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Rough nonlocal diffusions
Michele Coghi, Torstein Nilssen

Abstract

We consider a nonlinear Fokker-Planck equation driven by a deterministic rough
path which describes the conditional probability of a McKean-Vlasov diffusion with
“common” noise. To study the equation we build a self-contained framework of non-
linear rough integration theory which we use to study McKean-Vlasov equations per-
turbed by rough paths. We construct an appropriate notion of solution of the corre-
sponding Fokker-Planck equation and prove well-posedness.
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1 Introduction

The term diffusion is sometimes used interchangeably when talking either about the macro-
scopic (Eulerian) description of the density of a substance occupying some space or the
infinitesimal (Lagrangian) description of the particles of the substance. Many physical phe-
nomena are however inherently nonlinear in the sense that the dynamic of the system will
depend not only on space but also on the density of the substance itself. In this paper we
study this type of nonlinear diffusion from both the Eulerian and Lagrangian perspective
when the diffusion is perturbed by a rough path. We are motivated by dynamics that arise
from interacting particle systems with common noise;

dXi
t =

1
N

N∑
j=1

b
(
X j

t , Xi
t

)
dt +

1
N

N∑
j=1

σ
(
X j

t , Xi
t

)
dW i

t +
1
N

N∑
j=1

β
(
X j

t , Xi
t

)
◦ dBt.

Here each particle Xi is influenced by 2 independent sources of noise, the Brownian motion
B 1 is visible for all particles (common noise) and the Brownian motion W i represents a noise
term specific for particle Xi. Since B is influencing every particle, taking the limit N → ∞
will only average out the individual noise terms, giving, at least formally, the mean-field
dynamics{

dxt =
∫

Rd b(ω, xt)dµt(ω)dt +
∫

Rd σ(ω, xt)dµt(ω)dWt +
∫

Rd β(ω, xt)dµt(ω) ◦ dBt
µt = L(xt|F

B
t ).

(1)

1Since we will in this paper only consider geometric rough paths, we shall consider Stratonovich integration
for this term.
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Rough nonlocal diffusions 3

We note that the conditional law L(xt|F
B

t ) heuristically satisfies the non-local Fokker-Plank
equation

dµt =
1
2

Tr∇2(σ(µ, ·)tσ(µ, ·)T
t µt)dt − div(b(µ, ·)tµt)dt − div(β(µ, ·)tµt) ◦ dBt, (2)

where we have used the notationσ(µ, x)t =
∫

Rd σ(ω, x)dµt(ω) etc. and Tr∇2(a) =
∑d

i, j=1 ∂i∂ jai, j

for a matrix valued function a. In fact, we can also address the case when σ is a certain
type of Lipschitz nonlinearity on P(Rd) ×Rd, where P(Rd) denotes the set of probability
measures on Rd, see Assumption 6.2. We will only address the case when β and b are
linear in their second argument.

In practice, (2) is difficult to solve since it needs to be formulated on a very large state space,
namely [C([0, T ];P(Rd))]Ω where Ω is the underlying probability space. Even when Ω is
finite, this space is too large to do analysis since it is difficult to find compact subsets that is
used for proving well-posedness of (1) and (2). For a long time, well-posedness for equation
(2) was known only for densities, see [20]. A proper well-posedness result in the space of
measures was obtain just very recently in [8].

In this paper we take a different approach, namely we study equation (1) for a fixed sample
path of the Brownian motion. Our method relies on the theory of rough paths and as such,
allows the study of (1) where B is replaced by any path that can be lifted to a rough path. In
particular, no markovianity or martingale structure is needed for the common noise.

From now on we replace B by a (deterministic) rough path Z = (Z, Z), and equation (2)
becomes

∂tµ =
1
2

Tr∇2(σ(µ, ·)σ(µ, ·)Tµ) − div(b(µ, ·)µ) − div(β(µ, ·)µ)Ż. (3)

The main contribution of this paper is the following.

Theorem (see Theorems 7.2 and 7.4). Given a probability measure µ0 on Rd with finite
ρ-th moment, for any ρ ≥ 2, there exists a unique measure-valued path µ : [0, T ] → P(Rd),
which solves (3) with initial condition µ0.

Moreover we will prove in Theorem 7.2 that the unique solution is given as µt := L(xt),
namely the law of solution x to the McKean-Vlasov equation

dxt = b(L(xt), xt)dt + σ(L(xt), xt)dWt + β(L(xt), xt)dZt. (4)

We will show well-posedness of (4) in Section 6.

The strategy to prove uniqueness to equation (3) relies on showing that every solution must
be the law of the McKean-Vlasov equation. As it will be clear in the proof of Theorem 7.4,
this also necessitates to be able to have well-posedness of the equation

dxt = bt(xt)dt + σt(xt)dWt + βt(xt)dZt, (5)

for given time inhomogeneous functions b,σ and β, where the time dependence is induced
by the law. Moreover, a common approach to proving well-posedness of (4) is to construct
the solution as a fixed point in the space of measures on an appropriate function space.
Towards this end one would e.g. define inductively

dxn+1
t = b(L(xn

t ), xn+1
t )dt + σ(L(xn

t ), xn+1
t )dWt + β(L(xn

t ), xn+1
t )dZt.
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M. Coghi, T. Nilssen 4

Once again, it is necessary to give a meaning to equation (5). If we consider the case
b = σ = 0 and βt(x) = βt the equation reads

dxt = βtdZt.

It is well-known that the above integration does not make sense unless we impose additional
structure on β, namely that there exists a Taylor-type expansion around the irregular path
Z, which is exactly the notion of controlled rough paths as introduced by Gubinelli in [17]. If
one aims to solve a mean-field equation on the form

dxt = β(L(xt), xt)dZt,

where L(xt) denotes the law of x, and β is an appropriate function on the space of mea-
sures, it is reasonable to expect that t 7→ β(L(xt), x) has such a decomposition and that
one could solve the equation as a fixed-point in an appropriate space of measures.

Following this logic, if we want to consider the equation with added Brownian motion (4) as
a fixed-point, this would necessitate being able to solve equation (5). The usual way, see
[12], [13] and [14], to study this hybrid rough path and Itô equation is to consider the joint
rough path

(
Wst
Zst

)
:=

( Wt −Ws
Zt − Zs

)
,

 ∫ t
s (Wr −Ws)dWr

∫ t
s (Wr −Ws)dZr∫ t

s (Zr − Zs)dWr Zst

 , (6)

and recast the equation on the form of a rough path equation

dxt =

(
σt
βt

)
(xt)d

(
Wt
Zt

)
.

Again, one would need to make an expansion of (σt, βt)T in terms of the path (W, Z)T .
However, thinking towards the goal of solving mean-field equations, the simplest examples
shows that there is no reason to expect that σt is controlled by a fixed Brownian path in any
sense - the law of the solution is an average over all Brownian sample paths.

Instead, if we define Wσ
st(x) =

∫ t
s σr(x)dWr as a Wiener-Itô integral and Zβst(x) =

∫ t
s βr(x)dZr

as a rough path integral, then on small time scales one would expect∣∣∣∣∣∣
∫ t

s
σr(xr)dWr −Wσ

st(xs)

∣∣∣∣∣∣∨
∣∣∣∣∣∣
∫ t

s
βr(xr)dZr − Zβst(xs)

∣∣∣∣∣∣ ,
to be small, so that one could use Wσ and Zβ to define a notion of non-linear 2 integration.
At the heart of all stochastic integration is the difficulty that the above is not enough to guar-
antee a canonically defined integration map in the pathwise sense. The most fundamental
understanding of the rough path theory is that one can construct integrals once additional
information about the driving path is given by some off-line argument e.g. stochastic inte-
gration.

2We choose to call the integration non-linear since a mapping x 7→
∫

fr(xr)dr is obviously never linear.
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Rough nonlocal diffusions 5

Existing literature

The stochastic equation, i.e. (1) and (2) has been studied in [20] and [21] but focusing on
the case where the initial condition has a density. The measure-valued case was studied
very recently in [8]. Under more restrictive conditions, either on the class of solutions or on
the coefficients (like strong parabolicity), the well-posedness of solutions to SPDE of the
type (2) had been previously considered by Dawson, Vaillancourt in [10].

McKean-Vlasov equations from a rough path perspective has already been introduced in
[7] and, more recently in [1], focusing on the Lagrangian description. In [1] the equation is
driven by a general random rough path, which gives the additional difficulty of needing to
keep track of the rough path as a Lp(Ω)-valued path. The latter space is present to consider
a probability measure as the law of a random variable and Lions’ approach to calculus for
the Wasserstein metric. The approach by Gubinelli on controlled rough paths is then used
to solve the equation as a fixed-point in the mixed Rd and Lp(Ω)-space.

We mention also [5] where the authors study mean-field games in the presence of a com-
mon noise as in (1). The authors use tightness arguments along with approximations to
prove existence of a (probabilistically) weak solutions. Then, the authors prove a Yamada-
Watanabe type principle for these equations to prove existence and uniqueness of (proba-
bilistically) strong solutions.

In Section 3 we build a version of the rough path theory that allow for time dependent
coefficients. The results in this section should be compared to [3] where the authors solves
equations on this form. There, the main focus is flows build from a non-linear version of the
sewing lemma. Very recently, right before the completion of the present paper, the authors
of [23] introduce the very same object, here called a nonlinear rough path. The authors use
a similar set up as in [17] to solve rough equations with time-dependent coefficients.

The papers [3] and [23] does not contain the same precise estimates as the present paper,
which is crucially needed to set up a contraction mapping for the McKean-Vlasov equation
(4).

Main contributions

The main contribution of this paper is the formulation and well-posedness of the nonlinear
Fokker-Planck equation in terms of the appropriate rough path topology. We believe this
is the first paper to study a rough non-local diffusion from both the Lagrangian and Eule-
rian perspective. Furthermore we believe it is the first work to prove well-posedness of an
equation with a nonlinearity in the noise term on this form.

It is plausible that the well-posedness of the McKean-Vlasov equation equation in the
present paper can be seen as a particular case of the equation studied in [1] by doing
a rough path lift of W and Z as in (6), but now as a rough path with values in an Lp(Ω)-
space. However, our proof of the well-posedness of the nonlinear Fokker-Planck equation
necessitate well-posedness of a rough path equation with time-dependent coefficients. As
already mentioned, it is not reasonable to expect that the coefficients could be controlled
by a single Brownian path thus one could not use [1] for the time dependent case. More-
over, for the same reason, time dependent coefficients are also needed to understand the
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M. Coghi, T. Nilssen 6

McKean-Vlasov equation as a fixed point of linear diffusions in an appropriate space of
measures.

In addition, we prove a result on existence of a solution to a linear, possibly degenerate,
rough PDE which could be of independent interest.

Structure of the paper

The paper is structured as follows. In Section 2 we introduce the necessary concepts from
rough path theory, including controlled rough paths, that will be needed for the paper. In
Section 3 we introduce the corresponding integration theory to handle non-linear integra-
tion and differential equations. In Section 4 we show how to concretely build rough drivers
from Itô integration theory and the theory of controlled paths. These examples will also act
exactly as the rough drivers needed to formulate the McKean-Vlasov equation as a fixed
point. Moreover, this section contains an average, in Ω, Itô formula that allows us to prove
that the law of a diffusion solves the Fokker-Planck equation (linear or nonlinear). In Section
5 we prove well-posedness for a linear RPDE with time dependent coefficients. In Section
6 we construct the appropriate space for solving the McKean-Vlasov equation. In Section
7 we prove uniqueness of our main equation, which hinges on the results of the previous
sections.

2 Notations and preliminary results

2.1 Hölder and p-variation spaces

For T > 0 we let ∆T denote the simplex ∆T = {(s, t) ∈ [0, T ]2 : s < t}. For ζ > 0 and a
Banach space E we denote by Cζ

2([0, T ]; E) the space of all continuous mappings g : ∆T →

E such that

[g]ζ,h;E := sup
(s,t)∈∆T :|t−s|≤h

‖gst‖E

|t − s|ζ
< ∞.

It can be checked that the above space is independent of h, and we will write for simplicity
[g]α;E := [g]α,T ;E. When it is clear from the context, we will also omit the Banach space E,
writing [g]α,h and [g]α. We let Cζ([0, T ]; E) denote the space of all paths f : [0, T ] → E
such that the increment δ fst := ft − fs belongs to Cζ

2([0, T ]; E). For simplicity we will write
[ f ]α,h;E := [δ f ]α,h;E. It is well known that local and global Hölder norms are comparable for
paths, in the sense that

[ f ]ζ;E ≤ [ f ]ζ,h;E(1∨ 2hζ−1) (7)

for all f ∈ Cζ([0, T ]; E) (see Exercise 4.25 in [15]). It is well known that the Hölder spaces
are not separable. However, the subspace

Cα
0 ([0, T ]; E) :=

{
f ∈ Cα([0, T ]; E) : lim

h→0
[ f ]α,h = 0

}
is separable, as proved in Proposition A.4.

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019



Rough nonlocal diffusions 7

We let Cp−var
2 ([0, T ]; E) be the space of all continuous mappings g : ∆T → E such that

[[g]]p,[s,t];E :=

sup
π

∑
{ti}=π

‖gtiti+1‖
p
E


1/p

< ∞

where the above supremum is taken over all partitions π of [s, t]. If we define wg(s, t) :=
[[g]]p

p,[s,t];E
it can be shown that (s, t) 7→ wg(s, t) is a control, namely continuous and super-

additive i.e. wg(s, u) + wg(u, t) ≤ wg(s, t). Moreover, we see that if there exists a control w
such that ‖gst‖E ≤ w(s, t)1/p, then wg(s, t) ≤ w(s, t), so that we could equivalently define

[[g]]p,[s,t];E = inf
{
w(s, t)1/p | w is a control such that ‖guv‖E ≤ w(u, v)1/p for s ≤ u < v ≤ t

}
.

We will write [[g]]p;E := [[g]]p,[0,T ];E and when the space E is clear from the context we will
simply write [[g]]p,[s,t] and [[g]]p := [[g]]p,[0,T ].

To see the relationship between Hölder continuity and p-variation, notice that for any parti-
tion π we have ∑

π

‖gtiti+1‖
p
E ≤

∑
π

[g]pα;E |ti+1 − ti|αp = [g]pα;E |t − s|

when α = 1/p, which gives the bound

wg(s, t) ≤ [g]1/α
α;E |t − s|. (8)

Given a control w, we construct the greedy partition, following [15, Chapter 11]; for β > 0,
define the partition {τn}n as

τ0 = s, τn+1 = inf{t | w(τn, t) ≥ β, τn < t ≤ T } ∧ T ,

so that w(τn, τn+1) = β, for all n < N, and w(τN , τN+1) ≤ β. Define now the integer

Nβ(w, [s, t]) := sup {n ≥ 0 | τn < t}. (9)

2.2 Rough paths

Assume E is a Banach space and equip E ⊗ E with the projective tensor norm. We call a
pair

Z := (Z, Z) ∈ Cα([0, T ]; E) ×C2α
2 ([0, T ]; E ⊗ E)

for α ∈ (1
3 , 1

2) a rough path provided Chen’s relation,

δZsθt = Zsθ ⊗ Zθt, (10)

holds where we have defined the second order increment operator δgsθt := gst − gθt − gsθ.
We denote by C α([0, T ]; E) the (non-linear) set of all rough paths which we equip with the
subset metric,

[Z −X]α,h := [Z − X]α,h + [Z −X]2α,h.

For a path of bounded variation, Z : [0, T ] → E there is a canonical rough path, Z =

(Z,
∫

Z ⊗ dZ) where the latter is the iterated integral
( ∫

Z ⊗ dZ
)

st
=

∫ t
s Zsr ⊗ dZr which is well
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M. Coghi, T. Nilssen 8

defined when Z is of bounded variation. We denote by C α
g ([0, T ]; E) the set of geometric

rough paths, which is the closure of the set of bounded variation paths in the rough path
metric.

We notice that if Z is geometric, then Z is also weakly geometric which means sym(Zst) =
1
2Zst ⊗ Zst, and we denote by C α

wg([0, T ]; E) the set of all such rough paths. When E is finite
dimensional it is known that (see e.g. [16, Proposition 8.12]) if Z is weakly geometric, there
exists a sequence of smooth paths Zn such that Zn → Z in C ᾱ([0, T ]; E) for all ᾱ < α.

Controlled space

Given a path Z taking values in Rm we denote by D2α
Z ([0, T ]; E) the (linear) space of all

controlled path, given by pairs (Y , Y′) of mappings

Y : [0, T ] → L(Rm; E), Y′ : [0, T ] → L(Rm×m; E)

such that
Y]st := δYst − Y′sZst, =⇒ Y] ∈ C2α

2 ([0, T ];L(Rm; E)).

We call Y′ the Gubinelli derivative of Y. The above definition is sometimes better understood
in coordinates Y],ist := δY i

st − Y i,k
s Zk

st where we abuse notation and write Y i,k for the matrix
representing the Gubinelli derivative. Above and for the remainder of the paper we shall use
the convention of summation over repeated indices. We equip the space of all controlled
paths with the norm

‖(Y , Y′)‖Z,α,h;E := |Y0|+ [Y′]α,h;E + [Y]]2α,h;E .

Sewing lemma and rough path integration

We recall here the main result used to obtain estimates in the theory of rough paths, namely
the sewing lemma.

Lemma 2.1. Suppose g : ∆T → E is such that

[δg]ζ,h;E := sup
s<θ<t:|t−s|≤h

‖δgsθt‖E

|t − s|ζ
< ∞

for some ζ > 1 and h > 0. Then there exists a unique pair I(g) : [0, T ] → E and I(g)\ :
∆T → E such that

δI(g)st = gst + I(g)\st

with [I(g)\]ζ;E ≤ C[δg]ζ,h;E for C depending only on ζ.

In fact, we have I(g)st := lim|π|→0
∑
π gtiti+1 and we think of I(g) as being an integral with

local expansion g.

With this in hand we can define the rough path integral. Given a rough path Z and a con-
trolled path (Y , Y′) ∈ D2α

Z ([0, T ]; E), define the local expansion

gst := YsZst + Y′sZst := Yk
s Zk

st + Yk,l
s Z

l,k
st .

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019



Rough nonlocal diffusions 9

Using Chen’s relation it is straightforward to check that [δg]3α;E < ∞ and we shall write∫
YdZ := I(g).

This construction also gives rise to a new rough path, namely

Xt =

∫ t

0
YrdZr, Xst =

∫ t

s
Xr ⊗ YrdZr − Xs ⊗ Xst (11)

where the latter integral is defined by the local expansion

Xs ⊗ Yk
s Zk

st + (Y l
s ⊗ Yk

s + Xs ⊗ Yk,l
s )Zl,k

st .

One can then check that X := (X, X) ∈ C α([0, T ]; E) and that this operation is continuous
from D2α

Z ([0, T ]; E) to C α([0, T ]; E). Moreover, at least when E is a separable Hilbert space,
weak geometricity is preserved under rough path integration as spelled out in Lemma A.2.

We shall also use the sewing lemma to get a priori estimates by a slight (straightforward)
generalization of the sewing lemma. Assume that g is such that there exists controls w and
w∗ and a positive function k such that

|δgsut| ≤ w(s, t)ζ(1 + ks), |gst| ≤ w∗(s, t)ζ (12)

for some ζ > 1. Then there exists a universal constant C such that

|gst| ≤ Cw(s, t)ζ(1 + sup
r∈[s,t]

kr). (13)

2.3 Taylor’s formula

For a path y : [0, T ] → Rd and a function g : Rd → V (where V is a finite-dimensional
vector space) we use the notation

[g]k,y
st :=

∫ 1

0
(1 − θ)k−1g(ys + θδyst)dθ. (14)

With this notation at hand the first and second order Taylor’s formula reads

δg(y)st = [∇g]1,y
st δyst, [g]1,y

st − g(ys) = [∇g]2,y
st δyst

respectively. We obviously get |[g]k,y
st | . ‖g‖∞.

2.4 Wasserstein metric

We shall work with the Wasserstein metric on measures on Hölder spaces, but since sep-
arability of the underlying space is required for the Wasserstein metric to give a complete
space, we shall use the subspaces Cα

0 ([0, T ]; Rd). When the dimension is clear from the
context we shall simply write Cα

0 . Given two probability measure µ, ν ∈ P(Cα
0 ) say that

π ∈ P(Cα
0 ×Cα

0 ) is a coupling of µ and ν provided its first (respectively second) marginal is
equal to µ (respectively ν). We define the Wasserstein metric

Wρ(µ, ν) := inf
π

∫
Cα

0×Cα
0

[ω − ω̄]ραdπ(ω, ω̄)

1/ρ
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where the above infimum ranges over all couplings π of the measures µ and ν. Since Cα
0 is

separable we have that Pρ(Cα
0 ) is a complete space w.r.t. Wρ.

We note that the ρ-th moment of a probability measure µ can be written Wρ(µ, δ0)ρ where
δ0 is the Dirac-Delta centered in the path constantly equal to 0.

2.5 Spatial function spaces

We fix d ∈N. For any multi-index β = (β1, . . . , βd), we set

Dβ =

(
∂

∂x1

)β1
(
∂

∂x2

)β2

· · ·

(
∂

∂xd

)βd

and |β| = β1 + · · ·+ βd. For p > 1 and an integer k ≥ 0, we let Wk,p = Wk,p(Rd) be the
Sobolev space of real-valued functions on Rd with finite norm

‖ f ‖Wk,p :=

∑
|β|≤k

∫
Rd
|Dβ f (x)|pdx


1
p

< ∞.

Let Hk := Wk,2(Rd; Rd), be the Sobolev space of square integrable functions over Rd,
endowed with the norm ‖ · ‖Hk := ‖ · ‖Wk,2 . For a Hilbert space H, we endow the space of
linear functionals L(Rd; H) with the Hilbert-Schmidt norm

‖A‖L(Rd;H) :=

 d∑
i=0

‖Aei‖
2
H


1
2

, A ∈ L(Rd; H). (15)

Moreover, we call M2
T (H) the space of H-valued, time-continuous, square integrable mar-

tingales endowed with the norm

‖M‖M2
T (H) := sup

t∈[0,T ]
‖Mt‖L2

ω
.

Let k > d
2 . We denote by C3

b ⊗Hk the space of continuous functions f : Rd ×Rd → Rd such
that

(i) For all x ∈ Rd, the function y 7→ f (x, y) ∈ Hk.

(ii) For all y ∈ Rd, the function x 7→ f (x, y) ∈ C3
b.

(iii) We have

‖ f ‖C3
b⊗Hk :=

 ∑
0≤i≤3,|β|≤k

sup
x∈Rd

∫
Rd
|∇i

1Dβ
2 f (x, y)|2dy


1
2

< ∞, f ∈ C3
b ⊗ Hk. (16)

We endow the space C3
b ⊗ Hk with the induced norm ‖ f ‖C3

b⊗Hk . Above we have used the
Frechet derivative in the first variable and the weak derivative in the second variable.

Contrary to Hl ⊗ Hk, this space is well suited for the convolution f (x, y) = σ(x − y) and we
see that f ∈ C3

b ⊗ Hk if σ ∈ H3+k.
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3 Non linear integration

In this section we build the theory of rough paths to accommodate for time-dependent co-
efficients. We aim to solve the equation

ẋt = ft(xt), x0 = ξ ∈ Rd (17)

for given function f which is a distribution in time but regular in space. We shall use the
framework akin to the definition by Davie in [9]. To illustrate the set up, assume that x is a
smooth solution of (17). Integrating the equation and using Taylor’s formula we obtain

δxst =

∫ t

s
fr(xr)dr =

∫ t

s
fr(xs) + ∇ fr(xs)(δxsr) + [∇2 fr]

2,x
sr (δxsr ⊗ δxsr)dr

=

∫ t

s
fr(xs)dr +

∫ t

s
[∇2 fr]

2,x
sr (δxsr ⊗ δxsr)dr

+

∫ t

s
∇ fr(xs)

(∫ r

s
fu(xs)du +

∫ r

s
∇ fu(xs)(δxsu)du +

∫ r

s
[∇2 fu]

2,x
su (δxsu ⊗ δxsu)du

)
dr

= Fst(xs) + Fst(xs) + x\st.

Here we have defined the driver F := (F, F) of the equation as follows

Fst(x) :=
∫ t

s
fr(x)dr Fst(x) :=

∫ t

s
∇ fr(x)Fsr(x)dr, (18)

and the remainder as

x\st :=
∫ t

s

∫ r

s
∇ fr(xs)∇ fu(xs)(δxsu)+ [∇2 fu]

2,x
su (δxsu⊗δxsu)dudr+

∫ t

s
[∇2 fr]

2,x
sr (δxsr ⊗δxsr)dr.

(19)
With the above notation, we rewrite equation (17) as

dxt = Fdt(xt). (20)

As is usual in rough path theory, we shall now read the definition (18) in the opposite di-
rection - we assume we are given a pair of functions (F, F) satisfying some compatibility
conditions (in Definition 3.1 below), and take this as a definition of the non-linearity f . We
will then take x\ to be implicitly defined and say that x is a solution provided x\ is of high
time regularity.

We can read (17) in integral form as xt = x0 +
∫ t

0 Fdr(xr) and can be regarded as a rough
version of the semimartingale integration theory by Kunita in [19].

We shall use a similar definition as in [3], with a noticeable difference that we allow our
driver to depend on two spatial points. Moreover, we will not only be dealing with weakly
geometric drivers.

Definition 3.1. For p ∈ [2, 3), a pair of functions F = (F, F) ∈ Cp−var([0, T ]; C3
b(R

d; Rd)) ×

C
p
2−var
2 ([0, T ]; C2

b(R
d ×Rd; Rd)) is called a p-rough driver provided Chen’s relation,

δFsut(x, y) = Fsu(x) ⊗∇Fut(y) := Fi
su(x)∂iFut(y) (21)
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holds. The set of all such pairs is equipped with the metrics

[[F −G]]p,[s,t] := [[F −G]]p,[s,t];C3
b
+

√
[[F −G]] p

2 ,[s,t];C2
b
.

Most of the time we will work on the diagonal of the spatial points and write simply Fst(x) :=
Fst(x, x), and we shall also write ∇Fut(x)Fsu(x) = Fsu(x) ⊗∇Fut(x).

For α ∈ (1
3 , 1

2 ] a pair of functions F = (F, F) ∈ Cα([0, T ]; C3
b(R

d; Rd))×C2α
2 ([0, T ]; C2

b(R
d ×

Rd; Rd)) is called an α-rough driver provided (21) holds. The set of all such pairs is
equipped with the metric

[F −G]α,h := ‖F −G‖α,h;C3
b
+

√
‖F −G‖2α,h;C2

b
.

Remark 3.2. The reason for using both p-variation and α-Hölder continuous drivers is that
the construction using Kolmogorov continuity theorem (Lemma 4.3, below) gives us more
easily bounds in the sense of Hölder continuity. However, to estimate the difference be-
tween two solutions we need exponential bounds, and it is well known that even when W
is a Brownian motion, the random variable [W]α is not exponentially integrable. This prob-
lem is circumvented by using p-variation, more specifically using the local accumulation
N1(‖W‖p−var;[·,·], [0, T ]), see Section 4.2 for the details.

From (8) it is clear that if F is an α-rough driver, then it is also a p-rough driver with p = 1
α .

When the notion is clear from the context, we shall simply say that F is a rough driver.

Example 3.3. Consider a rough path X ∈ C α([0, T ]; C3
b(R

d; Rd)), where we identify C3
b(R

d; Rd)⊗

C3
b(R

d; Rd) with a subspace 3 of C3
b(R

d ×Rd; Rd×d) so that Chen’s relation reads

δX
i, j
sut(x, y) = Xi

su(x)X j
ut(y).

Let now Fst(x) = Xst(x) and Fst(x, y) = ∇⊗y (Xst(x, y)) where ∇⊗2 : C3
b(R

d ×Rd; Rd×d) →

C3
b(R

d ×Rd; Rd) is the multiplication of vector fields, i.e. the linear extension of the mapping
defined by (

∇⊗2 ( f ⊗ g)(x, y)
) j
= f i(x)∂ig j(y).

It is straightforward to check that this gives a rough driver, and we notice that the mapping
X 7→ F is continuous.

With this at hand we can define the notion of a solution.

Definition 3.4. Let F be a rough driver as in Definition 3.1 and ξ ∈ Rd. A path x : [0, T ] →
Rd is called a solution to (20) provided x\ defined by

δxst = Fst(xs) + Fst(xs) + x\st, x0 = ξ, (22)

is such that x\ ∈ C
p
3−var
2 ([0, T ]; Rd).

3Since we are on the unbounded domain Rd, we don’t know if one can identify these spaces, but the
inclusion is enough for our purposes
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Remark 3.5. One drawback with this method compared to linear integration is the lack of
üniversalityïn the Itô-Lyons map; recall that the stochastic equation

dxt = V(xt) ◦ dBt

and its corresponding mapping B 7→ x can be factorized into a discontinuous map, B 7→
(B,

∫
BdB) and a continuous one (B,

∫
BdB) 7→ x. One of the nice features of this decom-

position is the fact that B 7→ (B,
∫

BdB) is universal in the sense that it does not depend on
the vector field V driving the equation, which allows to fix a subset Ω0 ⊂ Ω for which one
can do deterministic analysis on the differential equation.

In our case, however, the subset of Ω will depend on the driving vector fields since we are
building a non-linear integration theory depending on the coefficients.

3.1 A priori estimates

Let F be a p-rough driver and assume x is a solution of equation (20) in the sense of
Definition 3.4. In this section we use (12) and (13) to deduce a priori estimates. We let wF
be the smallest control such that

‖Fst‖C3
b
≤ wF(s, t)1/p, ‖Fst‖C2

b
≤ wF(s, t)2/p.

Define the controlled quantity,

x]st := δxst − Fst(xs) = Fst(xs) + x\st. (23)

Lemma 3.6. Let g ∈ C2
b, we have the following chain rule, ∀s, t ∈ [0, T ],

g(x)]st := δg(x)st −∇g(xs)Fst(xs) =⇒ |g(x)]st| ≤ ‖g‖C2
b
(wF(s, t)1/pwx(s, t)1/p +wx](s, t)2/p).

(24)

Proof. We have from Taylor’s formula

δg(x)st = [∇g]1,x
st δxst = [∇g]1,x

st Fst(xs) + [∇g]1,x
st x]st = ∇g(xs)Fst(xs) + g(x)]st,

where
g(x)]st =

(
[∇g]1,x

st −∇g(xs)
)

Fst(xs) + [∇g]1,x
st x]st.

By the definition of brackets (14), we get

|[∇g]1,x
st −∇g(xs)| =

∣∣∣∣∣∣
∫ 1

0
∇g(xs + θδxst) −∇g(xs)dθ

∣∣∣∣∣∣ ≤ ‖g‖C2
b
|δxst|.

The result follows. �

With this in hand we turn to an a priori estimate for the nonlinear RDE.

Proposition 3.7. Let 0 < h ≤ T . There exists constants C and h depending only on p such
that for all s, t such that wF(s, t) ≤ h we have

|xst| ≤ CwF(s, t)1/p, |x]st| ≤ CwF(s, t)2/p, |x\st| ≤ CwF(s, t)3/p,
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Proof. We start with the easily verifiable identity for a function G and path y

δG(y)sut = δGsut(ys) − δ(Gut(y·))su.

Using Chen’s relation we get

δx\sut = δ(Fut(x·))su + δ(Fut(x·))su − δFsut(xs)

= δ(Fut(x·))su −∇Fut(xs)Fsu(xs) + δ(Fut(x·))su

= Fut(x)]su + ∇Fut(xs)Fsu(xs) + Fut(x)]su.

We get from Lemma 3.6, provided h < 1

|Fut(x)]su|+ |Fut(x)]su| ≤ wF(s, t)1/p(wF(s, t)1/pwx(s, t)1/p + wx](s, t)2/p)

and clearly
|∇Fut(xs)Fsu(xs)| ≤ wF(s, t)3/p.

From the sewing lemma there exists a constant C such that

|x\st| ≤ C
(
wF(s, t)2/pwx(s, t)1/p + wF(s, t)1/pwx](s, t)2/p + wF(s, t)3/p

)
From equations (22) and (23) we have

|xst| ≤ wF(s, t)1/p + wF(s, t)2/p + wx\(s, t)3/p |x]st| ≤ wF(s, t)2/p + wx\(s, t)3/p

and consequently

|x\st| ≤ wx\(s, t)3/p ≤ C
(
wF(s, t)1/pwx\(s, t)3/p + wF(s, t)3/p

)
.

If now s, t is such that CwF(s, t)1/p ≤ 1
2 we get

wx\(s, t)3/p ≤ CwF(s, t)3/p

which gives
|xst| ≤ CwF(s, t)1/p, |x]st| ≤ CwF(s, t)2/p.

�

The above bound translates now to global estimates on the solution itself in the following
way.

Lemma 3.8. Assume now that F is an α-rough driver with α = 1
p . Then we have, for h > 0

small enough depending on F,
[x]α,h ≤ C[F]α,h. (25)

Moreover, we have the global estimate

[x]α ≤ C([F]α ∨ [F]1/α
α ) (26)

for a constant C > 0 depending only on α.
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Proof. Since F is Hölder continuous we have wF(s, t) ≤ [F]p
α,h|t− s| for all |t− s| ≤ h. Choose

now h such that hα[F]α,hC ≤ 1
2 where C is as in Proposition 3.7. For |t − s| ≤ h we have

|xst| ≤ CwF(s, t)α ≤ C[F]α,h|t − s|α,

from which (25) follows.

From (7) we get, choosing now h ' [F]−1/α
α , hα−1 ' [F](1−α)/αα

[x]α ≤ [x]α,h(1∨ 2hα−1) ≤ C[F]α(1∨ [F]
(1−α)/α
α )

for some universal constant C depending only on α. �

3.2 A priori contractive estimates

Let p < 3, and assume F, G are two p-rough drivers. We take two solutions x and y of
equation (20) in the sense of Definition (3.4), with initial conditions x0 and y0 and driven by
F and G respectively.

To illustrate the ideas of this section, we give the following remark.

Remark 3.9. Assume that F :=
∫ t

0 fr(x)dr, G :=
∫ t

0 gr(x)dr, x and y are smooth in time, so
that we can write

|xt − yt| ≤ |x0 − y0|+

∣∣∣∣∣∣
∫ t

0
fr(xr) − gr(yr)dr

∣∣∣∣∣∣ ≤ |x0 − y0|+

∫ t

0
| fr(xr) − fr(yr)|dr +

∫ t

0
‖ fr − gr‖Cbdr

≤ |x0 − y0|+

∫ t

0
‖∇ fr‖Cb‖xr − yr‖dr +

∫ t

0
‖ fr − gr‖Cbdr ≤ e

∫ t
0 ‖∇ fr‖Cbdr(|x0 − y0|+

∫ t

0
‖ fr − gr‖Cbdr)

where we have used Gronwall’s inequality in the last step. The purpose of this subsection
is to replicate these estimates also for the rough case. The steps are similar to the previous
subsection, except we compare two solutions.

We start by writing

δxst − δyst = Fst(xs) −Gst(ys) + x]st − y]st = Fst(xs) − Fst(ys) + Fst(ys) −Gst(ys) + x]st − y]st.

Let z := x − y and z] := x] − y] so that the above gives the estimate

|δzst| ≤ wF(s, t)1/p|zs|+ wF−G(s, t)1/p + wz](t, s)1/p. (27)

We begin with the analogue of Lemma 3.6 that allows us to estimate nonlinearities of the
remainders.

Lemma 3.10. Let f , g ∈ C3
b. Then using the notation as in Lemma 3.6 we have the estimate

| f (x)]st − g(y)]st| ≤ ‖ f − g‖C2
b
wF(s, t)2/p + ‖g‖C3

b
|zs|(wF(s, t)2/p + wG(s, t)2/p)

+ ‖g‖C2
b
(wz(s, t)1/pwF(s, t)1/p + wG(s, t)1/pwF−G(s, t)1/p + wz](s, t)2/p).

(28)
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Proof. We write

f (x)]st − g(y)]st = [∇2 f ]2,x
st δxstFst(xs) − [∇

2g]2,y
st δystGst(ys) + [∇ f ]1,x

st x]st − [∇g]1,y
st y]st.

The first two terms above can be written

[∇2 f ]2,x
st δxstFst(xs) − [∇

2g]2,y
st δystGst(ys) = ([∇2 f ]2,x

st − [∇
2g]2,x

st )δxstFst(xs)

+ ([∇2g]2,x
st − [∇

2g]2,y
st )δxstFst(xs) + [∇2g]2,y

st (δxst − δyst)Fst(xs)

+ [∇2g]2,y
st δyst(Fst(xs) −Gst(xs)) + [∇2g]2,y

st δyst(Gst(xs) −Gst(ys)).

Which gives the bound

|[∇2 f ]2,x
st δxstFst(xs) − [∇

2g]2,y
st δystGst(ys)| ≤ ‖∇

2 f −∇2g‖CbwF(s, t)2/p + ‖∇3g‖Cb |zs|wF(s, t)2/p

+ ‖∇2g‖Cwz(s, t)1/pwF(s, t)1/p + ‖∇2g‖CbwG(s, t)1/pwF−G(s, t)1/p

+ ‖∇2g‖CbwG(s, t)1/pwG(s, t)1/p|zs|.

Now write

[∇ f ]1,x
st x]st − [∇g]1,y

st y]st = ([∇ f ]1,x
st − [∇g]1,x

st )x]st + ([∇g]1,x
st − [∇g]1,y

st )x]st + [∇g]1,y
st (x]st − y]st).

We see that

|([∇ f ]1,x
st − [∇g]1,x

st )x]st| . ‖∇ f −∇g‖CbwF(s, t)2/p, and |([∇g]1,y
st (x]st − y]st))| . ‖∇g‖Cbwz](s, t)2/p

which gives (28). �

Proposition 3.11. Assume that F and G are α-rough drivers with α = 1
p . Then there exists

universal constants C such that

sup
r∈[0,T ]

|xr − yr| ≤ C(|x0 − y0|+ [[F −G]]p)eCN(wF,[0,T ]). (29)

Moreover,

[[x − y]]p,[s,t] ≤CeCN(wF,[0,T ])(|x0 − y0|+ [[F −G]]p) (30)

·
[
([[F]]p,[s,t] + [[G]]p,[s,t])(1 + [[F]]p + [[G]]p)

2
]

[[x] − y]]] p
2 ,[s,t] ≤CeCN(wF,[0,T ])(|x0 − y0|+ [[F −G]]p) (31)

·
[
([[F]]p,[s,t] + [[G]]p,[s,t])(1 + [[F]]p + [[G]]p)

2
]

for all s, t such that C([[F]]p,[s,t] + [[G]]p,[s,t]) ≤ 1. In particular, we have uniqueness for equa-
tion (20) and the solution is continuous w.r.t. the initial condition.

Proof. Using Chen’s relation we get

δ(x − y)\sut = Fut(x)]su −Gut(y)
]
su + ∇Fut(xs)Fsu(xs) −∇Gut(xs)Gsu(ys) + Fut(x)]su −Gut(x)]su.

Replacing f = Fut and g = Gut in (28) we get

|Fut(x)]su −Gut(y)
]
su| . wF−G(s, t)1/pwF(s, t)2/p + wG(s, t)1/p|zs|(wF(s, t)2/p + wG(s, t)2/p)

+ wG(s, t)1/p(wz(s, t)1/pwF(s, t)1/p + wG(s, t)1/pwF−G(s, t)1/p + wz](s, t)2/p).
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Replacing f = Fut and g = Gut in (28) we get

|Fut(x)]su −Gut(y)
]
su| . wF−G(s, t)2/pwF(s, t)2/p + wG(s, t)2/p|zs|(wF(s, t)2/p + wG(s, t)2/p)

+ wG(s, t)2/p(wz(s, t)1/pwF(s, t)1/p + wG(s, t)1/pwF−G(s, t)1/p + wz](s, t)2/p).

Use also the estimate

|z]st| ≤ |zs|wF(s, t)2/p + wF−G(s, t)2/p + wz\(s, t)3/p.

Let now s, t be such that wG(s, t)1/p, wF(s, t)1/p ≤ C
2 which gives

|δz\sut| . wF−G(s, t)1/pwF(s, t)2/p + wF−G(s, t)2/pwF(s, t)1/p

+ wG(s, t)1/p|zs|(wF(s, t)2/p + wG(s, t)2/p)

+ wG(s, t)1/p
(
wz(s, t)1/pwF(s, t)1/p + wG(s, t)1/pwF−G(s, t)1/p

+ |zs|wF(s, t)2/p + wF−G(s, t)2/p + wz\(s, t)3/p.

From (12) and (13) we get that there exists a universal constant C such that

wz\(s, t)3/p ≤C
(
wF−G(s, t)1/pwF(s, t)2/p + wF−G(s, t)2/pwF(s, t)1/p

+ sup
r∈[s,t]

|zr|(wG(s, t)1/pwF(s, t)2/p + wG(s, t)3/p)

+ wG(s, t)1/p
(
wz(s, t)1/pwF(s, t)1/p + wG(s, t)1/pwF−G(s, t)1/p

+ wF−G(s, t)2/p + wz\(s, t)3/p
)
.

Choose now s, t such that wG(s, t)1/p ≤ C
2 ∧ 1, so that

wz\(s, t)3/p ≤2C
(
wF−G(s, t)1/pwF(s, t)2/p + wF−G(s, t)2/pwF(s, t)1/p

+ sup
r∈[s,t]

|zr|(wG(s, t)1/pwF(s, t)2/p + wG(s, t)3/p)

+ wG(s, t)1/p
(
wz(s, t)1/pwF(s, t)1/p + wG(s, t)1/pwF−G(s, t)1/p + wF−G(s, t)2/p

)
.

Choosing s, t such that wF−G(s, t)1/p ≤ C
2 ∧ 1 if necessary, we have the following estimate

for the difference of two solutions

|δzst| ≤ wF(s, t)1/p|zs|+ wF(s, t)2/p|zs|+ wF−G(s, t)1/p + wF−G(s, t)2/p + wz\(s, t)3/p

≤ C
(
wF(s, t)1/p sup

r∈[s,t]
|zr|+ wF−G(s, t)1/p + wF−G(s, t)1/pwF(s, t)2/p

+ wF−G(s, t)2/pwF(s, t)1/p + wG(s, t)1/pwz(s, t)1/pwF(s, t)1/p
)
. (32)

Let now (s, t) be such that wF(s, t)1/p, wG(s, t)1/p, wF−G(s, t)1/p ≤ C
2 we get

|δzst| ≤ ωz(s, t)1/p ≤ C
(
wF(s, t)1/p sup

r∈[s,t]
|zr|+ φ(s, t)

)
,

where φ(s, t) := wF−G(s, t)1/p. The simplex function φ(s, t) is not a control (not super-
additive), but it is increasing in t and decreasing is s, which is enough to apply the rough
Gronwall lemma, Lemma A.5. We get, for a constant C > 0 possibly different than before,

sup
r∈[s,t]

|zr| ≤ C exp{CwF(s, t)}(|zs|+ φ(s, t)),
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and we notice that this holds for all subintervals [s, t], i.e. no smallness assumption. Now,
choose the finest partition τk of [s, t] such that wF(τk, τk+1) = 1. We have

sup
r∈[s,τ1]

|zr| ≤ C(|zs|+ φ(s, τ1))eC ,

On the next interval [τ1, τ2], we use the previous estimate and the monotonicity of φ(s, t) in
its two arguments s, t to get

sup
r∈[τ1,τ2]

|zr| ≤ C(|zτ1 |+ φ(τ1, τ2))eC ≤ C(C(|zs|+ φ(s, τ1))eC + φ(τ1, τ2))eC

≤ C2(|zs|+ 2φ(s, τ2))e2C

provided C > 1. An easy induction shows that

sup
r∈[τn,τn+1]

|zr| ≤ Cn(|zs|+ nφ(s, τn+1))enC ≤ (|zs|+ φ(s, τn+1))en(C+ln(C)).

By definition of the greedy partition (9) we get, by possibly changing C again,

sup
r∈[s,t]

|zr| ≤ C(|zs|+ φ(s, t))eCN(wF,[s,t]). (33)

Letting s = 0 and using φ(0, T ) = wF−G(0, T )1/p = [[F −G]]p this shows (29).

To see (30) we plug the above into (27) to get

|δzst| ≤wF(s, t)1/p|zs|+ wF−G(s, t)1/p + wz\(s, t)3/p

≤wF(s, t)1/p|zs|+ wF−G(s, t)1/p + 2C
(
wF−G(s, t)1/pwF(s, t)2/p + wF−G(s, t)2/pwF(s, t)1/p

+ sup
r∈[s,t]

|zr|(wG(s, t)1/pwF(s, t)2/p + wG(s, t)3/p)

+ wG(s, t)1/p
(
wz(s, t)1/pwF(s, t)1/p + wG(s, t)1/pwF−G(s, t)1/p + wF−G(s, t)2/p

)
≤(wF(s, t)1/p + wG(s, t)1/p) sup

r∈[s,t]
|zr|+ wF−G(s, t)1/p + wG(s, t)1/pwF(s, t)1/pwz(s, t)1/p

≤(wF(s, t)1/p + wG(s, t)1/p) sup
r∈[s,t]

|zr|+ wF−G(s, t)1/p,

using wF(s, t)1/p, wG(s, t)1/p ≤ 1/2 in the last step. Using (33) gives

|δzst| ≤ (wF(s, t)1/p + wG(s, t)1/p)Cφ(0, t)eC̃N(wF,[0,t]) + wF−G(s, t)1/p

≤
[(
|z0|+ wF−G(0, T )1/pwF(0, T )2/p + wF−G(0, T )2/pwF(0, T )1/p

)
(wF(s, t)1/p + wG(s, t)1/p)

+ wF−G(s, t)1/p
]
CeC̃N(wF,[0,T ]). (34)

This gives (30). The bound (31) is proved in a similar way. �

Corollary 3.12. Assume that F and G are α-rough drivers with α = 1
p . Then there exists a

universal constant C such that,

[x − y]α ≤CeCN(wF,[0,T ])(|x0 − y0|+ [F −G]α)(1 + [F]α + [G]α)
2

· (([F]α + [G]α) ∨ ([F]α + [G]α)
1
α ).
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Proof. Use bounds on the form wF(s, t) ≤ [F]p
α,h|t − s| for all |t − s| ≤ h in inequality (34).

This gives the Hölder estimate

[z]α,h ≤ CeCN(wF,[0,T ])
[(
[F −G]α[F]2α + [F −G]2α[F]α

)
([F]α,h + [G]α,h) + [F −G]α,h)

]
≤ CeCN(wF,[0,T ])(|z0|+ [F −G]α)

[
([F]α,h + [G]α,h)(1 + [F]α + [G]α)

2
]

which holds when h is such that |t − s| ≤ h we have wF(s, t)1/p, wG(s, t)1/p . 1, in particular
when hα([F]α,h + [G]α,h) . 1.

Let C be the constant given by Proposition 3.11 and set h = C−
1
α ([F]α+ [G]α)

− 1
α . It follows

by (7) and Proposition 3.11 that (the value of C changes in the following lines, but it only
depends on α)

[x − y]α ≤[x − y]α,h(1∨ 2hα−1)

≤CeCN(wF,[0,T ])(|x0 − y0|+ [F −G]α)(1 + [F]α + [G]α)
2([F]α,h + [G]α,h)

· (1∨ ([F]α + [G]α)
−1+ 1

α ).

This concludes the proof. �

3.3 Well-posedness of nonlinear RDEs

Since uniqueness of equation (20) follows from Proposition 3.11, it is only left to prove
existence of a solution. We do so by using a Picard iteration.

Theorem 3.13. Let F be a p-variation rough driver. There exists a unique solution x of
equation (20), in the sense of Definition 3.4, with initial condition ξ ∈ Rd.

Proof. Uniqueness is given by Proposition 3.11. We study now existence. Define x0
t = ξ,

x1
t = F0t(ξ) and

a1
st := Fst(x1

s) + Fst(x0
s , x1

s),

which gives

δa1
sut = −δFut(x1)su − δFut(x1, x0)su + δFsut(x0

s , x1
s)

= −[∇Fut]
1,x1

su δx1
su − δFut(x1, x0)su + Fsu(x0

s) ⊗∇Fut(x1
s)

= −[∇2Fut]
2,x1

su (δx1
su ⊗ Fsu(x0

s)) − δFut(x1, x0)su

= −[∇2Fut]
2,x1

su (Fsu(x0
s) ⊗ Fsu(x0

s)) − δFut(x1, x0)su

≤ wF(s, t)3/p + ‖∇Fut‖CbwF(s, t)1/p ≤ 2wF(s, t)3/p.

Consequently, there exists a pair (x2, x2,\) such that

δx2
st = Fst(x1

s) + Fst(x1
s , x0

s) + x2,\
st

and we have |x2,\
st | ≤ CwF(s, t)3/p for some universal constant C.

We prove inductively that there exists universal constants C and h such that for wF(s, t) ≤ h
we have |xn,\

st | ≤ CwF(s, t)3/p and |δxn
st| ≤ 2wF(s, t)1/p +CwF(s, t)3/p.
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Given xn−1 and xn we let
an

st := Fst(xn
s) + Fst(xn

s , xn−1
s ).

We then get

δan
sut = −δFut(xn)su − δFut(xn, xn−1)su + Fsu(xn−1

s ) ⊗∇Fut(xn
s)

= −[∇Fut]
1,xn

su δxn
su − δFut(xn, xn−1)su + ∇Fut(xn

s)Fsu(xn−1
s )

= −[∇Fut]
1,xn

su (Fsu(xn−1
s )) − [∇Fut]

1,xn

su Fsu(xn−1
s , xn−2

s ) − [∇Fut]
1,xn

su xn,\
st Fsu(xn−1

s , xn−2
s )

− δFut(xn, xn−1)su + ∇Fut(xn
s)Fsu(xn−1

s )

= −[∇Fut]
2,xn

su (δxn−1
su ⊗ Fsu(xn−1

s )) − [∇Fut]
1,xn

su Fsu(xn−1
s , xn−2

s )

− [∇Fut]
1,xn

su xn,\
st Fsu(xn−1

s , xn−2
s ) − δFut(xn, xn−1)su.

which gives

|δan
sut| ≤ wF(s, t)2/p(2wF(s, t)1/p +CwF(s, t)3/p) +CwF(s, t)5/p + wF(s, t)3/p +CwF(s, t)5/p

+ 2wF(s, t)2/p(2wF(s, t)1/p +CwF(s, t)3/p)

= 7wF(s, t)3/p + 5CwF(s, t)5/p ≤ 8wF(s, t)3/p

provided h is such that 5CwF(s, t)2/p ≤ 1. This gives that there exists xn+1, xn+1,\ such that

δxn+1
st = Fst(xn

s) + Fst(xn
s , xn−1

s ) + xn+1,\
st , |xn+1,\

st | ≤ Cp8wF(s, t)3/p (35)

so C ≥ Cp8 will do. Provided h is such that wF(s, t)1/p ≤ 1 we also get

|δxn
st| ≤ wF(s, t)1/p + wF(s, t)2/p +CwF(s, t)3/p ≤ 2wF(s, t)1/p +CwF(s, t)3/p

which proves the induction hypothesis.

From Arzelà-Ascoli we get that there exists a subsequence xnk converging in C([0, T ]; Rd)
to some element x. Clearly we get

sup
s,t

(|Fst(xnk
s ) − Fst(xs)| ∨ |Fst(xnk

s ) −Fst(xs)|)→ 0.

Since all the terms of (35) (or rather, the one with n replaced by nk) converges, we get that
also xnk,\

st must converge to a limit denoted x\st. Then x and x\ satisfies (22) and from the
uniform bounds on xnk,\ we see that x indeed is a solution. �

4 Rough non-linearities

In this section we show how to construct the rough drivers that are used for solving the
McKean-Vlasov equation (4). We start by constructing rough drivers corresponding to Itô
theory, i.e. given a vector field σ and a Brownian motion W, we want to define

Wσ
st(x) =

∫ t

s
σr(x)dWr, Wσ

st(x, y) =
∫ t

s
Wσ

sr(x)∇σr(y)dWr,

where the latter integration is in the sense of Itô. As the following example demonstrates, it
is not possible to simply integrate a function σ ∈ C([0, T ]; C3

b(R
d; Rd)) to produce a rough

driver.
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Example 4.1. Let d = 1 and σr(x) = sin(rx), then the mapping x 7→ Wσ
st(x) is P-a.s. un-

bounded as x→ ∞. Indeed, let s = 0 and t = 1 and x = 2πn for n ∈N, then {Wσ
01(2πn)}n∈N

is an i.i.d. Gaussian sequence, which P-a.s. diverges.

The above example shows that we need some decay on our vector fields as |x| → ∞. We
choose to assume that σ belongs to a Sobolev space Hk(Rd; Rd) where k is large enough
to use Sobolev embedding to show that Wσ is a rough driver. The reason for this choice is
the relatively simple and well established theory of Itô integration that is available for Hilbert
spaces. We conjecture that this regularity can be significantly lowered (e.g. with decay as
in [3, Corollary 9]) and leave this for future investigation.

Let d, m ∈ N be fixed and let Z ∈ C ᾱ
g ([0, T ], Rm), for ᾱ ∈ (1

3 , 1
2). In this section we assume

the following

Assumptions 4.2. Let k ∈N∪ {0}, and α ∈ (1
3 , ᾱ),

(i) Let (β, β′) ∈ D2α
Z ([0, T ]; Hk), as in Section 2.

(ii) Let σ : [0, T ] → L(Rd; Hk) be a continuous function, such that

‖σ‖L∞t L(Rd;Hk) = sup
t∈[0,T ]

‖σt‖L(Rd;Hk) < ∞.

(iii) Let p = α−1, then
[[σ]]p;L(Rd;Hk) < +∞.

To simplify the following discussion, we introduce the convenient notation

L = L(σ, β, Z) :=
(
1 + ‖σ‖L∞t L(Rd;Hk) + ‖(β, β′)‖Z,α;Hk

)
(1 + [Z]ᾱ ∨ [Z]

1
2
ᾱ). (36)

4.1 Construction of the rough driver

4.1.1 Itô theory

Let (Ω,F , (Ft)t∈[0,T ], P) be a filtered probability space and let W be a d-dimensional Wiener
process on it. We assume that σ satisfies Assumption 4.2 (ii), for k > 3 + d

2 . We define, for
0 ≤ s ≤ t ≤ T ,

Wσ
t :=

∫ t

0
σrdWr ∈ M2

T (H
k), Wσ

st := Wσ
t −Wσ

s , (37)

where the integral is defined in the sense of Itô on Hilbert spaces, see [22, Section 2].
Thanks to Burkholder-Davis-Gundy (BDG) inequality for Hilbert spaces, [22, Theorem 2.4.7],
we have for all ρ ≥ 1 and 0 ≤ s ≤ t ≤ T ,

E sup
r∈[s,t]

‖Wσ
sr‖

ρ

Hk ≤ Cρ

(∫ t

s
‖σr‖

2
L(Rd;Hk)

dr
) ρ

2

≤ Cρ‖σt‖
ρ

L∞t L(Rd;Hk)
|t − s|

ρ
2 . (38)

We consider now the time-continuous stochastic process,

(Wσ
· ⊗∇)σ· : [0, T ] ×Ω → L(Rd; Hk ⊗ Hk−1),
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with Hilbert-Schmidt norm (15) bounded as ‖ (Wσ
t ⊗∇)σt‖L(Rd;Hk⊗Hk−1) ≤ ‖W

σ
t ‖Hk‖σt‖L(Rd;Hk),

for all t ∈ [0, T ]. Using again Itô theory on Hilbert spaces, we have that
∫ t

0 (Wσ
r ⊗∇)σrdWr ∈

M2
T (H

k ⊗ Hk−1) and we set, for 0 ≤ s ≤ t ≤ T ,

Wσ
st :=

∫ t

s
(Wσ

r ⊗∇)σrdWr − (Wσ
s ⊗∇)Wσ

st : Ω → Hk ⊗ Hk−1. (39)

Applying again BDG inequality and inequality (38), we have for all ρ ≥ 1 and 0 ≤ s ≤ t ≤ T ,

E sup
r∈[s,t]

‖Wσ
sr‖

p
Hk⊗Hk−1 ≤ Cρ

(∫ t

s

(
E‖Wσ

sr‖
ρ

Hk

) 2
ρ
‖σr‖

2
L(Rd;Hk)

dr
) p

2

≤ Cρ‖σ‖
2ρ
L∞t L(Rd;Hk)

|t − s|ρ.

(40)

Lemma 4.3. Let W be a d-dimensional Wiener process on the filtered probability space
(Ω,F , (Ft)t∈[0,T ], P) and let σ satisfy Assumption 4.2 (ii), with k > 3 + d

2 . Let Wσ and Wσ

be defined as in (37) and (39), respectively. Then, for every α ∈ (1
3 , 1

2), for P-a.e. ω

Wσ := (Wσ, Wσ) ∈ Cα([0, T ]; C3
b(R

d; Rd)) ×C2α
2 ([0, T ]; C2

b(R
d ×Rd; Rd)),

is a rough driver in the sense of Definition 3.1, and for all ρ > 2
1−2α , we have

‖[Wσ]α;C3
b
‖Lρω
. ‖σ‖L∞t L(Rd;Hk), ‖[Wσ]2α;C2

b(R
d×Rd)‖Lρω

. ‖σ‖2L∞t L(Rd;Hk)
. (41)

Moreover, on small time-intervals |t − s| ≤ h ≤ T we have, for ᾱ ∈ (α, 1
2),

[Wσ]α,h,C3
b
≤ hᾱ−α[Wσ]ᾱ,C3

b
, [Wσ]2α,h,C2

b(R
d×Rd) ≤ hᾱ−α[Wσ]2ᾱ,C2

b(R
d×Rd), P − a.s.

Proof. We first study the space regularity of W. From the choice of k, Sobolev’s embedding
Theorem [4, Corollary 9.13] and inequalities (38) and (40), we have that

E sup
r∈[s,t]

‖Wσ
sr‖

ρ

C3
b
≤ E sup

r∈[s,t]
‖Wσ

sr‖
ρ

Hk ≤ Cρ‖σt‖
ρ

L∞t L(Rd;Hk)
|t − s|

ρ
2 ,

E sup
r∈[s,t]

‖Wσ
sr‖

ρ

C3
b⊗C2

b
≤ E sup

r∈[s,t]
‖Wσ

sr‖
ρ

Hk⊗Hk−1 ≤ Cρ‖σt‖
2ρ
L∞t L(Rd;Hk)

|t − s|ρ.

By the Kolmogorov continuity theorem A.1, we obtain (41).

We check now that Chen’s relation (21) holds P-a.s.. Indeed, we have the following,

δWσ
sut =

∫ t

u
(Wσ

su ⊗∇)σrdWr = (Wσ
su ⊗∇)Wσ

ut, P − a.s.

To justify the last equality we call H̃ := L(Rd; Hk ⊗ Hk−1) and we note that (Wσ
su ⊗ ∇) :

Ω → L(Hk, H̃) is an Fu-measurable random variable taking values in the space of linear
operators between two Hilbert spaces. Thanks to the fact that the operator (Wσ

su ⊗ ∇) is
measurable with respect to the left-most point of the integral, one can easily adapt [22,
Lemma 2.4.1] to show that it commutes with the stochastic integral.

�

We shall also need contractive estimates w.r.t. the vector field.
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Lemma 4.4. Let σ and θ satisfy Assumption 4.2 (ii), with k > 3 + d
2 . Let Wσ and Wθ be

rough drivers as constructed in Lemma 4.3 w.r.t. the vector fields σ and θ. Then, for all
ᾱ ∈ [α, 1

2) and all ρ > 2
1−2ᾱ , there exists Kρ ∈ Lρ(Ω), such that for all h ≤ T ,

[Wσ−Wθ]α,h;C3
b
≤ hᾱ−αKρ(1+ ‖σ‖L∞t L(Rd;Hk)+ ‖θ‖L∞t L(Rd;Hk))‖σ− θ‖L∞t L(Rd;Hk), P−a.s.

(42)

Proof. The proof follows as an application of Kolmogorov continuity theorem as in Lemma
4.3. �

4.1.2 Gubinelli integration

Let ᾱ ∈ (1
3 , 1

2), Z ∈ C ᾱ
g ([0, T ], Rm) and let β satisfy Assumption 4.2 (i), for k ∈ N ∪ {0} and

α ∈ (1
3 , ᾱ). Using Gubinelli’s integration theory (see [15, Chapter 4]) we define, for each

0 ≤ s ≤ t ≤ T ,

Zβst :=
∫ t

s
βrdZr ∈ Hk, (43)

which satisfies (see [15, Theorem 4.10])

‖Zβst − β
j
sZ

j
st − β

j,i
s Z

i, j
st ‖Hk ≤ C

(
[Z]α‖β]‖2α;L(Rm;Hk) + [Z]2α‖β

′‖α;L(Rm×m;Hk)

)
|t − s|3α.

and we have,

‖Zβst‖Hk ≤ C‖(β, β′)‖Z,α;Hk [Z]α|t − s|α, ‖(Zβ)]st‖Hk ≤ C‖(β, β′)‖Z,α;Hk [Z]α|t − s|2α (44)

For t ∈ [0, T ], we define Zβt := Zβ0t and we consider
(
Zβt ⊗∇

)
βt ∈ L(Rm; Hk ⊗ Hk−1), with

Gubinelli derivative

(Zβt ⊗∇)β
′
t + (βt ⊗∇)βt ∈ L(R

m×m; Hk ⊗ Hk−1).

Consequently we can define the integral
∫ t

s (Z
β
r ⊗ ∇)βrdZr ∈ Hk ⊗ Hk−1 via the local expan-

sion∥∥∥ ∫ t

s
(Zβr ⊗∇)βrdZr − (Z

β
s ⊗∇)β

j
sZ

j
st −

(
(Zβt ⊗∇)β

j,i
t + (β j

t ⊗∇)β
i
t

)
Z

i, j
st

∥∥∥
Hk⊗Hk−1

≤ C
(
[Z]α[((Zβ ⊗∇)β)]]2α;L(Rm;Hk⊗Hk−1) + [Z]2α[(Z

β
t ⊗∇)β

′
t + (βt ⊗∇)βt]α;L(Rm×m;Hk⊗Hk−1)

)
|t − s|3α.

Defining

Z
β
st :=

∫ t

s
(Zβr ⊗∇)βrdZr − (Z

β
s ⊗∇)Z

β
st, (45)

we get

‖Z
β
st‖Hk⊗Hk−1 ≤ C‖(β, β′)‖2Z,α;Hk([Z]α + [Z]2α)|t − s|2α.

We have the following lemmas of which we omit the proofs as they follow quite easily from
the discussion above, standard computations on rough integrals, and Sobolev embedding
Theorem [4, Corollary 9.13].
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Lemma 4.5. Let ᾱ ∈ (1
3 , 1

2) and Z ∈ C ᾱ
g ([0, T ], Rm). Assume that β satisfies Assumption 4.2

(i), with k ≥ 4+ d
2 and α ∈ (1

3 , ᾱ). Let Zβ and Zβ be defined as in (43) and (45), respectively.
Then,

Zβ := (Zβ, Zβ) ∈ Cα([0, T ]; C3
b(R

d; Rd)) ×C2α
2 ([0, T ]; C2

b(R
d ×Rd; Rd)),

is a rough driver in the sense of Definition 3.1 and we have for time intervals of size h ≤ T ,

[Zβst]Z,α,h;C3
b
≤ C‖(β, β′)‖Z,α;Hk [Z]α,h, [Zβ

st]2α,h;C3
b⊗C2

b
≤ C‖(β, β′)‖2Z,α;Hk(1 + [Z]α,h)[Z]α,h.

Lemma 4.6. Let ᾱ ∈ (1
3 , 1

2) and Z ∈ C ᾱ
g ([0, T ], Rm). Assume that β and γ satisfy Assump-

tion 4.2 (i), with k ≥ 4 + d
2 and α ∈ (1

3 , ᾱ). Let Zβ and Zγ be rough drivers constructed as in
Lemma 4.5. Then, on time intervals of size h ≤ T ,

[Zβ−Zγ]α,h;C3
b
≤ C(1+ ‖(β, β′)‖Z,α;Hk + ‖(γ, γ′)‖Z,α;Hk)‖(β, β′)− (γ, γ′)‖Z,α;Hk([Z]α,h∨ [Z]

1
2
α,h).

(46)

Let us show that the above definition coincides with the usual definition of solutions of rough
path equations.

Lemma 4.7. Suppose x : [0, T ] → Rd is a solution of dxt = Zβ
dt(xt) in the sense of Defini-

tion 3.4. Then x also solves the classical rough path equation driven by Z with coefficient β,
i.e. (x, β(x)) ∈ D2α

Z satisfies the following equation in the sense of Davie [9],

xt = ξ+

∫ t

0
βr(xr)dZr,

where the β(x) is also controlled by Z with Gubinelli derivative β′(x) + ∇β(x)β(x).

Proof. Assume x is a solution to the non-linear equation and let us show that it also satisfies

δxst = β
j
s(xs)Z

j
st + (β j,i

s (xs) + ∇β
j
s(xs)β

i
s(xs))Z

i, j
st + x̄\st

for some remainder x̄\. By definition of Zβ we have

|Zβst(xs) − β
j
s(xs)Z

j
st − β

j,i
s (xs)Z

i, j
st | . |t − s|3α.

Moreover

|Z
β
st(xs)−∇β

j
s(xs)β

i
s(xs)Z

i, j
st | ≤ |Z

β
s (xs)∇βs(xs)

jZ j
st + Zβs (xs)∇β

j,i
s (xs)Z

i, j
st −∇Zβst(xs)Z

β
s (xs)|

+

∣∣∣∣∣∣
∫ t

s
Zβr (xs)∇β(xs)dZr − Zβs (xs)∇β

j
s(xs)Z

j
st − (Z

β
s (xs)∇β

j,i
s (xs) + ∇β

j
s(xs)β

i
s(xs))Z

i, j
st

∣∣∣∣∣∣
. |t − s|3α

by definition of Zβ and
∫ t

s ∇β(xs)Z
β
r (xs)dZr. This shows that |x\st − x̄\st| . |t− s|3α which proves

that the solutions coincide. Notice that the above bounds depend on ‖(β, β′)‖α,Z;Hk only. �
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4.1.3 Mixed Itô and rough path integration

Let W be a d-dimensional Wiener process on the filtered probability space (Ω,F , (Ft)t∈[0,T ], P).
Let ᾱ ∈ (1

3 , 1
2), Z ∈ C ᾱ

g ([0, T ], Rm). Assume that σ and β satisfy Assumption 4.2 (ii) and
4.2 (i) respectively, for k ∈ N ∪ {0} and α ∈ (1

3 , ᾱ). Let Wσ be defined as in (37) and Zβ be
defined as in (43). We define

Fst := Wσ
st + Zβst. (47)

We remark that the first term on the right hand side of the above equation is random,
whereas the second is deterministic. Define heuristically

Fst := Wσ
st + Z

β
st +

∫ t

s
(Zβsr ⊗∇)σrdWr +

∫ t

s
(Wσ

sr ⊗∇)βrdZr. (48)

The first two terms in the right hand side are defined as in (39) and (45) respectively, we
need to make the last two rigorous. For the third term, using the Itô theory in Hilbert spaces
as we did is Section 4.1.1, we see that the integral∫ t

s
(Zβr ⊗∇)σrdWr ∈ M2

T (H
k ⊗ Hk−1),

is well-defined. Indeed, we have (Zβr ⊗ ∇)σr ∈ L(Rd; Hk ⊗ Hk−1) for all 0 ≤ r ≤ T . Hence,
we can define∫ t

s
(Zβsr ⊗∇)σrdWr :=

∫ t

s
(Zβr ⊗∇)σrdWr − (Z

β
s ⊗∇)W

σ
st : Ω → Hk ⊗ Hk−1.

Similarly, we have (σr ⊗∇)Z
β
r ∈ L(R

d; Hk ⊗Hk−1) and
∫ t

s (σr ⊗∇)Z
β
r dWr ∈ M2

T (H
k ⊗Hk−1).

We define∫ t

s
(Wσ

sr ⊗∇)βrdZr := (Wσ
st ⊗∇)Z

β
t −

∫ t

s
(σr ⊗∇)Z

β
r dWr : Ω → Hk ⊗ Hk−1.

Lemma 4.8. Let W be a d-dimensional Wiener process on the filtered probability space
(Ω,F , (Ft)t∈[0,T ], P). Let ᾱ ∈ (1

3 , 1
2) and Z ∈ C ᾱ

g ([0, T ], Rm). Assume that σ and β satisfy
Assumption 4.2 (ii) and 4.2 (i) respectively„ with k ≥ 4 + d

2 and α ∈ (1
3 , ᾱ). Let F and F be

defined as in (47) and (48), respectively. Then, for P-a.e. ω,

F := (F, F) ∈ Cα([0, T ]; C3
b(R

d; Rd)) ×C2α
2 ([0, T ]; C2

b(R
d ×Rd; Rd)),

is a rough driver in the sense of Definition 3.1. Moreover, on time intervals of size h ≤ T we
have that, for all ρ > 2

1−2ᾱ , there exists Kρ ∈ Lρ(Ω), such that, P-a.s.,

[F]α,h;C3
b
≤ (h∨ h

1
2 )ᾱ−αKρL(σ, β, Z), (49)

where L is defined in (36).

Proof. It is immediate to verify that the couple (F, F) satisfies Chen’s relation (21). We give
now estimates on the first order term (47). As a consequence of the definition of F and
Lemma 4.5, we have, on an interval of size h ≤ T ,

‖[F]α,h;C3
b
‖Lρω
≤ ‖[Wσ]α,h;C3

b
‖Lρω

+C‖(β, β′)‖Z,α,h;Hk [Z]α,h.
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We use now Lemma 4.3 to control the first term in the right hand side.

Now we study the regularity of F. Using BDG inequality [22, Theorem 2.4.7] and inequality
(44), we have for all ρ ≥ 1 and 0 ≤ s ≤ t ≤ T , t − s ≤ h,∥∥∥∥∥∥

∫ t

s
(Zβsr ⊗∇)σrdWr

∥∥∥∥∥∥
Lρω(Hk⊗Hk−1)

≤Cρ

(∫ t

s
‖(Zβsr ⊗∇)σr‖

2
L(Rd;Hk⊗Hk−1)

dr
) 1

2

≤Cρ‖σ‖L∞t L(Rd ,Hk)[Z
β]α;Hk |t − s|α+

1
2

≤Cρ‖σ‖L∞t L(Rd ,Hk)‖(β, β′)‖Z,α;Hk [Z]α,h|t − s|α+
1
2 .

By Kolmogorov continuity theorem A.1, we obtain that for every ρ > 2
1−2α there exists Kρ ∈

Lρ(Ω), such that[∫ t

s
(Zβsr ⊗∇)σrdWr

]
2α;Hk⊗Hk−1

≤ Kρ‖σ‖L∞t L(Rd ,Hk)‖(β, β′)‖Z,α;Hk [Z]α, P − a.s.

Similar considerations lead to[∫ t

s
(Wσ

sr ⊗∇)βrdZr

]
2α;Hk⊗Hk−1

≤ Kρ‖σ‖L∞t L(Rd ,Hk)‖(β, β′)‖Z,α;Hk [Z]α, P − a.s.

Putting together the last inequalities, Lemma 4.3 and Lemma 4.5 yields

[Fst]2α,h;Hk⊗Hk−1 ≤ Kρ‖(β, β′)‖Z,α;Hk [Z]α,h
(
‖(β, β′)‖Z,α;Hk(1 + [Z]α,h) + ‖σ‖L∞t L(Rd ,Hk)

)
+[Wσ]2α,h;Hk⊗Hk−1 .

Inequality (49) follows immediately from the Sobolev embedding theorem [4, Corollary 9.13]
. �

Lemma 4.9. Let W be a d-dimensional Wiener process on the filtered probability space
(Ω,F , (Ft)t∈[0,T ], P). Let ᾱ ∈ (1

3 , 1
2) and Z ∈ C ᾱ

g ([0, T ], Rm). Assume that σ, θ satisfy As-
sumption 4.2 (ii) and that β, γ satisfy Assumption 4.2 (i), with k ≥ 4 + d

2 and α ∈ (1
3 , ᾱ). Let

F and G be nonlinear rough drivers constructed from Fst := Wσ
st + Zβst and Gst := Wθ

st + Zγst
as in Lemma 4.8.

Then, for all ρ > 2
1−2ᾱ , there exists Kρ ∈ Lρ(Ω), such that for any time interval of size h ≤ T ,

[F −G]α,h;C3
b
≤ (h∨ h

1
2 )ᾱ−αKρM(‖σ − θ‖L∞t Hk + ‖(β, β′) − (γ, γ′)‖Z,α,h;Hk), P − a.s.

(50)

where we set M := L(σ, β, Z) + L(θ, γ, Z) and L is defined as in (36).

Proof. We already have contractive estimates from Lemmas 4.4 and 4.6 for the Itô and
Gubinelli terms. We look now at the mixed integrals. For every p ≥ 1, we have, for |t − s| ≤
h ≤ T ,

‖

∫ t

s
(Zβsr ⊗∇)σrdWr −

∫ t

s
(Zγsr ⊗∇)θrdWr‖Lp

ωHk⊗Hk−1

≤‖

∫ t

s
(Zβ−γsr ⊗∇)σrdWr‖Lp

ωHk⊗Hk−1 + ‖

∫ t

s
(Zγsr ⊗∇)(σr − θr)dWr‖Lp

ωHk⊗Hk−1

≤Cp
[
‖σ‖L∞t L(Rd ,Hk)‖(β, β′) − (γ, γ′)‖Z,α,h;Hk + ‖σ − θ‖L∞t L(Rd ,Hk)‖(γ, γ′)‖Z,α,h;Hk

]
· [Z]α,h|t − s|α+

1
2 .

The same estimates is true for the other mixed term. We can conclude by applying Kol-
mogorov continuity theorem. �
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4.2 Integrability of the random rough driver

In this section we are concerned with the study of exponential moments of the random
rough driver. We will use the approach introduced by [6] and described in [15, Chapter 11].

Lemma 4.10. Let (Ω := C([0, T ]; Rm),B(Ω), P) be the canonical Wiener space with
Cameron-Martin space H ⊂ Ω. We define on this space the canonical Wiener process
as Wt(ω) = ω(t). Let ᾱ ∈ (1

3 , 1
2) and Z ∈ C ᾱ

g ([0, T ], Rm). Assume that σ and β satisfy
Assumption 4.2, with k ≥ 4 + d

2 and α ∈ (1
3 , ᾱ), and let F be defined as in Lemma 4.8. Let

p := α−1 ∈ (2, 3) and q ≥ 1, such that 1
p +

1
q > 1. Then, there exists C := C(p, q) > 0 and

a null set N ⊂ Ω, such that, ∀ω ∈ Nc, ∀[s, t] ⊂ [0, T ] and ∀h ∈ Cq−var,

[[F]]p,[s,t](ω) ≤ C[[σ]]p;[s,t]

(
gst(ω − h) + [[h]]q;[s,t]

)
,

where, gs,t : Ω → R+ is defined as

gs,t :=[[F]]p,[s,t] + [[(Wσ ⊗∇)σ]]p;[s,t] + [[(σ ⊗∇)Wσ]]p;[s,t] (51)

+ [[(Zβ ⊗∇)σ]]p;[s,t] + [[(σ ⊗∇)Zβ]]p;[s,t]

Proof. The proof of this result follows very closely the proof of [15, Theorem 11.5]. We
repeat here the important pieces, where the dependence of the stochastic integrals on the
space parameter x has to be taken into account. We look at the first order term of F. By
definition, we have

Fst(ω) = Wσ
st(ω) + Zβst.

For every s, t ∈ [0, T ], the term Wσ
st is constructed as an L2

ωHk limit, hence there exists a
sequence of partitions (Πm)m∈N and a null set Nst such that

Wσ
st(ω) = lim

m→∞

∫
Πm

σrdWr(ω) := lim
m→∞

∑
ti∈Πm

σti(Wti+1(ω) −Wti(ω)), (52)

for every ω ∈ Nc
st. We call N1 the intersection of Nst over all dyadic times and we note that it

is still a null set. Similarly, we can construct a null set N2 such that the function Wσ(ω) is of
bounded p-variation for every ω ∈ Nc

2. Let ω ∈ Nc
1 ∩ Nc

2, we have,

lim
m→∞

∫
Πm

σrdWr(ω+ h) = lim
m→∞

∫
Πm

σr(x)dWr(ω) + lim
m→∞

∫
Πm

σr(x)dhr. (53)

The first limit on the right hand side exists because of the choice of the null set that we made
in (52). The last limit is well defined as a Young integral, since σ and h are of complementary
variation, see [15, Section 4.1]. Hence, also the left hand side of 53 converges and is, by
definition, Wσ

st(ω+ h).

Hence, we obtain, ∀ω ∈ Nc
1 ∩ Nc

2, h ∈ Cq−var, and for all dyadic times [s, t] ⊂ [0, T ],

Fst(ω) = Fst(ω − h) +
∫ t

s
σrdhr. (54)

To generalize to any subset [s, t] ⊂ [0, T ], we can use a continuity argument, see [15,
Theorem 11.5].
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We compute now the p-variation in equation (54) and we obtain

[[F]]p,[s,t](ω) ≤ Cp[[σ]]p,[s,t]

(
[[F]]p,[s,t](ω − h) + [[h]]q,[s,t]

)
.

Proceeding similarly for the second order term F, we have that there exists a null set N ⊂ Ω
such that ∀ω ∈ Nc, ∀h ∈ Cq−var and for all times [s, t] ⊂ [0, T ],

Fst(ω) =Fst(ω − h) +
∫ t

s
(Wσ

sr(ω − h) ⊗∇)σrdhr

+

∫ t

s
(σu ⊗∇)Wσ

ut(ω − h)dhu +

∫ t

s

∫ r

s
(σu ⊗∇)σrdhl

udhr

+

(
(Zβ0· ⊗∇)

∫ ·

0
σrdhr

)
st
−

∫ t

s
(Zβsr ⊗∇)σrdhr +

∫ t

s
(σr ⊗∇)Z

β
srdhr.

to obtain the third term on the right hand side, we used stochastic Fubini Theorem as follows∫ t

s

∫ r

s
(σu ⊗∇)σrdhudWr(ω − h) =

∫ t

s
(σu ⊗∇)Wσ

ut(ω − h)dhu.

We compute the p-variation for the second order term. Using inequalities of the type
√

ab ≤
√

a +
√

b, for a, b ∈ R+, we obtain, for all ω ∈ N,

[[F]]
1
2
p,[s,t]

(ω) ≤ Cp[[σ]]p,[s,t]

(
g(ω − h) + [[h]]q,[s,t]

)
,

where gs,t is defined in (51). This concludes the proof �

For every s, t ∈ [0, T ], we define the control wF(s, t) = [[F]]p
p,[s,t]

and we construct the greedy
partition, following the construction in Section 2.1. Let Nβ be defined as in (9), for any β > 0.
We call N the integer-valued random variable given by

N(ω) := N1(wF, [0, T ])(ω), (55)

for ω ∈ Ω. For y ≥ 0, let

Φ(y) :=
1
√

2π

∫ y

−∞

e−
x2
2 dx

be the cumulative distribution function of a standard Gaussian random variable and Φ̄ =
1 −Φ. We include a straightforward Lemma needed to estimate N.

Lemma 4.11. Let C > 0 and ā ∈ R. If Y is a positive random variable such that P(Y > t) ≤
Φ̄(ā + t/c), for every t > a, then

EesY ≤ eas + e−csā+c2s2/2 ∀s > 0.

Proof. We use elementary considerations and Fubini theorem, to obtain

EesY =

∫ ∞

0
P(esY > t)dt =

∫ esa

0
P(Y > log t/s)dt +

∫ ∞

esa
P(Y > log t/s)dt

≤esa +

∫ ∞

0
Φ̄(ā + log t/cs)dt = esa +

∫ ∞

0

1
√

2π

∫
a+log t/cs

e−x2/2dxdt

=esa +

∫
R

∫ ecs(x−ā)

0

1
√

2π
e−x2/2dtdx = esa +

∫
R

1
√

2π
ecs(x−ā)e−x2/2dx

=esa + e−csā+c2s2/2.

�
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Theorem 4.12. Under the same assumptions of Lemma 4.10, the random variable N de-
fined in (55) has a Gaussian tail. Moreover, there exists C = C(T , p) > 0, such that C is
bounded when T is small and for all s > 1,

EesN ≤ eC([[σ]]pp+1)L(σ,β,Z)ps2
.

where L is defined in (36).

Proof. The main ingredient, which is still to prove, is that, for P-a.e. ω,

N1(wF, [0, T ])
1
q (ω) ≤ C[[σ]]

p
q
p (g0,T (ω − h)

p
q + [[h]]q,[0,T ]),

where g is defined as in (51) and C := C(p, q). The proof of this inequality follows from
Lemma 4.10 in the same way as the proof of [15, Lemma 11.12]. It follows from [15, Propo-
sition 11.2], that we can take q = 1, to obtain

N1(wF, [0, T ])(ω) ≤ C[[σ]]pp(g0,T (ω − h) + [[h]]H ),

withe C := C(T , p). By assumption, σ, β and Z are of finite p-variation. This implies that g
is almost surely finite and we can apply the generalized Fernique Theorem [15, Theorem
11.7] as follows. We set f = N and g = C[[σ]]ppgp defined as in (51). We must now find
a > 0 such that the following set has positive measure,

Aa = {ω ∈ Ω | C[[σ]]ppgp(ω) ≤ a}.

We know from Lemma 4.8 that E[gp]
1
p ≤ CL(σ, β, Z). From Chebychev inequality, we have

(where C may change from a term to the next)

P(gp ≥ a(C[[σ]]pp)
−1) ≤

C[[σ]]pp
a

Egp ≤
1
a

C[[σ]]ppL(σ, β, Z)p.

Using the previous estimates, we obtain that,

P(Aa) = 1 − P(gp > a(C[[σ]]pp)
−1) ≥ 1 − P(gp ≥ a(C[[σ]]pp)

−1) ≥ 1 −
1
a

C[[σ]]ppL(σ, β, Z)p.

where C = C(T , p) is again allowed to increase in the last inequality. Moreover,

C(T , p)→ 0, as T → 0. (56)

If we now fix a = (C + 1)[[σ]]ppL(σ, β, Z)p, we have that P(Aa) ≥ 1 − C
C+1 > 0. From

Fernique Theorem [15, Theorem 11.7], we have, for r > a,

P(N > r) ≤ Φ̄(ā + r(C[[σ]]pp)
−1),

where ā = â − a(C[[σ]]pp)
−1 and â = Φ−1(P(Aa)). By our choice of a and the monotonicity

of Φ−1, we have that â ≥ Φ−1(1 − C
C+1), which is a universal constant depending only on

(p, T ), but can be negative. It follows from (56) that â → ∞ as T → 0. We apply Lemma
4.11 that, with s > 1 (chosen so that s ≤ s2), a and ā as before and c = C[[σ]]pp.

EesN ≤e(C+1)[[σ]]ppL(σ,β,Z)ps + e−C[[σ]]pps(â−a(C[[σ]]pp)
−1)+(C[[σ]]pp)

2s2/2

≤e(C+1)[[σ]]ppL(σ,β,Z)ps2
+ eC[[σ]]pps2[(−Φ−1(1− C

C+1 )+
C+1

C L(σ,β,Z)p)+C[[σ]]pp/2]

≤eC([[σ]]pp+1)L(σ,β,Z)ps2
.

The constant C is allowed to change again in the last line, but one can easily see that it
remains bounded, when T is small enough. �

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019



M. Coghi, T. Nilssen 30

4.3 The average Itô formula

In this section we prove a version of the Itô formula which we need to make the connection
between (3) and (4). We note that at the present level of knowledge, we don’t know how to
make an P-a.s. Itô formula, but we only have the chain rule when we average over Ω.

Proposition 4.13. Let (Ω,F , (Ft)t∈[0,T ], P) a complete filtered probability space and W be
a d-dimensional Wiener process on it. Let ᾱ ∈ (1

3 , 1
2), Z ∈ C ᾱ

wg([0, T ], Rm). Assume that σ
and β satisfy Assumption 4.2, for k > d

2 + 3 and α ∈ (1
3 , ᾱ). Let F be defined as in Lemma

4.8.

Let x(ξ) be the solution to equation (20) driven by F with initial condition ξ ∈ Rd, in the
sense of Definition 3.4, given by Proposition 3.13.

Let Ξ : Ω → Rd be an F0-measurable random variable. Then the process xt(Ξ) is (Ft)t≥0
adapted. Moreover, x is a random variable with values in Cα([0, T ]; Rd).

Proof. Let t ∈ [0, T ] and call F|[0,t]
the restriction of F on the interval [0, t]. We know from

Proposition 3.11 that

Rd × (Cα([0, t]; C3
b(R

d; Rd)) ×C2α
2 ([0, t]; C2

b(R
d ×Rd; Rd)))→ Rd, (ξ, F|[0,t]

) 7→ xt,

is a continuous mapping. Moreover the random variable (Ξ, F|[0,t]
) is Ft-measurable. Hence,

ω 7→ (Ξ, F|[0,t]
)(ω) 7→ xt(Ξ)(ω),

is Ft-measurable.

In a similar way we see that x is a random variable in Cα([0, T ]; Rd), since ω 7→ F(ω) is
measurable and x is continuous w.r.t. the rough driver. �

Proposition 4.14. Under the same assumptions as Proposition 4.13, let xt = xt(Ξ). If
φ ∈ C3

b ⊗ Hk, endowed with the norm defined in (16), then

E[φ(xt)] = E[φ(Ξ)]+
∫ t

0

1
2

E[∇2
1φ(xr)(σr(xr)σr(xr)

T )]dr+
∫ t

0
E[∇1φ(xr)βr(xr)]dZr ∈ Hk,

where E[∇1φ(xr)βr(xr)] ∈ L(Rm; Hk) is controlled by Z with Gubinelli derivative E[∇1φ(xr)(β′r(xr)+
∇1βr(xr)βr(xr)) + ∇2

1φ(xr)βr(xr) ⊗ βr(xr)].

Before we proceed with the proof of Proposition 4.14, we prove two technical lemmas.

Lemma 4.15. Under the same assumptions as Proposition 4.13, let x] be defined in (23).
For any ρ ∈N and |t − s| ≤ h ≤ T , we have

E[|x]st|
ρ] ≤ C(hρ ∨ h

ρ
2 )ᾱ−α|t − s|2αρLρ,

where L := L(σ, β, Z) is defined in (36).

Proof. Define the random variable Y := C‖F‖α,h;C3 as in Proposition 3.7 which gives that

for |t − s|α ≤ Y−1 we have |x]st| ≤ Y |t − s|2α. Writing Ω = {|t − s|αY > 1} ∪ {|t − s|αY ≤ 1} gives

E[|x]st|
ρ] = E[1|t−s|αY>1|x

]
st|
ρ] + E[1|t−s|αY≤1|x

]
st|
ρ] ≤ |t − s|ραE[Yρ|x]st|

ρ] + E[Yρ]|t − s|ρ2α

≤ |t − s|ραE[Y2ρ]1/2E[|x]st|
2ρ]1/2 + E[Yρ]|t − s|ρ2α.
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Now trivially by the definition of x], we have

|x]st| ≤ ([x]α,h + ‖F‖α,h;C) |t − s|α ≤ C‖F‖α,h;C3 |t − s|α, P − a.s.

and the result follows from Lemma 4.8. �

Lemma 4.16. Under the same assumptions as Proposition 4.13, we have

(E[φ(x)], E[∇1φ(x)β(x)]) ∈ D2α
Z ([0, T ]; Hk),

with bounds, on a time interval of size h ≤ T ,

‖(E[φ(x)], E[∇1φ(x)β(x)])‖Z,α,h;Hk ≤ L(h∨ h
1
2 )ᾱ−α‖φ‖C3

b⊗Hk(1 + ‖[x]α,h‖L2
ω
),

where L := L(σ, β, Z) is defined in (36).

Proof. We do a first order Taylor expansion to obtain

δφ(x)st = [∇1φ]
1,x
st δxst = [∇1φ]

1,x
st Wσ

st(xs) + [∇1φ]
1,x
st Zβst(xs) + [∇1φ]

1,x
st x]st

= ∇1φ(xs)β
j
s(xs)Z

j
st + φ(x)]st, P − a.s.

We have defined

φ(x)]st := [∇1φ]
1,x
st Wσ

st(xs) + [∇1φ]
1,x
st x]st + [∇1φ]

1,x
st Zβst(xs) −∇1φ(xs)β

j
s(xs)Z

j
st.

We first make some deterministic bounds (i.e. uniformly in ω)

‖[∇1φ]
1,x
st Zβst(xs) −∇1φ(xs)β

j
s(xs)Z

j
st‖Hk

≤ ‖([∇1φ]
1,x
st −∇1φ(xs))Z

β
st(xs)‖Hk + ‖∇1φ(xs))(Z

β
st(xs) − β

j
s(xs))Z

j
st‖Hk

≤ ‖φ‖C3
b⊗Hk [x]α,h[Zβ]α,h;Cb |t − s|2α + ‖φ‖C3

b⊗Hk [(Zβ)]]2α,h|t − s|2α

≤ ‖φ‖C3
b⊗Hk‖Zβ‖α,h;C3

b
(1 + [x]α,h)|t − s|2α.

Using that x is adapted we get E[∇1φ(xs)Wσ
st(xs)] = 0 so that

‖E[[∇1φ]
1,x
st Wσ

st(xs)]‖Hk = ‖E[[∇2
1φ]

2,x
st δxstWσ

st(xs)]‖Hk ≤ ‖φ‖C3
b⊗Hk‖[x]α,h‖L2

ω
‖σ‖L∞t L(Rm;Hk)|t − s|α+

1
2

≤ h
1
2−α‖φ‖C3

b⊗Hk‖[x]α,h‖L2
ω
‖σ‖L∞t L(Rm;Hk)|t − s|2α.

Write now

‖E[[∇1φ]
1,x
st x]st]‖Hk ≤ ‖φ‖C3

b⊗Hk E[|x]st|],

and the result follows from Lemma 4.15 with ρ = 1. �
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Proof of Proposition 4.14. We do a third order Taylor expansion to obtain, P-a.s.,

δφ(x)st =∇1φ(xs)δxst +
1
2
∇2

1φ(xs)(δxst)
2 + [∇3

1φ]
3,x
st (δxst)

3

=∇1φ(xs)Wσ
st(xs) + ∇1φ(xs)W

σ
st(xs) + ∇1φ(xs)Z

β
st(xs) + ∇1φ(xs)Z

β
st(xs)

+ ∇1φ(xs)

∫ t

s
Zβsr(xs)∇σr(xs)dWr + ∇1φ(xs)

∫ t

s
Wσ

sr(xs)∇βr(xs)dZr

+
1
2
∇2

1φ(xs)(Wσ
st(xs))

⊗2 +
1
2
∇2

1φ(xs)(x]st)
⊗2 + ∇2

1φ(xs)(Wσ
st(xs) ⊗ x]st)

+ ∇2
1φ(xs)(Z

β
st(xs) ⊗ x]st) +

1
2
∇2

1φ(xs)(Z
β
st(xs) ⊗ Zβst(xs))

+ ∇1φ(xs)x\st + [∇3
1φ]

3,x
st (δxst)

⊗3

=
1
2

∫ t

s
∇2

1φ(xr)(σr(xr)σr(xr)
T )dr + ∇1φ(xs)β

j
s(xs)Z

j
st

+
(
∇1φ(xs)(β

j,i
s (xs) + ∇1β

j
s(xs)β

i
s(xs)) + ∇

2
1φ(xs)(β

j(xs) ⊗ β
i(xs))

)
Z

i, j
st + φ(x)\st.

Where we have defined

φ(x)\st :=∇1φ(xs)Wσ
st(xs) + ∇1φ(xs)W

σ
st(xs) + ∇1φ(xs)

∫ t

s
Zβsr(xs)∇σr(xs)dWr

+ ∇1φ(xs)

∫ t

s
Wσ

sr(xs)∇βr(xs)dZr +
1
2
∇2

1φ(xs)

∫ t

s
σr(xs)σr(xs)

T dr −
1
2
∇2

1φ(xs)(Wσ
st(xs))

⊗2

+
1
2

∫ t

s
(∇2

1φ(xr) −∇
2
1φ(xs))(σr(xs)σr(xs)

T )dr

+
1
2

∫ t

s
∇2

1φ(xr)(σr(xr)σr(xr)
T −σr(xs)σr(xs)

T )dr

+ ∇1φ(xs)Z
β
st(xs) −∇1φ(xs)β

j
s(xs)Z

j
st

+ ∇1φ(xs)Z
β
st(xs) −∇1φ(xs)(β

j,i
s (xs) + ∇β

j
s(xs)β

i
s(xs))Z

i, j
st

+
1
2
∇2

1φ(xs)(Z
β
st(xs) ⊗ Zβst(xs)) −∇

2
1φ(xs)(β

j
s(xs) ⊗ β

i
s(xs))Z

i, j
st

+
1
2
∇2

1φ(xs)(x]st)
⊗2 + ∇2

1φ(xs)(Wσ
st(xs) ⊗ x]st)

+ ∇2
1φ(xs)(Z

β
st(xs) ⊗ x]st) +

1
2
∇2

1φ(xs)(Z
β
st(xs) ⊗ Zβst(xs))

+ ∇1φ(xs)x\st + [∇3
1φ]

3,x
st (δxst)

⊗3.

As in Lemma 4.7 we note that

∇1φ(xs)Z
β
st(xs) −∇1φ(xs)β

j
s(xs)Z

j
st + ∇1φ(xs)Z

β
st(xs) −∇1φ(xs)(β

j,i
s (xs) + ∇β

j
s(xs)β

i
s(xs))Z

i, j
st

is uniformly in ω bounded by |t − s|3α depending only on β. Moreover, since Z is geometric
and ∇2φ is a symmetric bilinear mapping we get

1
2
∇2

1φ(xs)(Z
β
st(xs) ⊗ Zβst(xs)) −∇

2
1φ(xs)β(xs) ⊗ β(xs)Zst

=
1
2
∇2

1φ(xs)
(
(Zβst)

](xs) ⊗ (Z
β
st)

](xs))
)
+ ∇2

1φ(xs)(Z
β
st)

](xs) ⊗̂ βs(xs)Zst)
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where ⊗̂ denotes the symmetric tensor product. This is clearly bounded by |t − s|3α.

Using Lemma 4.15 with ρ = 1 and ρ = 2 and taking the expectation of φ(x)\st we obtain the
result. �

To create the contraction mapping in the appropriate space of measures we shall need to
control the difference of two measures induced by two rough SDEs.

Proposition 4.17. Let (Ω,F , (Ft)t∈[0,T ], P) a complete filtered probability space and W be
a d-dimensional Wiener process on it. Let ᾱ ∈ (1

3 , 1
2), Z ∈ C ᾱ

wg([0, T ], Rm). Assume that
(σ, β) and (θ, γ) satisfy Assumption 4.2, for k > d

2 + 3, α ∈ (1
3 , ᾱ) and p = 1

α . Let F and
G be nonlinear rough drivers constructed from Fst := Wσ

st + Zβst and Gst := Wθ
st + Zγst as in

Lemma 4.8. Moreover, let Ξ be an F0-measurable random variable.

Let x and y solutions to equation (20) driven by F and G respectively, with the same initial
condition Ξ.

If φ ∈ C3
b ⊗ Hk, endowed with the norm defined in (16), we have

(E[φ(x) − φ(y)], E[∇1φ(x)β(x) −∇1φ(y)γ(y)]) ∈ D2α
Z ([0, T ]; Hk).

Moreover, there exists ρ ≥ 1 and C(T ) such that limT→0 C(T ) = 0, and

‖(E[φ(x) − φ(y)], E[∇1φ(x)β(x)]) − (E[φ(y)], E[∇1φ(y)γ(y)])‖Z,α;Hk

≤ C(T )eMρ̄
‖φ‖C3

b⊗Hk

(
‖σ − θ‖L∞t L(Rd;Hk) + ‖(β, β′) − (γ, γ′)‖Z,α;Hk

)
.

where M := K([[σ]]ρ
p,[s,t]

+ 1)(L(σ, β, Z)+ L(θ, γ, Z)), L is defined in (36) and K = K(α, ρ) >
0 is a universal constant.

Before proceeding with the proof, we need the next two technical lemmas.

Lemma 4.18. Under the same assumptions of Proposition 4.17, for any ρ ≥ 1, there exists
ρ̄ ≥ ρ, C and C(T ) > 0, such that limT→0 C(T ) = 0 and

‖[x − y]α‖Lρω ≤ C(T )eMρ̄ (
‖σ − θ‖L∞t L(Rd;Hk) + ‖(β, β′) − (γ, γ′)‖Z,α;Hk

)
.

Proof. By applying Corollary 3.12, (50) and (49), we see that there exists ρ̄ ≥ 1 and Kρ̄ ∈

Lρ̄(Ω) such that P-a.s.,

[x − y]α ≤CeCN(wF,[0,T ])[F −G]α(1 + [F]α + [G]α)
2(([F]α + [G]α) ∨ ([F]α + [G]α)

1
α )

≤CeCN(wF,[0,T ])T ᾱ−αKρMρ(‖σ − θ‖L∞t Hk + ‖(β, β′) − (γ, γ′)‖Z,α;Hk).

Taking the Lρω norm on both sides we conclude the proof, thanks to Theorem 4.12, which
gives

EeCN(wF,[0,T ]) ≤ eC([[σ]]pp+1)L(σ,β,Z)p
,

where C > 0 is a universal constant. �

Lemma 4.19. Under the same assumptions of Proposition 4.17, for any ρ ≥ 1, there exists
ρ̄ ≥ ρ and C(T ) > 0, such that limT→0 C(T ) = 0 and, for all s, t ∈ [0, T ],

‖x]st − y]st‖Lρω
≤ C(T )eMρ̄

(‖σ − θ‖L∞t L(Rm,Hk) + ‖(β, β′) − (γ, γ′)‖Z,α;Hk)|t − s|2α.
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Proof. Let Y := C([F]α + [G]α)(1 + [F]α + [G]α)2 where C is the constant given in Propo-
sition 3.11. Then, |t − s|αY ≤ 1 implies,

|x]st − y]st| ≤ |t − s|2αYeCN(wF,[0,T ])[F −G]α

and we notice that E[Yρ] ≤ Mρ̄(T ρ ∨ T
ρ
2 )ᾱ−α for some ρ̄ ≥ ρ ≥ 1 which follows from Lemma

4.8 and the Gaussian integrability of N(wF, [0, T ]), Theorem 4.12.

We split up Ω = {|t − s|αY ≤ 1} ∪ {|t − s|αY > 1} which gives

E[|x]st − y]st|
ρ] ≤ |t − s|2ραE[Y2ρ|x]st − y]st|

ρ] + |t − s|2ραE[YρeCN(wF,[0,T ])[F −G]ρ
α,h].

For the first term above we use the crude (in time) bound

|x]st − y]st| ≤ [x − y]α,h|t − s|α + [F]α,h|xs − ys||t − s|α + [F −G]α,h|t − s|α

≤ C(T )YeCN(wF,[0,T ])[F −G]α.

The result follows from Corollary 3.12, (29) and Theorem 4.12. �

Proof of Proposition 4.17. We write

φ(x)]st − φ(y)
]
st := [∇1φ]

1,x
st Wσ

st(xs) − [∇1φ]
1,y
st Wθ

st(ys) + [∇1φ]
1,x
st x]st − [∇1φ]

1,y
st y]st (57)

+ [∇1φ]
1,x
st Zβst(xs) −∇1φ(xs)β

j
s(xs)Z

j
st − [∇1φ]

1,y
st Zγst(ys) + ∇1φ(ys)γ

j
s(ys)Z

j
st.

We start from the first term on the right hand side of (57),

[∇1φ]
1,x
st Wσ

st(xs) − [∇1φ]
1,y
st Wθ

st(ys)

=[∇2
1φ]

2,x
st δxstWσ

st(xs) − [∇
2
1φ]

2,y
st δystWθ

st(ys) + ∇1φ(xs)Wσ
st(xs) −∇1φ(ys)Wθ

st(ys)

=([∇2
1φ]

2,x
st − [∇

2
1φ]

2,y
st )δxstWσ

st(xs) + [∇2
1φ]

2,y
st (δxst − δyst)Wσ

st(xs)

+ [∇2
1φ]

2,y
st δyst(Wσ

st(xs) −Wθ
st(xs)) + [∇2

1φ]
2,y
st δyst(Wθ

st(xs) −Wθ
st(ys)).

We have, as an application of Hölder inequality, for 0 ≤ s ≤ t ≤ T ,

‖E[([∇2
1φ]

2,x
st − [∇

2
1φ]

2,y
st )δxstWσ

st(xs)]‖Hk ≤ ‖φ‖C3
b⊗Hk E[‖x − y‖L∞t |δxst| |Wσ

st(xs)|]

≤ ‖φ‖C3
b⊗Hk‖x − y‖L2

ωL∞t
‖δxst‖L4

ω
‖Wσ

st(xs)‖L4
ω

≤ C(T )‖φ‖C3
b⊗Hk‖x − y‖L2

ωL∞t
‖[x]α‖L4

ω
‖σ‖L∞t L(Rd;Hk)|t − s|2α.

where, in the last inequality we used Lemma 4.3. Similarly, using Lemma 4.3 and 4.4, we
can bound the remaining terms,

‖E[[∇2
1φ]

2,y
st (δxst − δyst)Wσ

st(xs)]‖Hk ≤C(T )‖φ‖C3
b⊗Hk‖[x − y]α‖L2

ω
‖σ‖L∞t L(Rd;Hk)|t − s|2α,

‖E[[∇2
1φ]

2,y
st δyst(Wσ

st(xs) −Wθ
st(xs))]‖Hk ≤C(T )‖φ‖C3

b⊗Hk‖[y]α‖L2
ω
(1 + ‖σ‖L∞t L(Rd;Hk) + ‖θ‖L∞t L(Rd;Hk))

· ‖σ − θ‖L∞t L(Rd;Hk)|t − s|2α.

‖E[[∇2
1φ]

2,y
st δyst(Wθ

st(xs) −Wθ
st(ys))]‖Hk ≤C(T )‖φ‖C3

b⊗Hk‖x − y‖L2
ωL∞t
‖[y]α‖L4

ω
‖σ‖L∞t L(Rd;Hk)|t − s|2α.
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Summing up the previous inequalities, we get

‖E[[∇1φ]
1,x
st Wσ

st(xs) − [∇1φ]
1,y
st Wθ

st(ys)]‖Hk ≤MC(T )‖φ‖C3
b⊗Hk |t − s|2α(1 + ‖[x]α‖L4

ω
+ ‖[y]α‖L4

ω
)

·
(
‖x − y‖L2

ωL∞t
+ ‖[x − y]α‖L2

ω
+ ‖σ − θ‖L∞t L(Rd;Hk)

)
.

The second term in (57) is bounded as follows using Lemmas 4.19 and 4.15,

‖E[[∇1φ]
1,x
st x]st − [∇1φ]

1,y
st y]st]‖Hk ≤ ‖φ‖C3

b⊗Hk

[
‖x]st‖L2

ω
‖x − y‖L2

ωL∞t
+ ‖x]st − y]st‖L1

ω

]
≤C(T )‖φ‖C3

b⊗HkeMρ̄ (
‖x − y‖L2

ωL∞t
+ ‖σ − θ‖L∞t L(Rm,Hk) + ‖(β, β′) − (γ, γ′)‖Z,α;Hk

)
|t − s|2α.

The third term in (57) is

[∇1φ]
1,x
st Zβst(xs) −∇1φ(xs)β

j
s(xs)Z

j
st − [∇1φ]

1,y
st Zγst(ys) + ∇1φ(ys)γ

j
s(ys)Z

j
st

= [∇2
1φ]

2,x
st δxstZ

β
st(xs) − [∇

2
1φ]

2,y
st δystZ

γ
st(ys) + ∇1φ(xs)(Z

β
st)

](xs) −∇1φ(ys)(Z
γ
st)

](ys)

= ([∇2
1φ]

2,x
st − [∇

2
1φ]

2,y
st )δxstZ

β
st(xs) + [∇2

1φ]
2,y
st (δxst − δyst)Z

β
st(xs) + [∇2

1φ]
2,y
st δyst(Z

β
st(xs) − Zβst(ys))

+ [∇2
1φ]

2,y
st δyst(Z

β
st(ys) − Zγst(ys)) + ∇1φ(xs)(Z

β
st)

](xs) −∇1φ(ys)(Z
γ
st)

](ys). (58)

We estimate the first term in the right hand side using Lemma 4.5,

‖E[([∇2
1φ]

2,x
st − [∇

2
1φ]

2,y
st )δxstZ

β
st(xs)]‖Hk ≤ ‖φ‖C3

b⊗Hk‖x − y‖L2
ωL∞t
‖δxst‖L4

ω
‖Zβst(xs)‖L4

ω

≤ C(T )‖φ‖C3
b⊗Hk‖x − y‖L2

ωL∞t
‖[x]α‖L4

ω
‖(β, β′)‖Z,α;Hk [Z]ᾱ|t − s|2α.

Similarly, using Lemma 4.5 and 4.6,

‖E[[∇2
1φ]

2,y
st (δxst − δyst)Z

β
st(xs)]‖Hk ≤C(T )‖φ‖C3

b⊗Hk‖[x − y]α‖L2
ω
‖(β, β′)‖Z,α;Hk [Z]ᾱ|t − s|2α,

‖E[[∇2
1φ]

2,y
st δyst(Z

β
st(xs) − Zβst(ys))]‖Hk ≤C(T )‖φ‖C3

b⊗Hk‖[y]α‖L4
ω
‖x − y‖L2

ωL∞t
‖(β, β′)‖Z,α;Hk [Z]ᾱ|t − s|2α,

‖E[[∇2
1φ]

2,y
st δyst(Z

β
st(ys) − Zγst(ys))]‖Hk ≤MC(T )‖φ‖C3

b⊗Hk‖[y]α‖L1
ω
(‖(β, β′) − (γ, γ′)‖Z,α;Hk)[Z]ᾱ|t − s|2α.

We estimate the last term in (58) using equation (44) and Lemma 4.6,

‖E[∇1φ(xs)(Z
β
st)

](xs) −∇1φ(ys)(Z
γ
st)

](ys)]‖Hk ≤ CM‖φ‖C3
b⊗HkC(T )[Z]ᾱ

·
(
‖x − y‖L2

ωL∞t
+ ‖(β, β′) − (γ, γ′)‖Z,α;Hk

)
|t − s|2α.

Thus, there exists ρ ≥ 1 (which may increase from a line to the next) such that the remainder
satisfies, for all s, t ∈ [0, T ],

‖E[φ(x)]st−φ(y)
]
st]‖Hk ≤ MρC(T )‖φ‖C3

b⊗Hk |t − s|2α(1 + ‖[x]α‖L4
ω
+ ‖[y]α‖L4

ω
)

·
(
‖x − y‖L2

ωL∞t
+ ‖[x − y]α‖L2

ω
+ ‖σ − θ‖L∞t L(Rd;Hk) + ‖(β, β′) − (γ, γ′)‖Z,α;Hk

)
≤MρC(T )‖φ‖C3

b⊗Hk |t − s|2α
(
‖[x − y]α‖L2

ω
+ ‖σ − θ‖L∞t L(Rd;Hk) + ‖(β, β′) − (γ, γ′)‖Z,α;Hk

)
.

In the last inequality we used Lemma 3.8 combined with Lemma 4.8, and also ‖x‖L∞t ≤
Tα[x]α + |x0|. We check now the Gubinelli derivative, for each j we have

δ(∇1φ(x)β j(x))st − δ(∇1φ(y))γ j(y))st = [∇2
1φ]

1x
st δxstβ

j
t (xt) − [∇

2
1φ]

1y
st δystγ

j
t (yt)

+ ∇1φ(xs)β
j
st(xs) −∇1φ(ys)γ

j
st(ys) + ∇1φ(xs)δ(β

j
st(x·))st −∇1φ(ys)δ(γ

j
st(y·))st.
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Similarly as for the remainder, we obtain the following,

‖E[δ(∇1φ(x)β j(x))st − δ((∇1φ(y))γ j(y))st]‖Hk

≤ MρC(T )‖φ‖C3
b⊗Hk |t − s|α

(
‖[x − y]α‖L2

ω
+ ‖σ − θ‖L∞t L(Rd;Hk) + ‖(β, β′) − (γ, γ′)‖Z,α;Hk

)
.

We conclude by using Lemma 4.18 to estimate ‖[x − y]α‖L2
ω
. �

5 Linear Rough PDE

Let d, m ∈ N be fixed and let Z ∈ C ᾱ
g ([0, T ], Rm), for ᾱ ∈ (1

3 , 1
2). Let σ and β satisfy

Assumptions 4.2, for k large enough. In this section we prove well-posedness of measure-
valued solutions to linear rough partial differential equations, which are formally given as

∂tνt =
1
2

Tr∇2(σtσ
T
t νt) − div(βtŻtνt), ν0 ∈ P(R

d). (59)

To rigorously define the meaning of a solution to equation (59), we take a slightly more
general approach, as described below.

Assumptions 5.1. Let n ∈N and α ∈ (1
3 , ᾱ).

(i) Let a : [0, T ] → Cn+3(Rd; Rd×d) be a measurable path such that ai, j
t (x)ξiξ j ≥ 0 for all

x, ξ ∈ Rd and t ∈ [0, T ].

(ii) Let X ∈ C α
g ([0, T ]; Cn+3

b (Rd; Rd)) be a geometric rough path, as described in Section
2.

The examples we have in mind are a = 1
2σσ

T and X =
∫
βrdZr, as described in Propo-

sition 5.5. In order to describe the main ideas, we argue now on a formal level assuming
smoothness in time of X; rigorous definitions in the rough path case will be given later in
the section. We study uniqueness of solutions to the following linear equation

∂tνt = Tr∇2(atνt) + div(Ẋtνt), ν0 ∈ P(R
d). (60)

The proof is based on a backward duality trick; suppose we can show existence of a suffi-
ciently regular solution to the backward PDE

∂tut + Tr(at∇
2ut) = Ẋt∇ut, (61)

for a given final condition uT , then at least formally we have

∂tνt(ut) = (Tr∇2(atνt)(ut) − νt(Tr(at∇
2ut)) + div(Ẋtνt)(ut) + νt(Ẋt∇ut) = 0, (62)

which shows that νT (uT ) = ν0(u0). Now, if uT is chosen in a class of functions large enough
to fully determine νT , we see that it will be fully determined by ν0 and u0, thus showing
uniqueness.

For simplicity only, we write equation (61) on divergence form and as a forward equation as
follows

∂tut = div(at∇ut) + Ẋt∇ut, u0 given, (63)

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019



Rough nonlocal diffusions 37

which can be seen to be equivalent to (61) by replacing Xt by (
∫ t

0 ∇ardr, Xt) in (63) and then
reversing time, i.e. ut 7→ uT−t.

The strategy to prove existence of a smooth solution to (63) is as follows. We first show
how to give an intrinsic notion of solution of (60) and (63) in the context of the so-called
unbounded rough drivers, see [2]. We then replace X by smooth vector fields, in which
case it is well know that there exists a unique solution of (63) which is smooth provided the
coefficients are. We then consider the vector of derivatives f = (u,∇u, . . . ,∇nu) and show
that f satisfies a vector valued equation, for which we can find bounds independent of Ẋ.
The equation for f will be solved in the space L2(Rd; RN), thus giving bounds on u in the
Sobolev-space Hn(Rd).

Second, we approximate X by a sequence of smooth vector fields and show that the cor-
responding sequence of solutions converge to a meaningful solution of (63). Since the so-
lution is in Hn(Rd) we can use Sobolev embedding [4, Corollary 9.13] to show the needed
spatial regularity to justify the computations in (62).

The techniques used to prove the first step are motivated by [2] and [11], and the main
technical tool is the a priori estimate found in [11].

5.1 Unbounded rough drivers

We start by rephrasing (63) in terms of so called unbounded rough drivers. The main moti-
vation for doing so is the a priori estimate from [11].

Assume that X is a smooth path, then equation (63) is well defined as a PDE. Integrating
(63) from s to t we obtain

δust =

∫ t

s
div(ar∇ur)dr +

∫ t

s
Ẋr∇urdr.

Iterating the equation into itself we obtain

δust =

∫ t

s
div(ar∇ur)dr + B1

stus + B2
stus + u\st (64)

where at least formally,

B1
stφ = X j

st∂ jφ, B2
stφ =

∫ t

s
Ẋ j

r∂ j

∫ r

s
Ẋi

u∂iφdudr (65)

and

u\st =

∫ t

s
Ẋ j

r∂ j

∫ r

s
Ẋi
τ∂i

∫ τ

s
Ẋl
θ∂luθdθdτdr

+

∫ t

s
Ẋ j

r∂ j

∫ r

s
div(aτ∇uτ)dτdr +

∫ t

s
Ẋ j

r∂ j

∫ r

s
Ẋi
τ∂i

∫ τ

s
div(aθ∇uθ)dθdτdr.

By the usual power counting the remainder term u\ should be regular in time, but we notice
that in general it is a distribution in space. Following [2] we call a scale of spaces a quadruple
(En)3

n=0 of Banach spaces such that En+1 is continuously embedded into En. Let E−n be
the topological dual of En (in general, E−0 , E0).
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Definition 5.2. An unbounded α-rough driver on the scale (En)n, is a pair B = (B1, B2) of
mappings on En such that

‖B1
st‖L(En,En−1) . |t − s|α for − 2 ≤ n ≤ 3, ‖B2

st‖L(En,En−2) . |t − s|2α for 0 ≤ n ≤ 2, (66)

and Chen’s relation is satisfied,

δB1
srt = 0, δB2

srt = B1
rtB

1
sr, ∀s < r < t. (67)

We shall write ‖B‖α for the smallest constant dominating the bounds in (66).

We show how to construct an unbounded rough driver given a rough path.

Proposition 5.3. Let N ∈N and X satisfy Assumption 4.2 (ii). Define for φ ∈ C∞c (Rd; RN)

B1
stφ(x) = X j

st(x)∂ jφ(x), B2
stφ(x) = (∇⊗1 Xst)

j(x, x)∂ jφ(x) + X
i, j
st (x, x)∂i∂ jφ(x)

where ∇⊗1 : C3
b(R

d ×Rd; Rd×d) → C2
b(R

d ×Rd; Rd) is the linear extension of the map
defined on the algebraic tensor as

∇⊗1 ( f ⊗ g) j(x, y) = gi(y)∂i f j(x). (68)

Then B := (B1, B2) is an unbounded rough driver on both scales En := Wn,ρ(Rd; RN),
ρ ≥ 1, and En := Cn

b(R
d; RN). Moreover, the mapping X 7→ B is continuous in the operator

norm.

Proof. Let 0 ≤ s ≤ θ ≤ t. By Chen’s relation for rough paths (10), and (68)

δ
[
(∇⊗1 X) j(x, x)∂ jφ(x)

]
sθt

= ∇⊗1 (Xsθ ⊗ Xθt) j(x, x)∂ jφ(x) = Xi
θt(x)∂iX

j
sθ(x)∂ jφ(x)

which gives

δB2
sθtφ(x) = Xi

θt(x)∂iX
j
sθ(x)∂ jφ(x) + Xi

sθ(x)X j
θt(x)∂i∂ jφ(x) = Xi

θt(x)∂i[X
j
sθ(x)∂ jφ(x)].

Continuity of the mapping follows immediately from the continuity of ∇⊗x . �

We notice that there is no zero order term in the above unbounded rough driver. We include
such a term by considering a rough path X ∈ C α([0, T ]; C3

b(R
1+d; R1+d)), i.e. with an

additional spatial variable. Then, for φ ∈ C∞c (Rd; RN) let

B1
stφ(x) = X j

st(x)∂ jφ(x) + X0
stφ(x)

B2
stφ(x) = (∇⊗1 Xst)

j(x, x)∂ jφ(x) + X
i, j
st (x, x)∂i∂ jφ(x)

+ X
0,0
st (x, x)φ(x) + X

0, j
st (x, x)∂ jφ(x) + (∇⊗1 Xst)

0(x, x)φ(x),

where we make the convention that summation over repeated indexes are over 1 ≤ j ≤ d,
i.e. excluding 0.

With this in hand we can define the notion of a solution of (60).
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Definition 5.4. A path ν : [0, T ] → M(Rd) ⊂ (Cb(Rd))∗ is a solution to (60) if for all
φ ∈ C3

b(R
d) the mapping defined by

ν
\
st(φ) := δνst(φ) −

∫ t

s
νr(Tr(ar∇

2φ))dr − νs(B1
stφ) − νs(B2

stφ) (69)

satisfies |ν\st(φ)| . |t − s|3α‖φ‖C3
b
. Above B = (B1, B2) is the unbounded rough driver con-

structed from X as in Proposition 5.3.

We see now that, in the special case when a = 1
2σσ

T and X =
∫
βrdZr, existence of

solutions follows from the results of Sections 3 and 4.

Proposition 5.5. Let ρ ≥ 2 and let (Ω,F , (Ft)t∈[0,T ], P) be a probability space that sup-
ports a d-dimensional Brownian motion W and an F0-measurable random variable, Ξ ∈
Lρ(Ω; Rd) such that the push-forward measure P∗(Ξ) = ν0. Let Z ∈ C ᾱ

wg([0, T ]; Rm) be a
a weakly geometric rough path. Under Assumption 4.2, we have

(i) B, generated by the rough path
∫
βrdZr as in Proposition 5.3, is an unbounded rough

driver as in Definition 5.2.

(ii) There exists a solution ν of (60) driven by B, in the sense of Definition 5.4. This so-
lution is given by νt = L(xt), where, for P-a.e. ω ∈ Ω, x(ω) is the unique solution
to equation (20) with initial condition Ξ(ω), driven by the random rough driver F con-
structed in Lemma 4.8.

Proof. From Sobolev embedding theorem [4, Corollary 9.13] , we have β ∈ D2α
Z ([0, T ]; C3

b(R
d; Rd)).

Thus, using the construction (11), we have that
∫
βrdZr is a rough path over C3

b(R
d; Rd).

The first claim follows now by Proposition 5.3.

We prove now the second claim. It follows from Proposition 4.13 that the stochastic process
(xt)t∈[0,T ] is adapted. We can thus define ν := L(x) and denote by νt the induced time-
marginals. From Itô’s formula, Proposition 4.14, we get

νt(φ) = ν0(φ) +

∫ t

0

1
2
νr(Tr(∇2φσrσ

T
r ))dr +

∫ t

0
νr(∇φβr)dZr.

The proof is complete once we show that
∫ t

0 νr(∇φβr)dZr has an expansion in terms of the
unbounded rough driver. Recall that we get from Lemma 4.15, we have

(ν(∇φβ), ν(∇2φ(β ⊗ β) + ∇φ(∇ββ+ β′)) ∈ D2α
Z ([0, T ]; Hk)

and this gives, using the sewing lemma 2.1,∣∣∣∣∣∣
∫ t

s
νr(φβr)dZr − νs(∇φβ

j
s)Z

j
st − νs(∇

2φβ
j
s ⊗ β

i
s + ∇φ(∇β

j
sβ

i
s + β

j,i
s )Zi, j

st

∣∣∣∣∣∣ . ‖φ‖C3
b
|t − s|3α.

Regrouping the terms we can write∣∣∣∣∣∣
∫ t

s
νr(φβr)dZr − νs

(
β

j
s∇φZ j

st + β
j,i
s ∇φZ

i, j
st ) − νs(β

j
s∇(β

i
s∇φ)Z

i, j
st )

∣∣∣∣∣∣ . ‖φ‖C3
b
|t − s|3α.
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By definition of B1 we get

‖B1
stφ − β

j
s∇φZ j

st − β
j,i
s ∇φZ

i, j
st ‖Cb . ‖φ‖C1

b
|t − s|3α,

which gives ∣∣∣∣νs
(
β

j
s∇φZ j

st + β
j,i
s ∇φZ

i, j
st ) − νs(B1

stφ)
∣∣∣∣ . ‖φ‖C1

b
|t − s|3α.

Moreover

‖B2
stφ−β

j
s∇(β

i
s∇φ)Z

i, j
st ‖Cb .

∥∥∥β j
s∇B1

sφZ j
st + β

j,i
s ∇B1

sφZ
i, j
st + β

j
s∇(β

i
s∇)φZ

i, j
st

− (β j
s∇Z j

st + β
j,i
s ∇Z

i, j
st )B1

sφ − β
j
s∇(β

i
s∇φ)Z

i, j
st

∥∥∥
Cb

+ ‖φ‖C2
b
|t − s|3α

= ‖φ‖C2
b
|t − s|3α.

This shows that we may rewrite the equation for ν as

δνst(φ) =

∫ t

s

1
2
νr(Tr(∇2φσrσ

T
r ))dr + νs(B1

stφ+ B2
stφ) + ν

\
st(φ)

where ν\ ∈ C3α
2 ([0, T ]; (C3

b(R
d))∗) is a remainder. �

5.2 A priori estimates for smooth vector fields

For this section we consider an approximation of equation (64), driven by a smooth (in time)
driver,

∂tu = div(a∇u) + Ẋ∇u (70)

where X is smooth. We will find bounds on u in Hn(Rd) depending only on a canonical
unbounded rough driver generated by X. The first step towards this goal is to write u and all
the derivatives as a vector in an L2 space.

Let u denote the (smooth) solution of (70) and let f = (u,∇u, . . . ,∇nu) denote the vector of
gradients as taking values in the truncated tensor algebra T (n)(Rd) =

⊕n
q=0(R

d)⊗q. We
will simply write gv for the 1-contractive product

(Rd)⊗q × (Rd)⊗r → (Rd)⊗(q+r−2),

e.g. for a g ∈ (Rd)⊗2 and v ∈ Rd the product gv has component i given by gi jv j.

Using Leibniz formula we have

∇q(Ẋ∇u) =
q∑

j=0

(
q
j

)
∇q− jẊ∇ j+1u =

q−1∑
j=0

(
q
j

)
∇q− jẊ f ( j+1) + Ẋ∇ f (q) =: Ẋ∇ f (q) + M(q)

Ẋ
f

where M(q)
Ẋ

: T (n)(Rd)→ (Rd)⊗q is given by

M(q)
Ẋ

( n⊕
j=0

y( j)
)
=

q−1∑
j=0

(
q
j

)
∇q− jẊ y( j+1).

We notice that the above sum is in (Rd)⊗q since we are doing a contractive product of
(Rd)⊗(q− j+1) and (Rd)⊗( j+1).
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For each q we have

∂t f (q) = ∇q div(a∇u) + ∇q(Ẋ∇u) = div(a∇ f (q)) + ∇(M(q)
a f ) + (Ẋ∇ f (q) + M(q)

Ẋ
f )

= div(a∇ f (q)) + M(q)
∇a f + M(q)

a ∇ f + (Ẋ∇ f (q) + M(q)
Ẋ

f ).

This gives that f satisfies the T (n)(Rd)-valued equation

∂t f = div(a∇ f ) + V̇∇ f + Ẏ f (71)

where we have set

V̇ =
n⊕

q=0

(M(q)
a + Ẋ), Ẏ =

n⊕
q=0

(M(q)
∇a + M(q)

Ẋ
). (72)

Remark 5.6. We notice that if we replace X above by Xε where Xε converges to a rough
path X, then the corresponding coefficients Vε , Yε have canonical rough path lifts, Vε and
Yε , with values in C3

b which remain bounded uniformly in ε. This comes from the fact that
there are canonical iterated integrals between the C3

b-valued paths t 7→
∫ ·

0 ar(x)dr and
t 7→ Xt(x), ∫ t

s
Xsr(x)ar(y)dr,

∫ t

s
asr(x)dXr(y)

where the first term is simply the Riemann-integral and the second term is defined using
integration by parts as before.

Given the previous construction, we consider now a system of equations. We remark that
this is not just a vector valued version of the results found in [18], since we are not interested
in energy estimates. Indeed, the matrix a is allowed to be degenerate but we require spatial
smoothness. We consider the equation

∂t f = div(a∇ f ) + V̇∇ f + Ẏ f , (73)

for given functions a and V̇ , Ẏ smooth in time, and a given initial condition f0. The solution
is a vector valued function f : [0, T ] ×Rd → RN , and the coefficients are on the form

Ẏ : [0, T ] ×Rd → RN ⊗RN , V̇ : [0, T ] ×Rd → L(Rd ⊗RN ; RN),

a : [0, T ] ×Rd → Rd ⊗Rd.

We will assume that a is diagonal in (73), so component l reads

∂t f l = ∂i(ai, j∂ j f l) + V̇ l,m
i ∂i f m + Ẏ l,m f m, 1 ≤ l ≤ N. (74)

We begin with our main a priori estimate.

Proposition 5.7. Assume f is a solution of (73). Then there exists a constant C = C(a, B1, B2)
such that

sup
t∈[0,T ]

‖ ft‖L2(Rd;RN) ≤ C‖ f0‖L2(Rd), ‖δ fst‖H−1(Rd;RN) ≤ C|t − s|α (75)

where (B1, B2) is an unbounded rough driver depending only on the rough path lift of the
path (V , Y).
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Proof. The finite-dimensional tensor ( f ⊗2)n,l := f n f l then satisfies

∂t( f ⊗2) = 2 f ⊗̂ ∂t f = 2 f ⊗̂ div(a∇ f ) + 2 f ⊗̂ V̇∇ f + 2 f ⊗̂ Ẏ f

= 2 f ⊗̂ div(a∇ f ) + ˙̄V∇ f ⊗2 + ˙̄Y f ⊗2

where

V̄ := 2Id ⊗̂V := Id ⊗ V + V ⊗ Id, Ȳ := 2Id ⊗̂Y := Id ⊗ Y + Y ⊗ Id,

both belongs to the space L(RN ⊗RN ; RN ⊗RN). Define now the unbounded rough driver

B⊗2,1
st φ =

∫ t

s

˙̄Vr∇φ+ ˙̄Yrφdr, B⊗2,2
st φ =

∫ t

s

[
˙̄Vr∇ ·+ ˙̄Yr

] ∫ r

s

˙̄Vθ∇φ+ ˙̄Yθφdθdr (76)

and the drift

m⊗2
t (φ) = −

∫ t

s
2(a∇ f n,∇ f lφl,n) − ( f n f l,∇(a∇φl,n))dr

for functions φ : Rd → RN ⊗RN . This gives the dynamics

δ f ⊗2
st = δm⊗2

st + B⊗2,1
st f ⊗2

s + B⊗2,2
st f ⊗2

s + f ⊗2,\
st

on the scale (Wn,∞(Rd; RN ⊗RN))n. Let φ ∈ W2,∞(Rd; RN ⊗RN) and write

|δm⊗2
st (φ)| ≤ ‖φ‖W1,∞

∫ t

s
2‖(∇ f l)T a∇ f n‖L1 + ‖a‖W1,∞‖ f ‖2L2dr,

which shows that m⊗2 has bounded variation in (W2,∞(Rd; RN ⊗RN)∗).

Now, by the a priori bounds, [11, Theorem 2.9], we get

‖ f ⊗2,\
st ‖(W3,∞)∗ ≤ C

(
‖ f ‖2L∞(s,t;L2)

|t − s|3α + |t − s|α
∫ t

s
2‖(∇ f l)T a∇ f n‖L1 + ‖a‖W1,∞‖ f ‖2L2dr

)
.

where C depends on ‖B⊗2‖α. Testing f ⊗2 against the N × N identity matrix IN×N and using
that a is positive semi-definite we get

δ(‖ f ‖2L2)st = δm⊗2
st (IN×N) + f ⊗2

s (B⊗2,1,∗
st IN×N + B⊗2,2,∗

st IN×N) + f ⊗2,\
st (IN×N)

≤ −2
∫ t

s
‖(∇ f n)T a∇ f n‖L1dr + ‖ fs‖

2
L2‖B⊗2‖α|t − s|α + ‖ fs‖

2
L2‖B⊗2‖α|t − s|2α + ‖ f ⊗2,\

st ‖(W3,∞)∗

≤ −2
∫ t

s
‖(∇ f n)T a∇ f n‖L1dr +C‖ f ‖2L∞(s,t;L2)

|t − s|α

+C|t − s|α
∫ t

s
2‖(∇ f l)T a∇ f n‖L1 + ‖a‖W1,∞‖ f ‖2L2dr

Note that ‖(∇ f l)T a∇ f n‖L1 ≤ N‖(∇ f n)T a∇ f n‖L1 . Indeed, write a = 1
2σσ

T and use the
Cauchy-Schwarz inequality

(∇ f l)T a∇ f n =
1
2
(σT∇ f l)T (σT∇ f n) ≤

1
2
|σT∇ f l||σT∇ f n|.
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Summing over l and n gives that the above is bounded by N
2
∑N

n=1 |σ
T∇ f n|2. Integrating

w.r.t. x we get the claim.

If we choose s, t such that CN |t − s|α ≤ 1
2 we get

δ(‖ f ‖2L2)st ≤ C‖ f ‖2L∞(s,t;L2)

(
|t − s|α + ‖a‖W1,∞(t − s)

)
.

From the rough Gronwall lemma, [11, Lemma 2.11], the first bound of (75) holds.

For the second inequality we notice that the evolution of f on Wn,2(Rd; RN) reads

δ fst = δmst + B1
st fs + B2

st fs + f \st (77)

where mt =
∫ t

0 div(ar∇ fr)dr and we have defined the unbounded rough driver

B1
stφ =

∫ t

s
V̇r∇φ+ Ẏrφdr, B2

stφ =

∫ t

s
[V̇r∇ ·+Ẏr]

∫ r

s
V̇θ∇φ+ Ẏθφdθdr (78)

Since the operator is self-adjoint it is easy to bound the variation of m in H−2;

|δmst(φ)| ≤ (t − s)‖ f ‖L∞([s,t];L2)‖a‖W1,∞‖φ‖H2 ≤ (t − s)C‖ f0‖L2‖a‖W1,∞‖φ‖H2 .

This gives, using [11, Theorem 2.9],

‖ f \st‖H−3 . C|t − s|3α‖ f0‖L2 . (79)

where C depends on ‖B‖α and ‖a‖W1,∞ . Take now a mollifier ψη and decompose φ = ψη ∗
φ+ (I − ψη) ∗ φ for any η > 0 and any test function φ ∈ H1(Rd; RN). This gives

|(δ fst, (I − ψη) ∗ φ)| . ‖ f ‖L∞([s,t];L2)‖(I − ψη) ∗ φ‖L2 . ‖ f0‖L2‖φ‖H1η,

and for the smooth part ψη ∗ φ we use the equation (77) to get

|(δ fst,ψη ∗ φ)| . (t − s)‖ f0‖L2‖a‖W1,∞‖ψη ∗ φ‖H2 + ‖B‖α‖ f0‖L2‖ψη ∗ φ‖H1 + ‖B‖α‖ f0‖L2‖ψη ∗ φ‖H2

+ |t − s|3αC‖ f0‖L2‖ψη ∗ φ‖H3

≤ ‖ f0‖L2C
[
(t − s)η−1 + |t − s|α + |t − s|2αη−1 + |t − s|3αη−2

]
‖φ‖H1 .

Choosing η = |t − s|α we get the second inequality in (75). �

5.3 Existence of a smooth solution

With the previous a priori estimates at hand, we are ready to prove existence of a solution.

Theorem 5.8. Let Assumption 5.1 hold for n > 6 + d
2 and let u0 ∈ C∞c (Rd) be given. Then

there exists a solution to (63) which belongs to C6
b and

δust =

∫ t

s
div(ar∇ur)dr + B1

stus + B2
stus + u\st (80)

holds in C3
b in the sense that u\ ∈ C3α

2 ([0, T ]; C3
b(R

d)), where B = (B1, B2) is the un-
bounded rough driver constructed from X as in Proposition 5.3.
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Proof. Denote by uε the solution of (63) when X is replaced by Xε , which we write

δuεst =

∫ t

s
div(a∇uεr)dr + Xε

st∇uεs +
∫ t

s
Ẋε

r∇(X
ε
sr∇uεs)dr + uε,\st . (81)

Setting f ε = (uε , . . . ,∇nuε) and choosing N large (in fact N = 1 + d + · · ·+ dn) we see
that (71) is on the form (73) where Vε and Yε are defined from Xε using (72). We then
build the unbounded rough driver Bε,⊗2 and Bε from Vε and Yε according to (76) and (78)
respectively.

By the assumptions on a, X and u0 we get

sup
t∈[0,T ]

‖uεt ‖
2
Hn = sup

t∈[0,T ]

n∑
k=0

‖∇kuεt ‖
2
L2(Rd)

= sup
t∈[0,T ]

‖ f εt ‖
2
L2(Rd;T (n)(Rd))

≤ C sup
t∈[0,T ]

‖ f0‖2L2(Rd;T (n)(Rd))
= C‖u0‖

2
Hn

for some constant C. For φ ∈ Hn+1, define Φ ∈ L2(Rd; T (n)(Rd)) by Φ = (φ,∇φ, . . . ,∇nφ)
and notice

(δuεst, φ)Hn =
n∑

k=0

(δ∇kuεst,∇
kφ)L2(Rd) = (δ f εst, Φ)L2(Rd;T (n)(Rd))

≤ C|t − s|α‖Φ‖H1(Rd;T (n)(Rd)) ≤ C|t − s|α‖φ‖Hn+1(Rd)

Since Hn+1 and Hn−1 are dual w.r.t. to the inner product on Hn, we get ‖δuε‖Hn−1(Rd) ≤

C|t − s|α. By similar reasoning we get ‖u\st‖Hn−3(Rd) ≤ C|t − s|3α using (79).

Since uε lies in a bounded set of Cα([0, T ]; Hn−1(Rd)) ∩ C([0, T ]; Hn(Rd)), by Arzelà-
Ascoli there exists a subsequence uk := uεk converging in C([0, T ]; Hn

w(R
d)) some ele-

ment u. Here Hn
w(R

d) denotes Hn(Rd) equipped with the weak topology. Choosing now
n > 6 + d

2 and using Sobolev embedding [4, Corollary 9.13] we get that uε,\ is bounded in
C3α

2 ([0, T ]; C3
b(R

d)) and u ∈ C([0, T ]; C6
b(R

d)).

It is straightforward to take the limit in (81) and use the uniform bounds on uε,\ to obtain
(80). �

5.4 Uniqueness

Theorem 5.9. Let Assumption 5.1 hold for n > 6 + d
2 . Then solutions of (60) are unique.

Proof. Let ν be a solution to (60), i.e. for all φ ∈ C3
b we have

δνst(φ) =

∫ t

s
νr(Tr(ar∇

2φ))dr − νs(B1
stφ) + νs(B2

stφ) + ν
\
st(φ)

where ν\ ∈ C3α
2 ([0, T ]; (C3

b(R
d))∗) and B = (B1, B2) is the unbounded rough driver con-

structed from X. Let u be the solution of the backward equation (61) with final condition
ψ ∈ C∞c (Rd) so that

δust = −

∫ t

s
Tr(ar∇

2ur)dr + B1
stus + B2

stus + u\st
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holds in C3
b. We then have

δν(u)st = δνst(us) + νs(δust) + δνst(δust) =

∫ t

s
νr(Tr[ar∇

2us])dr + νs(−B1
stus + B2

stus]) + ν
\
st(us)

−

∫ t

s
νs

(
Tr[ar∇

2ur]
)
dr + νs(B1

stus) + νs(B2
stus) + νs(u

\
st)

+ ν
]
st(u

]
st) + ν

]
st(B1

stus) − νs(B1
stu

]
st) − νs(B1

stB
1
stus)

=

∫ t

s
δνsr(Tr[ar∇

2ur])dr −
∫ t

s
νr

(
Tr[arδ∇

2usr]
)
dr

+ ν
\
st(us) + νs(u

\
st) + ν

]
st(u

]
st) + ν

]
st(B1

stus) − νs(B1
stu

]
st) (82)

where we have defined

ν
]
st := δνst + B1,∗

st νs, u]st := δust − B1
stus

and we have used that the path is geometric which gives νs(B1
stB

1
stus) = νs(B2

stus). Using
the equations for u and ν we get ν] ∈ C2α

2 ([0, T ]; (C3
b(R

d))∗) and u] ∈ C2α
2 ([0, T ]; C3

b(R
d)).

Using this and analyzing every term in (82) we see that

|δν(u)st| . |t − s|3α, =⇒ νt(ut) = const.

and in particular νT (ψ) = ν0(u0). If ν̄ is any other solution with the same initial condition,
the same analysis gives ν̄T (ψ) = ν0(u0) which gives that νT (ψ) = ν̄T (ψ). Since ψ was
arbitrary the result follows. �

6 The McKean-Vlasov equation

Let d, m ∈N be fixed. Let (Ω,F , (Ft)t∈[0,T ], P) be a complete filtered probability space and
W be a d-dimensional Wiener process on it. Let Ξ : Ω → Rd be an F0-measurable random
variable. Let Z ∈ C ᾱ

g ([0, T ], Rm), for ᾱ ∈ (1
3 , 1

2). Moreover let α ∈ (1
3 , ᾱ) and p = 1

α .

In this section we prove well-posedness of the equation

dxt = σ(L(xt), xt)dWt + β(L(xt), xt)dZt, x0 = Ξ ∈ Rd. (83)

We start by defining the notion of solution we shall use.

Definition 6.1. Let ρ ≥ 1 and α ∈ (1
3 , 1

2 ]. We say that an (Ft)t≥0-adapted stochastic process
x : Ω × [0, T ] → Rd is a solution to equation (83) with initial condition Ξ ∈ Lρ(Ω,F0; Rd), if

(i) µt := L(xt) is such that

(µ(β), µ(∇βµ(β))) ∈ D2α
Z ([0, T ]; Hk).

and Fµ defined from σ(µ) and β(µ) as in Lemma 4.8 is a rough driver in the sense of
Definition (3.1).
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(ii) P-almost surely, x satisfies

dxt = Fµdt(xt), x0 = Ξ,

in the sense of Definition 3.4.

Before proceeding we state the assumptions that will be in force throughout the section.

Assumptions 6.2. Let k > d
2 + 3 and ρ ≥ 1,

(i) We assume β ∈ L(Rm, C3
b ⊗ Hk).

(ii) Let σ : Pρ(Rd) → L(Rd; Hk) be a measurable function, such that there exists a
constant Cσ > 0, with

‖σ(µ) −σ(ν)‖L(Rd;Hk) ≤ CσWρ(µ, ν), ‖σ(µ)‖L(Rd;Hk) ≤ Cσ, ∀µ, ν ∈ Pρ(Rd).

We now introduce a suitable space of measures in which will be useful for proving well-
posedness of (83). The set up is reminiscent of the controlled space as introduced in [17],
but tailored for measures on path spaces.

Definition 6.3. Let ρ ≥ 1. We say that a pair (µ, γ) ∈ Pρ(Cα
0 ([0, T ]; Rd))×Cα([0, T ];L(Rm; C3

b(R
d; Rd))

is controlled by Z provided for every φ ∈ C3
b ⊗ Hk we have that

(µ(φ), µ(∇1φγ)) ∈ D2α
Z ([0, T ]; Hk).

Here we used the notation

µ(φ)t =

∫
Cα
φ(ωt, ·)dµ(ω), µ(∇1φγ)

j
t =

∫
Cα
∇1φ(ωt, ·)γ

j
t (ωt)dµ(ω).

For ρ ≥ 1, we denote byM2α,ρ
Z the set of all such controlled pairs equipped with the metric

d
(
(µ, γ), (ν, ζ)

)
= Wρ(µ, ν)+ [γ− ζ]α;C3

b
+ sup
‖φ‖C3

b⊗Hk≤1
‖(µ(φ)− ν(φ), µ(∇1φγ)− ν(∇1φζ))‖Z,α;Hk .

Remark 6.4. We note that in Definition 6.1 (i) the law, µt = L(xt), of the solution is only
defined for the time-marginals, and a priori it is not clear how to construct from this a mea-
sure on the path space Cα

0 ([0, T ]; Rd). However, since x satisfies the equation in Definition
6.1 (ii), x is a random variable in Cα([0, T ]; Rd), and letting h → 0 in (25) and (49) we see
that x takes values in Cα

0 ([0, T ]; Rd). Hence it induces the measure L(x) on Cα
0 ([0, T ]; Rd)

which clearly has time-marginals µt.

Remark 6.5. Let β and σ satisfy Assumption 6.2, with k > d
2 + 3, and let (µ, γ) ∈ M2α,ρ

Z .
Then, σ(µ) and µ(β), µ(∇1βγ) satisfy Assumption 4.2. Assumption 4.2 (i) is verified by
replacing ϕ = βi, for i = 1, . . . , m, in Definition 6.3. Assumption 4.2 (ii) follows trivially
by the boundedness in Assumption 4.2 (ii). We are only left with verifying 4.2 (iii). For all
s, t ∈ [0, T ],

‖σ(µt)−σ(µs)‖L(Rd;Hk) ≤ CσWρ(µt, µs) ≤ Cσ

∫
Cα

0

|ωt −ωs|
ρdµ(ω)


1
ρ

≤ Cσ

∫
Cα

0

[ω]ραdµ(ω)


1
ρ

|t− s|α.

(84)
This gives that σ ∈ CαHk ⊂ Cp−varHk, if p = 1

α .
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Theorem 6.6. Supposeσ and β satisfies Assumption 6.2 and ρ ≥ 2. For any Ξ0 ∈ Lρ(Ω,F0; Rd)
there exists a unique solution x of (83) in the sense of Definition 6.1.

Proof. We fix σ, β satisfying Assumptions 6.2 and construct the following mappings

M
2α,ρ
Z → Cα([0, T ]; Hk) ×D2α

Z ([0, T ]; Hk) → C α → M
2α,ρ
Z

(µ, γ) 7→ (σ(µ), (β(µ), β(µ)′)) 7→ Fµ 7→ (L(x), β(µ)).
(85)

and we shall use the notation Γ(µ, γ) := (L(x), β(µ)). By letting h → 0 in (25) and (49)
we see that L(x) is supported on Cα

0 ([0, T ]; Rd). In Lemma 6.7 and Lemma 6.8 we show

that Γ is a contraction mapping on a subset of M2α,ρ
Z for a small time parameter T0 ≤ T .

Then, noting that T0 = T0(ρ,α,σ, β, Z) does not depend on the initial condition Ξ0, the
solution can be constructed iteratively on the full time interval [0, T ] by concatenation of the
solutions defined on [0, T0], [T0, 2T0] etc. �

Lemma 6.7. Define

L̄ = L̄(σ, β, Z) :=
(
1 +Cσ + ‖β‖C3

b⊗Hk

)
(1 + [Z]ᾱ ∨ [Z]

1
2
ᾱ), (86)

and the closed subset ofM2α,ρ
Z ,

BT :=
{
(µ, γ) ∈ M2α,ρ

Z | d((µ, γ), (µ, δ0)) ≤ 1, Wρ(µ, δ0) ≤
1
3

L̄−1
}

.

Assume Assumption 6.2 with ρ ≥ 2. There exists a small time T = T (ρ,α,σ, β, Z), such
that Γ leaves BT invariant.

Proof. We start by looking at the controlled function,

‖δβ(µ)st‖Hk = ‖

∫
Cα

0

δβ(ω·, ·)stdµ(ω)‖Hk ≤ ‖β‖C3
b⊗Hk

∫
Cα

0

|δωst|dµ(ω)

≤ ‖β‖C3
b⊗Hk

∫
Cα

0

[ω]αdµ(ω)|t − s|α ≤ ‖β‖C3
b⊗HkWρ(µ, δ0)|t − s|α ≤

1
3
|t − s|α

To show the bounds on the rough driver, start by noting that, by linearity,

‖β(µ), β(µ)′‖Z,α;Hk ≤ ‖β‖C3
b⊗Hk sup

‖φ‖C3
b⊗Hk≤1

‖µ(φ), µ(∇1φγ)‖Z,α;Hk ≤ ‖β‖C3
b⊗Hk

and thanks to (84), ‖σ(µ)‖L∞t L(Rd;Hk) ≤ Cσ. This gives that for (µ, γ) ∈ BT , we have
L(σ(µ), β(µ), Z) ≤ L̄(σ, β, Z), where L is defined in (36). The previous observation and
(49) imply

[Fµ]α = [Fµ]α;C3
b
≤ L̄T

ᾱ−α
2 Kρ

for any α < ᾱ and for any ρ ≥ 1 and for a random variable Kρ ∈ Lρ(Ω). From the a priori
estimates (26) we see that there exists a constant C > 0, depending only on ρ (which may
change from an inequality to the next), such that

‖[x]α‖Lρω ≤ C(E[[F]ρα ∨ [F]
ρ/α
α ])1/ρ ≤ CT

ᾱ−α
2 L̄1/α.
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We may now choose T ≤ (3CL̄1+1/α)−
2

ᾱ−α such that

L̄‖[x]α‖Lρω ≤
1
3

. (87)

From Lemma 4.16 we get,

sup
‖φ‖C3

b⊗Hk≤1
‖(L(x)(φ),L(x)(∇1φβ(µ)))‖Z,α;Hk ≤T

ᾱ−α
2 (1 + ‖[x]α‖L2

ω
)L̄ ≤ T

ᾱ−α
2 (1 +CL̄1/α)L̄.

and we choose T ≤ (3(1+C)(1+ L̄1+1/α))−
2

ᾱ−α such that the above is bounded by 1
3 . This

shows that

d(Γ(µ, γ), (δ0, 0)) = ‖[x]α‖Lρω +[β(µ)]α;C3 + sup
‖φ‖C3

b⊗Hk≤1
‖(L(x)(φ),L(x)(∇1φβ(µ)))‖Z,α;Hk ≤

1
3

.

This, together with (87) implies Γ(BT ) ⊂ BT . �

Lemma 6.8. Assume Assumption 6.2 with ρ ≥ 2. There exists a constant 0 < c < 1 and a
small time T = T (ρ,α,σ, β, Z), such that, for all (µ, γ), (ν, ζ) ∈ BT , we have

d
(
Γ(µ, γ), Γ(ν, ζ)

)
≤ cd

(
(µ, γ), (ν, ζ)

)
.

Proof. Let M = K([[σ]]ρ
p,[s,t]

+ 1)(L(σ, β, Z) + L(θ, γ, Z)) be defined as in Lemma 4.17.

We have seen in the proof of Lemma 6.7 that, for (µ, γ) ∈ BT , we have L(σ(µ), β(µ), Z) ≤

L̄(σ, β, Z). Moreover, from (84), we have [[σ(µ)]]pp ≤ CσT
(∫

Cα
0
[ω]ραdµ(ω)

) 1
ρ
≤ T

3 , for µ ∈ BT .

Hence M ≤ KL̄, for some universal constant K = K(α, ρ). We estimate the Wasserstein
distance of the image laws, as given in (85). From Lemma 4.17, there exists ρ̄ ≥ ρ and
C(T ) > 0, such that limT→0 C(T ) = 0 and

Wρ(L(x),L(y)) ≤ ‖[x − y]α‖Lρω ≤C(T )eMρ̄(
‖σ(µ) −σ(ν)‖L∞t L(Rd;Hk) (88)

+ ‖(β(µ), β(µ)′) − (β(ν), β(ν)′)‖Z,α;Hk

)
≤C(T )e(KL̄)ρ̄d

(
(µ, γ), (ν, ζ)

)
. (89)

We study now the Gubinelli derivative. For all s, t ∈ [0, T ], we have

‖β(µ)st − β(ν)st‖Hk ≤‖(µ(∇βγ)s − ν(∇βζ)s)Zst‖Hk + ‖µ(β)
]
st − ζ(β)

]
st‖HK

≤‖(µ(β), µ(∇βγ)) − (ν(β), ν(∇βζ))‖Z,α,Hk([Z]α + |t − s|2α).

Hence, using ᾱ > α and L̄ ≥ L,

[β(µ) − β(ν)]α;C3
b
≤ [β(µ) − β(ν)]α;Hk ≤ ‖β‖C3

b⊗HkT ᾱ−αL̄d
(
(µ, γ), (ν, ζ)

)
. (90)

For the last term in the definition of the metric d, we have, using Proposition 4.17 and
proceeding as in (89)

sup
‖φ‖C3

b⊗Hk≤1
‖(E[φ(x)], E[∇1φ(x)β(x)]) − (E[φ(y)], E[∇1φ(y)γ(y)])‖Z,α,Hk ≤ C(T )e(KL̄)ρ̄d

(
(µ, γ), (ν, ζ)

)
.

(91)

We now add together (89), (90), and (91) to obtain

d
(
Γ(µ, γ), Γ(ν, ζ)

)
≤ C(T )e(KL̄)ρ̄d

(
(µ, γ), (ν, ζ)

)
.

Choosing T = T (ρ,α,σ, β, Z) small enough, depending on L̄, we conclude the proof. �
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7 Non local rough PDEs

Let d, m ∈ N be fixed. Let Z ∈ C ᾱ
g ([0, T ], Rm), for ᾱ ∈ (1

3 , 1
2). Moreover let α ∈ (1

3 , ᾱ) and
p = 1

α . Let σ and β satisfy Assumption 6.2.

We turn to the Fokker-Planck equation induced by the rough diffusion, which formally reads

∂tµ =
1
2

Tr∇2([σ(µ)σ(µ)Tµ]) − div(β(µ)µ)Ż, µ0 ∈ P(R
d). (92)

We define the notion of a solution in a similar way as in the linear case, Definition 5.4, but
where now the unbounded rough driver depends on the solution itself.

Definition 7.1. We say that a path µ : [0, T ] → Pρ(Rd) is a solution of (92) with initial
condition µ0 ∈ Pρ(Rd) provided

(i) for all ϕ ∈ C3
b ⊗ Hk,

(µ(ϕ), µ(∇ϕβ(µ)) ∈ D2α
Z ([0, T ]; Hk).

(ii) µ satisfies (69) with the unbounded rough driver B = Bµ defined from

Xµ
st =

∫ t

s
β(µr, ·)dZr, X

µ
st =

∫ t

s
β(µr, ·)

∫ r

s
β(µu, ·)dZudZr

as in Proposition 5.3, and at =
1
2σ(µt)σ(µt)T .

Existence of a solution to (92) is relatively straightforward.

Theorem 7.2. Suppose σ and β satisfies Assumptions 6.2, µ0 ∈ Pρ(Rd) for ρ ≥ 2 and
Z ∈ Cᾱwg([0, T ]; Rm) for ᾱ ∈ (1

3 , 1
2). Let (Ω,F , (Ft)t∈[0,T ], P) be a complete probability space

that supports a d-dimensional Brownian motion W and an F0-measurable random variable,
Ξ ∈ Lρ(Ω; Rd) such that the push-forward measure P∗(Ξ) = µ0. Then, there exists a
solution µ of (92), in the sense of Definition 7.1. This solution is given by µt = L(xt), where
x is the unique solution to the McKean-Vlasov equation (83) with initial condition Ξ, in the
sense of Definition 6.1.

Proof. The proof is completed by following the same steps as in Proposition 5.5 except the
unbounded rough driver depends on the solution itself. �

The following result will be crucial for proving uniqueness of the non-local Fokker-Planck
equation.

Proposition 7.3. Let ᾱ ∈ (1
3 , 1

2), α ∈ (1
3 , ᾱ) and Z ∈ C ᾱ

wg([0, T ], Rm) is weakly geometric.

Define for (µ, γ) ∈ M2α,ρ
Z and φ ∈ C3

b ⊗ Hk,

Xφ
st =

∫ t

s
φ(µr, ·)dZr, X

φ
st =

∫ t

s
φ(µr, ·)

∫ r

s
φ(µu, ·)dZudZr. (93)

Then Xφ ∈ C α
g ([0, T ]; Hk).
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Proof. We prove this result in two steps. First we show that the controlled path (µ(φ), µ(∇1φγ))
can be continuously approximated by controlled paths which takes values in a finite-dimensional
space. This clearly gives that Xφ can be approximated by a sequence of finite dimensional
rough paths. In the second step we use that the finite dimensional rough path is weakly
geometric to find a smooth approximation of Xφ.

Step 1. For simplicity we only show this for φ ∈ C3
b(R

d) ⊗ L2(Rd), the general case follows
by replacing φ by Dβ

2φ for |β| ≤ k. Let {en} be an orthonormal basis of L2(Rd) and define

φN(x, y) :=
N∑

n=1

〈φ(x, ·), en〉en(y).

We now show that (φN(µ),∇φN(µ)γ) → (φ(µ),∇φ(µ)γ) in D2α′
Z ([0, T ]; L2) for any α′ ∈

(α, ᾱ).

Start with the first component.

‖δφN(µ)st − δφ(µ)st‖
2
L2 =

∑
n>N

|〈δφ(µ)st, en〉|
2 =

∑
n>N

∣∣∣∣∣∣∣
∫

Rd

∫
Cα

0

δφ(ω, y)sten(y)dµ(ω)dy

∣∣∣∣∣∣∣
2

=
∑
n>N

∣∣∣∣∣∣∣
∫

Rd

∫
Cα

0

∫ 1

0
∇1φ(ωs + θδωst, y)ωsten(y)dθdµ(ω)dy

∣∣∣∣∣∣∣
2

=
∑
n>N

∣∣∣∣∣∣∣
∫

Cα
0

∫ 1

0
〈∇1φ(ωs + θδωst), en〉ωstdθdµ(ω)

∣∣∣∣∣∣∣
2

≤

∫
Cα

0

∫ 1

0

∑
n>N

|〈∇1φ(ωs + θδωst), en〉|
2[ω]2αdθdµ(ω)|t − s|2α.

Now for fixed ω, θ and every s, t ∈ [0, T ] we have the monotone convergence∑
n>N

|〈∇1φ(ωs + θδωst), en〉|
2 → 0

as N → ∞ since φ ∈ C3
b(R

d) ⊗ L2(Rd). Moreover, for fixed N, as a function of s and t the
above is continuous. By Dini’s theorem we get

sup
s,t

∑
n>N

|〈∇1φ(ωs + θδωst), en〉|
2 → 0

as N → ∞. This gives

[δφN(µ) − φ(µ)]2
α,L2 ≤ sup

s,t

∫
Cα

0

∫ 1

0

∑
n>N

|〈∇1φ(ωs + θδωst), en〉|
2[ω]2αdθdµ(ω)→ 0

by monotone convergence. In a similar way one can show that ∇1φ
N(µγ) converges to

∇1φ(µγ) in Cα([0, T ]; L2(Rd)).

To see the convergence of the remainder, φN(µ)]st := δφN(µ)st − ∇1φ
N(µsγs)Zst, we note
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first that this term is obviously bounded in C2α
2 ([0, T ]; L2(Rd)). Furthermore, writing

‖φN(µ)]st − φ(µ)
]
st‖

2
L2 =

∑
n>N

∣∣∣∣∣∣∣
∫

Cα
0

δ〈φ(ω), en〉st − 〈∇1φ(ωs), en〉γs(ωs)Zstdµ(ω)

∣∣∣∣∣∣∣
2

≤

∫
Cα

0

∑
n>N

∣∣∣δ〈φ(ω), en〉st − 〈∇1φ(ωs), en〉γs(ωs)Zst
∣∣∣2 dµ(ω).

Using Dini’s theorem and monotone convergence as before we get that for any ε > 0 there
exists Nε such that for all N ≥ Nε we have sups,t ‖φ

N(µ)]st − φ(µ)
]
st‖L2 < ε.

This gives, uniformly in s, t

‖φN(µ)]st − φ(µ)
]
st‖L2 ≤ ε ∧C|t − s|2α ≤ ε1−κCκ|t − s|κ2α

where we have used the geometric interpolation a ∧ b ≤ a1−κbκ for any κ ∈ (0, 1). By
choosing κ correctly we get φN(µ)] → φ(µ)] in C2α′

2 ([0, T ]; L2(Rd)).

Step 2. We now proceed to prove that Xφ can be approximated by a smooth path. Let ε > 0.
From the above continuity we can choose N such that

[XφN
−Xφ]α′ <

ε

2
,

where XφN
is constructed by replacing φ with φN in (93).

As spelled out in Lemma A.3, there exists α < α′ and a smooth path XN,ε such that [XφN
−

XN,ε ]α <
ε
2 . This gives

[XN,ε −Xφ]α ≤ [XN,ε −XφN
]α + [XφN

−Xφ]α′ < ε.

�

Theorem 7.4. Suppose σ, β satisfies Assumptions 6.2 for k > 9 + d and µ0 ∈ Pρ(Rd) is
given with ρ ≥ 2. Then there exists at most one solution µ of (92) in the sense of Definition
7.1.

Proof. Let µ be a solution of (92). From the the assumptions on β and σ we may construct
the time-dependent coefficients (σ(µ), (β(µ),∇1β(β(µ)µ))) from which we construct the
rough driver Fµ as in Lemma 4.8. Denote by xµ the solution of

dxµt = σ(µt, xµt )dWt + β(µt, xµt )dZt,

i.e. dxµt = Fµdt(xt). From Proposition 4.14 we see that ν satisfies

∂tν =
1
2

Tr∇2([σ(µ)σ(µ)Tν]) − div(β(µ)ν)Ż. (94)

as in Definition 7.1, where Xst(x) =
∫ t

s β(µr, x)dZr and Xst(x, y) =
∫ t

s β(µr, x)
∫ r

s β(µu, y)dZudZr.
From the assumption on β, the Sobolev embedding [4, Corollary 9.13] Hk ⊂ Cn+3

b (Rd; Rd)

for k > d
2 + n + 3 and Proposition 7.3 we see that X ∈ C α

g ([0, T ]; Cn+3
b (Rd; Rd)). Now if

n > 6 + d
2 , we get from Theorem 5.9 that there exists at most one solution of (94). In par-

ticular, we see that µt = νt which gives that xµ is a solution of (83). Since this equation is
well-posed, this uniquely describes µ. �
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A Appendix

A.1 Kolmogorov continuity theorem

In this section we prove a Kolmogorov continuity type theorem for rough drivers. The proof
is done exactly as in [15, Theorem 3.1], so we only sketch the proof to convince the reader
that the steps are the same.

Theorem A.1. Suppose F = (F, F) is a random rough driver such that

E[‖Fst‖
q
C3

b
] ≤ C|t − s|βq, E[‖Fst‖

q/2
C2

b
] ≤ C|t − s|βq

for q and β such that qβ > 1. Then for every α ∈ (0, β − 1
q) we have

E[‖F‖q
α;C3

b
] ≤ C, E[‖F‖q/2

α;C2
b
] ≤ C

and if β − 1
q >

1
3 then F is rough driver for α ∈ (1

3 , β − 1
q).

Proof. Take T = 1 for simplicity and denote by Dn the uniform partition of [0, 1] with mesh
2−n and let

Kn := sup
t∈Dn

‖Ft,t+2−n‖C3
b
, Kn := sup

t∈Dn

‖Ft,t+2−n‖C2
b
.

By assumption on F we get

E[Kq
n ] ≤ E[

∑
t∈Dn

‖Ft,t+2−n‖
q
C3

b
] . 2−n(1−βq), E[Kq/2

n ] ≤ E[
∑
t∈Dn

‖Ft,t+2−n‖
q/2
C3

b
] . 2−n(1−βq).

Let s, t ∈
⋃

Dn and choose m such that |Dm+1| < |t− s| ≤ |Dm|. There exists a partition {ti}Ni=0
of [s, t] such that (ti, ti+1) ∈ Dn for some n ≥ m + 1, and for each fixed such n there are at
most two such intervals from Dn. We get

‖Fst‖C3
b
≤

N−1∑
i=0

‖Ftiti+1‖C3
b
≤ 2

∑
n≥m+1

Kn

and using Fst =
∑N−1

i=0 Ftiti+1 + ∇Ftiti+1 Fsti , which is easily seen from Chen’s relation, we
get

‖Fst‖C2
b
≤

N−1∑
i=0

‖Ftiti+1‖C2
b
+ ‖Ftiti+1‖C3

b
‖Fsti‖C3

b
≤ 2

∑
n≥m+1

Kn +

2 ∑
n≥m+1

Kn

2

.

This gives
‖Fst‖C3

b

|t − s|α
≤ Kα,

‖Fst‖C2
b

|t − s|α
≤ Kα

where
Kα := 2

∑
n≥0

Kn

|Dn|α
, Kα := 2

∑
n≥0

Kn

|Dn|α

which belongs to Lq(Ω) and Lq/2(Ω) respectively. This proves the claim. �
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A.2 Weakly geometric rough paths

We prove that rough path integration w.r.t. a weakly geometric rough path yields a weakly
geometric rough path.

Lemma A.2. Assume Z is weakly geometric and E is a separable Hilbert space and
(Y , Y′) ∈ D2α

Z ([0, T ]; E). Then the rough path X defined by

Xst :=
∫ t

s
Yk

r dZk
r , Xst :=

∫ t

s
Xr ⊗ Yk

r dZk
r − Xs ⊗ Xst

is also weakly geometric.

Proof. Let {ei} be an orthonormal basis of E and use the component notation

gi = 〈g, ei〉E , g ∈ E, hi, j = 〈h, ei ⊗ e j〉E⊗E , h ∈ E ⊗ E.

The components of the integrals may thus be spelled out

Xi
st =

∫ t

s
Y i,k

r dZk
r , X

i, j
st =

∫ t

s
Xi

rY
j,k

r dZk
r − Xi

sX
j
st

where the above are scalar integrals defined by their local expansions

Ξi
st = Y i,k

s Zk
st + Y i,k,l

s Z
l,k
st , Ξi, j

st = Xi
sY

j,k
s Zk

st + (Y i,l
s Y j,k

s + Xi
sY

i,k,l
s )Zl,k

st

respectively. Since Ξi, j
st − Xi

sΞ
j
st = Y i,l

s Y j,k
s Z

l,k
st and by definition of X we get

|X
i, j
st − Y i,l

s Y j,k
s Z

l,k
st | . |t − s|3α, |Xi

st − Y i,k
s Zk

st| . |t − s|2α

which gives

|X
i, j
st + X

j,i
st − Xi

stX
j
st| . |Y

i,l
s Y j,k

s Z
l,k
st + Y j,l

s Y i,k
s Z

l,k
st − Y j,k

s Zk
stY

j,l
s Zl

st|+ |t − s|3α.

Now, since Z is weakly geometric we have

Y i,l
s Y j,k

s Z
l,k
st + Y j,l

s Y i,k
s Z

l,k
st = Y i,l

s Y j,k
s (Zl,k

st + Z
k,l
st ) = Y i,l

s Y j,k
s Zl

stZ
k
st

which gives

|X
i, j
st + X

j,i
st − Xi

stX
j
st| . |t − s|3α.

It is straightforward to check that the above left hand side is the increment from s to t of the
function t 7→ X

i, j
0t +X

j,i
0t − Xi

t X
j
t . Since 3α > 1 we get that this function is constant and equal

to 0. �

In the next lemma we show how to construct the approximation in Proposition 7.3.

Lemma A.3. Fix N, K, d, m > 0 , ᾱ ∈ (1
3 , 1

2) and let Z ∈ C ᾱ
wg([0, T ]; Rm) be a weakly

geometric rough path. Moreover, for i = 1, . . . , d, n = 1, . . . , N and k = 1, . . . , K, let en ∈

L2(Rd) be an orthonormal basis and θi,k,n ∈ D2α′
Z ([0, T ], R), for α′ ∈ (1

3 , ᾱ) . Let φ = φi,k =∑N
n=1 θ

i,k,nen and construct Xφ as in (93). Then, for every α ∈ (1
3 ,α′) there exists Xε such

that
%α(Xφ, Xε)→ 0, for ε → 0.
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Proof. We take (ēi)i=1,...,d an orthonormal basis of Rd and, for ῑ = 1, . . . , dN, we define
ξı̄ := enēi ∈ L2(Rd; Rd), where ı̄, i, n satisfy the relation

ῑ := d(n − 1) + i, i = 1, . . . , d, n = 1, . . . , N. (95)

Let VN be the finite dimensional vector space defined as

VN := span{ξı̄ | ı̄ = 1, . . . , dN} ⊂ L2(Rd; Rd).

We note that dim(VN) = dN. On this space we construct a rough path as follows, for
ı̄, ̄ = 1, . . . , dN,

X ı̄
st := C ı̄

stξ
ı̄ :=

(∫ t

s
θi,k,n

r dZk
r

)
ξı̄, X

ı̄ ̄
st := C ı̄ ̄

stξ
ı̄ ⊗ ξ ̄ :=

(∫ t

s
θi,k,n

r

∫ u

s
θ

j,l,m
u dZl

udZk
r

)
ξı̄ ⊗ ξ ̄.

Here and in the following we always assume that the triples (ı̄, i, n) and ( ̄, j, m) satisfy
relation (95). Moreover, we always use the convention that we are summing over repeated
indices, in this case k, l = 1, . . . , K. It is immediate to see that Xφ = (

∑dN
ı̄=1 X ı̄,

∑dN
ı̄, ̄=1 Xı̄, ̄).

We prove now that (X, X) is geometric, i.e. that the following relation holds

2 Sym(X)st = Xst ⊗ Xst, ∀s, t ∈ [0, T ].

Let us look more in detail what the tensor product on the right hand side is, for ı̄, ̄ =
1, . . . , dN,

(Xst ⊗ Xst)
ı̄, ̄ = (C ı̄

stC
̄
st)ξ

ı̄ ⊗ ξ ̄ = (C ı̄
stC

̄
stenem)ēi ⊗ ē j. (96)

Each of these terms is a tensor product which is mostly zero. Let us now describe each
component of (96). We start by introducing the indexes

ı̂ := d(ı̄ − 1) + f , f = 1, . . . , d, ı̄ = 1, . . . , dN.

We assume from now that the couple (ı, f ) and ( , g) always assume the previous relation.
We obtain

(Xst ⊗ Xst)
ı̂, ̂ = ((Xst ⊗ Xst)

ı̄, ̄) f ,g = C ı̄
stC

̄
ste

nemδi, j, f ,g.

Similarly, we see that

(Sym(X)st)
ı̂, ̂ = X

ı̂, ̂
st + X

̂,ı̂
st = (C ı̄, ̄

st enem)(ei ⊗ e j)
f ,g = C ı̄, ̄

st enemδi, j, f ,g.

The symmetry condition reduces to verify the scalar equality

C ı̄
stC

̄
st = C ı̄, ̄

st ,

which is satisfied thanks to Lemma A.2.

The rough path Xφ is thus in C α′
wg([0, T ], VN). Since VN is a finite dimensional space, we

can find a smooth approximation Xε in C α([0, T ], VN), for some α ∈ (1
3 ,α′). Hence, since

VN ⊂ L2(Rd; Rd), this is also an approximation in C α([0, T ], L2(Rd; Rd)). �
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A.3 A separable subspace of the Hölder space

Proposition A.4. The space Cα
0 ([0, T ]; E) is equal to the closure of C1([0, T ]; E) with re-

spect to the Cα-topology. In particular, Cα
0 ([0, T ]; E) is separable if E is separable.

Proof. For simplicity we assume E = R. We clearly have [ f ]α,h ≤ h1−α‖∇ f ‖∞ so that
C1([0, T ]) ⊂ Cα

0 ([0, T ]), which shows one inclusion by taking the closure.

To see the reversed inclusion, we take f ∈ Cα
0 ([0, T ]), a standard mollifier ρn(u) = nρ(nu)

and let f n
t =

∫ T
0 fu ρn(t − u)du =

∫ T−t
t ft−u ρn(u)du. Then f n is smooth and we get for

|t − s| ≤ h

| f n
t − f n

s | ≤

∫ T−t

t
| ft−u − fs−u|ρn(u)du ≤ [ f ]α,h|t − s|α

so that [ f n]α,h ≤ [ f ]α,h. Let us show that f n converges uniformly to f .

| ft − f n
t | =

∣∣∣∣∣∣ ft
∫ T

0
ρn(t − u)du −

∫ T

0
fu ρn(t − u)du

∣∣∣∣∣∣ ≤ [ f ]α

∫ T

0
|t − u|αρn(t − u)du

≤ [ f ]α

∫
R

|t − u|αρn(t − u)du = [ f ]αn−α
∫

R

|r|αρ(r)dr

which converges to 0 uniformly in t.

Now, write

[ f − f n]α ≤ [ f − f n]α,h + sup
(s,t)∈∆T :|t−s|≥h

|δ fst − δ f n
st|

|t − s|α
≤ 2[ f ]α,h + 2h−α‖ f − f n‖∞

which gives
lim

n→∞
[ f − f n]α ≤ 2[ f ]α,h.

By assumption on f , letting h→ 0 gives that f n → f in Cα([0, T ]). �

A.4 Rough Gronwall lemma

Lemma A.5. Assume that G : [0, T ] → R+ is such that there exists constants L > 0 and κ,
and a regular control ω such that for every (s, t) ∈ ∆T with ω(s, t) ≤ L,

δGst ≤ ω(s, t)1/κ sup
0≤r≤t

Gt + φ(s, t), (97)

where φ : ∆T → R+ is such that φ(s, t) ≤ φ(0, T ). Then

sup
0≤t≤T

Gt ≤ 2 exp
{

2ω(0, T )
Lα

}
(G0 + φ(0, T ))

where α := 1∨ L−1(2e2)−κ.
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Proof. Choose K to be the largest integer such that

α(K − 1)L ≤ ω(0, T ) ≤ αKL.

Since ω is regular, we may choose a partition 0 = t0 < t1 < · · · < tK = T such that

ω(0, tk) = αkL and ω(tk, tk+1) ≤ αL,

for k = 0, 1, . . . , K − 1. Introduce the notation

Gs≤t := sup
s≤r≤t

Gr, G≤t := G0≤t

Fix t ∈ [tk−1, tk]. Since α ≤ 1, we get

δG0t =
k−2∑
i=0

δGtiti+1 +Gtk−1t ≤

k−1∑
i=0

ω(ti, ti+1)
κG≤ti+1 +

k−2∑
i=0

φ(tt, ti+1) + φ(tk−1, t)

≤ (αL)1/κ
k−1∑
i=0

G≤ti+1 + Kφ(0, T ).

We now define the function

Ht := G≤t exp
{
−
ω(0, t)
αL

}
,

so that
k−1∑
i=0

G≤ti+1 =
k−1∑
i=0

Hti+1 exp
{
ω(0, ti+1)

αL

}
≤ H≤tk

k−1∑
i=0

ei+1 ≤ H≤tkek+1.

This gives
Gtk−1≤tk ≤ G0 + (αL)1/κH≤tkek+1 + Kφ(0, T ),

and thus
G≤t ≤ max

1≤i≤k
Gti−1≤ti ≤ G0 + (αL)1/κH≤tkek+1 + Kφ(0, T ).

Multiplying the above inequality by exp
{
−
ω(0,t)
αL

}
yields

Ht ≤ exp
{
−
ω(0, t)
αL

}
G0 + exp

{
−
ω(0, t)
αL

}
(αL)1/κH≤tkek+1 + exp

{
−
ω(0, t)
αL

}
Kφ(0, T ).

Then taking the supremum over t ≤ tk, we arrive at

H≤tk ≤ exp
{
−
ω(0, t)
αL

}
G0 + exp

{
−
ω(0, t)
αL

}
(αL)1/κH≤tkek+1 + exp

{
−
ω(0, t)
αL

}
Kφ(0, T )

≤ G0 + (αL)1/κe2H≤tk + Kφ(0, T )

Owing to the definition of α, we find

H≤t ≤ 2G0 + 2Kφ(0, T ).

By the definition of H we get

G≤T ≤ e
ω(0,T )
αL (2G0 + 2Kφ(0, T ))

and by definition of K we have K ≤ ω(0,T )
αL + 1 ≤ e

ω(0,T )
αL and the result follows. �

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019



Rough nonlocal diffusions 57

References

[1] I. Bailleul, R. Catellier, and F. Delarue. Mean field rough differential equations. arXiv
preprint arXiv:1802.05882, 2018.

[2] I. Bailleul and M. Gubinelli. Unbounded rough drivers. Annales de la Faculté des
Sciences de Toulouse. Mathématiques., 26(4):795–830, 2017.

[3] I. Bailleul and S. Riedel. Rough flows. To appear in Journal of the Mathematical
Society of Japan, arXiv preprint: https://arxiv.org/abs/1505.01692, 2018.

[4] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Uni-
versitext. Springer, New York, 2011.

[5] R. Carmona, F. Delarue, and D. Lacker. Mean field games with common noise. Ann.
Probab., 44(6):3740–3803, 11 2016.

[6] T. Cass, C. Litterer, and T. Lyons. Integrability and tail estimates for gaussian rough
differential equations. Ann. Probab., 41(4):3026–3050, 07 2013.

[7] T. Cass and T. Lyons. Evolving communities with individual preferences. Proc. Lond.
Math. Soc. (3), 110(1):83–107, 2015.

[8] M. Coghi and B. Gess. Stochastic nonlinear fokker-planck equations. arXiv preprint
arXiv:1904.07894, 2019.

[9] A. Davie. Differential equations driven by rough paths: an approach via discrete ap-
proximation. Appl. Math. Res. eXpress 35,, 2010.

[10] D. Dawson and J. Vaillancourt. Stochastic McKean-Vlasov equations. Nonlinear Dif-
ferential Equations and Applications NoDEA, 2(2):199–229, June 1995.

[11] A. Deya, M. Gubinelli, M. Hofmanová, and S. Tindel. A priori estimates for rough PDEs
with application to rough conservation laws. arXiv preprint arXiv:1604.00437, 2016.

[12] J. Diehl, P. K. Friz, and W. Stannat. Stochastic partial differential equations: a rough
path view. Annales de la Faculté des Sciences de Toulouse. Mathématiques., 26(4),
2017.

[13] J. Diehl, H. Oberhauser, and S. Riedel. A levy-area between brownian motion and
rough paths with applications to robust non-linear filtering and rpdes. Stochastic Pro-
cesses and Their Applications, Volume 125, Issue 1, January 2015, Pages 161 - 181,
2015.

[14] P. Friz, T. Nilssen, and W. Stannat. Existence, uniqueness and stability of semi-linear
rough partial differential equations. arXiv preprint arXiv:1809.00841, 2018.

[15] P. K. Friz and M. Hairer. A course on rough paths. Universitext. Springer, Cham, 2014.
With an introduction to regularity structures.

[16] P. K. Friz and N. B. Victoir. Multidimensional Stochastic Processes as Rough Paths:
Theory and Applications. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 2010.

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019



M. Coghi, T. Nilssen 58

[17] M. Gubinelli. Controlling rough paths. Journal of Functional Analysis, 216(1):86 – 140,
2004.

[18] A. Hocquet and M. Hofmanová. An energy method for rough partial differential equa-
tions. Journal of Differential Equations, 265(4):1407–1466, 2018.

[19] H. Kunita. Stochastic flows and stochastic differential equations, volume 24 of Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
1990.

[20] T. G. Kurtz and J. Xiong. Particle representations for a class of nonlinear spdes.
Stochastic Processes and their Applications, 83(1):103–126, 1999.

[21] T. G. Kurtz and J. Xiong. Numerical solutions for a class of SPDEs with application to
filtering. In Stochastics in finite and infinite dimensions, Trends Math., pages 233–258.
Birkhäuser Boston, Boston, MA, 2001.

[22] W. Liu and M. Röckner. Stochastic partial differential equations: an introduction. Uni-
versitext. Springer, Cham, 2015.

[23] D. Nualart and P. Xia. On nonlinear rough paths. arXiv preprint arXiv:1904.11526,
2019.

DOI 10.20347/WIAS.PREPRINT.2619 Berlin 2019


	Introduction
	Notations and preliminary results
	Hölder and p-variation spaces
	Rough paths
	Taylor's formula
	Wasserstein metric
	Spatial function spaces

	Non linear integration
	A priori estimates
	A priori contractive estimates
	Well-posedness of nonlinear RDEs

	Rough non-linearities
	Construction of the rough driver
	Itô theory
	Gubinelli integration
	Mixed Itô and rough path integration

	Integrability of the random rough driver
	The average Itô formula

	Linear Rough PDE
	Unbounded rough drivers
	A priori estimates for smooth vector fields
	Existence of a smooth solution
	Uniqueness

	The McKean-Vlasov equation
	Non local rough PDEs
	Appendix
	Kolmogorov continuity theorem
	Weakly geometric rough paths
	A separable subspace of the Hölder space
	Rough Gronwall lemma


