721406973109100277585585646434949
1580488972104215965030656524918332642168681287295417247876730157139466
3766878578385319432916316464184673137501491549254218483519627590639328
9081430175473725289832102715305195730186544187568043060941506473248029
7191109302157660838501156236014629540380680602354585925678035034529087
6633597339555433611318419806484463913249628542755559336822668585168661
2177280857455989776309148670372992958803354530952809310311316870662258
8620016719546874263674058772991386018889417578678638141400547829210654
6480904250752987191105549782127498882160112562293620632942757030273633
5840750535481387287278074059226975897195761344742618154360940114917188
0263447857309478583742447229055657821720539959105663964117560250499933
2764161589563688660172193866529279002464507278753239327452377973281285
8248290444560559095296564247588977151505422602628576727055161336221983
9163104142004738329396107955928417817443020309215814698240292630527201
598879853447747941654269439498406901

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 21

5.2.3 Some more information

� Our method found 1647 out of the known 1700 up to 1014. Thus, 53 or∼ 3% left. We call them
“sporadic PPPs”.

� Dana Jacobsen’s list of 101994 PPPs contains 699 that we could not find with our method.

� We found 742759 PPPs up to 1020. If these compile 97% of all PPPs, then 22972 sporadic
ones are left.

� Among the the first 10000 Carmichael numbers (taken from [9]) there are 16 PPPs:

C1353 = 7045248121 = 821 ∗ 1231 ∗ 6971 =

= (2(411− 1) + 1) ∗ (3(411− 1) + 1) ∗ (17(411− 1) + 1)

C1375 = 7279379941 = 211 ∗ 3571 ∗ 9661
C2142 = 24306384961 = 19 ∗ 53 ∗ 79 ∗ 89 ∗ 3433
C2652 = 43234580143 = 223 ∗ 5107 ∗ 37963
C2837 = 52437986833 = 23 ∗ 463 ∗ 1453 ∗ 3389
C2988 = 60518537641 = 23 ∗ 89 ∗ 991 ∗ 29833
C3336 = 80829302401 = 89 ∗ 199 ∗ 463 ∗ 9857
C3855 = 118805562613 = 829 ∗ 9109 ∗ 15733
C4125 = 144377609419 = 1319 ∗ 9227 ∗ 11863
C4322 = 165321688501 = 101 ∗ 271 ∗ 691 ∗ 8741
C4342 = 167385219121 = 83 ∗ 6971 ∗ 289297
C5046 = 254302215553 = 307 ∗ 3673 ∗ 225523
C5731 = 364573433665 = 5 ∗ 7 ∗ 23 ∗ 37 ∗ 997 ∗ 12277
C6743 = 575687567521 = 11 ∗ 19 ∗ 79 ∗ 137 ∗ 307 ∗ 829
C6810 = 588909469501 = 1871 ∗ 16831 ∗ 18701 =

= 1871 ∗ (9(1871− 1) + 1) ∗ (10(1871− 1) + 1)

C7057 = 652270080001 = 3361 ∗ 9241 ∗ 21001

Some of them, namely, C2142, C2837, C3336, C4342, C5731, C6743 and C7057 we could not find
with our method.

Note, that C7057 = (4 ∗ (841− 1) + 1) ∗ (11 ∗ (841− 1) + 1) ∗ (25 ∗ (841− 1) + 1) with
841 = 192. We could not find it, since we restrict ourself to ki ≤ 15 for numbers with 3 factors.

5.2.4 Some conjectures

During the calculations, we were led to the following conjectures. We invite everyone to think about
the proofs.

� Almost all PPPs have the structure P =
∏m

i=1 [ki(p− 1) + 1]

� There are infinitely many of such type.

� The p has few remainders with respect to multiples of 23. They can be calculated theoretically
in advance.

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

H. Stephan 22

� If
∏m

i=1 [ki(p− 1) + 1] is a PPP, then with “high” probability∏m+1
i=1 [ki(p−1)+1] is a PPP with km+1 = ckm. In such a way you can construct large PPPs.

� The set of remainders (with respect to multiples of 23) of p corresponding to given ki with 3 (or
more) factors are the intersection of the sets of remainders corresponding to fewer ki, requiring
gcd(ki, kj) = 1.

� There are a particularly large number of PPPs if the ki are prime, pairwise.

� If for some p the number with {k2 · k3, k2, k3} is a PPP then so is the number with {k2, k3}.

6 Other promising polynomials for pseudoprimes

We tested polynomials of degree 3 and 4 with integer coefficients ai with |ai| ≤ 20. Every corre-
sponding sequences we tested for pseudoprimes up to 109. For polynomials of third order the Perrin
sequence is indeed the rarest.

For polynomials of fourth order we find two polynomials without any pseudoprimes up to 109 at all.
Here they are:

Q(x) = −x4 + x3 − 17x2 + 0x+ 5

R(x) = −x4 + 11x3 + x2 − 12x+ 14

We have for Q(x) the corresponding sequence

qn = qn−1 − 17qn−2 + 5qn−4

q0 = 4

q1 = 1

q2 = −33
q3 = −50

and the testing rule n ∈ P =⇒ n|(qn − 1).

For R(x) the sequence is

rn = 11rn−1 + rn−2 − 12rn−3 + 14rn−4

r0 = 4

r1 = 11

r2 = 123

r3 = 1328

and the testing rule is n ∈ P =⇒ n|(rn − 11n).

To avoid the term 11n, it is better to consider

G(x) = Q(x)(x− 11) = −x5 + 22x4 − 120x3 − 23x2 + 146x− 154

instead of R(x). This corresponds to the 5-th oder sequence

gn = 22gn−1 − 120gn−2 − 23gn−3 + 146gn−4 − 154gn−5

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

Perrin pseudoprimes 23

g0 = 3

g1 = 0

g2 = 2

g3 = −3
g4 = 14

with the testing rule n ∈ P =⇒ n|gn.

References

[1] W. R. Alford, A. Granville, C. Pomerance, There are Infinitely Many Carmichael Numbers, Ann.
Math. 139, 703-722, 1994.

[2] F. Bauernöppel, private communication

[3] C. F. Gauss, Article 329 of Disquisitiones Arithmeticae (1801)

[4] J. Grantham: There are infinitely many Perrin pseudoprimes. Journal of Number Theory. 130, Nr.
5, 2010, S. 1117-1128

[5] D. Jacobsen, http://ntheory.org/pseudoprimes.html

[6] H. Stephan, Perrin pseudoprimes. Data Sets, Weierstrass Institute Berlin (2019),
http://doi.org/10.20347/WIAS.DATA.4

[7] https://en.wikipedia.org/wiki/Perrin_number

[8] https://oeis.org/search?q=perrin+pseudoprimes

[9] https://oeis.org/A002997/b002997.txt

[10] https://primes.utm.edu/howmany.html

DOI 10.20347/WIAS.PREPRINT.2657 Berlin 2019

	Introduction
	The Perrin sequence

	Pseudoprimes
	Iff– and if–Theorems
	Fermat and Carmichael pseudoprimes
	Fermat2 pseudoprimes
	Carmichael numbers

	General pseudoprimes
	Sums of powers. Multinomial coefficients
	Polynomials and recurrence sequences
	Perrin's sequence, given explicitely
	When is fn = (a+b+c)n - an -bn - cn an integer?
	When does (p ¶ =-3mu p|fp) hold?
	The recurrent calculation of the sequence
	The main theorem

	Numerical algorithms
	Matrix powers instead of additions
	Horner's method instead of matrix powers
	A fast algorithm for the Perrin sequence
	All steps combined
	A mathematica-code for the algorithm

	How to reduce the number of candidates
	The structure of most of the PPPs
	The remainders of p

	Numerical results
	The state of the art
	Our results
	Almost all PPPs
	Huge PPPs
	Some more information
	Some conjectures

	Other promising polynomials for pseudoprimes

